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SOME RESULTS ON COMBINATORS IN THE SYSTEM TRC

Thomas Jech

The Pennsylvania State University

Abstract. We investigate the system TRC of untyped illative combinatory logic that is

equiconsistent with New Foundations. We prove that various unstratified combinators do not

exist in TRC.

Introduction. We prove some results in the axiomatic system TRC introduced in [3].

The system TRC (for ‘type-respecting combinators’) is an untyped system of combinatory

logic, in the sense of [1], [2]. TRC is a first order theory of functions (combinators) with

equality and is illative, i.e. capable of expressing notions of propositional logic. Moreover,

it is combinatorially complete for stratified combinators. The main interest of TRC is that

it is equiconsistent with the theory NF [6], Quine’s ‘New Foundations’. As the consistency

of NF remains an open problem, so does the consistency of TRC.

The objects of study of a combinatory logic are combinators. We denote xy the applica-

tion of the combinator x to the combinator y, and adopt the convention that xyz = (xy)z.

The language of TRC has (in addition to equality and the binary function xy) constants

Abst, Eq, p1 and p2, and functions k(x) and 〈x, y〉. The axioms of TRC are the following:

I. k(x)y = x.

II. pi〈x1, x2〉 = xi for i = 1, 2.

III. 〈p1x, p2x〉 = x.

IV. 〈x, y〉z = 〈xy, xz〉

V. Abst x y z = x k(y)(yz).
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2 THOMAS JECH

VI. Eq〈x, y〉 = p1 if x = y; Eq〈x, y〉 = p2 if x 6= y.

VII. If for all z, xz = yz, then x = y.

VIII. p1 6= p2.

Axiom I postulates the existence of constant functions. Axioms II–IV describe the pairing

function 〈x, y〉 and the projections p1 and p2. Abst is the abstraction combinator and Eq

is the characteristic function of equality. Axiom VII is the axiom of extensionality.

Let I = 〈p1, p2〉; from III and IV it follows that I is the identity function Ix = x.

Classical combinatory logic [2,3] employs combinators I, K and S, where

Ix = x Kxy = x Sxyz = xz(yz).

It has a powerful abstraction property: for every term t and a variable x, there is a term

λxt in which x does not occur, such that for every term s,

(λxt)s = t[s/x].

This guarantees, among others, the existence of a fixed point for every combinator, and

implies that simple notions of propositional logic cannot be represented by combinators.

Suppose that Neg is the negation combinator, and consider u = λx(Neg(xx)). Then

uu = Neg(uu).

The theory TRC is an illative theory, in the sense that it can encode notions of propo-

sitional logic. It also has an abstraction property (Theorem 1 of [3]). The term λxt can

be constructed for every t in which x occurs with no type other than 0. (For details about

typing see [3].) It follows that TRC proves the existence of all stratified combinators. Ex-

amples of stratified combinators are x(yx), xy(yz), y(xyz): in y(xyz), z has type 0, y has

type 1 and x has type 2. (In fact, Abst Abst Ixy = x(yx), Abst(AbstAbst)xyz = xy(yz),

and AbstAbst xyz = y(xyz)).

We will show in Section 3 that (with the exception of I) the standard combinators

used in classical combinatory logic do not exist in TRC. We shall give many examples of

unstratified combinators whose existence contradicts the axioms of TRC.

In searching for proofs of the various results in TRC, we used a computer extensively

and used the automated theorem prover OTTER [5].

2. Some Basic Facts on TRC.

In this sectioin we derive some simple equalities from the axioms of TRC, and use a self-

reference argument to obtain some simple negative results. First we state some properties

of the abstraction combinator (see also [4]):
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Theorem 2.1. (a) Abst(Abst(Abst x)) = Abst x.

(b) Abst(Abst k(x)) = k(x).

(c) Abst k(k(x)) = k(k(x)).

(d) Abst k(x)yz = x(yz).

(e) Abst k(x)k(y) = k(xy).

Proof. The equalities are obtained by an application of the axioms defining Abst and k(x)

and the axiom of extensionality; e.g. to prove (a), we evaluate the term Abst(Abst(Abst x))yz

and compare it with Abst x y z.

�

The next theorem gives some properties of the pairing function and the projections:

Theorem 2.2. (a) 〈k(x), y〉z = 〈x, yz〉, 〈x, k(y)〉z = 〈xz, y〉.

(b) k(〈x, y〉) = 〈k(x), k(y)〉, k(pix) = pik(x) for i = 1, 2.

(c) pi(xy) = pixy for i = 1, 2.

Proof. (a) From Axiom IV.

(b) Calculate 〈k(x), k(y)〉z and pik(x)z and use extensionality.

