
The strength of sharply bounded induction

Emil Jeřábek∗

Mathematical Institute of AS CR

Žitná 25

115 67 Praha 1

Czech Republic

jerabek@math.cas.cz

October 24, 2006

Abstract

We prove that the sharply bounded arithmetic T 0
2 in a language containing the function

symbol
⌊

x
2y

⌋
(often denoted by MSP) is equivalent to PV1.

1 Introduction

The most commonly studied theories of first-order bounded arithmetic are the theories Si
2 and

T i
2 introduced by Buss [1], which are respectively axiomatized by the schema of polynomial

induction and ordinary induction for Σb
i -formulas over a weak base theory. Usually these

theories are considered only for i ≥ 1: while S1
2 and its extension T 1

2 are well-behaved and
fit nicely in the hierarchy, the sharply bounded arithmetics S0

2 and T 0
2 are avoided, because

they seem to lack sufficient bootstrapping power. The theory T 0
2 is typically substituted

with its extension PV1, which includes function symbols for all polynomial-time computable
functions. In fact, Takeuti [14] has shown that S0

2 is too weak to prove the existence of
predecessors, which means it does not even contain Robinson’s Q. Similar independence
results were obtained for other variants of S0

2 and R0
2 by Johannsen [8, 9, 10].

We will show that the case of T 0
2 is quite different: if we extend Buss’ language by the

function
⌊

x
2y

⌋
(also known as MSP(x, y), for “most significant part”), T 0

2 can Σb
1-define all

polynomial-time functions, and PV1 is a conservative extension of T 0
2 . Thus the standard

treatment of T 0
2 as an exception in Buss’ hierarchy is not necessary.

Although we do not resolve the status of the original Buss’ T 0
2 , we believe that the inclusion

of
⌊

x
2y

⌋
in the basic language is justified. On one hand,

⌊
x
2y

⌋
is a simple AC0-function, thus

it is nowhere near full polynomial time as the usual language of PV1. On the other hand,⌊
x
2y

⌋
is routinely used in the basic language of other weak theories, like R1

2 [15]. Even the

∗The research was done while the author was visiting the Department of Computer Science of the University

of Toronto. Supported by NSERC Discovery grant, grant IAA1019401 of GA AV ČR, and grant 1M0545 of

MŠMT ČR.

1



language of S1
2 is often extended by function symbols which allow sequence coding in Σb

0; the
equivalence of Σb

1 and strict Σb
1-formulas relies on this. We should point out that

⌊
x
2y

⌋
has a

Σb
1-definition which is provably total and reasonably well-behaved in Buss’ T 0

2 ; we only need
to include the function in the language so that it can be used freely in induction axioms.

The paper is organized as follows. Section 2 provides background in bounded arithmetic,
including our working definition of T 0

2 and PV1. In section 3 we prove a few auxiliary lemmas
about T 0

2 . The main argument is in section 4, where we show how to define PV -functions in
T 0

2 , and we prove that PV1 is a conservative extension of T 0
2 . Section 5 contains concluding

remarks. In the appendix we present a simplified axiom system for IOpen, which is used in
section 3.

2 Preliminaries

As we already indicated in the introduction, we will work with the first-order language L =
〈0, S,+, ·,≤,#, |x|,

⌊
x
2y

⌋
〉. The intended meaning of the symbols is |x| = dlog2(x + 1)e and

x#y = 2|x||y|, the rest are the usual arithmetical operations on nonnegative integers. Bounded
quantifiers are defined by

∃x ≤ t ϕ⇔ ∃x (x ≤ t ∧ ϕ),

∀x ≤ t ϕ⇔ ∀x (x ≤ t→ ϕ),

where t is a term with no occurrence of x. A bounded quantifier is sharply bounded, if its
bounding term t is of the form |s|. A formula ϕ is (sharply) bounded if all quantifiers in ϕ

are (sharply) bounded. The set of all sharply bounded formulas is denoted by Σb
0.

The original T 0
2 is axiomatized by Σb

0-induction over a set of 32 open axioms called BASIC .
We need to adjust BASIC to our modified language; we take this opportunity to considerably
simplify the list of axioms.

Definition 2.1 T 0
2 is a theory in the language L, axiomatized by the induction schema (IND)

ϕ(0) ∧ ∀x (ϕ(x) → ϕ(Sx)) → ∀xϕ(x)

for Σb
0-formulas ϕ, and the following formulas:

x+ 0 = x x+ Sy = S(x+ y)

x · 0 = 0 x · Sy = x · y + x

0 ≤ x Sy ≤ x↔ y < x⌊
x
20

⌋
= x

⌊
x
2y

⌋
= 2

⌊
x

2Sy

⌋
∨

⌊
x
2y

⌋
= S(2

⌊
x

2Sy

⌋
)

|0| = 0 x 6= 0 → |x| = S|
⌊
x
2

⌋
|

0 # 1 = 1 x 6= 0 → x# 1 = 2(
⌊
x
2

⌋
# 1) ∧ (y # x) = (y # 1)(y #

⌊
x
2

⌋
)

where x < y,
⌊
x
2

⌋
, 1, 2 are abbreviations for x ≤ y ∧ x 6= y,

⌊
x
21

⌋
, S0, SS0, respectively.

