
Dual weak pigeonhole principle, Boolean complexity,

and derandomization

Emil Jeřábek

Mathematical Institute, AS CR, Prague

November 25, 2003

Abstract

We study the extension (introduced as BT in [5]) of the theory S1
2 by instances of the

dual (onto) weak pigeonhole principle for p-time functions, dWPHP(PV)x
x2 . We propose a

natural framework for formalization of randomized algorithms in bounded arithmetic, and
use it to provide a strengthening of Wilkie’s witnessing theorem for S1

2+dWPHP(PV). We
construct a propositional proof system WF (based on a reformulation of Extended Frege
in terms of Boolean circuits), which captures the ∀Πb

1-consequences of S1
2 +dWPHP(PV).

We also show that WF p-simulates the Unstructured Extended Nullstellensatz proof sys-
tem of [2].

We prove that dWPHP(PV) is (over S1
2) equivalent to a statement asserting the ex-

istence of a family of Boolean functions with exponential circuit complexity. Building on
this result, we formalize the Nisan-Wigderson construction (derandomization of proba-
bilistic p-time algorithms) in a conservative extension of S1

2 + dWPHP(PV).

Preliminaries

We assume the reader is familiar with basic concepts of bounded arithmetic, such as the
hierarchy of Σb

i and Πb
i formulas, and theories Si2. (Section 5.2 of [4] is a good introduction

to these topics.)
The theory PV has function symbols for all polynomial-time algorithms (introduced in-

ductively via Cobham’s limited recursion on notation), its axiom set consists of defining
equations for all these functions, and an open axiom schema equivalent to open induction.
(This theory is called PV 1 in [4]. Our usage of the symbol PV is nonstandard, it usually
denotes an equational theory.) The hierarchy of Σb

i(PV)-formulas in the language of PV is
defined as usual, and we define Si2(PV) as the extension of PV by the Σb

i(PV)-PIND schema.
PV -functions have well-behaved ∆b

1-definitions in S1
2 . Under this interpretation, every

Σb
i(PV)-formula is equivalent to a Σb

i -formula, in particular S1
2(PV) is a definable (hence

conservative) extension of S1
2 . We will thus ignore the distinction between S1

2 and S1
2(PV),

and use PV -functions freely to simplify the presentation. If the reader is unfamiliar with PV ,
she may simply identify PV -functions with functions ∆b

1-definable in S1
2 .

1

If M is a model of PV or S1
2 , Log(M) denotes the cut {|a|M ; a ∈M}. We will often use

this notation outside the model-theoretical context, in which case x ∈ Log is a shortcut for
∃y x = |y|. Similarly, x ∈ LogLog means ∃y x = ||y||.

Let f be a function. Dual weak pigeonhole principle for f is the formula

∀a > 1 dPHP(f)aa2 ,

where dPHP(f)ab stands for
∃v < b∀u < a f(u) 6= v.

The schema dWPHP(PV) is the dual weak pigeonhole principle for all PV -functions f (with
parameters). This schema is finitely axiomatizable: it is equivalent to dWPHP(eval), where
eval(C, u) is the PV -function which evaluates a circuit C on input u. The exact bound b = a2

in the definition of dWPHP(PV) is inessential, since the following are equivalent over S1
2 (this

is essentially due to [11]):

(i) ∀a∃b dPHP(PV)ab ,

(ii) dWPHP(PV),

(iii) ∀a > 0∀n ∈ Log dPHP(PV)ana(n+1).

In particular, we will often use the principle with b = 2a.
Sharply bounded collection is the schema

∀i ≤ |x| ∃v ≤ y ϕ(i, v)→ ∃w ∀i ≤ |x| ϕ(i, (w)i).

The symbol BBΣb
i denotes sharply bounded collection for all Σb

i -formulas ϕ. BBΣb
i is provable

in Si2 (see [4]), and Si2 + BBΣb
i+1 is ∀Σb

i+1-conservative over Si2, by [12].
We will occasionally need another schema, the length-minimization principle:

ϕ(x)→ ∃u ≤ x (ϕ(u) & ∀v ≤ x (|v| < |u| → ¬ϕ(v))).

Length minimization for Σb
i -formulas, Σb

i -LENGTH -MIN , is provable in Si2 (in fact, it is
equivalent to Si2 over a weak base theory). Similarly, there is a length-maximization principle,
Σb
i -LENGTH -MAX .

We recall two indispensable tools in bounded arithmetic: Parikh’s theorem, and Buss’s
witnessing theorem.

0.1 Proposition (Parikh [10]) Let T be a ∀Σb
∞-axiomatizable extension of S1

2 . If T proves

∀x∃y ϕ(x, y), where ϕ is bounded, then there exists a term t such that

T ` ∀x∃y ≤ t(x) ϕ(x, y). �

0.2 Proposition (Buss [1]) Assume that S1
2 ` ∀x∃y ϕ(x, y), with ϕ ∈ Σb

1. Then there

exists a PV -function f such that PV ` ∀x ϕ(x, f(x)). �

2

We will also need some notions from proof complexity. Recall that a propositional proof
system is a p-time computable function P , whose range is the set TAUT of all classical
propositional tautologies in De Morgan language. A proof system P polynomially simulates
a proof system Q, in symbols Q ≤p P , iff there is a p-time function f such that Q = P ◦ f .

The set of propositional tautologies is definable by the Πb
1-formula

Taut(ϕ) ≡ ∀x < 2|ϕ| eval(ϕ, x) = 1.

If P is PV -function which defines a propositional proof system, the consistency and reflection
principles for P are the ∀Πb

1-sentences

Con(P) ≡ ∀π P (π) 6= ⊥,
0-RFN (P) ≡ ∀π Taut(P (π)).

An important link between bounded arithmetic and propositional proof complexity is given
by translation of bounded formulas into propositional logic. For any Πb

1-formula ϕ, there
is a (canonically constructed) sequence of propositional formulas {‖ϕ‖n; n ∈ ω}, such that
∀xϕ(x) is true in the standard model iff all ‖ϕ‖n are tautologies. The following theorem is a
prominent example of a connection between an arithmetical theory, and a propositional proof
system:

0.3 Proposition (Cook [3])

(i) If PV ` ϕ(x), ϕ ∈ Πb
1, then tautologies ‖ϕ‖n have polynomial-time constructible proofs

in the Extended Frege (EF) proof system.

(ii) PV ` 0-RFN (EF) �

Other notation: we denote the set of natural numbers by ω. We also borrow from set
theory the convention n = {0, 1, . . . , n − 1}, in particular a “function f : a → b” is actually
f : [0, a− 1]→ [0, b− 1].

Many of our results are formalizations of known statements in fragments of bounded
arithmetic, like PV or S1

2 + dWPHP(PV). To make the notation more compact, we indicate
the theory by the symbol “(T `:)”, which can be read as “theory T proves:”.

1 Randomized computation in bounded arithmetic

The main purpose of the present section is to develop a framework for expressing (defining)
a certain kind of probabilistic algorithms in bounded arithmetic. As described in the next
definition, we deal with a slightly nonstandard class of randomized algorithms; this choice
was motivated by two demands: (i) we want ZPP , RP , and coRP languages to fit in, (ii) we
want to consider functions as well as predicates. Moreover, it is not natural for randomized
algorithms to compute univalued functions, hence we allow also multifunctions. Formally,
an n-ary partial multifunction is just an (n + 1)-ary relation; by an abuse of language, we
write F (~x) = y as a shorthand for “y is one of the possible values of F (~x)”. Also notice that

3

we left out BPP algorithms; they would require a different treatment, which does not blend
smoothly with our approach to RP -like algorithms (in particular, the concept of BPP -like
multifunctions does not seem to make much sense).

1.1 Definition Let F be a partial multifunction, α : ω → [0, 1], and M a randomized Turing
machine. We say that M is an α-PPTM (probabilistic polynomial-time Turing machine)
for F iff the following conditions are satisfied:

(i) The time of any computation of M is polynomial in the length of its input.

(ii) On any input x, either M computes a number y such that F (x) = y, or it halts in
a special state labeled “Sorry, try again” (S.T.A.)

(iii) If x ∈ dom(F), the probability that the computation of M on input x stops in the
S.T.A. state is bounded from above by α(|x|).

Let MFRP be the class of all partial multifunctions (pmf) computable by a 1/2-PPTM .

1.2 Remarks

• Trivial amplification shows that the definition of MFRP does not change, if we replace
the constant 1/2 by any function α(n) such that 1−n−c ≥ α(n) ≥ 2−n

c
for some c > 0.

• L ∈ ZPP iff the characteristic function of L is in MFRP .

• L ∈ RP iff L = dom(F) for some F ∈ MFRP iff the function which is constantly 0 on L
and undefined on its complement is in MFRP .

• An α-PPTM for F is also an α-PPTM for any pmf G such that dom(F) = dom(G)
and F ⊆ G.

Our next step is to formalize this definition in bounded arithmetic. First we give an informal
description. We take a PV -function f(~x,w), which simulates the computation of M on input
~x and a string of random bits w. The machine may touch only a polynomial number of
these random bits, we thus fix an explicit bound w < r(~x). The output of f(~x,w) is either
a number, or a special symbol “∗”, which corresponds to halting in the S.T.A. state (we
may encode it as a number by putting “∗” = 0, “n” = n + 1). Now we need to express the
condition (iii). Assume that F (~x) is defined, and let us say that a random string w is good,
if f(~x,w) 6= ∗, otherwise it is bad. We will consider an onto mapping m : t× r(~x) � s×Bad ,
where Bad is the set of all bad random strings; such a mapping explicitly witnesses that the
ratio of bad strings is at most t/s, hence (iii) holds with α = t/s. A formal definition follows:

1.3 Definition Let T be a theory containing PV , and t(~x) and s(~x) any PV -functions.
A definable t/s-PPTM consists of PV functions f and r such that T proves

(F) ∃w < r(~x) f(~x,w) 6= ∗ →
→ ∃ circuit C ∀w < r(~x) (f(~x,w) = ∗ → ∀i < s(~x)∃v < r(~x)∃j < t(~x) C(v, j) = 〈w, i〉),

4

where the size of C is tacitly bounded by a polynomial in the length of ~x. A t/s-PPTM is
uniformly witnessed if the formula above holds with C(v, j) replaced by m(~x, v, j), where m
is a PV -function symbol.

A definable t/s-PPTM computes a pmf F (~x), defined by

F (~x) = y iff ∃w < r(~x) f(~x,w) = y 6= ∗.

(Notice that this is Σb
1. Condition (F) itself is ∀Σb

3 for general PPTM ’s, and ∀Σb
1 for uni-

formly witnessed PPTM ’s.) We will call such a function definable t/s-MFRP , or shortly
t/s-definable. A definable MFRP is weakly total iff (F) holds with the condition “∃w <

r(~x) f(~x,w) 6= ∗ →” dropped.

1.4 Observation Assuming dWPHP(PV), a weakly total definable t/s-MFRP is total, pro-
vided 2t ≤ s.

Proof: If F (~x) were undefined, the circuit C from 1.3 would represent a surjective mapping
of t(~x)r(~x) onto s(~x)r(~x), contradicting dWPHP(PV). �

1.5 Lemma (PV `:) Let t, s and p be PV -functions such that p(x) ≥ 1. Any tp/sp-definable

MFRP F has a t/s-definition, which is uniformly witnessed and/or weakly total, whenever

F is. (Hence the symbol t/s may be interpreted as a quotient.)

Proof: Let f(x,w) and r(x) be as in Definition 1.3. Put

r′(x) := r(x) · p(x),
f ′(x,w′) := f(x,w′

1),

where we consider w′ as a pair [w′
0, w

′
1], w

′
0 < p(x), w′ = w′

1 · p(x) + w′
0. Let f ′(x,w′) 6= ∗

for some w′ < r′(x). This means that f(x,w′
1) 6= ∗, hence there is a circuit C such that

C(v, j) = 〈w, i〉 for some j < t(x) · p(x) and v < r(x), whenever i < s(x) · p(x), w < r(x) and
f(x,w) = ∗. Define a new circuit C ′ by

C ′(v′, j′) := 〈[i0, w], i1〉, where C(v′1, [v
′
0, j

′]) = 〈w, i〉.

