# The strength of sharply bounded induction 

Emil Jeřábek*<br>Mathematical Institute of AS CR<br>Zitná 25<br>11567 Praha 1<br>Czech Republic<br>jerabek@math.cas.cz

October 24, 2006


#### Abstract

We prove that the sharply bounded arithmetic $T_{2}^{0}$ in a language containing the function symbol $\left\lfloor\frac{x}{2^{y}}\right\rfloor$ (often denoted by $M S P$ ) is equivalent to $P V_{1}$.


## 1 Introduction

The most commonly studied theories of first-order bounded arithmetic are the theories $S_{2}^{i}$ and $T_{2}^{i}$ introduced by Buss [1], which are respectively axiomatized by the schema of polynomial induction and ordinary induction for $\Sigma_{i}^{b}$-formulas over a weak base theory. Usually these theories are considered only for $i \geq 1$ : while $S_{2}^{1}$ and its extension $T_{2}^{1}$ are well-behaved and fit nicely in the hierarchy, the sharply bounded arithmetics $S_{2}^{0}$ and $T_{2}^{0}$ are avoided, because they seem to lack sufficient bootstrapping power. The theory $T_{2}^{0}$ is typically substituted with its extension $P V_{1}$, which includes function symbols for all polynomial-time computable functions. In fact, Takeuti [14] has shown that $S_{2}^{0}$ is too weak to prove the existence of predecessors, which means it does not even contain Robinson's $Q$. Similar independence results were obtained for other variants of $S_{2}^{0}$ and $R_{2}^{0}$ by Johannsen $[8,9,10]$.

We will show that the case of $T_{2}^{0}$ is quite different: if we extend Buss' language by the function $\left\lfloor\frac{x}{2 y}\right\rfloor$ (also known as $\operatorname{MSP}(x, y)$, for "most significant part"), $T_{2}^{0}$ can $\Sigma_{1}^{b}$-define all polynomial-time functions, and $P V_{1}$ is a conservative extension of $T_{2}^{0}$. Thus the standard treatment of $T_{2}^{0}$ as an exception in Buss' hierarchy is not necessary.

Although we do not resolve the status of the original Buss' $T_{2}^{0}$, we believe that the inclusion of $\left\lfloor\frac{x}{2^{y}}\right\rfloor$ in the basic language is justified. On one hand, $\left\lfloor\frac{x}{2^{y}}\right\rfloor$ is a simple $A C^{0}$-function, thus it is nowhere near full polynomial time as the usual language of $P V_{1}$. On the other hand, $\left\lfloor\frac{x}{2^{y}}\right\rfloor$ is routinely used in the basic language of other weak theories, like $R_{2}^{1}$ [15]. Even the

[^0]language of $S_{2}^{1}$ is often extended by function symbols which allow sequence coding in $\Sigma_{0}^{b}$; the equivalence of $\Sigma_{1}^{b}$ and strict $\Sigma_{1}^{b}$-formulas relies on this. We should point out that $\left\lfloor\frac{x}{2^{y}}\right\rfloor$ has a $\Sigma_{1}^{b}$-definition which is provably total and reasonably well-behaved in Buss' $T_{2}^{0}$; we only need to include the function in the language so that it can be used freely in induction axioms.

The paper is organized as follows. Section 2 provides background in bounded arithmetic, including our working definition of $T_{2}^{0}$ and $P V_{1}$. In section 3 we prove a few auxiliary lemmas about $T_{2}^{0}$. The main argument is in section 4 , where we show how to define $P V$-functions in $T_{2}^{0}$, and we prove that $P V_{1}$ is a conservative extension of $T_{2}^{0}$. Section 5 contains concluding remarks. In the appendix we present a simplified axiom system for IOpen, which is used in section 3.

## 2 Preliminaries

As we already indicated in the introduction, we will work with the first-order language $L=$ $\langle 0, S,+, \cdot, \leq, \#| x,\left|,\left\lfloor\frac{x}{2^{y}}\right\rfloor\right\rangle$. The intended meaning of the symbols is $|x|=\left\lceil\log _{2}(x+1)\right\rceil$ and $x \# y=2^{|x||y|}$, the rest are the usual arithmetical operations on nonnegative integers. Bounded quantifiers are defined by

$$
\begin{aligned}
& \exists x \leq t \varphi \Leftrightarrow \exists x(x \leq t \wedge \varphi) \\
& \forall x \leq t \varphi \Leftrightarrow \forall x(x \leq t \rightarrow \varphi)
\end{aligned}
$$

where $t$ is a term with no occurrence of $x$. A bounded quantifier is sharply bounded, if its bounding term $t$ is of the form $|s|$. A formula $\varphi$ is (sharply) bounded if all quantifiers in $\varphi$ are (sharply) bounded. The set of all sharply bounded formulas is denoted by $\Sigma_{0}^{b}$.

The original $T_{2}^{0}$ is axiomatized by $\Sigma_{0}^{b}$-induction over a set of 32 open axioms called $B A S I C$. We need to adjust $B A S I C$ to our modified language; we take this opportunity to considerably simplify the list of axioms.

Definition 2.1 $T_{2}^{0}$ is a theory in the language $L$, axiomatized by the induction schema (IND)

$$
\varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(S x)) \rightarrow \forall x \varphi(x)
$$

for $\Sigma_{0}^{b}$-formulas $\varphi$, and the following formulas:

$$
\begin{array}{ll}
x+0=x & x+S y=S(x+y) \\
x \cdot 0=0 & x \cdot S y=x \cdot y+x \\
0 \leq x & S y \leq x \leftrightarrow y<x \\
\left\lfloor\frac{x}{2^{0}}\right\rfloor=x & \left\lfloor\frac{x}{2^{y}}\right\rfloor=2\left\lfloor\frac{x}{2^{s y}}\right\rfloor \vee\left\lfloor\frac{x}{2^{y}}\right\rfloor=S\left(2\left\lfloor\frac{x}{2^{s y}}\right\rfloor\right) \\
|0|=0 & x \neq 0 \rightarrow|x|=S\left|\left\lfloor\frac{x}{2}\right\rfloor\right| \\
0 \# 1=1 & x \neq 0 \rightarrow x \# 1=2\left(\left\lfloor\frac{x}{2}\right\rfloor \# 1\right) \wedge(y \# x)=(y \# 1)\left(y \#\left\lfloor\frac{x}{2}\right\rfloor\right)
\end{array}
$$

where $x<y,\left\lfloor\frac{x}{2}\right\rfloor, 1,2$ are abbreviations for $x \leq y \wedge x \neq y,\left\lfloor\frac{x}{2^{1}}\right\rfloor, S 0, S S 0$, respectively.

We remark that the dozen axioms in definition 2.1 are not a drop-in replacement for Buss' BASIC: in particular, they are most likely insufficient to bootstrap theories not based on the induction schema, such as $S_{2}^{1}$ or $R_{2}^{1}$.
$P V$ is an equational theory intended to formalize polynomial-time reasoning, defined by Cook [5]. Its language contains several basic functions, and it is closed under composition and limited recursion on notation. It is based on an earlier result of Cobham [4], which implies that $P V$-functions represent the class of all polynomial-time computable functions. $P V$ includes defining equations for its function symbols, and it has a form of induction as a derivation rule.