2



We remark that the dozen axioms in definition 2.1 are not a drop-in replacement for Buss’
BASIC : in particular, they are most likely insufficient to bootstrap theories not based on the
induction schema, such as S1

2 or R1
2.

PV is an equational theory intended to formalize polynomial-time reasoning, defined by
Cook [5]. Its language contains several basic functions, and it is closed under composition
and limited recursion on notation. It is based on an earlier result of Cobham [4], which
implies that PV -functions represent the class of all polynomial-time computable functions.
PV includes defining equations for its function symbols, and it has a form of induction as a
derivation rule.

The theory PV1, also denoted as QPV , T 0
2 (�p

1), and ∀Σb
1(S

1
2) [12, 2, 6, 3], is a first-order

variant of PV . The exact definition of the language and set of axioms of PV1 varies in the
literature, and details are often let unspecified; for definiteness, we fix the theory as follows.

Definition 2.2 The language LPV contains L, and is closed under two formation rules:

• for any LPV -term t whose free variables are among x1, . . . , xn, there is a function symbol
ft(~x),

• for any LPV -function symbols g(~x), h0(~x, y, z), h1(~x, y, z), b(~x, y), there is a function
symbol fg,h0,h1,b(~x, y).

PV1 is the theory in the language LPV which consists of the axioms of T 0
2 , and the following

additional axioms:

• for every function symbol ft,
ft(~x) = t,

• for every function symbol fg,h0,h1,b,

fg,h0,h1,b(~x, y) ≤ b(~x, y),

g(~x) ≤ b(~x, 0) → fg,h0,h1,b(~x, 0) = g(~x),

y 6= 0 ∧ h0(~x, y, fg,h0,h1,b(~x, y)) ≤ b(~x, 2y) → fg,h0,h1,b(~x, 2y) = h0(~x, y, fg,h0,h1,b(~x, y)),

h1(~x, y, fg,h0,h1,b(~x, y)) ≤ b(~x, S(2y)) → fg,h0,h1,b(~x, S(2y)) = h1(~x, y, fg,h0,h1,b(~x, y)),

• polynomial induction (PIND) for open formulas ϕ:

ϕ(0) ∧ ∀x (ϕ(
⌊
x
2

⌋
) → ϕ(x)) → ∀xϕ(x).

As we want to compare PV1 with T 0
2 , we need to identify symbols of T 0

2 with some PV -
function symbols. The easiest way is to directly include L in the basic language of PV , which
motivates our definition of LPV . Other details are more or less arbitrary.

3



3 Bootstrapping T 0
2

As T 0
2 does not include any of the usual basic theories used in the development of bounded

arithmetic (such as S1
2 or R1

2), we have to “bootstrap” the theory first, i.e., show that it proves
common auxiliary properties of the symbols in its language.

The task is simplified by observing that T 0
2 contains the well-known theory IOpen (see e.g.

Shepherdson [13]). (More precisely, the usual axiomatization of IOpen is included in T 0
2 plus

Buss’ BASIC . In the appendix we provide an alternative axiomatization for IOpen, which
shows that our weaker base theory is sufficient.) Thus, T 0

2 proves all the usual elementary
properties of addition, multiplication, and ordering; we will concentrate on the other symbols,⌊

x
2y

⌋
, |x|, and #.
Bounded sets of logarithmically small numbers can be encoded by numbers, using digits

in their binary expansion. Formally, we define an elementhood predicate by the open formula

i ∈ x⇔
⌊

x
2i

⌋
is odd

⇔
⌊

x
2i

⌋
= 2

⌊
x

2i+1

⌋
+ 1.

Notice that the concept of even and odd numbers is well-behaved in T 0
2 , as IOpen proves

existence and uniqueness of division with remainder (cf. lemma A.4).

Lemma 3.1 The following are provable in T 0
2 .

(i)
⌊

x
2i+j

⌋
=

⌊bx/2ic
2j

⌋
, and as a special case,

⌊
x

2i+1

⌋
=

⌊bx/2ic
2

⌋
(ii)

⌊
x
2i

⌋
6= 0 → |x| = i+ |

⌊
x
2i

⌋
|

(iii) i ≥ |x| →
⌊

x
2i

⌋
= 0

(iv) x ≤ y →
⌊

x
2i

⌋
≤

⌊ y
2i

⌋
(v) i ∈ x→ i < |x|

(vi) x 6= 0 → |x| − 1 ∈ x

(vii) i ∈
⌊

x
2j

⌋
↔ i+ j ∈ x

(viii) x ≤ y → |x| ≤ |y|

Proof: (i): we have ⌊
x

2i+1

⌋
=

⌊bx/2ic
2

⌋
by uniqueness of division and the axioms for

⌊
x
2i

⌋
, from which the result follows by induction

on j.
(ii): by induction on i. For the induction step, we need the axiom y 6= 0 → |y| = 1+ |

⌊y
2

⌋
|,

and ⌊
x

2i+1

⌋
6= 0 →

⌊
x
2i

⌋
6= 0,

4



which follows from the axioms for
⌊

x
2i

⌋
.

(iii) is a corollary of (ii), and (v) is a reformulation of (iii).
(iv) follows by induction on i from basic properties of ≤, namely u < v → 2u+ 1 < 2v.
(vi): we have

⌊
x
20

⌋
6= 0 and

⌊
x

2|x|

⌋
= 0 from (iii), thus by induction there exists an i < |x|

such that ⌊
x
2i

⌋
6= 0 =

⌊
x

2i+1

⌋
.