(As above, we decompose i = [i0, i1], v′ = [v′0, v
′
1], etc.) Given i′ < s(x) and w′ < r(x) · p(x)

such that f ′(x,w′) = ∗, we have [w′
0, i

′] < s(x) · p(x) and f(x,w′
1) = ∗, hence there is

j < t(x) · p(x) and v < r(x) such that C(v, j) = 〈w′
1, [w

′
0, i

′]〉. Therefore C ′([j0, v], j1) =
〈[w′

0, w
′
1], i

′〉 = 〈w′, i′〉, j1 < t(x), and [j0, v] < r′(x) as required. �

1.6 Lemma (PV + BBΣb
1 `:) Let t, s and p be PV -functions such that p(x) ≥ 1. Then any

t/s-definable MFRP F has a t|p|/s|p|-definition, which is uniform and/or weakly total, if the

original one was. (This lemma also holds in plain PV , if p is constant.)

Proof: For any fixed numbers a and b, we may identify w < a|b| with a sequence 〈wk〉k<|b| of
numbers less than a, namely wk =

⌊
w
ak

⌋
mod a. Given f and r defining F , we put

r′(x) := r(x)|p(x)|,

f ′(x,w) :=

{
∗, if ∀k < |p(x)| f(x,wk) = ∗,
f(x,wk), if k < |p(x)| is minimal such that f(x,wk) 6= ∗.

5

Clearly, ∃w < r(x) f(x,w) = y iff ∃w < r′(x) f ′(x,w) = y. Assume that C is a circuit
satisfying (F). Define

C ′(v, j) = 〈w, i〉, where C(vk, jk) = 〈wk, ik〉 for each k < |p(x)|.

Let i < s(x)|p(x)| and f ′(x,w) = ∗, w < r′(x). This means that for any k, f(x,wk) = ∗, hence
there are v′ < r(x) and j′ < t(x) such that C(v′, j′) = 〈wk, ik〉. By BBΣb

1 there are sequences
v and j such that C(vk, jk) = 〈wk, ik〉 for any k < |p(x)|. Then C ′(v, j) = 〈w, i〉. �

1.7 Corollary (PV + BBΣb
1 `:) Assuming s(x) ≥ 1 and t(x)(|p(x)| + 1) ≤ s(x)|p(x)| for

some p, any t/s-definable MFRP has a 1/q-definition for any q(x). (I.e., as in the real world,

we can boost the probability of error from 1− 1/poly(n) to 1/2poly(n).)

Proof: Straightforward induction shows that (a + 1)b ≥ ab + bab−1 for any b ≥ 1, b ∈ Log,
in particular (|p(x)|+ 1)|p(x)| ≥ 2|p(x)||p(x)|. This implies s|p||p||p| ≥ t|p|(|p|+ 1)|p| ≥ 2t|p||p||p|,
hence s|p| ≥ 2t|p|. Thus using Lemmas 1.6 and 1.5, any t/s-definable MFRP has a 1/2-
definition, and also a 1/q-definition by Lemma 1.6 again, as 2|q| > q. �

1.8 Lemma (PV + BBΣb
1 `:) Any 1/2-definable MFRP has a uniformly witnessed 1/2-

definition.

Proof: Let f and r be the 1/2-definition of F , and let C ≤ c(x) be the circuit size bound
implicit in (F). Put p(x) = 2|c(x)| and define f ′ and r′ as in the proof of Lemma 1.6. Finally,
define

m(x, v, j) := 〈w, i〉, where eval(j, 〈vk, 0〉) = 〈wk, ik〉 for each k < |p(x)|.

(Here eval(C, x) is the value computed by a Boolean circuit C on input x.) Assuming C ≤ c(x)
is a circuit satisfying (F), the proof of Lemma 1.6 shows that m witnesses that f ′ and r′ form
a 2|c|/2|p|-definition of F (the third argument of m will be C for all w and i). Lemma 1.5
implies that F has a uniform 1/2-definition, because 2|p| = 2 · 2|c|. �

1.9 Definition Let F (~x) and G(y) be partial multifunctions. We say that G is composable
with F , if for all ~x, y and y′ such that F (~x) = y and F (~x) = y′, y ∈ dom(G) iff y′ ∈ dom(G).
Similarly for G(y1, . . . , yn) and F1(~x), . . . , Fn(~x).

1.10 Remark There is a total multifunction F and a partial function G, both in MFRP
(using no randomness at all, in fact), such that their composition G ◦ F is a constant partial
function with an NP -complete domain (hence G ◦ F 6∈ MFRP , unless NP = RP). Indeed,
choose an NP -complete predicate Q(x)↔ ∃y (|y| ≤ |x|n &R(x, y)) with R ∈ P , and put

F (x) = y iff y = 0 or R(x, y − 1), |y − 1| ≤ |x|n,
G(0) is undefined,

G(x+ 1) = 0.

6

Clearly, G is a partial p-time function. Also F ∈ MFRP , because F contains the constant 0
function. However,

(G ◦ F)(x) =

{
0, if Q(x),

undefined otherwise.

This shows that dealing with a condition like 1.9 is unavoidable, if we want MFRP to be
closed under composition (or even to formalize this in bounded arithmetic).

1.11 Lemma (PV + BBΣb
1 `:) Let F1(~x), . . . , Fn(~x), G(y1, . . . , yn) be 1/2-definable p.m.f.,

such that G is composable with F1, . . . , Fn. Then their composition G(F1(~x), . . . , Fn(~x)) is

also 1/2-definable. (PV suffices, if G and Fi’s are uniformly witnessed.)

Proof: For simplicity we will assume n = 1. By 1.7 and 1.8 there is a 1/3-definition of F
given by functions f(x,w) and r(x), uniformly witnessed by m(x, v). Similarly let f ′(y, w)
and r′(y) be a 1/3-definition of G, uniformly witnessed by m′(y, v). Using the idea of the proof
of Lemma 1.5, we may assume that r′(y) | r′(z) whenever y ≤ z. Let b(x) be a PV -function
such that f(x′, w) ≤ b(x) for all x′ ≤ x and w < r(x′). Define

r′′(x) := r′(b(x)) · r(x),

f ′′(x,w) :=

{
∗, if f(x,w0) = ∗,
f ′(f(x,w0), w1 mod r′(f(x,w0))) otherwise,

m′′(x, v, 0) := 〈[w, v1], i〉, where m(x, v0) = 〈w, i〉,

m′′(x, v, 1) :=

{
〈0, 0〉, if f(x, v0) = ∗,
〈[v0, w +

⌊
v1
q

⌋
· q], i〉, if q = r′(f(x, v0)), m′(f(x, v0), v1 mod q) = 〈w, i〉.

We claim that f ′′ and r′′ is a 2/3-definition of G ◦ F , witnessed by m′′. Clearly, non-∗ values
of f ′′(x,w) are just the values of G ◦ F . Assume that f ′′(x, u) 6= ∗ for some u < r′′(x),
and let w < r′′(x), i < 3, and f ′′(x,w) = ∗. This means that either f(x,w0) = ∗, or
f ′(y, w1 mod r′(y)) = ∗, where y = f(x,w0). In the former case, we put j = 0, and we
find v < r(x) such that m(x, v) = 〈w0, i〉, then we have m′′(x, [v, w1], j) = 〈w, i〉. In the
latter case, put q = r′(y) and j = 1. Since f(x,w0) ∈ dom(G) and G is composable with
F , we have y ∈ dom(G), hence there is v < q such that m′(y, v) = 〈w1 mod q, i〉. Then
m′′(x, [w0, v + q

⌊
w1
q

⌋
], j) = 〈[w0, (w1 mod q) + q

⌊
w1
q

⌋
], i〉 = 〈w, i〉.

By 1.7, we may turn a 2/3-definition of G ◦ F into a 1/2-definition. �

1.12 Lemma (PV + BBΣb
1 + dWPHP(PV) `:) Let F (x) be a 1/2-definable pmf. For every

n ∈ Log there exists a (polynomial size) circuit C : 2n → 2m ∪ {∗} such that

F (x) is defined ↔ C(x) 6= ∗,
y = C(x) 6= ∗ → F (x) = y,

for any x of length n.

7

Proof: Fix n, and a uniformly witnessed 1/2n+1-definition of F . We may assume that r(x) =
r is independent on x (for x of length n). The witnessing function

m(x, v) : 2n × r → 2n+1 × r

cannot be onto (by dWPHP), we may thus fix 〈i, w〉 ∈ (2n+1×r)rrng(m), and define C(x) =
f(x,w). Clearly F (x) = C(x) if C(x) 6= ∗. Moreover, if C(x) = ∗ then F (x) is undefined,
because otherwise there would be a v < r such that m(x, v) = 〈i, w〉, a contradiction. �

1.13 Example (Rabin’s algorithm.) There is a coRP -predicate P (x), 1/2-definable in S1
2 ,

such that S1
2 proves

P (x) iff x > 1 & ∀y < x (y 6= 0→ yx−1 ≡ 1 (mod x)).

Any number satisfying this condition is provably prime, but the converse is equivalent to the
Little Fermat’s Theorem (hence unlikely to be provable in S1

2 , by [7]).

Proof: Define

r(x) :=

{
1, if x ≤ 1 ∨ 2 | x,
x− 2 otherwise,

f(x,w) :=

∗, if x = 2,

0, if x ≤ 1 ∨ (2 | x& x > 2),

∗, if x > 2 odd, and ∀k (2k | x− 1→ (w + 1)(x−1)/2k ≡ 1 (mod x)),

∗, if x > 2 odd, and j 6= 0 & (w + 1)(x−1)/2j ≡ −1 (mod x),

0 otherwise,

where j < |x| is the least number such that 2j | x− 1 and

(w + 1)(x−1)/2j 6≡ 1 (mod x),

P (x) :↔ ∀w < r(x) f(x,w) = ∗,
Q(x) :↔ x > 1 & ∀y < x (y 6= 0→ yx−1 ≡ 1 (mod x)).

(It would be more natural to consider random choices w ∈ [1, x).) From now on, we will
assume that x > 2 and x is odd, other cases are trivial.

Let x − 1 = y2k, where y is odd and k > 0. Clearly (−1)y ≡ −1 6≡ 1 (mod x), let
i ≤ k be the least number such that ∃a ∈ Z∗

x a(x−1)/2i 6≡ 1 (mod x), which exists by the Σb
1-

LENGTH -MIN principle. (Here a ∈ Z∗
x means a < x& (a, x) = 1, which is in PV equivalent

to a < x& ∃b < x ab ≡ 1 (mod x).)

Case 1: i = 0. Clearly, neither P (x) nor Q(x) holds. Let b ∈ Z∗
x be such that bx−1 6≡ 1

(mod x). (Forgetting about S1
2 for a moment, {w; f(x,w + 1) = ∗} is contained in a proper

subgroup {w; wx−1 ≡ 1} � Z∗
x, thus there are at most |Z∗

x|/2 of them, and we may witness
this using multiplication by a fixed element b of a nontrivial coset of this subgroup.) Define

C(x, v) :=

{
〈(b(v + 1) mod x)− 1, 0〉, if (b(v + 1))x−1 ≡ 1 (mod x),

〈v, 1〉 otherwise.

8

Assume w < r(x) is such that f(x,w) = ∗. Then we have (w + 1)x−1 ≡ 1 (mod x) and
(b(w + 1))x−1 6≡ 1 (mod x), hence C(x,w) = 〈w, 1〉. Since b, w + 1 ∈ Z∗

x, there is v < r(x)
such that b(v+1) ≡ w+1 (mod x). We have (b(v+1))x−1 ≡ 1 (mod x), thus C(x, v) = 〈w, 0〉.

Case 2: i > 0 & ∃b ∈ Z∗
x b(x−1)/2i 6≡ ±1 (mod x). Fix any such b. Obviously ¬P (x),

moreover if we put c ≡ b(x−1)/2i
(mod x), we have x | (c2 − 1) = (c− 1)(c+ 1) by minimality

of i, but neither x | c− 1 nor x | c+ 1. This means that x is not prime, and a fortiori ¬Q(x)
(as Q(x) would imply Z∗

x = [1, x)). Similarly to the Case 1, we define

C(x, v) :=

{
〈(b(v + 1) mod x)− 1, 0〉, if (b(v + 1))(x−1)/2i ≡ ±1 (mod x),

〈v, 1〉 otherwise.

