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STACKING MICE

RONALD JENSEN, ERNEST SCHIMMERLING1, RALF SCHINDLER2, AND JOHN STEEL3

Abstract. We show that either of the following hypotheses imply that there is an inner model with

a proper class of strong cardinals and a proper class of Woodin cardinals. 1) There is a countably closed

cardinal κ ≥ ℵ3 such that �κ and �(κ) fail. 2) There is a cardinal κ such that κ is weakly compact in

the generic extension by Col(κ, κ+). Of special interest is 1) with κ = ℵ3 since it follows from PFA by

theorems of Todorcevic and Velickovic. Our main new technical result, which is due to the first author,

is a weak covering theorem for the model obtained by stacking mice over Kc‖κ.

§0. Introduction. It is a well-known conjecture that the consistency strength of
the Proper Forcing Axiom is a supercompact cardinal. In this paper, we show that
PFA implies the existence of an inner model with a proper class of strong cardinals
and a proper class of Woodin cardinals. In fact, we get indiscernibles for a proper
class model of this large cardinal property. For the reader interested in determinacy,
this is significantly beyond the consistency strength of ADR by theorems ofWoodin.
As one might expect from [12], the only two consequences of PFA that are
used to prove our lower bound are 2ℵ0 = ℵ2 (Todorcevic [2] and Velickovic [22])
and the failure of �(κ) at all (regular) κ ≥ ℵ2 (Todorcevic [21]). Recall that
�κ implies �(κ+). The papers Schimmerling [11], Schimmerling-Steel [13] and
Steel [20] include steps towards measuring the large cardinal consistency strength
of the existence of a singular cardinal κ such that�κ fails. In Schimmerling [12], it
is shown that if κ ≥ 2ℵ0 ·ℵ2 is a regular cardinal and both�κ and�(κ) fail, then for
every n < ù, there is an inner model with nWoodin cardinals; Steel (unpublished)
extended the conclusion to infinitely many Woodin cardinals. Hypotheses about
regular cardinals are more to our taste than singular cardinals because we need only
apply PFA to posets of cardinality (2ℵ0)+ to see 2ℵ0 = ℵ2 and the failure of �(ℵ2)
and �ℵ2 . For technical reasons, the least κ to which the results of this paper apply
is not ℵ2 but ℵ3.
The papers mentioned above use the true core model, K . In the theory of K ,
one first builds the background certified core model, K c , then defines K to be the
Mostowski collapse of a certain elementary substructure of K c . Many of the basic
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core model tools involving K are unknown or false for K c . In this sense, K c is
less useful than K . On the other hand, in the current stage of knowledge, the
anti-large-cardinal hypothesis under which one can establish the basic properties of
K c is much less severe than for K . So, in those instances in which we can make do
with K c , the conclusions are stronger. This was among our main inspirations.
Our work also builds on Andretta, Neeman and Steel [1] where the theory of
K c was developed under the assumptions 1) there is a measurable cardinal and
2) all premice are domestic. A non-domestic premouse N is one that has an
initial segment M E N with a top extender FM such that the strong cardinals of
M‖crit(FM ) are unbounded in crit(FM ) and so are the Woodin cardinals of M .
The relevant corollary in [1] is that if κ is a measurable cardinal and �κ fails, then
there is a non-domestic premouse. The correspondingM from their proof is linearly
iterable by its top extender and, in this way, generates indiscernibles for a proper
class model with a proper class of strong cardinals and a proper class of Woodin
cardinals. We will refer to such anM as a sharp.
The main new element in this paper is a technique, due to the first author, for
producing aK c-like fine structuralmodel with theweak covering property at a given
regular cardinal. We call it “stacking mice.” We shall combine this technique with
the argument of [12] to show the following.

Theorem 0.1. Let κ ≥ ℵ3 be a regular cardinal. Assume that κ is countably closed
in the sense that çℵ0 < κ for every ç < κ. Suppose that�(κ) and �κ both fail. Then
there is a sharp for a proper class model with a proper class of strong cardinals and
a proper class of Woodin cardinals.

Corollary 0.2. PFA implies that there is a sharp for a proper class model with
a proper class of strong cardinals and a proper class of Woodin cardinals.