(c) Let x = 〈u, v〉 and use Axiom IV. �

Next we state some more properties of the combinator Abst:

Theorem 2.3. (a) Abst〈x, y〉 = 〈Abst x, Abst y〉.

(b) Abst pi = k(pi) and Abst k(pi) = pi, for i = 1, 2.

(c) Abst I = k(I) and Abst k(I) = I.

Proof. (a) Using Axiom IV, show that Abst〈x, y〉uv = 〈Abst x, Abst y〉uv.

(b) Abst pixy = pik(y)(xy) = k(piy)(xy) = piy by Theorem 2.2b, and Abst k(pi)xy =

pi(xy) = pixy by Theorems 2.1d and 2.2c.

(c) Abst Ixy = y = k(I)xy, by Axioms V and I, and Abst k(I)xy = I(xy) = Ixy by

Theorem 2.1d. �

We shall now turn to negative results. In Section 3 we shall present a number of

combinators that do not exist in TRC. Each proof will use one of the following basic

negative results that use self-reference:

Theorem 2.4. For every x,

(a) Eq〈x, p2〉 6= x.
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(b) Eq〈k(x), k(p2)〉 6= x.

(c) 〈Eq x, p2〉 6= x.

Proof. (a) Eq〈x, y〉 is either p1 or p2, and Eq〈p1, p2〉 = p2 while Eq〈p2, p2〉 = p1.

The proof of (b) and (c) is similar. �

It follows from the discussion on classical combinatory logic in Section 1 that not

every combinator in TRC has a fixed point. Theorem 2.4 gives an explicit example,

〈Eq, k(p2)〉x 6= x:

Corollary 2.5. The combinator 〈Eq, k(p2)〉 does not have a fixed point.

A standard fact of combinatory logic (cf. [1], [2]) states that if M is the combinator

Mx = xx then for every u, the composition of u and M is a fixed point of u. As the

abstraction theorem for TRC in [3] provides for composition of combinators, it follows

that M does not exist in TRC. Here we give a direct proof:

Theorem 2.6. There is no M such that Mx = xx.

Proof. Let t = Abst k(Eq)〈M, k(p2)〉 and let s = tt. Then (using Theorems 2.1.d and 2.2a)

s = tt = Abst k(Eq)〈M, k(p2)〉t

= Eq(〈M, k(p2)〉t)

= Eq〈Mt, p2〉

= Eq〈tt, p2〉

= Eq〈s, p2〉,

contradicting Theorem 2.4a. �

A similar argument, using Theorem 2.4b, yields the following:

Theorem 2.7. There is no K1 such that K1x = k(xx).

Proof. Let t = Abst k(Eq)〈K1, k(k(p2))〉, and s = tt. Then (by Theorems 2.1d and 2.2a)

s = tt = Abst k(Eq)〈K1, k(k(p2))〉t

= Eq(〈K1, k(k(p2))〉t)

= Eq〈K1t, k(p2)〉

= Eq〈k(s), k(p2)〉,

contradicting Theorem 2.4b. �

An immediate consequence of Theorem 2.7 is that neither k(x) nor 〈x, y〉 can be replaced

in TRC by a combinator (see also [4]).
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Theorem 2.8. (a) There is no K such that Kx = k(x).

(b) There is no p such that pxy = 〈x, y〉.

Proof. (a) Given such K, let K1 = AbstAbst K. Then (by Theorem 2.1d)

K1xy = AbstAbst Kxy

= Abst K(x)(Kx)y

= x(Kxy)

= xx

and so K1x = k(xx), contradicting Theorem 2.7.

(b) Given p, let K = p1p, and then (by Theorem 2.2c)

Kxy = p1pxy

= p1(px)y

= p1(pxy)

= p1〈x, y〉

= x,

contradicting (a). �

We conclude this section with the following result that we use in Section 3.

Theorem 2.9. (a) There is no u such that ux = xk(x).

(b) There is no u such that uk(x) = xk(x).

Proof. (a) Given u, let M = Abst(Abst u)I, and then

Mx = Abst(Abst u)I x

= Abst u k(x) x

= u k(x) x

= k(x)k(k(x))x

= x x,

contradicting Theorem 2.6.
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(b) Given u, let t = Abst k(Eq)〈u, k(p2)〉 and s = uk(t). Then we have (by Theorems

2.1.d and 2.2a)

s = u k(t) = Abst k(Eq)〈u, k(p2)〉k(t)

= Eq(〈u, k(p2)〉k(t))

= Eq〈u k(t), p2〉

= Eq〈s, p2〉,

contradicting Theorem 2.4a. �

3. Nonexistence of Various Combinators.

We will show that many standard classical combinators do not exist in TCR. Let us

consider the following combinators; none of them is stratified. We use the list presented

in [7], with several additions.