If w < r(x) and f(x,w) = ∗, we have (w + 1)(x+1)/2i ≡ ±1 (mod x), hence C(x,w) = 〈w, 1〉
and C(x, v) = 〈w, 0〉 for some v < r(x), by essentially the same argument as above.

Case 3: i > 0&∀b ∈ Z∗
x b(x−1)/2i ≡ ±1 (mod x). We need some elementary number theory.

Claim 1 PV proves the Chinese Remainder Theorem: if a = 〈aj〉j<` is a sequence of pairwise

coprime numbers and b = 〈bj〉j<`, then there is c such that c ≡ bj (mod aj) for all j < `.

Proof: For any j < `, (aj ,
∏
j′ 6=j aj′) = 1 (by ∆b

1-LIND), hence there is dj < aj such that
cj := dj

∏
j′ 6=j aj′ ≡ 1 (mod aj). Put c =

∑
j<` bjcj . We have cj ≡ 1 (mod aj) and cj ≡ 0

(mod aj′) for all j′ 6= j, hence c ≡ bj (mod aj). � (Claim 1)

Claim 2 S1
2 proves that

(i) x > 0 is a prime power iff there are no coprime proper divisors u and v of x such that

uv = x.

(ii) Any x > 0 is uniquely representable as x =
∏
j<` p

ej

j , where 〈pj〉j<` is an increasing

sequence of primes and each ej is nonzero.

Proof: Every number x > 1 is divisible by a prime. To see this, choose p > 1, p | x with
minimal length (using ∆b

1-LENGTH -MIN). If p = uv, u > 1, then v | x and |v| < |p|, hence
v = 1, i.e., p is a prime.

If x = pe for a prime p, then any proper divisor of x is divisible by p (by ∆b
1-LIND on e),

hence p ≤ (u, v) for any u, v > 1 which divide x. On the other hand, assume that the right
hand side of (i) holds, and w.l.o.g. x > 1. Let p be a prime divisor of x, and let e < |x| be
maximal such that pe | x. If pe < x, we have (pe, x/pe) > 1, thus p | (x/pe) and pe+1 | x,
a contradiction. Hence x = pe is a prime power.

By Σb
1-LENGTH -MAX , there is the maximal k < |x| such that there exists a sequence

a = 〈pj〉j<k of numbers greater than 1, such that
∏
j<k pj = x. Every pj in any maximal

sequence is obviously prime. The sequence of pj ’s may be arranged in non-decreasing order,
and we may group together occurences of the same prime, yielding x =

∏
j<` p

ej

j as in the

statement of the Claim. If x =
∏
j<m q

fj

j is another such representation, ∆b
1-LIND on j <

min(`,m) shows that pj = qj and ej = fj , hence also ` = m. � (Claim 2)

9

Let us return to the analysis of the Case 3.
First assume that x is not a prime power. Choose coprime a1, a2 > 1 such that a1a2 =

x, and b ∈ Z∗
x such that b(x−1)/2i ≡ −1 (mod x) (by the definition of i). The Chinese

Remainder Theorem gives us c such that c ≡ 1 (mod a1) and c ≡ b (mod a2). We claim
that c ∈ Z∗

x: we have (b, a2) = 1, hence we may find d such that d ≡ 1 (mod a1) and
bd ≡ 1 (mod a2), then cd ≡ 1 (mod x). By our assumption, c(x−1)/2i ≡ 1 (mod x) or
c(x−1)/2i ≡ −1 (mod x). However, the former contradicts c(x−1)/2i ≡ −1 (mod a2), while the
latter contradicts c(x−1)/2i ≡ 1 (mod a1), because a1 and a2 are odd.

We may thus write x = pe, where p is an odd prime. Assume that e > 1. Notice that for
any u and v, (upe−1+1)(vpe−1+1) ≡ (u+v)pe−1+1 (mod x). This gives (pe−1+1)u ≡ upe−1+1
(mod x) by ∆b

1-PIND , in particular (pe−1+1)x−1 ≡ 1−pe−1 (mod x). However pe−1+1 ∈ Z∗
x,

hence (pe−1 + 1)x−1 ≡ 1 (mod x). This means x | pe−1, a contradiction. Therefore e = 1 and
x = p is a prime.

We have Q(x), because Z∗
p = [1, p) and bx−1 ≡ 1 (mod x) for any b ∈ Z∗

x by our assump-
tion. Also P (x) holds: if f(x,w) 6= ∗, we would have b2 ≡ 1 (mod x) and b 6≡ ±1 (mod x)
(where b ≡ (w + 1)(x−1)/2j

(mod x) for some j > 0), which we know is impossible for any
prime x. �

1.14 Proposition (Thapen [13]) Assume that S1
2 + dWPHP(PV) ` ∀x∃y ϕ(x, y), where

ϕ is Σb
1. Then for any ` there are k ≥ ` and PV -function symbols G, g, and h such that

PV ` ∀x∀w < 22|x|k (g(x,w) < 2|x|
k

& (G(g(x,w)) = w ∨ ϕ(x, h(x,w)))).

More generally, there are PV -functions g, h, and a constant k such that

PV ` ∀x∀b ≥ 2|x|
k ∀w < b2 (g(x,w, b) < b& (G(g(x,w, b)) = w ∨ ϕ(x, h(x,w, b)))).

Proof (sketch): If f(x, y) is a PV -function, there is a parameter-free PV -function G(z) such
that G maps b4 onto b8, whenever there are a, c < b such that f(c, ·) maps a onto a2. (This
is Lemma 3.8 of [13].) Take a “universal” function (e.g., a circuit evaluator) for f . Our
assumption on ϕ gives

S1
2 ` ∀x (∃y ϕ(x, y) ∨ ∃a, c¬dWPHP(f(c))aa2).

By Parikh’s theorem, all existential quantifiers may be bounded by a term t(x), and the
properties of G imply

S1
2 ` ∀x (∃y ≤ t(x)ϕ(x, y) ∨ ∀b ≥ t(x)4 ¬dWPHP(G)bb2).

We may write this as

S1
2 ` ∀x∀w ∀b (∃y ≤ t(x)ϕ(x, y) ∨ (b ≥ t(x)4 & w < b2 → ∃v < b G(v) = w)),

and an application of Buss’s witnessing theorem gives us g and h as required. �

10

1.15 Corollary The ∀Σb
1-consequences of S1

2 + dWPHP(PV) can be axiomatized over PV
by dWPHP ′(PV), where dWPHP ′(f, g) denotes the formula

a > 1→ ∃x < a2 (g(x, a) ≥ a ∨ f(g(x, a), a) 6= x). �

By A. Wilkie’s witnessing theorem (see [4] for a proof), the ∀Σb
1-consequences of the theory

S1
2 + dWPHP(PV) are witnessed by randomized p-time functions (total MFRP in our no-

tation). Our next proposition ensures that these witnessing functions can be chosen so that
they are definable and provably total in S1

2 + dWPHP(PV). (Conversely, the statement that
certain PV -functions define a uniformly witnessed total MFRP is ∀Σb

1.)

1.16 Proposition Let ϕ(~x, y) be a Σb
1-formula such that ∀~x∃y ϕ(~x, y) is provable in S1

2 +
dWPHP(PV). Then for every PV -function s there is F ∈ MFRP such that

(i) F has a uniformly witnessed 1/s-definition in PV ,

(ii) F is weakly total in PV (in particular, F is total in PV + dWPHP(PV)),

(iii) PV ` F (~x) = y → ϕ(~x, y).

In particular, every formula which is ∆b
1 in S1

2 + dWPHP(PV) is in PV + dWPHP(PV)
equivalent to a definable ZPP -predicate.

Proof: Fix ` such that PV ` s(x) ≤ 2|x|
`
, and find k ≥ `, and PV -functions G, g, and h

according to the Proposition 1.14. Define

r(x) := 2|x|
k · 2|x|k ,

f(x,w) :=

{
h(x,w), if G(g(x,w)) 6= w,

∗ otherwise,

m(x, v) := 〈G(v0), v1〉,

where v = [v0, v1] = v1 · 2|x|
k

+ v0 as in 1.5. We claim that f and r define in PV a weakly
total 1/2|x|

k
-MFRP , witnessed by m. To see this, let w < 22|x|k be such that f(x,w) = ∗,

and i < 2|x|
k
. Put v = [g(x,w), i]. Then we have m(x, v) = 〈w, i〉, because G(g(x,w)) = w,

and v < r(x), because g(x,w) < 2|x|
k
.

If we put F (x) = y iff ∃w < r(x) f(x,w) = y 6= ∗, then any value y of F (x) satisfies
ϕ(x, y), because y = h(x,w) for some w < r(x) such that G(g(x,w)) 6= w. �

2 A propositional proof system corresponding to dWPHP

In this section, we will present a propositional proof system WF which corresponds to the
theory S1

2+dWPHP(PV), i.e., WF is the strongest proof system whose consistency is provable
in S1

2 + dWPHP(PV), and tautologies resulting from translation of ∀Πb
1-consequences of

S1
2 + dWPHP(PV) have polynomial-size proofs in WF . Obviously, such a system has to

11

contain Extended Frege; we could indeed formulate WF as an extension of EF , but it will
be more convenient to use a variant of EF which manipulates Boolean circuits instead of
formulas, to get rid of EF ’s extension axioms. We will describe this variant first1.

2.1 Definition Any Boolean circuit C can be “unfolded” into a unique (possibly huge)
formula ϕC . Circuits C and D are similar, written as C ' D, if ϕC and ϕD are the same
formulas.

2.2 Lemma Similarity of circuits is polynomial-time decidable.

Proof: As NLOG ⊆ P , it suffices to show ' ∈ coNLOG , which is clearly accomplished by
the following algorithm:

c← output node of C, d← output node of D
loop
`c ← label of c, `d ← label of d {connective or variable}
if `c 6= `d then REJECT
if `c is a variable or a constant then ACCEPT
non-deterministically choose i smaller than the arity of `c
c← ith input of c, d← ith input of d

end loop �

2.3 Definition A CF (circuit Frege) proof system is defined as follows: choose a finite basis
B of Boolean connectives, and a finite, sound, and implicationally complete set R of Frege
rules over B. A CF -proof of a circuit A is a sequence of B-circuits A0, . . . , Ak = A, such that
for every i ≤ k, either there are j1, . . . , j` < i such that

Aj1 · · ·Aj`
Ai

is an instance of a rule R ∈ R, or there is j < i such that Aj ' Ai. (Lemma 2.2 ensures that
CF indeed fulfills the definition of a propositional proof system. Also, when we work with
CF in bounded arithmetic, we cannot use Definition 2.1 directly as it involves exponentially
large objects, we thus use the algorithm from Lemma 2.2 instead.)

2.4 Lemma Any CF system p-simulates any EF system.

Proof: All EF systems simulate each other, hence we may assume w.l.o.g. that both proof
systems use the same set of connectives and Frege rules. Let π : ϕ0, . . . , ϕk be an EF -proof,
and let

q1 ≡ ψ1

q2 ≡ ψ2(q1)

. . .

q` ≡ ψ`(q1, . . . , q`−1)

1Although it is folklore that EF is essentially “a Frege system operating with circuits”, we were unable to

find a reference making this explicit.

12

be all extension axioms used in π. We define circuits Qi,j(q1, . . . , qj), 0 ≤ j < i ≤ `, as follows:

Qi,i−1(q1, . . . , qi−1) := ψi(q1, . . . , qi−1),

Qi,j−1(q1, . . . , qj−1) := Q′
i,j(q1, . . . , qj−1, ψj(q1, . . . , qj−1)),

where Q′
i,j differs from Qi,j by joining all occurrences of qj together. We put Qi := Qi,0. It

is easy to see that Qi ' ψi(Q1, . . . , Qi−1).
We modify the proof π by putting a (constant size) Frege proof of qi ≡ qi before every

extension axiom qi ≡ ψi, and then we substitute circuits Q1, . . . , Q` for variables q1, . . . , q` in
the whole proof. This makes up a correct CF proof π′: substitution does not break Frege
rules, and extension axioms translate to circuits Qi ≡ ψi(Q1, . . . , Qi−1), each preceded by a
similar circuit Qi ≡ Qi.