The theory $P V_{1}$, also denoted as $Q P V, T_{2}^{0}\left(\square_{1}^{p}\right)$, and $\forall \Sigma_{1}^{b}\left(S_{2}^{1}\right)[12,2,6,3]$, is a first-order variant of $P V$. The exact definition of the language and set of axioms of $P V_{1}$ varies in the literature, and details are often let unspecified; for definiteness, we fix the theory as follows.

Definition 2.2 The language $L_{P V}$ contains $L$, and is closed under two formation rules:

- for any $L_{P V}$-term $t$ whose free variables are among $x_{1}, \ldots, x_{n}$, there is a function symbol $f_{t}(\vec{x})$,
- for any $L_{P V}$-function symbols $g(\vec{x}), h_{0}(\vec{x}, y, z), h_{1}(\vec{x}, y, z), b(\vec{x}, y)$, there is a function symbol $f_{g, h_{0}, h_{1}, b}(\vec{x}, y)$.
$P V_{1}$ is the theory in the language $L_{P V}$ which consists of the axioms of $T_{2}^{0}$, and the following additional axioms:
- for every function symbol $f_{t}$,

$$
f_{t}(\vec{x})=t,
$$

- for every function symbol $f_{g, h_{0}, h_{1}, b}$,

$$
\begin{gathered}
f_{g, h_{0}, h_{1}, b}(\vec{x}, y) \leq b(\vec{x}, y), \\
g(\vec{x}) \leq b(\vec{x}, 0) \rightarrow f_{g, h_{0}, h_{1}, b}(\vec{x}, 0)=g(\vec{x}), \\
y \neq 0 \wedge h_{0}\left(\vec{x}, y, f_{g, h_{0}, h_{1}, b}(\vec{x}, y)\right) \leq b(\vec{x}, 2 y) \rightarrow f_{g, h_{0}, h_{1}, b}(\vec{x}, 2 y)=h_{0}\left(\vec{x}, y, f_{g, h_{0}, h_{1}, b}(\vec{x}, y)\right), \\
h_{1}\left(\vec{x}, y, f_{g, h_{0}, h_{1}, b}(\vec{x}, y)\right) \leq b(\vec{x}, S(2 y)) \rightarrow f_{g, h_{0}, h_{1}, b}(\vec{x}, S(2 y))=h_{1}\left(\vec{x}, y, f_{g, h_{0}, h_{1}, b}(\vec{x}, y)\right),
\end{gathered}
$$

- polynomial induction (PIND) for open formulas $\varphi$ :

$$
\varphi(0) \wedge \forall x\left(\varphi\left(\left\lfloor\frac{x}{2}\right\rfloor\right) \rightarrow \varphi(x)\right) \rightarrow \forall x \varphi(x) .
$$

As we want to compare $P V_{1}$ with $T_{2}^{0}$, we need to identify symbols of $T_{2}^{0}$ with some $P V$ function symbols. The easiest way is to directly include $L$ in the basic language of $P V$, which motivates our definition of $L_{P V}$. Other details are more or less arbitrary.

## 3 Bootstrapping $T_{2}^{0}$

As $T_{2}^{0}$ does not include any of the usual basic theories used in the development of bounded arithmetic (such as $S_{2}^{1}$ or $R_{2}^{1}$ ), we have to "bootstrap" the theory first, i.e., show that it proves common auxiliary properties of the symbols in its language.

The task is simplified by observing that $T_{2}^{0}$ contains the well-known theory IOpen (see e.g. Shepherdson [13]). (More precisely, the usual axiomatization of IOpen is included in $T_{2}^{0}$ plus Buss' BASIC. In the appendix we provide an alternative axiomatization for IOpen, which shows that our weaker base theory is sufficient.) Thus, $T_{2}^{0}$ proves all the usual elementary properties of addition, multiplication, and ordering; we will concentrate on the other symbols, $\left\lfloor\frac{x}{2^{y}}\right\rfloor,|x|$, and \#.

Bounded sets of logarithmically small numbers can be encoded by numbers, using digits in their binary expansion. Formally, we define an elementhood predicate by the open formula

$$
\begin{aligned}
i \in x & \Leftrightarrow\left\lfloor\frac{x}{2^{i}}\right\rfloor \text { is odd } \\
& \Leftrightarrow\left\lfloor\frac{x}{2^{i}}\right\rfloor=2\left\lfloor\frac{x}{2^{i+1}}\right\rfloor+1
\end{aligned}
$$

Notice that the concept of even and odd numbers is well-behaved in $T_{2}^{0}$, as IOpen proves existence and uniqueness of division with remainder (cf. lemma A.4).

Lemma 3.1 The following are provable in $T_{2}^{0}$.
(i) $\left\lfloor\frac{x}{2^{i+j}}\right\rfloor=\left\lfloor\frac{\left\lfloor x / 2^{i}\right\rfloor}{2^{j}}\right\rfloor$, and as a special case, $\left\lfloor\frac{x}{2^{i+1}}\right\rfloor=\left\lfloor\frac{\left\lfloor x / 2^{i}\right\rfloor}{2}\right\rfloor$
(ii) $\left\lfloor\frac{x}{2^{i}}\right\rfloor \neq 0 \rightarrow|x|=i+\left\lfloor\left.\left\lfloor\frac{x}{2^{i}}\right\rfloor \right\rvert\,\right.$
(iii) $i \geq|x| \rightarrow\left\lfloor\frac{x}{2^{i}}\right\rfloor=0$
(iv) $x \leq y \rightarrow\left\lfloor\frac{x}{2^{i}}\right\rfloor \leq\left\lfloor\frac{y}{2^{i}}\right\rfloor$
(v) $i \in x \rightarrow i<|x|$
(vi) $x \neq 0 \rightarrow|x|-1 \in x$
(vii) $i \in\left\lfloor\frac{x}{2^{j}}\right\rfloor \leftrightarrow i+j \in x$
(viii) $x \leq y \rightarrow|x| \leq|y|$

Proof: (i): we have

$$
\left\lfloor\frac{x}{2^{i+1}}\right\rfloor=\left\lfloor\frac{\left\lfloor x / 2^{i}\right\rfloor}{2}\right\rfloor
$$

by uniqueness of division and the axioms for $\left\lfloor\frac{x}{2^{i}}\right\rfloor$, from which the result follows by induction on $j$.
(ii): by induction on $i$. For the induction step, we need the axiom $y \neq 0 \rightarrow|y|=1+\left|\left\lfloor\frac{y}{2}\right\rfloor\right|$, and

$$
\left\lfloor\frac{x}{2^{i+1}}\right\rfloor \neq 0 \rightarrow\left\lfloor\frac{x}{2^{i}}\right\rfloor \neq 0
$$

which follows from the axioms for $\left\lfloor\frac{x}{2^{i}}\right\rfloor$.
(iii) is a corollary of $(i i)$, and $(v)$ is a reformulation of $(i i i)$.
(iv) follows by induction on $i$ from basic properties of $\leq$, namely $u<v \rightarrow 2 u+1<2 v$.
(vi): we have $\left\lfloor\frac{x}{2^{0}}\right\rfloor \neq 0$ and $\left\lfloor\frac{x}{2^{|x|}}\right\rfloor=0$ from (iii), thus by induction there exists an $i<|x|$ such that

$$
\left\lfloor\frac{x}{2^{i}}\right\rfloor \neq 0=\left\lfloor\frac{x}{2^{i+1}}\right\rfloor .
$$

The axiom for $\left\lfloor\frac{x}{2^{i}}\right\rfloor$ implies $\left\lfloor\frac{x}{2^{i}}\right\rfloor=1$, thus $i \in x$. Moreover, $|x|=i+1$ by (ii).
(vii) follows from (i).
(viii): we have $\left\lfloor\frac{y}{2^{|y|}}\right\rfloor=0$ by (iii), thus $\left\lfloor\frac{x}{\left.2^{|y|}\right\rfloor}\right\rfloor=0$ by (iv). If $|x|>|y|$, then $\left\lfloor\frac{x}{2^{|x|-1}}\right\rfloor=0$ by $(i)$, contradicting ( $v i$ ).