The axiom for
⌊

x
2i

⌋
implies

⌊
x
2i

⌋
= 1, thus i ∈ x. Moreover, |x| = i+ 1 by (ii).

(vii) follows from (i).
(viii): we have

⌊ y
2|y|

⌋
= 0 by (iii), thus

⌊
x

2|y|

⌋
= 0 by (iv). If |x| > |y|, then

⌊
x

2|x|−1

⌋
= 0 by

(i), contradicting (vi). �

Lemma 3.2 The following are provable in T 0
2 .

(i) x < y ↔ ∃i (i ∈ y ∧ i /∈ x ∧ ∀j > i (j ∈ x↔ j ∈ y)),

(ii) x = y ↔ ∀i (i ∈ x↔ i ∈ y),

(iii) x ≤ y ↔ ∀i (∀j > i (j ∈ x↔ j ∈ y) → (i ∈ x→ i ∈ y)),

(iv) y = Sx↔ ∃i (∀j > i (j ∈ x↔ j ∈ y) ∧ i /∈ x ∧ i ∈ y ∧ ∀j < i (j ∈ x ∧ j /∈ y)),

(v) i ∈ x+ y ↔ (i ∈ x⊕ i ∈ y ⊕ Carry(i, x, y)),

where α⊕ β = ¬(α↔ β) is the exclusive-or connective, and Carry is the formula

∃j < i (j ∈ x ∧ j ∈ y ∧ ∀k < i (k > j → k ∈ x ∨ k ∈ y)).

Proof: (i): we begin with the left-to-right direction. Assume x < y. As
⌊

x
20

⌋
6=

⌊ y
20

⌋
and⌊

x
2|y|

⌋
=

⌊ y
2|y|

⌋
by lemma 3.1 (ii), induction implies that there exists an i < |y| such that⌊

x
2i

⌋
6=

⌊ y
2i

⌋
and

⌊
x

2i+1

⌋
=

⌊ y
2i+1

⌋
.

Put z =
⌊

x
2i+1

⌋
. We have

⌊
x
2i

⌋
<

⌊ y
2i

⌋
by lemma 3.1 (iv), and both

⌊
x
2i

⌋
and

⌊ y
2i

⌋
are equal to

2z or 2z + 1, thus ⌊
x
2i

⌋
= 2z and

⌊ y
2i

⌋
= 2z + 1.

In particular, i /∈ x and i ∈ y. For any j > i, we have
⌊

x
2j

⌋
=

⌊ y
2j

⌋
by lemma 3.1 (i), thus

j ∈ x iff j ∈ y.
Right-to-left: fix i which witnesses the RHS. As i /∈ x ∧ i ∈ y, we cannot have x = y.

Assume for contradiction y < x. By the left-to-right implication there exists an i′ such that

i′ ∈ x ∧ i′ /∈ y ∧ ∀j > i′ (j ∈ x↔ j ∈ y).

Then either of i < i′, i = i′, i > i′ leads to a contradiction.
(ii): the left-to-right direction is trivial, and the right-to-left direction follows from (i).

Likewise, (iii) is just a reformulation of (i).

5



(iv): by extensionality (i.e., (ii)), it suffices to prove the left-to-right direction. We have⌊ y
2j

⌋
≤

⌊
x
2j

⌋
+ 1

by induction on j. Fix an i such that

∀j > i (j ∈ x↔ j ∈ y) ∧ i /∈ x ∧ i ∈ y

by (i). Let j < i. We have
⌊

x
2j

⌋
<

⌊ y
2j

⌋
by lemma 3.1 (i) and (iv), thus

⌊ y
2j

⌋
=

⌊
x
2j

⌋
+1. By the

same argument,
⌊ y
2j+1

⌋
=

⌊
x

2j+1

⌋
+ 1. As

⌊
x
2j

⌋
≤ 2

⌊
x

2j+1

⌋
+ 1 < 2

⌊ y
2j+1

⌋
≤

⌊ y
2j

⌋
, we must have⌊

x
2j

⌋
= 2

⌊
x

2j+1

⌋
+ 1 and

⌊ y
2j

⌋
= 2

⌊ y
2j+1

⌋
,

thus j ∈ x and j /∈ y.
(v): we prove ⌊x+y

2i

⌋
=

{⌊
x
2i

⌋
+

⌊ y
2i

⌋
+ 1 if Carry(i, x, y),⌊

x
2i

⌋
+

⌊ y
2i

⌋
otherwise

by induction on i ≤ |x + y|. Let xi, yi, and ci denote the indicators of the formulas i ∈ x,
i ∈ y, and Carry(i, x, y). The definition of Carry readily implies

Carry(i+ 1, x, y) ⇔
(
Carry(i, x, y) ∧ (i ∈ x ∨ i ∈ y)

)
∨ (i ∈ x ∧ i ∈ y),

thus
ci+1 = MAJ (ci, xi, yi) =

⌊ci+xi+yi

2

⌋
.