The size of Qi,j is bounded by |ψj+1|+ · · ·+ |ψi|, in particular the size of Qi is bounded
by |π|, hence the size of π′ is O(|π|2). �

2.5 Lemma Any EF system p-simulates proofs of formulas in any CF system.

Proof: Let π : A0, . . . , Ak = ϕ be a CF proof, where ϕ is a formula. We assign an extension
variable qi =: q[C] to each subcircuit C of each Aj in such a way that similar circuits get
the same variable, and every circuit gets a variable with higher index than all its subcircuits.
The EF proof π′ will start with extension axioms for qi’s, which describe the relation of the
corresponding circuits to their subcircuits. For example, if C = p1 ∨ ¬(p2 → p1), we could
have

q1 ≡ p1

q2 ≡ p2

q3 ≡ q2 → q1

q4 ≡ ¬q3
q5 ≡ q1 ∨ q4

Then we extend the proof to contain the sequence q[A0], . . . , q[Ak]. If Ai ' Aj , j < i, we
have nothing to do, because q[Ai] = q[Aj]. Assume that Ai = χ(B1, . . . , Bm) was inferred by
a Frege rule R from Aj1 = ψ1(B1, . . . , Bm), . . . , Aj` = ψ`(B1, . . . , Bm), where j1, . . . , j` < i.
There is a constant size Frege proof of

q[Aj1] ≡ ψ1(q[B1], . . . , q[Bm])

. . .

q[Aj`] ≡ ψ`(q[B1], . . . , q[Bm])

q[Ai] ≡ χ(q[B1], . . . , q[Bm])

13

from the extension axioms. By the induction hypothesis our proof already contains the
formulas q[Aj1], . . . , q[Aj`], hence we get a proof of

ψ1(q[B1], . . . , q[Bm])

. . .

ψ`(q[B1], . . . , q[Bm])

χ(q[B1], . . . , q[Bm])

q[Ai]

by a constant-size simulation of R and Modus Ponens (or rather its variant for ≡).
We thus have an O(|π|) proof of q[ϕ], and we finish it by an O(|ϕ|2) proof of q[ϕ] ≡ ϕ and

Modus Ponens. �

2.6 Definition The WF (WPHP Frege) proof system is defined as follows: a WF -proof of
a circuit A is a sequence of circuits A0, . . . , Ak such that Ak = A, and every Ai is inferred
from some Aj1 , . . . , Aj` , j1, . . . , j` < i by a Frege rule, or it is similar to some Aj , j < i, or it
is a special axiom

m∨
`=1

(r` 6≡ Ci,`(Di,1, . . . , Di,n)),

where n < m, and r` are pairwise distinct variables which do not occur in A, Ci,`′ , or Aj for
j < i, but may occur in Di,1, . . . , Di,n.

2.7 Remark In principle, different choices of connectives and Frege rules give different vari-
ants of WF . We ignore this ambiguity, as all such systems are polynomially equivalent.

We will see in 2.13 that we could restrict WF -proofs to contain only one special axiom, and
still get an equivalent system. On the other hand, we could allow special axioms with the same
C’s to share the same sequence of special variables: the proof of 2.8 can be easily modified
to show the consistency of such a system in S1

2 + dWPHP(PV), hence it is polynomially
equivalent to the original WF by 2.13.

2.8 Proposition S1
2 + dWPHP(PV) proves 0-RFN (WF).

Proof: Let π = 〈A0, . . . , Ak〉 be a WF -proof of a circuit A = Ak, and let e be a truth
assignment to the variables occurring in A. W.l.o.g. we may assume that every variable in
π either occurs in A, or it is a special variable of a WF -axiom from π. We will show by
induction on i ≤ k < |π| that there is an assignment e′ ⊇ e, which makes Aj true for every
j ≤ i (this is Σb

1-LIND).
If Ai is inferred by a Frege rule from Aj1 , . . . , Aj` , j1, . . . , j` < i, the induction step from

i − 1 to i is easy because the rule is sound: its verification consists of checking only finitely
many cases involving the inductive definition of satisfaction for some top-level subcircuits of
the Aj ’s, hence it goes through in S1

2 .
If Ai ' Aj , j < i, we have e′(Ai) = e′(Aj) by induction on the depth of the circuit.
Assume that Ai is the special axiom

∨m
j=1(rj 6≡ Cj(D1, . . . , Dn)). Notice that the truth

value of all variables occurring in Cj(s1, . . . , sn) is fixed by e′, except for the placeholders

14

s1, . . . , sn (the definition of WF implies that special variables from Ai′ , i′ ≥ i, cannot occur
in Cj). Hence the sequence of circuits C = 〈C1, . . . , Cm〉 computes a function g : 2n → 2m.
More precisely, there is a PV -function symbol f(u, v, x) with the following property: if u
is a sequence of circuits, and v a partial truth assignment, then the j-th bit of f(u, v, x) is
uj(a), where a extends v and the j′-th variable not assigned by v is given the value bit(x, j′)
by a. Then we put g(x) = f(〈C1, . . . , Cm〉, e′, x). By definition n < m, i.e. 2 · 2n ≤ 2m, hence
dWPHP(PV) implies that there is y < 2m such that y 6= g(x) for any x < 2n. We extend
e′ by putting e′(rj) = bit(y, j − 1), and we claim that e′(Ai) = 1: if x < 2n is such that
bit(x, j′) = e′(Dj′+1), then the value of Cj(~Dj′) under e′ is bit(g(x), j − 1), which is distinct
from e′(rj) for some j ≤ m. �

Recall that G is a propositional proof system operating with quantified Boolean formulas,
defined (in [6]) as an extension of the usual Gentzen sequent calculus by rules for introducing
existential and universal quantifiers. G2 is a fragment of G, which allows only sequents
consisting of Σq

2-formulas (these are, roughly, formulas of the form ∃x1 · · · ∃xk∀y1 · · · ∀y` ϕ,
with ϕ quantifier-free).

2.9 Corollary G2 polynomially simulates WF .

Proof: By [11] (see also [8], and Chapter 11.2 of [4]), T 2
2 proves dWPHP(PV), hence also

T 2
2 ` 0-RFN (WF). By [6], this implies S1

2 `WF ≤p G2. See also [4], Chapters 9.2, 9.3. �

Recall the definition of the ‖ϕ‖ translation of Πb
1(PV)-formulas into propositional logic:

first, we assign to every PV -function f(x1, . . . , xk) and numbers n1, . . . , nk a (p-size) cir-
cuit {{f}}~n(~p), which computes the restriction f : 2n1 × · · · × 2nk → 2b(n1,...,nk), where b is a
bounding polynomial to f . The formula

‖f‖~n(~p;~r; ~q)

expresses that the circuit {{f}}~n computes ~r on input ~p, with ~q being the intermediate steps
of the computation (there is an atom qi for every node of the circuit).

Then we define Boolean formulas ‖ϕ(~x)‖~n(~p; ~q) by induction on complexity of a Πb
1(PV)-

formula ϕ. (Atoms ~p correspond to the variables ~x. Atoms ~q are auxiliary, you may think of
them as being universaly quantified; they arise from universal quantifiers of ϕ, and from the
output and intermediate atoms ~q, ~r of ‖f‖~n, for functions f appearing in ϕ). The induction
steps are straightforward, and for atomic formulas and their negations we have

‖f(~x) = g(~x)‖~n := ‖f‖~n(~p;~r; ~q) & ‖g‖~n(~p; ~r′; ~q′)→
∧
i

(ri ≡ r′i),

‖¬f(~x) = g(~x)‖~n := ‖f‖~n(~p;~r; ~q) & ‖g‖~n(~p; ~r′; ~q′)→ ¬
∧
i

(ri ≡ r′i),

‖f(~x) ≤ g(~x)‖~n := ‖f‖~n(~p;~r; ~q) & ‖g‖~n(~p; ~r′; ~q′)→
∧
i

(
ri &

∧
j>i

(rj ≡ r′j)→ r′i
)
,

‖¬f(~x) ≤ g(~x)‖~n := ‖f‖~n(~p;~r; ~q) & ‖g‖~n(~p; ~r′; ~q′)→ ¬
∧
i

(
ri &

∧
j>i

(rj ≡ r′j)→ r′i
)
.

15

In this translation, it is necessary to encode the computation of the circuit {{f}}~n by a
formula introducing extra auxiliary variables, as it is unlikely that PV ` P ⊆ NC1. This
seems to obfuscate things a bit, and we will use a proof system handling Boolean circuits
directly, we thus avoid this inconvenience by introducing a more natural modified translation,
which produces circuits instead of formulas. It is defined as follows:

2.10 Definition Let ϕ(~x) be a Πb
1(PV)-formula, and b(~x) its bounding polynomial. We

define a Boolean circuit {{ϕ}}~n(~p; ~q) by induction on complexity of ϕ:

{{f(~x) = g(~x)}}~n(~p) :=
∧

i<b(~n)

({{f}}~ni (~p) ≡ {{g}}~ni (~p)),

{{f(~x) ≤ g(~x)}}~n(~p) :=
∧

i<b(~n)

(
{{f}}~ni &

∧
j>i

({{f}}~nj ≡ {{g}}~nj)→ {{g}}~ni
)
,

{{¬ϕ}}~n(~p) := ¬{{ϕ}}~n(~p), ϕ ∈ Σb
0(PV),

{{ϕ ◦ ψ}}~n(~p; ~q) := {{ϕ}}~n(~p; ~q) ◦ {{ψ}}~n(~p; ~q), ◦ ∈ {&,∨},

{{∀y ≤ |t(~x)|ϕ(~x, y)}}~n(~p; ~q0, . . . , ~qm) :=
∧
j≤m
{{y ≤ |t(~x)| → ϕ(~x, y)}}~n,|m|(~p, ~ε; ~qj),

{{∃y ≤ |t(~x)|ϕ(~x, y)}}~n(~p; ~q0, . . . , ~qm) :=
∨
j≤m
{{y ≤ |t(~x)|& ϕ(~x, y)}}~n,|m|(~p, ~ε; ~qj),

{{∀y ≤ t(~x)ϕ(~x, y)}}~n(~p; ~q, ~p′) := {{y ≤ t(~x)→ ϕ(~x, y)}}~n,m(~p, ~p′; ~q),

where m = m(~n) is a bounding polynomial to t(~x), and ~ε is the representation of j as
a sequence of |m| binary digits (= truth constants). Notice that auxiliary variables ~q are
introduced only for (non-sharply) bounded universal quantifiers.

2.11 Lemma Let ϕ(~x) ∈ Πb
1(PV). There are circuits ~C~nϕ, and a p-time constructible se-

quence of CF -proofs of

{{ϕ}}~n(~p; ~q)→ ‖ϕ‖~n(~p; ~q, ~q′),

‖ϕ‖~n(~p; ~q, ~C~nϕ(~p, ~q))→ {{ϕ}}~n(~p; ~q).

Proof: This follows by straightforward induction on complexity of ϕ. We need the follow-
ing property for the base case: for any PV -function f , there are circuits ~C~nf , and p-time
constructible CF -proofs of

‖f‖~n(~p; {{f}}~n(~p); ~C~nf (~p)),

‖f‖~n(~p;~r; ~q)→
∧
i

(ri ≡ {{f}}~ni (~p)).

We may take subcircuits of {{f}} for ~Cf . The second part essentially states that the compu-
tation of {{f}} is unique, and its proof in CF may be constructed by induction on the size of
{{f}}. �

16

2.12 Proposition If S1
2 + dWPHP(PV) ` ∀xϕ(x), where ϕ ∈ Πb

1, then tautologies ‖ϕ‖n

have polynomial size WF -proofs. Actually, these proofs are constructible by a p-time function,

and PV proves this fact.

Proof: Assume that S1
2 + dWPHP(PV) ` ∀xϕ(x), where ϕ ∈ Σb

0(PV) for simplicity. By
Proposition 1.14, there is a constant k, and PV -functions G and g such that

PV ` 2|x|
k ≤ b& w < b2 → (G(g(x,w, b)) = w ∨ ϕ(x)),

PV ` g(x,w, b) < b.