Lemma 3.2 The following are provable in $T_{2}^{0}$.
(i) $x<y \leftrightarrow \exists i(i \in y \wedge i \notin x \wedge \forall j>i(j \in x \leftrightarrow j \in y))$,
(ii) $x=y \leftrightarrow \forall i(i \in x \leftrightarrow i \in y)$,
(iii) $x \leq y \leftrightarrow \forall i(\forall j>i(j \in x \leftrightarrow j \in y) \rightarrow(i \in x \rightarrow i \in y))$,
(iv) $y=S x \leftrightarrow \exists i(\forall j>i(j \in x \leftrightarrow j \in y) \wedge i \notin x \wedge i \in y \wedge \forall j<i(j \in x \wedge j \notin y))$,
(v) $i \in x+y \leftrightarrow(i \in x \oplus i \in y \oplus \operatorname{Carr} y(i, x, y))$,
where $\alpha \oplus \beta=\neg(\alpha \leftrightarrow \beta)$ is the exclusive-or connective, and Carry is the formula

$$
\exists j<i(j \in x \wedge j \in y \wedge \forall k<i(k>j \rightarrow k \in x \vee k \in y))
$$

Proof: (i): we begin with the left-to-right direction. Assume $x<y$. As $\left\lfloor\frac{x}{2^{0}}\right\rfloor \neq\left\lfloor\frac{y}{2^{0}}\right\rfloor$ and $\left\lfloor\frac{x}{2^{|y|}}\right\rfloor=\left\lfloor\frac{y}{2^{|y|}}\right\rfloor$ by lemma 3.1 (ii), induction implies that there exists an $i<|y|$ such that

$$
\left\lfloor\frac{x}{2^{i}}\right\rfloor \neq\left\lfloor\frac{y}{2^{i}}\right\rfloor \text { and }\left\lfloor\frac{x}{2^{i+1}}\right\rfloor=\left\lfloor\frac{y}{2^{i+1}}\right\rfloor .
$$

Put $z=\left\lfloor\frac{x}{2^{i+1}}\right\rfloor$. We have $\left\lfloor\frac{x}{2^{i}}\right\rfloor<\left\lfloor\frac{y}{2^{i}}\right\rfloor$ by lemma 3.1 (iv), and both $\left\lfloor\frac{x}{2^{i}}\right\rfloor$ and $\left\lfloor\frac{y}{2^{i}}\right\rfloor$ are equal to $2 z$ or $2 z+1$, thus

$$
\left\lfloor\frac{x}{2^{i}}\right\rfloor=2 z \text { and }\left\lfloor\frac{y}{2^{i}}\right\rfloor=2 z+1 .
$$

In particular, $i \notin x$ and $i \in y$. For any $j>i$, we have $\left\lfloor\frac{x}{2^{j}}\right\rfloor=\left\lfloor\frac{y}{2^{j}}\right\rfloor$ by lemma 3.1 ( $i$ ), thus $j \in x$ iff $j \in y$.

Right-to-left: fix $i$ which witnesses the RHS. As $i \notin x \wedge i \in y$, we cannot have $x=y$. Assume for contradiction $y<x$. By the left-to-right implication there exists an $i^{\prime}$ such that

$$
i^{\prime} \in x \wedge i^{\prime} \notin y \wedge \forall j>i^{\prime}(j \in x \leftrightarrow j \in y)
$$

Then either of $i<i^{\prime}, i=i^{\prime}, i>i^{\prime}$ leads to a contradiction.
(ii): the left-to-right direction is trivial, and the right-to-left direction follows from $(i)$. Likewise, (iii) is just a reformulation of $(i)$.
$(i v)$ : by extensionality (i.e., (ii)), it suffices to prove the left-to-right direction. We have

$$
\left\lfloor\frac{y}{2^{j}}\right\rfloor \leq\left\lfloor\frac{x}{2^{j}}\right\rfloor+1
$$

by induction on $j$. Fix an $i$ such that

$$
\forall j>i(j \in x \leftrightarrow j \in y) \wedge i \notin x \wedge i \in y
$$

by $(i)$. Let $j<i$. We have $\left\lfloor\frac{x}{2^{j}}\right\rfloor<\left\lfloor\frac{y}{2^{j}}\right\rfloor$ by lemma $3.1(i)$ and $(i v)$, thus $\left\lfloor\frac{y}{2^{j}}\right\rfloor=\left\lfloor\frac{x}{2^{j}}\right\rfloor+1$. By the same argument, $\left\lfloor\frac{y}{2^{j+1}}\right\rfloor=\left\lfloor\frac{x}{2^{j+1}}\right\rfloor+1$. As $\left\lfloor\frac{x}{2^{j}}\right\rfloor \leq 2\left\lfloor\frac{x}{2^{j+1}}\right\rfloor+1<2\left\lfloor\frac{y}{2^{j+1}}\right\rfloor \leq\left\lfloor\frac{y}{2^{j}}\right\rfloor$, we must have

$$
\left\lfloor\frac{x}{2^{j}}\right\rfloor=2\left\lfloor\frac{x}{2^{j+1}}\right\rfloor+1 \text { and }\left\lfloor\frac{y}{2^{j}}\right\rfloor=2\left\lfloor\frac{y}{2^{j+1}}\right\rfloor
$$

thus $j \in x$ and $j \notin y$.
$(v)$ : we prove

$$
\left\lfloor\frac{x+y}{2^{i}}\right\rfloor= \begin{cases}\left\lfloor\frac{x}{2^{i}}\right\rfloor+\left\lfloor\frac{y}{2^{i}}\right\rfloor+1 & \text { if } \operatorname{Carry}(i, x, y) \\ \left\lfloor\frac{x}{2^{i}}\right\rfloor+\left\lfloor\frac{y}{2^{i}}\right\rfloor & \text { otherwise }\end{cases}
$$

by induction on $i \leq|x+y|$. Let $x_{i}, y_{i}$, and $c_{i}$ denote the indicators of the formulas $i \in x$, $i \in y$, and $\operatorname{Carry}(i, x, y)$. The definition of Carry readily implies

$$
\operatorname{Carry}(i+1, x, y) \Leftrightarrow(\operatorname{Carry}(i, x, y) \wedge(i \in x \vee i \in y)) \vee(i \in x \wedge i \in y)
$$

thus

$$
c_{i+1}=\operatorname{MAJ}\left(c_{i}, x_{i}, y_{i}\right)=\left\lfloor\frac{c_{i}+x_{i}+y_{i}}{2}\right\rfloor .
$$