Then⌊x+y
2i+1

⌋
=

⌊b(x+y)/2ic
2

⌋
=

⌊bx/2ic+by/2ic+ci

2

⌋
=

⌊2bx/2i+1c+xi+2by/2i+1c+yi+ci

2

⌋
=

⌊
x

2i+1

⌋
+

⌊ y
2i+1

⌋
+

⌊xi+yi+ci

2

⌋
=

⌊
x

2i+1

⌋
+

⌊ y
2i+1

⌋
+ ci+1

by the induction hypothesis. �

We remark that all quantifiers in lemma 3.2 can be sharply bounded by lemma 3.1 (v).

Lemma 3.3 T 0
2 proves:

(i) Σb
0-PIND

(ii) y 6= 0 → |y(x# 1)| = |x|+ |y|

(iii) i ∈ y(x# 1) ↔ i ≥ |x| ∧ i− |x| ∈ y

(iv) x# 0 = 1

(v) |x# y| = |x| · |y|+ 1

(vi) i ∈ x# y ↔ i = |x| · |y|

6



Proof: (i): assume ∀x (ϕ(
⌊
x
2

⌋
) → ϕ(x)) and ¬ϕ(a), where ϕ ∈ Σb

0. We have ¬ϕ(
⌊

a
2i

⌋
) by

induction on i, thus ¬ϕ(0) by taking i = |a|.
(ii) and (iii): assume y 6= 0, and prove

|y(x# 1)| = |x|+ |y| ∧ ∀i < |y(x# 1)| (i ∈ y(x# 1) → i ≥ |x|)
∧ ∀i < |y| (i ∈ y ↔ i+ |x| ∈ y(x# 1))

by PIND on x. The induction step follows from x# 1 = 2(
⌊
x
2

⌋
# 1) and lemma 3.1 (vii).

(iv): we have x#1 6= 0 by (ii), thus x#0 = 1 follows from the axiom x#1 = (x#1)(x#0).
(v) and (vi): we prove

|x# y| = |x| · |y|+ 1 ∧ ∀i < |x# y| (i ∈ x# y ↔ i = |x| · |y|)

by PIND on y. The base step follows from (iv), the induction step from (ii), (iii), and
x# y = (x# 1)(x#

⌊y
2

⌋
). �

4 PV -functions in T 0
2

In this section we prove our main result (theorem 4.8). The basic outline of the proof is
straightforward—we will show that PV functions have Σb

1-definitions provably total in T 0
2 ,

such that T 0
2 proves the recursion and induction axioms from definition 2.2. The main tech-

nical ingredient is a variant of a bit-recursion principle (lemma 4.2), which was already used
for a similar purpose in second-order context by Cook [7]; the idea goes back to Buss [1].

Definition 4.1 A formula ϕ(i, w, . . .) is safe for bit-recursion, if ϕ ∈ Σb
0, and all occurrences

of w in ϕ are inside a subformula of the form t > i ∧ t ∈ w, where t is a term not containing
w.

Lemma 4.2 If ϕ is safe for bit-recursion, T 0
2 proves

∃!w (|w| ≤ |a| ∧ ∀i < |a| (i ∈ w ↔ ϕ(i, w))).

Proof: Uniqueness: assume that w and w′ satisfy the conclusion. As ϕ(i, w) depends only
on the bits of w to the left of i, we can prove ∀j < |a| (j ≥ i→ (j ∈ w ↔ j ∈ w′)) by reverse
induction on i ≤ |a|. Taking i = 0, we obtain w = w′ from extensionality.

Existence1: let ψ(w) denote the Σb
0-formula

|w| ≤ |a| ∧ ∀i < |a| (∀j < |a| (j > i→ (j ∈ w ↔ ϕ(j, w))) → (i ∈ w → ϕ(i, w))).

We have ψ(0) and ¬ψ(a# 1), thus there exists a w such that ψ(w) ∧ ¬ψ(w+ 1). We assume
|w+ 1| ≤ |a|, the other case is left to the reader. By lemma 3.2 and the definition of ψ, there
exist i, k < |a| such that

∀j > i (j ∈ w ↔ j ∈ w + 1) ∧ i /∈ w ∧ i ∈ w + 1 ∧ ∀j < i (j ∈ w ∧ j /∈ w + 1),

∀j > k (j ∈ w + 1 ↔ ϕ(j, w + 1)) ∧ k ∈ w + 1 ∧ ¬ϕ(k,w + 1).

1Unlike T i
2 for i > 0, we cannot use the Σb

0-maximization principle. It can be shown that T 0
2 + Σb

0-

MAX = T 0
2 + Σb

1-MAX = T 1
2 , cf. lemma 5.2.7 in [11].

7



Notice that
∀j ≥ i (ϕ(j, w) ↔ ϕ(j, w + 1)),

as ϕ is safe for bit-recursion. Clearly, k < i is impossible. If k > i, we get

∀j > k (j ∈ w ↔ ϕ(j, w)) ∧ k ∈ w ∧ ¬ϕ(k,w),

contradicting ψ(w). Thus i = k, and we have

∀j ≥ i (j ∈ w ↔ ϕ(j, w)),

∀j < i (j ∈ w).

It remains to show ∀j < iϕ(j, w), which follows from ψ(w) by reverse induction on j. �

The bit-recursion schema provides a simple method for introduction of poly-time com-
putable functions in T 0

2 avoiding the hassle of Turing machinery. The details are fixed in the
following definition; we aim to show that all PV -functions are definable by bit-recursion in
T 0

2 .