Given n (bounding x), and m = 2nk (bounding w and b), there are poly(n)-size CF -proofs
(constructible in PV) of the circuits

{{2|x|k ≤ b}}n,m(~p, ~q) & {{w < b2}}m,m(~r, ~q)→
→ {{G(g(x,w, b)) = w}}n,m,m(~p, ~r, ~q) ∨ {{ϕ(x)}}n(~p),

{{g(x,w, b) < b}}n,m,m(~p, ~r, ~q),

using the simulation of PV by EF [3], and Lemmas 2.4, 2.11. We substitute the binary
representation of b := 2n

k
for the variables ~q, i.e., qnk = 1, qj = 0 for j 6= nk. Then there are

poly-size CF -proofs of {{2|x|k ≤ b}}n,m and {{w < b2}}m,m, hence by modus ponens

{{G(g(x,w, b)) = w}}n,m,m ∨ {{ϕ(x)}}n,

which is the circuit ∧
i<m

(ri ≡ {{G}}q(n)
i ({{g}}0, . . . , {{g}}q(n)−1)) ∨ {{ϕ(x)}}n,

where q(n) is the bounding polynomial for g. However, {{g(x,w, b) < b}}n,m,m implies

q(n)−1∧
i=nk

¬{{g}}n,m,mi ,

thus we get a proof π of∧
i<m

(ri ≡ {{G}}q(n)
i ({{g}}0, . . . , {{g}}nk−1, 0, . . . , 0)) ∨ {{ϕ(x)}}n.

If we define Cj(s0, . . . , snk−1) = {{G}}q(n)
j (~s, 0, . . . , 0), and Di(~p, ~r) = {{g}}n,m,mi (~p, ~r, ~q), we

may rewrite this as ∧
i<m

(ri ≡ Ci(D0, . . . , Dnk−1)) ∨ {{ϕ(x)}}n.

Since m = 2nk > nk for every n > 0, and Cj does not contain any of the rj′ , we may put
a special axiom ∨

i<m

(ri 6≡ Ci(D0, . . . , Dnk−1))

17

before the first line of π, and we finish the proof by De Morgan rules and modus ponens to
get a WF -proof of

{{ϕ(x)}}n.

Lemma 2.11, and another modus ponens give

‖ϕ(x)‖n. �

2.13 Corollary

(i) For any Πb
1-formula ϕ(x), S1

2 + dWPHP(PV) ` (WF ` ‖ϕ‖|x|)→ ϕ(x).

(ii) PV + Con(WF) axiomatizes strict ∀Πb
1-consequences of S1

2 + dWPHP(PV).

(iii) If S1
2 + dWPHP(PV) ` 0-RFN (P), where P is a propositional proof system, then

PV ` (P ≤p WF).

(iv) WF is polynomially simulated by a modified WF proof system, in which we allow only

the first formula of the proof to be a special axiom.

Proof: (i) follows from 2.8 together with S1
2 ` Taut(‖ϕ‖|x|)→ ϕ(x).

(ii): if ϕ ∈ strictΠb
1, the formula Taut(‖ϕ‖|x|)→ ϕ(x) just mentioned is provable already

in PV , and Con(WF) implies 0-RFN (WF) as WF is provably closed under substitution and
modus ponens. This, together with 2.12, shows the harder inclusion of (ii), the other one
follows from 2.8.

(iii): we have PV ` (WF ` {{P (p) = f → Taut(f)}}) by 2.12, and it is easy to see that
PV ` (P (π) = ϕ → CF ` {{P (p) = f}}(π, ϕ)) and PV ` (WF ` {{Taut}}(ϕ) → WF ` ϕ),
hence PV ` (P (π) = ϕ→WF ` ϕ).

(iv): the proof of (iii) works for the modified WF -system from (iv) as well, because the
proof constructed in 2.12 used only one special axiom; then (iv) follows from 2.8. �

2.14 Definition Let p be a prime. Unstructured Extended Nullstellensatz of [2] is a proof
system for multivariate polynomials over Zp: a UENS p-refutation of a set of polynomials
f0, . . . , fn−1 ∈ Zp[x0, . . . , xm−1] shows that the fi’s do not have a 0–1 solution (i.e., a common
zero at a point from {0, 1}m). A UENS p-refutation is given by two sequences of polynomials
g0, . . . , g`−1 and g′0, . . . , g

′
`+n+m−1, such that∑

i<`

gig
′
i +
∑
i<n

fig
′
i+` +

∑
i<m

(x2
i − xi)g′i+`+n = 1,

and each gi has the form ∏
j<k

(hi,j − ri,j),

where ri,j are pairwise distinct variables not occurring among x0, . . . , xm−1, hi,j does not
contain any of ri,0, . . . , ri,k−1, and ` < ek/p (where e is the Euler number).

18

The UENS proof system simulates Extended Frege, but the converse is an open problem. In
fact, it was not clear whether any “traditional” proof system simulates UENS . We show that
it is possible to simulate UENS in WF (hence also in G2).

2.15 Proposition For any prime p, the WF proof system polynomially simulates UENS p.

Proof: By 2.13 it suffices to prove the soundness of UENS p in S1
2 + dWPHP(PV). It is

not clear how to express base e exponentiation in bounded arithmetic, however we may
simply relax the last condition of 2.14 to ` < βk/p, where β is any fixed rational such that
e < β < (1− 1/p)−p.

Consider any UENS p-refutation as in 2.14, and assume for contradiction that fi(~a) = 0
for all i < n, with aj ∈ {0, 1}. Put t = k`. W.l.o.g. we assume that every variable in gi and
g′i is one of xj or ri′,j . We will find an assignment b0,0, . . . , b`−1,k−1 ∈ Zp to {ri,j}i<`,j<k such
that gi(~a,~b) = 0 for all i, then∑

i<`

gi(~a,~b)g′i(~a,~b) +
∑
i<n

fi(~a)g′i+`(~a,~b) +
∑
i<m

(a2
i − ai)g′i+`+n(~a,~b) = 0 6= 1,

contradicting the definition of a UENS p-proof.
We define a function

F : `× (p− 1)k × pt−k → pt

by F (i, u0, . . . , uk−1, v0, . . . , vt−k−1) = 〈b0,0, . . . , b`−1,k−1〉, where bi′,j are assigned according
to ~v if i′ 6= i, and

bi,j =

{
uj , if uj < hi,j(~a,~b),

uj + 1, otherwise.

Notice that the value of hi,j(~a,~b) depends only on ~v, as ri,0, . . . , ri,k−1 do not occur in hi,j .
It is clear from the definition that the values of F (i, •) are exactly the assignments ~b such

that gi(~a,~b) 6= 0, hence it suffices to show that rng(F) 6= pt. Choose a rational constant α > 1
such that βαp < (p/(p − 1))p. Then α`(p − 1)kpt−k < βk/pαk(p − 1)kpt−k < pt, hence F is
not onto by dWPHP(PV)xαx. �

2.16 Remark By an easy modification of the proof of 2.15, we could simulate a slightly
stronger system than UENS : the extension variables ri,j could be reused in gi′ , i′ 6= i, and we
could allow ri,0, . . . , ri,j−1 to occur in hi,j . (However, it is quite possible that this modification
is polynomially equivalent to the original UENS .)

3 Hard Boolean functions

3.1 Definition Let ε > 0. A number x (viewed as an n-bit binary string, n = |x|) is ε-hard,
if there is no Boolean circuit C on |n| variables such that |C| ≤ nε, and C(u) = bit(x, u) for
all u < n. We write Hardε(x) in such a case.

A Boolean function f on k ∈ LogLog variables is identified with its truth table, i.e.,
a 2k-bit number.

19

A function f is ε-hard on average (abbreviated Hard∅
ε (f)), if there does not exist a circuit

C of size |C| ≤ 2εk which approximates f , i.e., |{u < 2k; C(u) = f(u)}| ≥ (1/2 + 2−εk)2k.
Notice that Hardε(x) and Hard∅

ε (f) are Πb
1.

3.2 Lemma (PV + dWPHP(PV) `:) For every n ∈ Log, there is an x of length n such that

x cannot be computed by a circuit of size n/(2|n|).

Proof: Let e : 2n−1 → 2n be a PV -function, which interprets its input as a circuit on |n|
variables, and outputs the truth table of the circuit. By dWPHP(e) there is an x ∈ 2nrrng(e).
Since any circuit of size m = n/(2|n|) may be described by a number of length at most
2m(|m|+ 1) ≤ n− 1, x is not computable by a circuit of size ≤ m. �

3.3 Corollary (PV + dWPHP(PV) `:) For every k ∈ LogLog, there is a Boolean function

f : 2k → 2 such that Hard1−o(1)(f). �

3.4 Lemma (PV + dWPHP(PV) `:) For any k ∈ LogLog, there are (1/3 − o(1))-hard on

average functions f : 2k → 2.

Proof: Put n = 2k, and m = (n/k)1/3. Consider the function

g : 22m|m| ×
n(1/2−1/m)∑

i=0

(
n

i

)
→ 2n,

whose first argument is a circuit C : 2k → 2 of size m, its second argument is a string x ∈ 2n

containing at most n(1/2 − 1/m) 1’s, and its output is the truth-table of C XOR’ed by x.
Clearly, a function f : 2k → 2 is (1/3 − |k|/k)-hard on average if f 6∈ rng(g). By Chernoff’s
inequality, provable in PV by Proposition A.5, the domain of g is a number bounded by

d2
2
3
n1/3k2/3

2n2−2n4/3k2/3n−1
= d2n−

4
3
n1/3k2/3

for some constant d. Since d2n−
4
3
n1/3k2/3

< 2n−1 for n � 0, the function g cannot be onto,
by dWPHP(PV). �

3.5 Proposition (S1
2 `:) Assume that dWPHP(PV) fails. Then there is s ∈ Log such that

every string x is computable by a circuit of size at most s.

Proof: Let h : 2m � 22m be a surjection, computable by a circuit C. For any i ∈ LogLog,
h may be amplified in i steps into a surjection 2m � (2m)2

i
, and this will allow us to express

any x ∈ 22im by a circuit of size O(|C|i).
Let D : 2 × 2m → 2m be the circuit defined by Dj(b, y) = (¬b & Cj(y)) ∨ (b & Cj+m(y))

for all j < m, where vj is a shorthand for bit(v, j). Fix i ∈ LogLog, and define a sequence of
circuits Ek : 2k × 2m → 2m, k ≤ i by

E0(0, y) := y,

Ek+1(u, y) := Ek(u � k,D(uk, y)), where u � k = u mod 2k,

20

and put E := Ei. Notice that the size of E is bounded by i|D|. We claim that E represents
an onto map 2m � 22im in the following sense: for any x < 22im, there is y < 2m such that
Ej(u, y) = xum+j holds for every u < 2i and j < m. Indeed, we show by induction on k ≤ i

that there is a sequence w of numbers less than 2m such that

lh(w) = 2i−k & ∀v < 2i−k ∀u < 2k ∀j < m Ekj (u, (w)v) = bit(x, (v2k + u)m+ j).

(This is Σb
1, because i ∈ LogLog, i.e., all universal quantifiers are sharply bounded.) The

base step is trivial, we simply view x as a sequence of 2i numbers less than 2m. Assume
that we have found a suitable w for k < i. Since C is onto, there is a sequence w′ such that
C((w′)v) = [(w)2v, (w)2v+1] for any v < 2i−k−1 (using BBΣb

1). We claim that w′ works for
k + 1: given numbers v < 2i−k−1, u < 2k+1, and j < m, we have

Ek+1
j (u, (w′)v) = Ekj (u � k,D(uk, (w′)v)) = Ekj (u � k, (w)2v+uk

) =

= bit(x, ((2v + uk)2k + u � k)m+ j) = bit(x, (v2k+1 + u)m+ j).

Let x < 22im, and let y < 2m be its “inverse image” as described above. We may construct
a small Boolean circuit B : 2|n| → 2 computing x as follows: B(u) = Eu mod m(

⌊
u
m

⌋
, y). For

simplicity, we may assume that m is a power of two, which means that the size of B is bounded
by 2m|m|+ i|D|.

In other words, any x of length n is computable by a circuit of size ≤ 2m|m| + |D| ·
|dn/me| ≤ c|n| for a suitable c ∈ Log. Take any d ∈ Log r LogLog (this is possible, because
S1

2 + Exp ` dWPHP(PV)). Then d > |n|, hence x is computable by a circuit of size at most
s := c · d ∈ Log. �

3.6 Corollary Let 0 < ε < 1. There exists a standard constant c such that the following are

equivalent over S1
2 :

(i) dWPHP(PV),

(ii) ∀k ∈ LogLog (k ≥ c→ ∃f : 2k → 2 Hardε(f)),

(iii) ∀k0 ∈ LogLog ∃k ∈ LogLog (k ≥ k0 & ∃f : 2k → 2 Hardε(f)).