Then

$$
\begin{aligned}
&\left\lfloor\frac{x+y}{2^{i+1}}\right\rfloor=\left\lfloor\frac{\left\lfloor(x+y) / 2^{i}\right\rfloor}{2}\right\rfloor=\left\lfloor\frac{\left\lfloor x / 2^{i}\right\rfloor+\left\lfloor y / 2^{i}\right\rfloor+c_{i}}{2}\right\rfloor=\left\lfloor\frac{2\left\lfloor x / 2^{i+1}\right\rfloor+x_{i}+2\left\lfloor y / 2^{i+1}\right\rfloor+y_{i}+c_{i}}{2}\right\rfloor \\
&=\left\lfloor\frac{x}{2^{i+1}}\right\rfloor+\left\lfloor\frac{y}{2^{i+1}}\right\rfloor+\left\lfloor\frac{x_{i}+y_{i}+c_{i}}{2}\right\rfloor=\left\lfloor\frac{x}{2^{i+1}}\right\rfloor+\left\lfloor\frac{y}{2^{i+1}}\right\rfloor+c_{i+1}
\end{aligned}
$$

by the induction hypothesis.
We remark that all quantifiers in lemma 3.2 can be sharply bounded by lemma $3.1(v)$.
Lemma 3.3 $T_{2}^{0}$ proves:
(i) $\Sigma_{0}^{b}-P I N D$
(ii) $y \neq 0 \rightarrow|y(x \# 1)|=|x|+|y|$
(iii) $i \in y(x \# 1) \leftrightarrow i \geq|x| \wedge i-|x| \in y$
(iv) $x \# 0=1$
(v) $|x \# y|=|x| \cdot|y|+1$
(vi) $i \in x \# y \leftrightarrow i=|x| \cdot|y|$

Proof: $\quad(i)$ : assume $\forall x\left(\varphi\left(\left\lfloor\frac{x}{2}\right\rfloor\right) \rightarrow \varphi(x)\right)$ and $\neg \varphi(a)$, where $\varphi \in \Sigma_{0}^{b}$. We have $\neg \varphi\left(\left\lfloor\frac{a}{2^{i}}\right\rfloor\right)$ by induction on $i$, thus $\neg \varphi(0)$ by taking $i=|a|$.
(ii) and (iii): assume $y \neq 0$, and prove

$$
\begin{aligned}
|y(x \# 1)|=|x|+|y| \wedge \forall i<|y(x \# 1)|(i \in y(x \# 1) & \rightarrow i \geq|x|) \\
& \wedge \forall i<|y|(i \in y \leftrightarrow i+|x| \in y(x \# 1))
\end{aligned}
$$

by PIND on $x$. The induction step follows from $x \# 1=2\left(\left\lfloor\frac{x}{2}\right\rfloor \# 1\right)$ and lemma 3.1 (vii).
$(i v)$ : we have $x \# 1 \neq 0$ by $(i i)$, thus $x \# 0=1$ follows from the axiom $x \# 1=(x \# 1)(x \# 0)$.
$(v)$ and $(v i)$ : we prove

$$
|x \# y|=|x| \cdot|y|+1 \wedge \forall i<|x \# y|(i \in x \# y \leftrightarrow i=|x| \cdot|y|)
$$

by PIND on $y$. The base step follows from $(i v)$, the induction step from (ii), (iii), and $x \# y=(x \# 1)\left(x \#\left\lfloor\frac{y}{2}\right\rfloor\right)$.

## $4 \quad P V$-functions in $T_{2}^{0}$

In this section we prove our main result (theorem 4.8). The basic outline of the proof is straightforward-we will show that $P V$ functions have $\Sigma_{1}^{b}$-definitions provably total in $T_{2}^{0}$, such that $T_{2}^{0}$ proves the recursion and induction axioms from definition 2.2. The main technical ingredient is a variant of a bit-recursion principle (lemma 4.2), which was already used for a similar purpose in second-order context by Cook [7]; the idea goes back to Buss [1].

Definition 4.1 A formula $\varphi(i, w, \ldots)$ is safe for bit-recursion, if $\varphi \in \Sigma_{0}^{b}$, and all occurrences of $w$ in $\varphi$ are inside a subformula of the form $t>i \wedge t \in w$, where $t$ is a term not containing $w$.

Lemma 4.2 If $\varphi$ is safe for bit-recursion, $T_{2}^{0}$ proves

$$
\exists!w(|w| \leq|a| \wedge \forall i<|a|(i \in w \leftrightarrow \varphi(i, w)))
$$

Proof: Uniqueness: assume that $w$ and $w^{\prime}$ satisfy the conclusion. As $\varphi(i, w)$ depends only on the bits of $w$ to the left of $i$, we can prove $\forall j<|a|\left(j \geq i \rightarrow\left(j \in w \leftrightarrow j \in w^{\prime}\right)\right)$ by reverse induction on $i \leq|a|$. Taking $i=0$, we obtain $w=w^{\prime}$ from extensionality.

Existence ${ }^{1}$ : let $\psi(w)$ denote the $\Sigma_{0}^{b}$-formula

$$
|w| \leq|a| \wedge \forall i<|a|(\forall j<|a|(j>i \rightarrow(j \in w \leftrightarrow \varphi(j, w))) \rightarrow(i \in w \rightarrow \varphi(i, w)))
$$

We have $\psi(0)$ and $\neg \psi(a \# 1)$, thus there exists a $w$ such that $\psi(w) \wedge \neg \psi(w+1)$. We assume $|w+1| \leq|a|$, the other case is left to the reader. By lemma 3.2 and the definition of $\psi$, there exist $i, k<|a|$ such that

$$
\begin{gathered}
\forall j>i(j \in w \leftrightarrow j \in w+1) \wedge i \notin w \wedge i \in w+1 \wedge \forall j<i(j \in w \wedge j \notin w+1), \\
\forall j>k(j \in w+1 \leftrightarrow \varphi(j, w+1)) \wedge k \in w+1 \wedge \neg \varphi(k, w+1)
\end{gathered}
$$

[^1]Notice that

$$
\forall j \geq i(\varphi(j, w) \leftrightarrow \varphi(j, w+1))
$$

as $\varphi$ is safe for bit-recursion. Clearly, $k<i$ is impossible. If $k>i$, we get

$$
\forall j>k(j \in w \leftrightarrow \varphi(j, w)) \wedge k \in w \wedge \neg \varphi(k, w)
$$

contradicting $\psi(w)$. Thus $i=k$, and we have

$$
\begin{gathered}
\forall j \geq i(j \in w \leftrightarrow \varphi(j, w)), \\
\forall j<i(j \in w) .
\end{gathered}
$$

It remains to show $\forall j<i \varphi(j, w)$, which follows from $\psi(w)$ by reverse induction on $j$.
The bit-recursion schema provides a simple method for introduction of poly-time computable functions in $T_{2}^{0}$ avoiding the hassle of Turing machinery. The details are fixed in the following definition; we aim to show that all $P V$-functions are definable by bit-recursion in $T_{2}^{0}$.