Definition 4.3 Let b and c be polynomials such that T 0
2 proves c(~n) ≥ b(~n). Let ϕ(i, w, ~x)

be a formula safe for bit-recursion such that all occurrences of xj in ϕ are inside a subterm
of the form xj # 1, or a subformula of the form t ∈ xj . We say that the function f with the
graph

f(~x) = y ↔ |y| ≤ b(|~x|) ∧ ∃w (|w| ≤ c(|~x|)∧
∀i < c(|~x|) (i ∈ w ↔ ϕ(i, w, ~x)) ∧ ∀i < b(|~x|) (i ∈ y ↔ i ∈ w))

is defined by bit-recursion from ϕ, b, and c.

Lemma 4.4 Let f be defined by bit-recursion. Then T 0
2 proves ∀~x∃!y f(~x) = y.

Proof: By lemma 4.2 there exists a unique w such that |w| ≤ c(|~x|) ∧ ∀i < c(|~x|) (i ∈ w ↔
ϕ(i, w, ~x)), and given w, there exists a unique y such that |y| ≤ b(|~x|) ∧ ∀i < b(|~x|) (i ∈ y ↔
i ∈ w). �

Lemma 4.5 T 0
2 proves that the class of functions defined by bit-recursion is closed under

composition.

Proof: We consider only unary functions for simplicity. Let f0(x) be defined by bit-recursion
from ϕ0(i, w, x), b0(n), c0(n), let f1(y) be defined from ϕ1(i, w, y), b1(n), c1(n), we will show
that f(x) = f1(f0(x)) is also defined by bit-recursion.

We define the witness for f(x) = z as a concatenation of the witness for f0(x) = y,
the witness for f1(y) = z, and z. (We need to duplicate z like this because we cannot
express b1(|f0(x)|) as a polynomial in |x|.) In detail, we put b(n) = b1(b0(n)), c(n) = c0(n) +

8



c1(b0(n)) + b(n), and we define ϕ(i, w, x) as the formula

∃j < c0(|x|) (i = j + c1(b0(|x|)) + b(|x|) ∧ ϕ′
0(j, w, x))

∨∃m < b0(|x|) [(m = 0 ∨m+ c1(b0(|x|)) + b(|x|)− 1 ∈ w)

∧ ∀k < b0(|x|) (k ≥ m→ k + c1(b0(|x|)) + b(|x|) /∈ w)

∧ ((i < b1(m) ∧ i+ b(|x|) ∈ w) ∨ ∃j < c1(m) (i = j + b(|x|) ∧ ϕ′
1(j, w, x)))].

(The conditions on the second and third line give the variable m the value |f0(x)|.) Here
ϕ′

0(j, w, x) is constructed from ϕ0(j, w, x) by replacing each subformula t ∈ w with t +
c1(b0(|x|))+ b(|x|) ∈ w, and ϕ′

1(j, w, x) is constructed from ϕ1(j, w, y) by replacing subformu-
las t ∈ w with t+ b(|x|) ∈ w, subformulas t ∈ y with t < b0(|x|) ∧ t+ c1(b0(|x|)) + b(|x|) ∈ w,
and subterms y # 1 with 2m. We can express 2m as follows: by lemma 3.3, there is a term
t such that 2b0(|x|) = t(x # 1), and we put 2m =

⌊ t(x#1)

2b0(|x|)−m

⌋
. (Subtraction here and above

should be simulated by a quantifier.)
Using lemma 3.3, we can make all quantifiers in ϕ sharply bounded, and it is also easy to

see that ϕ is safe for bit-recursion. The conditions on x from definition 4.3 are also satisfied:
all occurrences of x are either of the form t ∈ x, or inside a subterm x# 1 or |x|; the latter
is equal to |

⌊x#1
2

⌋
|.

Notice that |f(x)| ≤ b1(|f0(x)|) ≤ b1(b0(|x|)) = b(|x|) as b1 is monotone. If w is con-
structed by bit-recursion using ϕ(i, w, x), it is easy to see that bits c1(b0(|x|)) + b(|x|) up to
c(|x|) − 1 of w give a witness for f0(x) = y, bits b(|x|) up to c1(b0(|x|)) + b(|x|) − 1 give a
witness for f1(y) = z, and bits below b(|x|) give z, thus ϕ, b, and c define f by bit-recursion.

�

Lemma 4.6 Let t be an L-term, and f a function defined by bit-recursion. Then T 0
2 proves

f(~x, 0) = t(~x, 0) ∧ ∀u ≤ y (f(~x,
⌊
u
2

⌋
) = t(~x,

⌊
u
2

⌋
) → f(~x, u) = t(~x, u)) → f(~x, y) = t(~x, y).

Proof: Assume that f is defined from ϕ(i, w, ~x, y), b, and c. Put C = c(|~x|, |y|). Using lemma
4.2, find w such that |w| ≤ (|y|+ 1)C and for every j ≤ |y| and i < C,

i+ jC ∈ w ⇔ i < c(|~x|, |
⌊ y
2j

⌋
|) ∧ ϕ′(i, w, ~x,

⌊ y
2j

⌋
),

where ϕ′ is obtained from ϕ by replacing subformulas s ∈ w with s < c(|~x|, |
⌊ y
2j

⌋
|)∧s+jC ∈ w.