The same holds for hard on average functions, if ε < 1/3.

Proof: (i)→ (ii) follows from 3.3 and 3.4, (ii)→ (iii) is trivial. The implication (iii)→ (i)
follows from 3.5, because numbers 2εk, k ∈ LogLog, are cofinal in Log for any fixed ε. �

3.7 Corollary There is a PV -function C(a, x) such that PV + ¬dWPHP ′(PV) proves

∃a∀x C(a, x) is a circuit of size ≤ |a| computing x.

Actually, a can be itself computed by a PV -function from a counterexample to dWPHP ′(PV).

21

Proof: Let g and h be counterexamples to dWPHP ′(PV), i.e., h : b→ b2, g : b2 → b, g◦h = id.
Given x, we proceed as in the proof of 3.5 to construct a small circuit for x, but instead of
nondeterministically guessing preimages under h, we use g to find them explicitly (this way
we also get rid of BBΣb

1, and Σb
1-LIND).

Alternatively, we may use Buss’s witnessing theorem. Proposition 3.5 tells us

S1
2 ` ∃b ∀v < 2b (h(v) < b& g(h(v)) = v)→ ∃S ∀x∃C ≤ S (C computes x),

and it is easy to see from its proof that S is actually bounded by a term t(b), thus

S1
2 ` ∀b∀x (∃v < 2b (h(v) ≥ b ∨ g(h(v)) 6= v) ∨ ∃C ≤ t(b) (C computes x)).

The formula in parenthesis is Σb
1, hence there is a PV -function f such that

PV ` (f(b, x) < 2b& (h(f(b, x)) ≥ b ∨ g(h(f(b, x))) 6= f(b, x))∨
∨ (f(b, x) ≤ t(b) & f(b, x) computes x),

which means

PV + ¬dWPHP ′(PV) ` ∃b ∀x (f(b, x) ≤ t(b) & f(b, x) computes x).

It suffices to define C(a, x) = min{f((a)0, x), a}, as we can take a = 〈b, t(b)〉.
Notice that the converse to this corollary holds too, in a similar fashion to Lemma 3.2. �

4 The Nisan-Wigderson generator

This section presents a derandomization result for definable probabilistic algorithms within
bounded arithmetic. We will follow closely the Nisan-Wigderson construction [9]; however, we
will present the derandomization in a relativized form: rather than postulating the existence
of an explicit language in E with exponential average-case hardness, we will use an oracle for
a family of hard Boolean functions, and our derandomized algorithms will have access to this
oracle. We thus work in a theory with an extra unary function symbol α:

4.1 Definition Let 0 < ε < 1 and c be standard constants. The theory HARD∅
ε,c is an

extension of S1
2(α) by the following axioms:

α(x) : 2||x|| → 2,

x > c→ Hard∅
ε (α(x)).

The theory HARDε,c is defined similarly. We will usually ignore c in the sequel. (To avoid
confusion: here ||x|| means double iteration of the length function, it has nothing to do with
the translation of Πb

1-formulas into propositional logic from Section 2. We will not use this
translation any more.)

4.2 Observation HARD∅
ε implies HARDε, and HARDε proves dWPHP(PV). �

22

First, notice that we get a certain derandomization for free, namely for definable MFRP
which are provably total in S1

2 + dWPHP(PV):

4.3 Lemma Let F be a definable MFRP , provably total in S1
2 +dWPHP(PV), and let ε > 0.

Then there is a PV (α) function f such that

HARDε ` f(~x) = y → F (~x) = y.

Proof: By our assumptions HARDε proves ∀~x∃yF (~x) = y, which is ∀Σb
1. Moreover, HARDε

is a ∀Πb
1(α) extension of S1

2(α), hence the result follows from the relativized Buss’s witnessing
theorem. �

However, we want to derandomize also functions which are not provably total (e.g., RP -
predicates). Moreover, the Nisan-Wigderson construction will give a stronger result (see 4.9):
f needs only one oracle query.

4.4 Definition ([9]) Let k, `, t,m ∈ Log, k ≤ ` ≤ t. A 〈k, `, t,m〉-design is a sequence
〈Si〉i<m of subsets Si ⊆ t, such that |Si| = ` and |Si ∩ Sj | ≤ k for all i < j < m.

4.5 Lemma Let 0 < γ < 1. There are constants δ > 0, c > 1, and a PV -function d such

that

PV ` d(x) is a 〈γ`, `, c`, 2δ`〉-design, where ` = ||x||.

Proof: Put c = 2/γ, δ = c−2, and let k = γ`, t = c`, and m = 2δ`. The function d will
iterate through all subsets S ⊆ t, putting S into the design if |S| = ` and its intersection
with all elements of the design so-far constructed is at most k. We have to show that this
algorithm will not stop with a design shorter than m. Clearly, it suffices to prove that for
any design 〈Sj〉j<i, i < m, there is an Si ⊆ t such that 〈Sj〉j≤i is also a design. We will
do this by a counting argument (which works directly without any PHP , as m ∈ Log and
k, `, t ∈ LogLog). However, it turns out that instead of counting subsets S ⊆ t, it is easier
to count functions f : t → t which represent S = S(f) := f−1′′` (thus, choosing uniformly a
random f means to choose S in such a way that Pr(a ∈ S) = `/t for all a < t).

The number of f : t→ t such that |S(f)| ≥ ` is∑
i≥`

(
t

i

)
`i(t− `)t−i ≥ εtt

for some constant ε > 0, by A.4. If S is a subset of t of size `, the number of f such that
|S(f) ∩ S| ≥ k is∑̀

i=k

(
`

j

)
`j(t− `)`−jtt−` = tt`−`

∑̀
i=k

(
`

j

)
(k/2)j(`− k/2)`−j ≤ tt4−(k/2)2/` = tt2−γ

2`/2

by Chernoff’s inequality (A.5). The number of f such that |S(f) ∩ Sj | ≥ k for some j < i is
thus at most

ttm2−γ
2`/2 = tt2(δ−γ2/2)` ≤ tt2−γ2`/4 < εtt,

hence there is f such that we may put S(f) into the design. (If |S(f)| > `, we discard some
of its elements.) �

23

4.6 Definition ([9]) Let x < 2t, and S ⊆ t, |S| = `. Let {si}i<` be the increasing enumer-
ation of the set S. Then we put x � S := y, where y < 2` and bit(y, i) = bit(x, si) for all
i < `.

If f : 2` → 2, and S = 〈Si〉i<m is a 〈k, `, t,m〉-design, the Nisan-Wigderson generator is a
function NWf,S : 2t → 2m defined by

bit(NWf,S(x), i) = f(x � Si).

Let NW be a PV -function such that NW (f, S, x) = NWf,S(x).

4.7 Proposition There is a PV -function π(f, S,D, a, z), such that S1
2 proves the following

property:

Let f : 2` → 2 be a Boolean function such that |{x < 2`; C(x) = f(x)}| ≤ 2`−1 + a for

any circuit C of size |C| ≤ s. Let S be a 〈k, `, t,m〉-design, and let D : 2m → 2 be a circuit of

size |D| < s−m2k. Put e = am2m+t−`. Then

π(f, S,D, a, ·) : e ∪̇ (2m × {x < 2t; D(NWf,S(x)) = 1}) � 2t × {r < 2m; D(r) = 1}.

4.8 Remark The function π witnesses that Prx(D(NWf,S(x)) = 1) ≥ Prr(D(r) = 1)−mε,
where ε = a2−`.

Proof: We will find (uniformly in i < m) surjections

Gi : a2m+t−` ∪̇Mi+1 � Mi,

where Mi = {〈~r, x〉; D(f(x � S0), . . . , f(x � Si−1), ri, . . . , rm−1) = 1}. Notice that M0 =
{~r; D(~r) = 1} × 2t, and Mm = 2m × {x; D(NWf,S(x)) = 1}.

Fix i < m, y < 2t−`, and ri+1, . . . , rm−1 < 2. For any u < 2` and j < m define
fyj (u) = f(x � Sj), where x � Si = u and x � (tr Si) = y. Finally put

A0(u) = D(fy0 (u), . . . , fyi−1(u), 0, ri+1, . . . , rm−1),

A1(u) = ¬D(fy0 (u), . . . , fyi−1(u), 1, ri+1, . . . , rm−1).

Each fyj (u), j < i, depends only on |Sj ∩ Si| ≤ k variables, hence it is computable by
a circuit of size 2k. This allows A0 and A1 to be represented as circuits of size at most
1 + |D|+ i2k ≤ 1 + |D|+m2k ≤ s, hence

|{u; Ar(u) = f(u)}| ≤ 2`−1 + a, r = 0, 1.

24

By summing these two inequalities we get

2a ≥ |{u; f(u) = A0(u)}|+ |{u; f(u) = A1(u)}| − 2` =

= |{u; (A0(u) & ¬(¬f(u) &A0(u))) ∨ (¬f(u) & ¬(¬f(u) &A0(u)))}|+
+ |{u; (¬A1(u) & ¬(f(u) & ¬A1(u))) ∨ (f(u) & ¬(f(u) & ¬A1(u)))}| − 2` =

= |{u; A0(u)}| − |{u; ¬f(u) &A0(u)}|+ |{u; ¬f(u)}| − |{u; ¬f(u) &A0(u)}|+
+ |{u; ¬A1(u)}| − |{u; f(u) & ¬A1(u)}|+ |{u; f(u)}| − |{u; f(u) & ¬A1(u)}| − 2` =

= |{u; A0(u)}|+ |{u; ¬A1(u)}| − 2|{u; (¬f(u) &A0(u)) ∨ (f(u) & ¬A1(u))}| =
= |{u; D(fy0 (u), . . . , fyi−1(u), 0, ri+1, . . . , rm−1)}|+ |{u; D(fy0 (u), . . . , 1, ri+1, . . .)}| −
− 2|{u; D(fy0 (u), . . . , f(u), ri+1, . . .)}| =

= |{〈r, u〉; D(fy0 (u), . . . , r, ri+1, . . .)}| − |{〈r, u〉; D(fy0 (u), . . . , f(u), ri+1, . . .)}|.

Employing counting functions for the two sets in the last line, we get a surjection

gi,y,ri+1,...,rm−1 : 2a ∪̇ {〈r, u〉; D(fy0 (u), . . . , f(u), ri+1, . . . , rm−1)}�

{〈r, u〉; D(fy0 (u), . . . , r, ri+1, . . . , rm−1)}.

Define Gi : Mi+1 ∪̇ a2m+t−` →Mi by

Gi(~r, x) = 〈r0, . . . , ri−1, r
′
i, ri+1, . . . , rm−1, x

′〉,
if gi,y,ri+1,...,rm−1(ri, x � Si) = 〈r′i, x′ � Si〉, and x′ � (tr Si) = y,

Gi(2av + w) = 〈r0, . . . , ri−1, r
′
i, ri+1, . . . , rm−1, x

′〉,
if v = 〈y, r0, . . . , ri−1, ri+1, . . . , rm−1〉,

gi,y,ri+1,...,rm−1(w) = 〈r′i, x′ � Si〉, and x′ � (tr Si) = y,

It is straightforward to check that the functions Gi are well defined and onto, using f(x�Sj) =
f
x�(trSi)
j (x � Si).

Now we define π as a composition of G0, . . . , Gm−1. More precisely, we put

π(f, S,D, a, z) = Gm(z),

where Gi : Mi ∪̇ ai2m+t−` →M0 is defined inductively by

G0(z) = z,

Gi+1(z) =

{
w − a2m+t−`, a2m+t−` ≤ z < a(i+ 1)2m+t−`,

Gi(Gi(z)), otherwise.

Given z ∈ M0, we prove by Σb
1-LIND on i ≤ m that there is a w ∈ Mi ∪̇ ai2m+t−` such that

Gi(w) = z, in particular π : Mm ∪̇ am2m+t−` →M0 is onto, as required. �

4.9 Proposition Let F be a MFRP definable in S1
2 + dWPHP(PV), and let ε > 0. Then

there are PV -functions h and g such that HARD∅
ε proves

∃y y = F (x) ↔ h(x, α(g(x))) 6= ∗,
∃y y = F (x)→ h(x, α(g(x))) = F (x).