Definition 4.3 Let $b$ and $c$ be polynomials such that $T_{2}^{0}$ proves $c(\vec{n}) \geq b(\vec{n})$. Let $\varphi(i, w, \vec{x})$ be a formula safe for bit-recursion such that all occurrences of $x_{j}$ in $\varphi$ are inside a subterm of the form $x_{j} \# 1$, or a subformula of the form $t \in x_{j}$. We say that the function $f$ with the graph

$$
\begin{aligned}
& f(\vec{x})=y \leftrightarrow|y| \leq b(|\vec{x}|) \wedge \exists w(|w| \leq c(|\vec{x}|) \wedge \\
&\forall i<c(|\vec{x}|)(i \in w \leftrightarrow \varphi(i, w, \vec{x})) \wedge \forall i<b(|\vec{x}|)(i \in y \leftrightarrow i \in w))
\end{aligned}
$$

is defined by bit-recursion from $\varphi, b$, and $c$.
Lemma 4.4 Let $f$ be defined by bit-recursion. Then $T_{2}^{0}$ proves $\forall \vec{x} \exists!y f(\vec{x})=y$.
Proof: By lemma 4.2 there exists a unique $w$ such that $|w| \leq c(|\vec{x}|) \wedge \forall i<c(|\vec{x}|)(i \in w \leftrightarrow$ $\varphi(i, w, \vec{x}))$, and given $w$, there exists a unique $y$ such that $|y| \leq b(|\vec{x}|) \wedge \forall i<b(|\vec{x}|)(i \in y \leftrightarrow$ $i \in w)$.

Lemma $4.5 T_{2}^{0}$ proves that the class of functions defined by bit-recursion is closed under composition.

Proof: We consider only unary functions for simplicity. Let $f_{0}(x)$ be defined by bit-recursion from $\varphi_{0}(i, w, x), b_{0}(n), c_{0}(n)$, let $f_{1}(y)$ be defined from $\varphi_{1}(i, w, y), b_{1}(n), c_{1}(n)$, we will show that $f(x)=f_{1}\left(f_{0}(x)\right)$ is also defined by bit-recursion.

We define the witness for $f(x)=z$ as a concatenation of the witness for $f_{0}(x)=y$, the witness for $f_{1}(y)=z$, and $z$. (We need to duplicate $z$ like this because we cannot express $b_{1}\left(\left|f_{0}(x)\right|\right)$ as a polynomial in $|x|$.) In detail, we put $b(n)=b_{1}\left(b_{0}(n)\right), c(n)=c_{0}(n)+$
$c_{1}\left(b_{0}(n)\right)+b(n)$, and we define $\varphi(i, w, x)$ as the formula

$$
\begin{aligned}
\exists j<c_{0}(|x|) & \left(i=j+c_{1}\left(b_{0}(|x|)\right)+b(|x|) \wedge \varphi_{0}^{\prime}(j, w, x)\right) \\
\vee \exists m<b_{0}(|x|) & {\left[\left(m=0 \vee m+c_{1}\left(b_{0}(|x|)\right)+b(|x|)-1 \in w\right)\right.} \\
& \wedge \forall k<b_{0}(|x|)\left(k \geq m \rightarrow k+c_{1}\left(b_{0}(|x|)\right)+b(|x|) \notin w\right) \\
& \left.\wedge\left(\left(i<b_{1}(m) \wedge i+b(|x|) \in w\right) \vee \exists j<c_{1}(m)\left(i=j+b(|x|) \wedge \varphi_{1}^{\prime}(j, w, x)\right)\right)\right] .
\end{aligned}
$$

(The conditions on the second and third line give the variable $m$ the value $\left|f_{0}(x)\right|$.) Here $\varphi_{0}^{\prime}(j, w, x)$ is constructed from $\varphi_{0}(j, w, x)$ by replacing each subformula $t \in w$ with $t+$ $c_{1}\left(b_{0}(|x|)\right)+b(|x|) \in w$, and $\varphi_{1}^{\prime}(j, w, x)$ is constructed from $\varphi_{1}(j, w, y)$ by replacing subformulas $t \in w$ with $t+b(|x|) \in w$, subformulas $t \in y$ with $t<b_{0}(|x|) \wedge t+c_{1}\left(b_{0}(|x|)\right)+b(|x|) \in w$, and subterms $y \# 1$ with $2^{m}$. We can express $2^{m}$ as follows: by lemma 3.3 , there is a term $t$ such that $2^{b_{0}(|x|)}=t(x \# 1)$, and we put $2^{m}=\left\lfloor\frac{t(x \# 1)}{2^{b_{0}}(x \mid x)-m}\right\rfloor$. (Subtraction here and above should be simulated by a quantifier.)

Using lemma 3.3 , we can make all quantifiers in $\varphi$ sharply bounded, and it is also easy to see that $\varphi$ is safe for bit-recursion. The conditions on $x$ from definition 4.3 are also satisfied: all occurrences of $x$ are either of the form $t \in x$, or inside a subterm $x \# 1$ or $|x|$; the latter is equal to $\left\lfloor\left.\left\lfloor\frac{x \# 1}{2}\right\rfloor \right\rvert\,\right.$.

Notice that $|f(x)| \leq b_{1}\left(\left|f_{0}(x)\right|\right) \leq b_{1}\left(b_{0}(|x|)\right)=b(|x|)$ as $b_{1}$ is monotone. If $w$ is constructed by bit-recursion using $\varphi(i, w, x)$, it is easy to see that bits $c_{1}\left(b_{0}(|x|)\right)+b(|x|)$ up to $c(|x|)-1$ of $w$ give a witness for $f_{0}(x)=y$, bits $b(|x|)$ up to $c_{1}\left(b_{0}(|x|)\right)+b(|x|)-1$ give a witness for $f_{1}(y)=z$, and bits below $b(|x|)$ give $z$, thus $\varphi, b$, and $c$ define $f$ by bit-recursion.

Lemma 4.6 Let $t$ be an L-term, and $f$ a function defined by bit-recursion. Then $T_{2}^{0}$ proves

$$
f(\vec{x}, 0)=t(\vec{x}, 0) \wedge \forall u \leq y\left(f\left(\vec{x},\left\lfloor\frac{u}{2}\right\rfloor\right)=t\left(\vec{x},\left\lfloor\frac{u}{2}\right\rfloor\right) \rightarrow f(\vec{x}, u)=t(\vec{x}, u)\right) \rightarrow f(\vec{x}, y)=t(\vec{x}, y) .
$$