Then we can prove

|t(~x,
⌊ y
2j

⌋
)| ≤ b(|~x|, |

⌊ y
2j

⌋
|) ∧ ∀i < b(|~x|, |

⌊ y
2j

⌋
|) (i+ jC ∈ w ↔ i ∈ t(~x,

⌊ y
2j

⌋
))

by reverse induction on j ≤ |y|; the case j = 0 yields f(~x, y) = t(~x, y). �

Lemma 4.7 Let b(~n,m) be a polynomial, and g(~x), h(~x, y, z) functions defined by bit-recur-
sion. There exists a function f(~x, y) defined by bit-recursion such that T 0

2 proves

|g(~x)| ≤ b(|~x|, 0) → f(~x, 0) = g(~x),

y 6= 0 ∧ |h(~x, y, f(~x,
⌊y
2

⌋
))| ≤ b(|~x|, |y|) → f(~x, y) = h(~x, y, f(~x,

⌊y
2

⌋
)).

9



Proof: Assume that g is defined from ϕ0, b0, c0, and h is defined from ϕ1, b1, c1. We
put c(~n,m) = c0(~n) +mc1(~n,m, b(~n,m)) + (m+ 1)b(~n,m). We let ϕ formalize the following
description (we omit the details, which are similar to lemmas 4.5 and 4.6): the witness for
f(~x, y) = z is the concatenation w|y| a z|y| a w|y|−1 a z|y|−1 a · · · a w0 a z0, where zi is
f(~x,

⌊ y
2i

⌋
) padded to b(|~x|, |y|) bits, w|y| is the witness for z|y| = g(~x), and for i < |y|, wi is

the witness for zi = h(~x,
⌊ y
2i

⌋
, zi+1) padded to c1(|~x|, |y|, b(|~x|, |y|)) bits. Whenever |zi| would

exceed b(|~x|, |
⌊ y
2i

⌋
|), zi is replaced with 0.

To show the recursion identity, we argue as follows: let w be the witness for f(~x, y) = z0.
We use lemma 4.2 to cut the last part w0 a z0 from w, and to shorten the remaining blocks
to the appropriate length, and observe that the result is the witness for f(~x,

⌊y
2

⌋
) = z1. By

construction of w, z0 = h(~x, y, z1). �

Theorem 4.8 PV1 is an extension of T 0
2 by definitions. In particular, PV1 is conservative

over T 0
2 .

Proof: We expand T 0
2 by symbols for all functions definable by bit-recursion, we will prove

that the resulting theory contains PV1.
If t is a term made of functions defined by bit-recursion, then ft is definable by bit-recursion

by lemma 4.5.
Assume that g(~x), h0(~x, y, z), h1(~x, y, z), b(~x, y) are defined by bit-recursion, and let

fg,h0,h1,b(~x, y) be defined by limited recursion on notation as in definition 2.2. By definition
4.3, there is a polynomial p such that T 0

2 proves |b(~x, y)| ≤ p(|~x|, |y|). Using lemma 3.2, we
see that the functions

⌊
x
2

⌋
and

cond(u, x, y) =

{
x, if u = 0,

y, otherwise,

mod2(x) =

{
1, if x is odd,

0, otherwise,

min(x, y) =

{
x, if x ≤ y,

y, otherwise

are bit-definable (i.e., definable by bit-recursion from a formula ϕ(i, w, ~x) which does not
involve w), thus by lemma 4.5, there is a function h defined by bit-recursion such that T 0

2

proves
h(~x, y, z) = min(b(~x, y), cond(mod2(y), h0(~x,

⌊y
2

⌋
, z), h1(~x,

⌊y
2

⌋
, z))).

By lemma 4.7, there is a function f defined by bit-recursion such that T 0
2 proves

|min(b(~x, 0), g(~x))| ≤ p(|~x|, 0) → f(~x, 0) = min(b(~x, 0), g(~x)),

y 6= 0 ∧ |h(~x, y, f(~x,
⌊y
2

⌋
))| ≤ p(|~x|, |y|) → f(~x, y) = h(~x, y, f(~x,

⌊y
2

⌋
)).

The choice of p ensures that T 0
2 proves the conditions |· · ·| ≤ p(· · ·), and consequently T 0

2

proves that f satisfies the axioms for fg,h0,h1,b from definition 2.2.

10



Basic functions of LPV are already included as function symbols in L, nevertheless we
need to show that they are definable by bit-recursion so that we can apply composition and
limited recursion on notation to these function symbols. The functions 0, S, +,

⌊
x
2y

⌋
, and

# are bit-definable by lemmas 3.1, 3.2, and 3.3. The function |x| is trivially bit-definable,
because we may use |x| = |

⌊x#1
2

⌋
| freely according to definition 4.3. Using limited recursion

on notation, there is a function f defined by bit-recursion such that T 0
2 proves

|f(x, y)| ≤ |x|+ |y|,
f(x, 0) = 0,

y 6= 0 ∧ |2f(x, y)| ≤ |x|+ |2y| → f(x, 2y) = 2f(x, y),

|2f(x, y) + x| ≤ |x|+ |2y + 1| → f(x, 2y + 1) = 2f(x, y) + x.

Then we can prove f(x, y) = xy by PIND on y (i.e., by lemma 4.6); the bound |xy| ≤ |x|+ |y|
follows from lemma 3.3 (ii).