25

Proof: Fix a 1/2-definition of F (x) given by f(x,w), w < r(x). We may assume w.l.o.g. that
r(x) ≥ x. Choose a constant b ≥ 1 such that for all n� 0, there is a circuit C : 2n × 2m → 2
of size at most mb such that

C(x,w) = 1 iff f(x,w) 6= ∗,

where m = |r(x)|. Choose γ < ε, and let c, δ, and d be as in Lemma 4.5. We may assume
γ + δ < ε and δ < ε/b, because we may shorten the design produced by d if necessary.

Define g(x) = 2m
1/δ

, so that ϕ = α(g(x)) is a Boolean function on ` = |m|/δ variables.
Put t = c`, k = γ`, and let S = d(g(x)) (hence S is a 〈k, `, t,m〉-design). Finally, define

h(x, ϕ) =

{
f(x,NWϕ,S(u)), if u is the smallest u < 2t such that f(x,NWϕ,S(u)) 6= ∗,
∗, if no such u exists.

Notice that 2t = mc/δ = nO(1), so the loop over all u < 2t may be done by a PV -function
(i.e., it is p-time computable).

Clearly h(x, α(g(x))) = ∗ if F (x) does not have a value, and y is a value of F (x) if
y = h(x, α(g(x))) 6= ∗. It remains to show that h(x, α(g(x))) 6= ∗ if F (x) is defined.

Put s = 2ε` and a = 2(1−ε)`, so that ϕ satisfies the assumptions of Proposition 4.7. The
size bound on D(w) := C(x,w) is also satisfied: |D| + m2k ≤ mb + m1+γ/δ < mε/δ = s,
because 1 + γ/δ < ε/δ and b < ε/δ.

Assume that we do not find a suitable u < 2t. This means that D(NWϕ,S(u)) = 0 for all
u < 2t, hence by Proposition 4.7 the function π(ϕ, S,D, a, ·) is a surjection from e = am2m+t−`

to 2t × {w; D(w) = 1}. On the other hand, f is a 1/2-definition of F and we assume that
F (x) is defined, hence we also have a surjection of 2m onto 2 × {w; D(w) = 0}. We may
modify this function to map 2m+t−1 onto 2t × {w; D(w) = 0}, and combine it with π to get
a surjection from 2m+t−1 + e onto 2m+t.

However, e = 2m+t+(δ−ε)` < 2m+t−2 because δ < ε, hence we obtain a mapping of 3·2m+t−2

onto 4 · 2m+t−2. This contradicts dWPHP(PV), which is available in HARD∅
ε . �

A subtle point arises here: we have shown derandomization in HARD∅
ε , but we do not know

(yet) the strength of this theory as compared to unrelativized bounded arithmetical theories,
in particular S1

2 + dWPHP(PV). In fact, the Nisan-Wigderson theorem is true, hence its
formalized version 4.9 trivially holds in some theory similar to HARD∅

ε . To see that no
such cheating is involved here, we will show that HARD∅

ε is a conservative extension of
S1

2 + dWPHP(PV).

4.10 Lemma Let ε < 1. There is a constant c such that PV + dWPHP(PV) proves

(i) ∀k ∈ LogLog ∃w ∀i < k (i ≥ c→ (w)i : 2i → 2 & Hardε((w)i)),

(ii) ∀k ∈ LogLog ∃w ∀i < k (i ≥ c→ (w)i : 2i → 2 & Hard∅
ε/3((w)i)).

Proof: This is a refinement of 3.2 and 3.4. (Notice that we cannot use these lemmas di-
rectly, as BBΠb

1 is not available. The conclusion is ∀Σb
2, but it is not a priori clear that the

26

Σb
2-conservativity of BBΣb

2 over S1
2 extends to S1

2 + dWPHP(PV), although see 4.12.) As
in Lemma 3.4, choose d such that

2i(1/2−2−δi)∑
j=0

(
2i

j

)
≤ 2d+2i−2·2i(1−2δ)

for all i > 0, where δ = ε/3, and choose c ≥ 2 such that 2 · 2i(1−2δ) ≥ 2
3 i2

δi + d + i for all
i ≥ c. Put k = ||b||, and define a PV -function

g :
k−1∑
i=c

22k−2c−i → 22k−2c

as follows: given i < k and x < 22k−2c−i, interpret the first 2k − 2c − 2i bits of x as a
sequence 〈fj ; c ≤ j < k, j 6= i〉 of functions fj : 2j → 2. The next 2δi2δi bits of x describe
a circuit C : 2i → 2 of size 2δi, and the rest of x defines a binary string y of length 2i

with at most 2i−1 − 2i(1−δ) ones. (We need d + 2i − 2 · 2i(1−2δ) bits for y, and we have
2i − 2δi2δi − i ≥ 2i − 2 · 2i(1−2δ) + d bits left.) We create a function fi : 2i → 2 by taking the
truth-table of C XOR’ed by y, and we let g output the sequence 〈fj ; c ≤ j < k〉.

If f = 〈fj ; c ≤ j < k〉 is a sequence of functions outside of the range of g, then all fj are
δ-hard on average. The domain of g is at most 22k−2c−c+1 ≤ 22k−2c−1, hence g is not onto by
dWPHP(PV). A similar argument works for ε-hard functions. �

4.11 Proposition Let T denote the theory HARDε or HARD∅
ε/3, with 0 < ε < 1. Then

T is fully conservative over S1
2 + dWPHP(PV). More generally, for any i ≥ 1, T + Si2(α)

and T + T i2(α) are conservative extensions of Si2 + dWPHP(PV) and T i2 + dWPHP(PV),
respectively. Every countable model of S1

2 + dWPHP(PV) has an expansion into a model

of T .

Proof: Let A be a countable model of S1
2 + dWPHP(PV). Choose an increasing chain

p0 ⊆ p1 ⊆ p2 ⊆ . . . of sequences pn ∈ A such that

∀i < lh(pn) (i ≥ c→ (pn)i : 2i → 2 & Hardε((pn)i)),

where c is the constant from Lemma 4.10, and such that {lh(pn); n ∈ ω} is cofinal in
LogLog(A). Define αA =

⋃
n∈ω p

n, i.e.

αA(a) := (pn)||a||, for any n s.t. lh(pn) > ||a||.

Clearly, 〈A, αA〉 satisfies the hardness conditions from T .

Claim 1 Let ϕ(~x) be a Σb
∞(α)-formula. Denote by ϕ̃(p, ~x) the Σb

∞-formula which results

from ϕ by substitution of (p)||t|| for every subterm α(t). There is a constant cϕ such that

〈A, αA〉 � ϕ(~a) iff A � ϕ̃(pn,~a)

for any n such that lh(pn) > cϕ||~a||.

27

Proof: By straightforward induction on complexity of ϕ. If ϕ is atomic, it suffices to choose
cϕ so that all (pn)||t|| are defined. If e.g. ϕ(~x) = ∃y ≤ s(~x)ψ(y, ~x), take cϕ = (d+1)cψ, where d
is such that ||s(~x)|| < d||~x|| for all ~x. The assertion then follows from the induction hypothesis,
because y ≤ s(~x) and lh(pn) > cϕ||~x|| imply lh(pn) > cψ(||y||+ ||~x||). � (Claim 1)

As a corollary of the Claim we get that 〈A, αA〉 � ∀~xϕ(~x), whenever ϕ is a bounded L(α)-
formula, and A � ∀~x∀p ϕ̃(p, ~x). In particular, 〈A, αA〉 � S1

2(α), and additionally it is a model
of Si2(α) or T i2(α), if Si2 or T i2 holds in A. �

4.12 Corollary S1
2 + dWPHP(PV) + BBΣb

2 is ∀Σb
2-conservative over S1

2 + dWPHP(PV).

Proof: This follows from 4.11, and Σb
2(α)-conservation of BBΣb

2(α) over S1
2(α) [12], because

HARD1/2 is a ∀Πb
1(α)-axiomatized extension of S1

2(α). �

5 Acknowledgements

The author wishes to thank Jan Kraj́ıček for his guidance, clarifying discussions on the topic,
and many suggestions and improvements. I would like also to thank Pavel Pudlák and Neil
Thapen, for reading and commenting a preliminary version of this paper.

References

[1] S. Buss: Bounded Arithmetic, Bibliopolis, Naples 1986.

[2] S. Buss, R. Impagliazzo, J. Kraj́ıček, P. Pudlák, A. Razborov, J. Sgall: Proof com-
plexity in algebraic systems and bounded depth Frege systems with modular counting,
Computational Complexity 6 (1996/97), pp. 256–298.

[3] S. Cook: Feasibly constructive proofs and the propositional calculus, in: Proceedings of
the 3rd Annual ACM Symposium on Theory of Computing, ACM Press, 1975, pp. 83–97.

[4] J. Kraj́ıček: Bounded Arithmetic, Propositional Logic, and Complexity Theory, Cam-
bridge University Press, 1995.

[5] J. Kraj́ıček: On the weak pigeonhole principle, Fundamenta Mathematicae 170 (2001),
pp. 123–140.

[6] J. Kraj́ıček, P. Pudlák: Quantified propositional calculi and fragments of bounded arith-
metic, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 36 (1990),
pp. 29–46.

[7] J. Kraj́ıček, P. Pudlák: Some Consequences of Cryptographical Conjectures for S1
2 and

EF, Information and Computation 140 (1998), pp. 82–94.

[8] A. Maciel, T. Pitassi, A. Woods: A New Proof of the Weak Pigeonhole Principle, Journal
of Computer and System Sciences 64 (2002), pp. 843–872.

28

[9] N. Nisan, A. Wigderson: Hardness vs. Randomness, Journal of Computer and System
Sciences 49 (1994), pp. 149–167.

[10] R. Parikh: Existence and feasibility in arithmetic, Journal of Symbolic Logic 36 (1971),
pp. 494–508.

[11] J. Paris, A. Wilkie, A. Woods: Provability of the pigeonhole principle and the existence
of infinitely many primes, Journal of Symbolic Logic 53 (1988), pp. 1235–1244.

[12] J.-P. Ressayre: A conservation result for system of bounded arithmetic, unpublished
manuscript, 1986.

[13] N. Thapen: The Weak Pigeonhole Principle in Models of Bounded Arithmetic, PhD
thesis, Oxford University, 2002.

A Some bounds on binomial coefficients

Here we show that several well-known inequalities, useful for counting, are actually provable
in PV , when their parameters are restricted to logarithmically small numbers. We could not
get around proving these technical results, even though they are not unexpected.

A.1 Definition Let n ∈ Log, k, i ≤ n. Define[
n

i

]
k

:=
(
n

i

)
ki(n− k)n−i,(

n
<i

)
:=
∑

j<i

(
n
j

)
,
[
n
<i

]
k

:=
∑

j<i

[
n
j

]
k
.

A.2 Proposition (Stirling’s bound) There is a c > 1 such that PV proves

0 < k < n ∈ Log → 1
c

(
n

k

)
≤ nn

kk(n− k)n−k

√
n

k(n− k)
≤ c
(
n

k

)
.

(We will abbreviate this as “
(
n
k

)
= Θ(· · ·).”)

Proof: Define f(i) :=
[
n
i

]
k
, and γ(i) := f(i + 1)/f(i) = k(n − i)/((n − k)(i + 1)). We have

j < i→ γ(j) > γ(i), because (j + 1)(n− i) < (i+ 1)(n− j). Also

γ(k − 1) = (n− k + 1)/(n− k) > 1 > k/(k + 1) = γ(k),

hence f(i+ 1) > f(i) for i < k, and f(i+ 1) < f(i) for i ≥ k.
Let i < k. We have k(n− i+ 1)f(j − 1) ≤ (n− k)i f(j) for any 0 < j ≤ i, hence

(k(n− i+ 1))`f(i− `) ≤ ((n− k)i)`f(i)

for any 0 ≤ ` ≤ i (by ∆b
1-induction on `). Using induction once again, we find that

(k(n− i+ 1))`(k(n− i+ 1)− (n− k)i)
i−1∑
j=i−`

f(j) ≤

≤ (n− k)i((k(n− i+ 1))` − ((n− k)i)`)f(i),

29

in particular,

(k(n− i+ 1))i(kn+ k − in)
∑
j<i

f(j) ≤ (n− k)i((k(n− i+ 1))i − ((n− k)i)i)f(i) ≤

≤ (n− k)i(k(n− i+ 1))if(i),

hence ∑
j<i

f(j) ≤ (n− k)i
kn+ k − in

f(i) ≤ (n− k)i
n(k − i)

f(i).