Proof: Assume that $f$ is defined from $\varphi(i, w, \vec{x}, y), b$, and $c$. Put $C=c(|\vec{x}|,|y|)$. Using lemma 4.2, find $w$ such that $|w| \leq(|y|+1) C$ and for every $j \leq|y|$ and $i<C$,

$$
i+j C \in w \Leftrightarrow i<c\left(|\vec{x}|,\left\lfloor\left.\left\lfloor\frac{y}{2 j}\right\rfloor \right\rvert\,\right) \wedge \varphi^{\prime}\left(i, w, \vec{x},\left\lfloor\frac{y}{2 j}\right\rfloor\right),\right.
$$

where $\varphi^{\prime}$ is obtained from $\varphi$ by replacing subformulas $s \in w$ with $s<c\left(|\vec{x}|,\left|\left\lfloor\frac{y}{2 j}\right\rfloor\right|\right) \wedge s+j C \in w$. Then we can prove

$$
\left|t\left(\vec{x},\left\lfloor\frac{y}{2 j}\right\rfloor\right)\right| \leq b\left(|\vec{x}|,\left|\left\lfloor\frac{y}{2^{j}}\right\rfloor\right|\right) \wedge \forall i<b\left(|\vec{x}|,\left\lfloor\left\lfloor\frac{y}{\left.2^{2}\right\rfloor}\right\rfloor\right)\left(i+j C \in w \leftrightarrow i \in t\left(\vec{x},\left\lfloor\frac{y}{2 j}\right\rfloor\right)\right)\right.
$$

by reverse induction on $j \leq|y|$; the case $j=0$ yields $f(\vec{x}, y)=t(\vec{x}, y)$.
Lemma 4.7 Let $b(\vec{n}, m)$ be a polynomial, and $g(\vec{x}), h(\vec{x}, y, z)$ functions defined by bit-recursion. There exists a function $f(\vec{x}, y)$ defined by bit-recursion such that $T_{2}^{0}$ proves

$$
\begin{aligned}
& |g(\vec{x})| \leq b(|\vec{x}|, 0) \rightarrow f(\vec{x}, 0)=g(\vec{x}), \\
& y \neq 0 \wedge\left|h\left(\vec{x}, y, f\left(\vec{x},\left\lfloor\frac{y}{2}\right\rfloor\right)\right)\right| \leq b(|\vec{x}|,|y|) \rightarrow f(\vec{x}, y)=h\left(\vec{x}, y, f\left(\vec{x},\left\lfloor\frac{y}{2}\right\rfloor\right)\right) .
\end{aligned}
$$

Proof: Assume that $g$ is defined from $\varphi_{0}, b_{0}, c_{0}$, and $h$ is defined from $\varphi_{1}, b_{1}, c_{1}$. We put $c(\vec{n}, m)=c_{0}(\vec{n})+m c_{1}(\vec{n}, m, b(\vec{n}, m))+(m+1) b(\vec{n}, m)$. We let $\varphi$ formalize the following description (we omit the details, which are similar to lemmas 4.5 and 4.6): the witness for $f(\vec{x}, y)=z$ is the concatenation $w_{|y|} \frown z_{|y|} \frown w_{|y|-1} \frown z_{|y|-1} \frown \cdots \frown w_{0} \frown z_{0}$, where $z_{i}$ is $f\left(\vec{x},\left\lfloor\frac{y}{2^{i}}\right\rfloor\right)$ padded to $b(|\vec{x}|,|y|)$ bits, $w_{|y|}$ is the witness for $z_{|y|}=g(\vec{x})$, and for $i<|y|, w_{i}$ is the witness for $z_{i}=h\left(\vec{x},\left\lfloor\frac{y}{2^{i}}\right\rfloor, z_{i+1}\right)$ padded to $c_{1}(|\vec{x}|,|y|, b(|\vec{x}|,|y|))$ bits. Whenever $\left|z_{i}\right|$ would exceed $b\left(|\vec{x}|,\left|\left\lfloor\frac{y}{2^{i}}\right\rfloor\right|\right), z_{i}$ is replaced with 0 .

To show the recursion identity, we argue as follows: let $w$ be the witness for $f(\vec{x}, y)=z_{0}$. We use lemma 4.2 to cut the last part $w_{0} \frown z_{0}$ from $w$, and to shorten the remaining blocks to the appropriate length, and observe that the result is the witness for $f\left(\vec{x},\left\lfloor\frac{y}{2}\right\rfloor\right)=z_{1}$. By construction of $w, z_{0}=h\left(\vec{x}, y, z_{1}\right)$.

Theorem 4.8 $P V_{1}$ is an extension of $T_{2}^{0}$ by definitions. In particular, $P V_{1}$ is conservative over $T_{2}^{0}$.

Proof: We expand $T_{2}^{0}$ by symbols for all functions definable by bit-recursion, we will prove that the resulting theory contains $P V_{1}$.

If $t$ is a term made of functions defined by bit-recursion, then $f_{t}$ is definable by bit-recursion by lemma 4.5 .

Assume that $g(\vec{x}), h_{0}(\vec{x}, y, z), h_{1}(\vec{x}, y, z), b(\vec{x}, y)$ are defined by bit-recursion, and let $f_{g, h_{0}, h_{1}, b}(\vec{x}, y)$ be defined by limited recursion on notation as in definition 2.2. By definition 4.3 , there is a polynomial $p$ such that $T_{2}^{0}$ proves $|b(\vec{x}, y)| \leq p(|\vec{x}|,|y|)$. Using lemma 3.2, we see that the functions $\left\lfloor\frac{x}{2}\right\rfloor$ and

$$
\begin{aligned}
\operatorname{cond}(u, x, y) & = \begin{cases}x, & \text { if } u=0 \\
y, & \text { otherwise }\end{cases} \\
\bmod 2(x) & = \begin{cases}1, & \text { if } x \text { is odd } \\
0, & \text { otherwise }\end{cases} \\
\min (x, y) & = \begin{cases}x, & \text { if } x \leq y \\
y, & \text { otherwise }\end{cases}
\end{aligned}
$$

are bit-definable (i.e., definable by bit-recursion from a formula $\varphi(i, w, \vec{x})$ which does not involve $w$ ), thus by lemma 4.5, there is a function $h$ defined by bit-recursion such that $T_{2}^{0}$ proves

$$
h(\vec{x}, y, z)=\min \left(b(\vec{x}, y), \operatorname{cond}\left(\bmod 2(y), h_{0}\left(\vec{x},\left\lfloor\frac{y}{2}\right\rfloor, z\right), h_{1}\left(\vec{x},\left\lfloor\frac{y}{2}\right\rfloor, z\right)\right)\right)
$$

By lemma 4.7 , there is a function $f$ defined by bit-recursion such that $T_{2}^{0}$ proves

$$
\begin{aligned}
&|\min (b(\vec{x}, 0), g(\vec{x}))| \leq p(|\vec{x}|, 0) \rightarrow f(\vec{x}, 0) \\
&=\min (b(\vec{x}, 0), g(\vec{x})), \\
& y \neq 0 \wedge\left|h\left(\vec{x}, y, f\left(\vec{x},\left\lfloor\frac{y}{2}\right\rfloor\right)\right)\right| \leq p(|\vec{x}|,|y|) \rightarrow f(\vec{x}, y)
\end{aligned}=h\left(\vec{x}, y, f\left(\vec{x},\left\lfloor\frac{y}{2}\right\rfloor\right)\right) .
$$

The choice of $p$ ensures that $T_{2}^{0}$ proves the conditions $|\cdots| \leq p(\cdots)$, and consequently $T_{2}^{0}$ proves that $f$ satisfies the axioms for $f_{g, h_{0}, h_{1}, b}$ from definition 2.2.