It remains to show that T 0
2 proves PIND for open formulas ϕ of the language LPV . By

lemma 4.6, it suffices to show that each such ϕ has a characteristic function, i.e., there is a
function f defined by bit-recursion such that T 0

2 proves

ϕ(~x) → f(~x) = 1,

¬ϕ(~x) → f(~x) = 0.

Characteristic functions for atomic formulas can be constructed by composition with charac-
teristic functions of the predicates = and ≤, which are bit-definable by lemma 3.2. Then we
proceed by induction on the complexity of the formula, using composition with the functions
not(x) = cond(x, 1, 0), and or(x, y) = cond(x, y, 1). �

5 Remarks

Cook [7] defined a second-order arithmetical theory TV 0, and noted that PV1 is RSUV -
isomorphic to TV 0. This can be used to give an alternative, indirect proof of our main result:
instead of constructing PV -functions in T 0

2 , it suffices to show that T 0
2 is RSUV -isomorphic

to TV 0. A key element in the proof is again lemma 4.2, which implies that T 0
2 proves the

translation of the ΣB
0 -comprehension axioms of V 0.

Our development of T 0
2 can be carried out in Buss’ language to some extent. Let T 0

2

denote the original Buss’ theory for the remainder of this section. We can define the graph
of exponentiation by the open formula

y = 2x ⇔ |y| = x+ 1 ∧ 2y = 1 # y.

T 0
2 proves that 2x is a partial function whose domain is a cut closed under multiplication, and

other elementary properties of 2x, such as 2x+y = 2x2y, and x # y = 2|x||y|. As T 0
2 extends

IOpen, integer division is a well-defined function, and we may introduce
⌊

x
2y

⌋
by

⌊
x
2y

⌋
=

{
0, y ≥ |x|,
z, ∃u ≤ x (u = 2y ∧ zu ≤ x < (z + 1)u).

11



We can show that T 0
2 proves lemma 3.1, most of lemma 3.3, and a slightly weaker version of

lemma 3.2, among others.
Nevertheless, it is unclear how could T 0

2 prove stronger principles such as Σb
0-PIND , or

lemma 4.2. As for the latter, we do not even know whether T 0
2 proves its simple instance

∀x, y ∃w ∀i (i ∈ w ↔ (i ∈ x⊕ i ∈ y)).

On the other hand, the methods of Takeuti and Johannsen seem inadequate to show indepen-
dence results for T 0

2 , or even for L0
2 + IOpen (here Li

2 is BASIC + Σb
i -LIND). The strength

of Buss’ T 0
2 thus remains an open question.

6 Acknowledgement

I am indebted to Jan Johannsen, Steve Cook, and Jan Kraj́ıček for clarifying discussions, and
comments on an earlier draft of this paper. I also wish to thank the anonymous referees for
useful suggestions.

References

[1] Samuel R. Buss, Bounded arithmetic, Bibliopolis, Naples, 1986.

[2] , Relating the bounded arithmetic and polynomial time hierarchies, Annals of
Pure and Applied Logic 75 (1995), no. 1–2, pp. 67–77.

[3] , First-order proof theory of arithmetic, in: Handbook of Proof Theory (S. R.
Buss, ed.), Studies in Logic and the Foundations of Mathematics vol. 137, Elsevier,
Amsterdam, 1998, pp. 79–147.

[4] Alan Cobham, The intrinsic computational difficulty of functions, in: Proceedings of the
2nd International Congress of Logic, Methodology and Philosophy of Science (Y. Bar-
Hillel, ed.), North–Holland, 1965, pp. 24–30.

[5] Stephen A. Cook, Feasibly constructive proofs and the propositional calculus, in: Pro-
ceedings of the 7th Annual ACM Symposium on Theory of Computing, 1975, pp. 83–97.

[6] , Relating the provable collapse of P to NC1 and the power of logical theories,
in: Proof Complexity and Feasible Arithmetics (P. Beame and S. R. Buss, eds.), DIMACS
Series in Discrete Mathematics and Theoretical Computer Science vol. 39, American
Mathematical Society, 1998, pp. 73–92.

[7] , Theories for complexity classes and their propositional translations, in:
Complexity of computations and proofs (J. Kraj́ıček, ed.), Quaderni di Matematica
vol. 13, Seconda Universita di Napoli, 2004, pp. 175–227.

12



[8] Jan Johannsen, On the weakness of sharply bounded polynomial induction, in: Computa-
tional Logic and Proof Theory, Proceedings of Kurt Gödel Colloquium ’93 (G. Gottlob,
A. Leitsch, and D. Mundici, eds.), Lecture Notes in Computer Science vol. 713, Springer,
1993, pp. 223–230.

[9] , A note on sharply bounded arithmetic, Archive for Mathematical Logic 33
(1994), no. 2, pp. 159–165.

[10] , A model-theoretic property of sharply bounded formulae, with some appli-
cations, Mathematical Logic Quarterly 44 (1998), no. 2, pp. 205–215.

[11] Jan Kraj́ıček, Bounded arithmetic, propositional logic, and complexity theory, Encyclo-
pedia of Mathematics and Its Applications vol. 60, Cambridge University Press, 1995.

[12] Jan Kraj́ıček, Pavel Pudlák, and Gaisi Takeuti, Bounded arithmetic and the polynomial
hierarchy, Annals of Pure and Applied Logic 52 (1991), no. 1–2, pp. 143–153.