Bxyz = x(yz) Lxy = x(yy) Q3xyz = z(xy)

Cxyz = xzy L1xy = y(xx) Rxyz = yzx

Dxyzw = xy(zw) Mx = xx Sxyz = xz(yz)

Fxyz = zyx M1x = xxx Txy = yx

Gxyzw = xw(yz) M2x = x(xx) Uxy = y(xxy)

Hxyz = xyzy Oxy = y(xy) V xyz = zxy

H1xy = xyx O1xy = x(yx) Wxy = xyy

Jxyzw = xy(xwz) O2xy = y(yx) W1xy = yxx

Kxy = x Qxyz = y(xz) W2xy = yxy

K1xy = xx Q1xyz = x(zy) W3xy = yyx

Below we prove that none of these combinators exist in TRC.

(3.1). K1, K, M and J :

Theorems 2.6, 2.7 and 2.8 show that K1, K and M do not exist. As for J , it is well

known in combinatory logic (cf. [1]) that {I, J} is combinatorially complete, and so J

cannot exist in TRC.

(3.2). L, O, U and W :

M = LI = OI = UI = WI
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(3.3). O2 and M2:

M = Abst(O2I)I = Abst M2I :

Abst(O2I)Ix = O2I k(x)x = k(x)(k(x)I)x = xx

Abst M2Ix = M2k(x)x = k(x)(k(x)k(x))x = xx

(3.4). S and O1:

O = SI and S = Abst ◦ O1 (where a ◦ b is the composition, defined in TRC by a ◦ b =

Abst k(a)(Abst k(b)I)):

Sxyz = Abst(O1x)yz = O1x k(z)(yz) = x(k(z)x)(yz) = xz(yz)

(3.5). T , C, G, Q1 and Q3:

K = Abst T k(I) and T = CI = GII = Q1I = Q3I :

Kx = Abst T k(I)x = T k(x)(k(I)x) = T k(x)I = Ik(x) = k(x)

(3.6). B and D:

K = AbstBI, B = DI :

Kxy = Abst B I xy = B k(x)(Ix)y = B k(x)xy =

= k(x)(xy) = x

(3.7). R:

K = R k(I)p1〈R, u〉R, where u is arbitrary:

Kxy = R k(I)p1〈R, u〉Rxy

= p1〈R, u〉k(I)Rxy

= R k(I) Rxy

= R x k(I)y

= k(I)yx

= Ix = x

(3.8). V :

K = Abst(Abst V Abst)k(k(Abst)) :
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using Theorem 2.1.b, we have

Kx = Abst(Abst V Abst)k(k(Abst))x

= Abst V Abst k(x)k(Abst)

= V k(k(x))(Abst k(x))k(Abst)

= k(Abst)k(k(x))(Abst k(x))

= Abst(Abst k(x))

= k(x)

(3.9). Q:
K1 = Abst Q I :

K1xy = Abst Q I xy = Q k(x)xy = x(k(x)y) = xx

(3.10). H1, H, M1 and W2:

M1k(x) = H1H1k(x) = W2W2k(x) = xk(x),

contradicting Theorem 2.9, and H1 = HI.

(3.11). F and W1:

Let u = Abst(Fz)Abst k(x) (where z is arbitrary) and v = Abst W1 Abst. Then

u k(x) = v k(x) = x k(x), contradicting Theorem 2.9: using Theorem 2.1d, we have

uk(x) = Abst(Fz)Abst k(x)

= Fz k(k(x))(Abst k(x))

= Abst k(x) k(k(x)) z

= x(k(k(x))z)

= x k(x)

and
vk(x) = Abst W1 Abst k(x)

= W1 k(k(x)) (Abst k(x))

= Abst k(x) k(k(x)) k(k(x))

= x (k(k(x)) k(k(x)))

= x k(x).
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(3.12). L1:

Let a = k(〈Eq, k(p2)〉). Then for all x,

L1a(L1x) = L1x(aa)

= aa(xx)

= k(〈Eq, k(p2)〉)a(xx)

= 〈Eq, k(p2)〉(xx)

= 〈Eq(xx), p2〉,

which, by Theorem 2.4c, is not equal to xx.

Now let b = Abst k(L1a)L1. By Theorem 2.1d we have

bb = Abst k(L1a)L1b = L1a(L1b),

a contradiction.

(3.13). W3:

Let a = k(〈Eq, k(p2)〉). Then for all x,

W3x a = a a x

= 〈Eq, k(p2)〉x

= 〈Eq x, p2〉,

which, by Theorem 2.4c, is not equal to x.

Now let b = Abst k(W3)(W3a). By Theorem 2.1d we have

W3ab = bba = Abst k(W3)(W3a)ba = W3(W3ab)a.

Thus if above we let x = W3ab, we get

W3(W3ab)a 6= W3ab,

a contradiction.
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