Similarly, ∑
j>i

f(j) ≤ k(n− i)
n(i− k)

f(i) for any i > k.

Put s :=
⌊√

k(n−k)
n

⌋
. Then

1
f(k − s− 1)

∑
j<k−s−1

f(j) ≤ n− k
n

(
k

s+ 1
− 1
)
≤ n− k

n

(√
kn

n− k
− 1

)
=

=

√
k(n− k)

n
− n− k

n
≤ s+

k

n
,

hence

∑
j≤k

f(j) ≤
∑

j<k−s−1

f(j) +
k∑

j=k−s−1

f(j) ≤
(
s+

k

n

)
f(k − s− 1) + (s+ 2)f(k) ≤

≤
(

2s+ 2 +
k

n

)
f(k).

Similarly we may show ∑
j>k

f(j) ≤
(

2s+ 2− k

n

)
f(k),

hence

nn =
n∑
j=0

f(j) ≤ 4(s+ 1)f(k) ≤ 8sf(k),

in other words (
n

k

)
≥ nn

8skk(n− k)n−k
≥ nn

8kk(n− k)n−k

√
n

k(n− k)
.

Claim 1 PV proves

b ∈ Log, b > 0 → (b+ 1)b+1 ≤ 4bb+1.

30

Proof: By induction on b. The claim holds if b = 1. Assume b > 1 and bb ≤ 4(b − 1)b.
Straightforward induction on d shows that

cd ≤ (c+ 1)d − d(c+ 1)d−1 +
(
d

2

)
(c+ 1)d−2, d ≥ 2,

hence

(b− 1)b+1(b+ 1)b+1 = (b2 − 1)b+1 ≤

≤ b2b+2 − (b+ 1)b2b +
b2 + b

2
b2b−2 =

= b2b+2 − b2b−1 − 1
2
b2b +

1
2
b2b−1 ≤

≤ b2b+2 − b2b+1 = (b− 1)bb+1bb ≤
≤ 4(b− 1)b+1bb+1,

thus (b+ 1)b+1 ≤ 4bb+1. � (Claim 1)

Claim 2 PV proves

a, b ∈ Log, b > 0 → (b+ a)b ≤ 4abb.

Proof: The case a = 0 is trivial. If a = 1, we have (b+1)b+1 ≤ 4bb+1 ≤ 4(b+1)bb by previous
Claim, hence (b+ 1)b ≤ 4bb. We proceed by induction on a. Using the induction hypothesis
for a and 1, we have

(b+ a+ 1)b+a ≤ 4(b+ a)b+a ≤ 4a+1bb(b+ a)a ≤ 4a+1bb(b+ a+ 1)a,

hence (b+ a+ 1)b ≤ 4a+1bb. � (Claim 2)

Let i ≤ s. Then in(i− 1) ≤ k(n− k), hence

γ(k − i) =
k(n− k + i)

(n− k)(k − i+ 1)
= 1 +

k + n(i− 1)
(n− k)(k − i+ 1)

≤ 1 +
in

k(n− k)
.

Since (assuming i even) f(k − i/2) ≤ f(k − i)γi/2(k − i), this implies

(k(n− k))i/2f(k − i/2) ≤ (k(n− k) + in)i/2f(k − i),

and, using Claim 2,

(k(n− k))
i
2
k(n−k)(f(k − i/2))k(n−k) ≤ (k(n− k) + in)

i
2
k(n−k)(f(k − i))k(n−k) ≤

≤ (4in(k(n− k))k(n−k))i/2(f(k − i))k(n−k) = (k(n− k))
i
2
k(n−k)2i

2n(f(k − i))k(n−k),

hence
(f(k − i/2))k(n−k) ≤ 2i

2n(f(k − i))k(n−k).

Choose ` such that 2` ≤ s < 2`+1. Then 4` ≤ k(n− k)/n, and an induction shows that

(f(k − 1))k(n−k) ≤ (f(k − 2`))k(n−k)2
4
3
(4`−1)n ≤

≤ (f(k − 2`))k(n−k)2
4
3
k(n−k) ≤ (3f(k − 2`))k(n−k),

31

hence f(k − 2`) ≥ f(k − 1)/3 ≥ f(k)/6. This implies

nn ≥
2`∑
j=1

f(k − j) ≥ 2`f(k − 2`) ≥ 2`

6
f(k) ≥ s+ 1

12
f(k),

which means (
n

k

)
≤ 12nn

(s+ 1)kk(n− k)n−k
≤ 12nn

kk(n− k)n−k

√
n

k(n− k)
. �

A.3 Corollary PV proves: for any 0 < k < n ∈ Log,

|k − i| ≤
√
k(n− k)

n
→

[
n

i

]
k

= Θ
([
n

k

]
k

)
.

(Here |·| denotes absolute value, not the length function.) �

A.4 Proposition The following is provable in PV . Let k, n ∈ Log be such that n > k > 0,

and denote s =
√

k(n−k)
n .

(i) Assume i ≤ s. Then [
n

< k − i

]
k

= Θ
(
s

[
n

k − i

]
k

)
= Θ(nn),

[
n

> k + i

]
k

= Θ
(
s

[
n

k + i

]
k

)
= Θ(nn).

(ii) Assume i ≥ s. [
n

< k − i

]
k

= Θ
((

1− k

n

)(
k

i
− 1
)[

n

k − i

]
k

)
,[

n

> k + i

]
k

= Θ
(
k

n

(
n− k
i
− 1
)[

n

k + i

]
k

)
.

Proof: It suffices to show the
[
n
<···
]
-part, as

[
n
j

]
k

=
[
n
n−j
]
n−k

.
First assume i ≤ s. We already know from the proof of A.2 that[

n

< k − i

]
k

≤
[
n

< k

]
k

= O

(
s

[
n

k

]
k

)
= O

(
s

[
n

k − i

]
k

)
= O(nn).

If i ≤ s/2, we also have[
n

< k − i

]
k

≥
[

n

< k − s/2

]
k

≥ s

2

[
n

k − s

]
k

= Ω
(
s

[
n

k − i

]
k

)
= Ω(nn).

The case of s/2 < i ≤ s is treated similarly: the proof of
[
n
k−s
]
k

= Ω
([
n
k

]
k

)
can be easily

adapted to
[

n
k−2s

]
k
.

32

Now assume k ≥ i > s. We have already proved that[
n

< k − i

]
k

≤ (n− k)(k − i)
ni

[
n

k − i

]
k

.

If i = k, clearly
[

n
<k−i

]
k

= 0 = k
i − 1. If k > i ≥ k/4, we have[

n
<k−i

]
k[

n
k−i
]
k

≥ 1
γ(k − i− 1)

=
(n− k)(k − i)
k(n− k + i+ 1)

≥ (n− k)(k − i)
kn

≥ (n− k)(k − i)
4ni

.

Let k/4 > i > s, and define f and γ as in the proof of A.2. By the monotonicity of γ and
simple induction, we have

f(k − i− j) ≥ f(k − i)(γ(k − 2i))−j ,

hence (putting γ = γ(k − 2i))[
n

< k − i

]
k

≥
i∑

j=1

f(k − i− j) ≥ f(k − i)
i∑

j=1

γ−j = f(k − i) 1
γ − 1

(1− γ−i) =

= f(k − i)(n− k)(k − 2i+ 1)
n(2i− 1) + k

(
1−

(
(n− k)(k − 2i+ 1)
k(n− k + 2i)

)i)
.

Notice that
(n− k)(k − 2i+ 1)
n(2i− 1) + k

≥ (n− k)(k − 2i+ 1)
2ni

≥ (n− k)k
4ni

≥ (n− k)(k − i)
4ni

.

Claim 1 ba+b2a ≤ (a+ b)a+b for any a, b ∈ Log.

Proof: Case a = 0 is trivial. If a = 1, we have (b+ 1)b+1 ≥ bb+1 + (b+ 1)bb ≥ 2bb+1. Proceed
by induction on a. Assuming the hypothesis for a, we have

ba+b+12a+1 ≤ 2b(a+ b)a+b ≤ 2(a+ b)a+b+1 ≤ (a+ b+ 1)a+b+1. � (Claim 1)

Put a = n(2i− 1) + k, b = (n− k)(k − 2i+ 1) (hence a+ b = k(n− k + 2i)). We have

2aibi(a+b) ≤ (a+ b)i(a+b).

On the other hand, i2n ≥ k(n− k) implies

ia− (a+ b) = 2i2n− in− kn+ k2 − ik ≥ i2n− i(n+ k) ≥ in(i− 2) ≥ 0,

hence
2a+bbi(a+b) ≤ (a+ b)i(a+b).

This means that

1−
(

b

a+ b

)i
≥ 1− 1

2
=

1
2
,

thus [
n

< k − i

]
k

≥ (n− k)(k − i)
8ni

[
n

k − i

]
k

. �

33

A.5 Proposition (Chernoff’s bound) PV proves: for any n, k, i ∈ Log such that k ≤ n

and n > 0,
1
nn

([
n

≤ k − i

]
k

+
[

n

≥ k + i

]
k

)
= O(4−i

2/n).

Proof: The interesting case is to bound
[

n
<k−i

]
k

when 0 < i < k < n. If i ≤ s =
√

k(n−k)
n ,

there is also nothing to prove, because i2/n ≤ (1− k/n)k/n ≤ 1/4, and the left-hand side is
bounded by 1. Assume i > s. We know from A.2 and A.4 that

1
nn

[
n

< k − i

]
k

≤ c
(

1− k

n

)(
k

i
− 1
)√

n

(k − i)(n− k + i)
kk−i(n− k)n−k+i

(k − i)k−i(n− k + i)n−k+i

for some c. Since i > s, we have(
1− k

n

)(
k

i
− 1
)√

n

(k − i)(n− k + i)
=
n− k
i

√
k − i

n(n− k + i)
≤

≤

√
(n− k)(k − i)
k(n− k + i)

=

√
1− ni

k(n− k + i)
≤ 1.

As with the proof of A.4, it is not hard to show that (1+1/a)a ≤ (1+1/b)b and (1+1/b)b+1 ≤
(1 + 1/a)a+1 whenever 0 < a ≤ b ∈ Log, hence also (1 + 1/a)a ≤ (1 + 1/b)b+1 for any a, b, in
other words (1 + 1/b)b+1(1− 1/(a+ 1))a ≥ 1.

Let a, b, j ∈ Log, 0 < j < b. Then(
1 +

1
b− j

)b(
1− 1

a+ j

)a
=

=
(

1 +
1

b− j

)b−j+1(
1− 1

a+ j

)a+j−1(
1 +

1
b− j

)j−1(
1− 1

a+ j

)−(j−1)

≥

≥
(

1 +
1

b− j

)j−1(
1 +

1
a+ j − 1

)j−1

,

thus[(
1 +

1
b− j

)b (
1− 1

a+ j

)a](b−j)(a+j−1)(a+b)

≥

≥

[(
1 +

1
b− j

)(b−j)(a+j−1)(
1 +

1
a+ j − 1

)(b−j)(a+j−1)
](j−1)(a+b)

≥

≥ 2(j−1)(a+b−1)2 ≥ 24(j−1)(b−j)(a+j−1),

because (x+ y)2 ≥ 4xy. Therefore

42(j−1)(a+ j)a(a+b)(b− j)b(a+b) ≤ (a+ j − 1)a(a+b)(b− j + 1)a(a+b),

and by induction on i we have

4i
2−i(a+ i)(a+b)(b− i)b(a+b) ≤ aa(a+b)ba(a+b)

34

for any 0 ≤ i < b. Put a = k − i and b = n− k + i. Then

4i
2−n

(
kk−i(n− k)n−k+i

)n
≤ 4i

2−i
(
kk−i(n− k)n−k+i

)n
≤

≤
(
(k − i)k−i(n− k + i)n−k+i

)n
,

hence
kk−i(n− k)n−k+i

(k − i)k−i(n− k + i)n−k+i
≤ 4(−i2+n)/n = 4 · 4−i2/n,

and finally
1
nn

[
n

< k − i

]
k

≤ 4c · 4−i2/n. �

35