[13] John C. Shepherdson, A nonstandard model for a free variable fragment of number theory,
Bulletin de l’Académie Polonaise des Sciences 12 (1964), no. 2, pp. 79–86.

[14] Gaisi Takeuti, Sharply bounded arithmetic and the function a ·− 1, in: Logic and Compu-
tation, Proceedings of a Workshop held at Carnegie Mellon University, June 30–July 2,
1987 (W. Sieg, ed.), Contemporary Mathematics vol. 106, American Mathematical So-
ciety, 1990, pp. 281–288.

[15] , RSUV isomorphisms, in: Arithmetic, Proof Theory, and Computational
Complexity (P. Clote and J. Kraj́ıček, eds.), Oxford Logic Guides vol. 23, Oxford Uni-
versity Press, 1993, pp. 364–386.

A On IOpen

The theory IOpen is usually axiomatized by the schema of open induction over the theory
of discretely ordered commutative semirings (or the slightly stronger theory of nonnegative
parts of discretely ordered commutative rings). Here we present a simplified axiom system
for IOpen.

Definition A.1 IOpen ′ is the theory in the language 〈0, S,+, ·,≤〉, axiomatized by

x+ 0 = x(A0)

x+ Sy = S(x+ y)(AS)

x · 0 = 0(M0)

x · Sy = x · y + x(MS)

0 ≤ x(O0)

Sy ≤ x↔ y < x(OS)

and the induction schema for open formulas, where x < y stands for x ≤ y ∧ x 6= y.

13



We are going to show IOpen ′ = IOpen. The only non-obvious part is to derive the missing
successor axioms of Robinson’s arithmetic.

Lemma A.2 IOpen ′ proves:

(i) Sx � x

(ii) Sx 6= 0

(iii) x ≤ y → x ≤ z ∨ z ≤ y

(iv) x ≤ x

(v) x ≤ y ∨ y ≤ x

(vi) Sx = Sy → x = y

(vii) x 6= 0 → ∃y x = Sy

Proof: (i) follows from OS, as x = x.
(ii): assuming Sx = 0, we obtain Sx ≤ x from O0, contradicting (i).
(iii): by induction on x. For the base step, we have 0 ≤ z by O0. The induction step:

assume Sx ≤ y. Then x ≤ y by OS, thus x ≤ z or z ≤ y by the induction hypothesis. In the
latter case, we are done. In the former case, we have Sx ≤ z or x = z by OS. Finally, x = z

implies z ≤ y, as x ≤ y.
(iv): by induction on x. 0 ≤ 0 follows from O0. Assume x ≤ x. We have x ≤ Sx by (iii)

and (i). If x = Sx, we have Sx ≤ Sx from x ≤ x; otherwise x < Sx, thus Sx ≤ Sx by OS.
(v) follows from (iv) and (iii).
(vi): assume for contradiction x 6= y. By (v), we have x < y or y < x. If x < y, we obtain

Sy = Sx ≤ y from OS, contradicting (i). The other case is symmetric.
(vii): assume x 6= 0 and ∀y x 6= Sy. By induction on y, we have ∀y y 6= x, in particular

x 6= x, which is a contradiction. �

The rest is straightforward:

Lemma A.3 IOpen ′ proves the following formulas, and consequently, IOpen ′ = IOpen.

(x+ y) + v = x+ (y + v) x+ v = y + v → x = y

0 + v = v x+ v ≤ x→ v = 0

Sx+ v = S(x+ v) x ≤ y ↔ ∃z x+ z = y

x+ v = v + x x ≤ y ≤ z → x ≤ z

x(y + v) = xy + xv x ≤ y ≤ x→ x = y

(xy)v = x(yv) x ≤ y ↔ x+ z ≤ y + z

0v = v x ≤ y → xz ≤ yz

Sx · v = xv + v z 6= 0 ∧ xz ≤ yz → x ≤ y

xv = vx

14



Proof: By induction on v and/or using the formulas proved earlier, left column first. The
only exception is the formula involving an existential quantifier, which can be derived as
follows.

Left-to-right: we have x + 0 ≤ y, and x + Sy � y, thus by induction for the formula
x+ v ≤ y, there exists a z such that x+ z ≤ y and x+ Sz � y. Then x+ z = y by OS.

Right-to-left: assume for contradiction x � y. Then y < x, thus Sy ≤ x. By the first part,
there exists a w such that y+ Sw = x, thus y = y+ (z + Sw), which implies S(z +w) = 0, a
contradiction. �

The following lemma, which was used in sections 3 and 4, is quite standard. We include its
proof for the sake of completeness.

Lemma A.4 IOpen proves

(i) x ≤ y → ∃!z (x+ z = y)

(ii) y 6= 0 → ∃!u, v (v < y ∧ x = uy + v)

Proof: (i) was derived in lemma A.3, we will prove (ii).
Existence: we have 0y ≤ x and Sx · y � x as x < Sx ≤ Sx · y. Thus by induction, there

exists a u such that uy ≤ x and Su · y � x. By (i), there is a v such that x = uy + v. As
x < Su · y = uy + y, we must have v < y.

Uniqueness: assume x = uy+v = u′y+v′, where v, v′ < y. If u < u′, we get x < uy+y =
Su · y ≤ u′y ≤ x, a contradiction. By symmetry, u′ < u is also impossible, thus u = u′. Then
uy + v = uy + v′, thus v = v′. �

15