Basic functions of $L_{P V}$ are already included as function symbols in $L$, nevertheless we need to show that they are definable by bit-recursion so that we can apply composition and limited recursion on notation to these function symbols. The functions $0, S,+,\left\lfloor\frac{x}{2^{y}}\right\rfloor$, and $\#$ are bit-definable by lemmas 3.1, 3.2, and 3.3. The function $|x|$ is trivially bit-definable, because we may use $|x|=\left|\left\lfloor\frac{x \# 1}{2}\right\rfloor\right|$ freely according to definition 4.3. Using limited recursion on notation, there is a function $f$ defined by bit-recursion such that $T_{2}^{0}$ proves

$$
\begin{gathered}
|f(x, y)| \leq|x|+|y| \\
f(x, 0)=0 \\
y \neq 0 \wedge|2 f(x, y)| \leq|x|+|2 y| \rightarrow f(x, 2 y)=2 f(x, y) \\
|2 f(x, y)+x| \leq|x|+|2 y+1| \rightarrow f(x, 2 y+1)=2 f(x, y)+x
\end{gathered}
$$

Then we can prove $f(x, y)=x y$ by PIND on $y$ (i.e., by lemma 4.6); the bound $|x y| \leq|x|+|y|$ follows from lemma 3.3 (ii).

It remains to show that $T_{2}^{0}$ proves $P I N D$ for open formulas $\varphi$ of the language $L_{P V}$. By lemma 4.6, it suffices to show that each such $\varphi$ has a characteristic function, i.e., there is a function $f$ defined by bit-recursion such that $T_{2}^{0}$ proves

$$
\begin{gathered}
\varphi(\vec{x}) \rightarrow f(\vec{x})=1, \\
\neg \varphi(\vec{x}) \rightarrow f(\vec{x})=0 .
\end{gathered}
$$

Characteristic functions for atomic formulas can be constructed by composition with characteristic functions of the predicates $=$ and $\leq$, which are bit-definable by lemma 3.2. Then we proceed by induction on the complexity of the formula, using composition with the functions $\operatorname{not}(x)=\operatorname{cond}(x, 1,0)$, and $\operatorname{or}(x, y)=\operatorname{cond}(x, y, 1)$.

## 5 Remarks

Cook [7] defined a second-order arithmetical theory $T V^{0}$, and noted that $P V_{1}$ is $R S U V$ isomorphic to $T V^{0}$. This can be used to give an alternative, indirect proof of our main result: instead of constructing $P V$-functions in $T_{2}^{0}$, it suffices to show that $T_{2}^{0}$ is $R S U V$-isomorphic to $T V^{0}$. A key element in the proof is again lemma 4.2, which implies that $T_{2}^{0}$ proves the translation of the $\Sigma_{0}^{B}$-comprehension axioms of $V^{0}$.

Our development of $T_{2}^{0}$ can be carried out in Buss' language to some extent. Let $T_{2}^{0}$ denote the original Buss' theory for the remainder of this section. We can define the graph of exponentiation by the open formula

$$
y=2^{x} \Leftrightarrow|y|=x+1 \wedge 2 y=1 \# y
$$

$T_{2}^{0}$ proves that $2^{x}$ is a partial function whose domain is a cut closed under multiplication, and other elementary properties of $2^{x}$, such as $2^{x+y}=2^{x} 2^{y}$, and $x \# y=2^{|x||y|}$. As $T_{2}^{0}$ extends IOpen, integer division is a well-defined function, and we may introduce $\left\lfloor\frac{x}{2^{y}}\right\rfloor$ by

$$
\left\lfloor\frac{x}{2^{y}}\right\rfloor= \begin{cases}0, & y \geq|x| \\ z, & \exists u \leq x\left(u=2^{y} \wedge z u \leq x<(z+1) u\right)\end{cases}
$$

We can show that $T_{2}^{0}$ proves lemma 3.1, most of lemma 3.3 , and a slightly weaker version of lemma 3.2, among others.

Nevertheless, it is unclear how could $T_{2}^{0}$ prove stronger principles such as $\Sigma_{0}^{b}-P I N D$, or lemma 4.2. As for the latter, we do not even know whether $T_{2}^{0}$ proves its simple instance

$$
\forall x, y \exists w \forall i(i \in w \leftrightarrow(i \in x \oplus i \in y)) .
$$

On the other hand, the methods of Takeuti and Johannsen seem inadequate to show independence results for $T_{2}^{0}$, or even for $L_{2}^{0}+I O p e n ~\left(h e r e ~ L_{2}^{i}\right.$ is $B A S I C+\Sigma_{i}^{b}-L I N D$ ). The strength of Buss' $T_{2}^{0}$ thus remains an open question.

## 6 Acknowledgement

I am indebted to Jan Johannsen, Steve Cook, and Jan Krajíček for clarifying discussions, and comments on an earlier draft of this paper. I also wish to thank the anonymous referees for useful suggestions.

## References

[1] Samuel R. Buss, Bounded arithmetic, Bibliopolis, Naples, 1986.
[2] __ Relating the bounded arithmetic and polynomial time hierarchies, Annals of Pure and Applied Logic 75 (1995), no. 1-2, pp. 67-77.
[3] $\qquad$ First-order proof theory of arithmetic, in: Handbook of Proof Theory (S. R. Buss, ed.), Studies in Logic and the Foundations of Mathematics vol. 137, Elsevier, Amsterdam, 1998, pp. 79-147.
[4] Alan Cobham, The intrinsic computational difficulty of functions, in: Proceedings of the 2nd International Congress of Logic, Methodology and Philosophy of Science (Y. BarHillel, ed.), North-Holland, 1965, pp. 24-30.
[5] Stephen A. Cook, Feasibly constructive proofs and the propositional calculus, in: Proceedings of the 7th Annual ACM Symposium on Theory of Computing, 1975, pp. 83-97.
[6] , Relating the provable collapse of $\mathbf{P}$ to $\mathbf{N C}^{1}$ and the power of logical theories, in: Proof Complexity and Feasible Arithmetics (P. Beame and S. R. Buss, eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science vol. 39, American Mathematical Society, 1998, pp. 73-92.
[7] $\qquad$ , Theories for complexity classes and their propositional translations, in: Complexity of computations and proofs (J. Krajíček, ed.), Quaderni di Matematica vol. 13, Seconda Universita di Napoli, 2004, pp. 175-227.
[8] Jan Johannsen, On the weakness of sharply bounded polynomial induction, in: Computational Logic and Proof Theory, Proceedings of Kurt Gödel Colloquium '93 (G. Gottlob, A. Leitsch, and D. Mundici, eds.), Lecture Notes in Computer Science vol. 713, Springer, 1993, pp. 223-230.
[9] $\qquad$ , A note on sharply bounded arithmetic, Archive for Mathematical Logic 33 (1994), no. 2, pp. 159-165.
[10] $\qquad$ , A model-theoretic property of sharply bounded formulae, with some applications, Mathematical Logic Quarterly 44 (1998), no. 2, pp. 205-215.
[11] Jan Krajíček, Bounded arithmetic, propositional logic, and complexity theory, Encyclopedia of Mathematics and Its Applications vol. 60, Cambridge University Press, 1995.
[12] Jan Krajíček, Pavel Pudlák, and Gaisi Takeuti, Bounded arithmetic and the polynomial hierarchy, Annals of Pure and Applied Logic 52 (1991), no. 1-2, pp. 143-153.
[13] John C. Shepherdson, A nonstandard model for a free variable fragment of number theory, Bulletin de l'Académie Polonaise des Sciences 12 (1964), no. 2, pp. 79-86.
[14] Gaisi Takeuti, Sharply bounded arithmetic and the function $a \doteq 1$, in: Logic and Computation, Proceedings of a Workshop held at Carnegie Mellon University, June 30-July 2, 1987 (W. Sieg, ed.), Contemporary Mathematics vol. 106, American Mathematical Society, 1990, pp. 281-288.
[15] $\qquad$ , RSUV isomorphisms, in: Arithmetic, Proof Theory, and Computational Complexity (P. Clote and J. Krajíček, eds.), Oxford Logic Guides vol. 23, Oxford University Press, 1993, pp. 364-386.

## A On IOpen

The theory IOpen is usually axiomatized by the schema of open induction over the theory of discretely ordered commutative semirings (or the slightly stronger theory of nonnegative parts of discretely ordered commutative rings). Here we present a simplified axiom system for IOpen.

Definition A. 1 IOpen' is the theory in the language $\langle 0, S,+, \cdot, \leq\rangle$, axiomatized by

$$
\begin{align*}
x+0 & =x  \tag{A0}\\
x+S y & =S(x+y) \\
x \cdot 0 & =0 \\
x \cdot S y & =x \cdot y+x \\
0 & \leq x
\end{align*}
$$

$$
\begin{equation*}
S y \leq x \leftrightarrow y<x \tag{OS}
\end{equation*}
$$

and the induction schema for open formulas, where $x<y$ stands for $x \leq y \wedge x \neq y$.

We are going to show $I O$ pen ${ }^{\prime}=I O p e n$. The only non-obvious part is to derive the missing successor axioms of Robinson's arithmetic.

Lemma A. 2 IOpen' proves:
(i) $S x \not \leq x$
(ii) $S x \neq 0$
(iii) $x \leq y \rightarrow x \leq z \vee z \leq y$
(iv) $x \leq x$
(v) $x \leq y \vee y \leq x$
(vi) $S x=S y \rightarrow x=y$
(vii) $x \neq 0 \rightarrow \exists y x=S y$

Proof: (i) follows from OS, as $x=x$.
(ii): assuming $S x=0$, we obtain $S x \leq x$ from O0, contradicting $(i)$.
(iii): by induction on $x$. For the base step, we have $0 \leq z$ by O0. The induction step: assume $S x \leq y$. Then $x \leq y$ by OS, thus $x \leq z$ or $z \leq y$ by the induction hypothesis. In the latter case, we are done. In the former case, we have $S x \leq z$ or $x=z$ by OS. Finally, $x=z$ implies $z \leq y$, as $x \leq y$.
(iv): by induction on $x .0 \leq 0$ follows from O0. Assume $x \leq x$. We have $x \leq S x$ by (iii) and (i). If $x=S x$, we have $S x \leq S x$ from $x \leq x$; otherwise $x<S x$, thus $S x \leq S x$ by OS.
(v) follows from (iv) and (iii).
(vi): assume for contradiction $x \neq y$. By $(v)$, we have $x<y$ or $y<x$. If $x<y$, we obtain $S y=S x \leq y$ from OS, contradicting $(i)$. The other case is symmetric.
(vii): assume $x \neq 0$ and $\forall y x \neq S y$. By induction on $y$, we have $\forall y y \neq x$, in particular $x \neq x$, which is a contradiction.
The rest is straightforward:
Lemma A. 3 IOpen' proves the following formulas, and consequently, IOpen ${ }^{\prime}=I O p e n$.

$$
\begin{aligned}
& (x+y)+v=x+(y+v) \\
& 0+v=v \\
& S x+v=S(x+v) \\
& x+v=v+x \\
& x(y+v)=x y+x v \\
& (x y) v=x(y v) \\
& 0 v=v \\
& S x \cdot v=x v+v \\
& x v=v x
\end{aligned}
$$

$$
\begin{aligned}
& x+v=y+v \rightarrow x=y \\
& x+v \leq x \rightarrow v=0 \\
& x \leq y \leftrightarrow \exists z x+z=y \\
& x \leq y \leq z \rightarrow x \leq z \\
& x \leq y \leq x \rightarrow x=y \\
& x \leq y \leftrightarrow x+z \leq y+z \\
& x \leq y \rightarrow x z \leq y z \\
& z \neq 0 \wedge x z \leq y z \rightarrow x \leq y
\end{aligned}
$$

Proof: By induction on $v$ and/or using the formulas proved earlier, left column first. The only exception is the formula involving an existential quantifier, which can be derived as follows.

Left-to-right: we have $x+0 \leq y$, and $x+S y \not \leq y$, thus by induction for the formula $x+v \leq y$, there exists a $z$ such that $x+z \leq y$ and $x+S z \not \leq y$. Then $x+z=y$ by OS.

Right-to-left: assume for contradiction $x \not \leq y$. Then $y<x$, thus $S y \leq x$. By the first part, there exists a $w$ such that $y+S w=x$, thus $y=y+(z+S w)$, which implies $S(z+w)=0$, a contradiction.

The following lemma, which was used in sections 3 and 4 , is quite standard. We include its proof for the sake of completeness.

Lemma A. 4 IOpen proves
(i) $x \leq y \rightarrow \exists!z(x+z=y)$
(ii) $y \neq 0 \rightarrow \exists!u, v(v<y \wedge x=u y+v)$

Proof: (i) was derived in lemma A.3, we will prove (ii).
Existence: we have $0 y \leq x$ and $S x \cdot y \not \leq x$ as $x<S x \leq S x \cdot y$. Thus by induction, there exists a $u$ such that $u y \leq x$ and $S u \cdot y \not \leq x$. By $(i)$, there is a $v$ such that $x=u y+v$. As $x<S u \cdot y=u y+y$, we must have $v<y$.

Uniqueness: assume $x=u y+v=u^{\prime} y+v^{\prime}$, where $v, v^{\prime}<y$. If $u<u^{\prime}$, we get $x<u y+y=$ $S u \cdot y \leq u^{\prime} y \leq x$, a contradiction. By symmetry, $u^{\prime}<u$ is also impossible, thus $u=u^{\prime}$. Then $u y+v=u y+v^{\prime}$, thus $v=v^{\prime}$.


[^0]:    *The research was done while the author was visiting the Department of Computer Science of the University of Toronto. Supported by NSERC Discovery grant, grant IAA1019401 of GA AV CR, and grant 1M0545 of MŠMT ČR.

[^1]:    ${ }^{1}$ Unlike $T_{2}^{i}$ for $i>0$, we cannot use the $\Sigma_{0}^{b}$-maximization principle. It can be shown that $T_{2}^{0}+\Sigma_{0^{-}}^{b}$ $M A X=T_{2}^{0}+\Sigma_{1}^{b}-M A X=T_{2}^{1}$, cf. lemma 5.2.7 in [11].