In subsequent work, cf. [7], the first and fourth authors used the mouse-stacking
technique to develop the theory of K below a Woodin cardinal without assuming
that there is a measurable cardinal or anything other than ZFC. (This was one of
the main problems left open in Steel [19].)
The effect of the proof of Theorem 0.1 can also be expressed as follows.

Theorem 0.3. Let κ ≥ ℵ3 be a regular cardinal. Assume that κ is countably closed
in the sense that çℵ0 < κ for every ç < κ. Suppose that�(κ) and �κ both fail. If the
certified K c exists in V Col(κ,κ), then there is a subcompact cardinal in the certified K c

of V Col(κ,κ).

Concerning the phrase “the certified K c exists” we refer the reader to Defini-
tion 2.7.
Another application of the methods developed here is given by the following set
of theorems.

Theorem 0.4. If κ is a weakly compact cardinal in V Col(κ,κ
+), then there is a sharp

for a proper class model with a proper class of strong cardinals and a proper class of
Woodin cardinals.

Theorem 0.5. Suppose that κ is a weakly compact cardinal in V Col(κ,κ
+). If the

certified K c exists in V Col(κ,κ
+), then there is a superstrong cardinal in the certifiedK c

of V Col(κ,κ
+).
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The paper is organized as follows. In the first section, we recall some necessary
fine structural tools (which are taken from [11] and [5]). In the second section,
we develop our K c construction, the certified K c ; it is constructed by joining the
approach of [1] with the one of [8]. Nothing is really new in the second section.
The third section contains the new technique of producing a fine structural model
which satisfies weak covering at a given regular cardinal κ. The key result will be
Theorem 3.4 which says that if κ ≥ ℵ3 is anù-closed regular cardinal with 2<κ = κ,
and if the certified K c exists, but K c does not have a superstrong cardinal, then
there is a mouse S end-extending K c ||κ such that cfV (κ+S ) ≥ κ. The results in the
third section are due to the first author. Similar in spirit to [12], the fourth section
will then show how the proof of Theorem 3.4 gives a proof of Theorem 4.1 and
thus proofs of Theorems 0.1 and 0.3; this application was discovered by the second,
third, and fourth authors. The last section will produce proofs of Theorems 0.4
and 0.5 by exploiting an argument of the third author.

§1. Some fine structure. In this section we summarize key fine structural facts
which shall be exploited in the proofs of Theorems 0.1, 0.3, 0.4, and 0.5.
In much the same way and for the same reason as in [1], we shall work here with
the Jensen premice of [5] (rather than with theMitchell-Steel premice from [9]).1 In
what follows, the term “extender” will refer to an extender in the sense of [5, §1]
(cf. also [24, 2.1, p. 48]), and term “premouse” will refer to a premouse in the sense
of [5, §4] (cf. also [24, 9.1, p. 284]).
An extender F will thus be a partial map fromP (κ) toP (ë), where κ = crit(F )
is the critical point of F and ë = F (κ) is the length of F . If F is an extender on
M with length ë, and if î ≤ ë, then we write F |î for {(X,Y ∩ î) : (X,Y ) ∈ F };
î < ë is called a cutpoint of F (cf. [24, Definition p. 282]) iff for all f ∈ κκ ∩M
and for all î < î, iF (f)(î) < î, where iF is the ultrapower map induced by F . The
concept of a “premouse” is defined with the help of the Initial Segment Condition
(ISC) which says that if F is the top extender of M , and if î is a cutpoint of F ,
then F |î ∈M (cf. [24, p. 283]). If there are no premice with superstrong extenders,
then a potential premouseM (cf. [24, Definition p. 281]) is a premouse if and only
if no extender on the sequence ofM has any cutpoints (cf. [24, Corollary 9.13]). If
M is a premouse, say M = (Jα[E];∈, E,Eα), and if â ≤ α, then we write M ||â
for M cut off at â , i.e., M ||â = (Jâ [E ↾ â];∈, E ↾ â,Eâ), and we write M |â for
(Jâ [E ↾ â];∈, E ↾ â, ∅). If F = EMã 6= ∅ is an extender on the sequence ofM , then
the index ã of F is equal to

F (crit(F ))+Ult(M |ã;F ).

(This approach to indexing is called Jensen indexing.)
We propose the following use of the word “mouse.”

Definition 1.1. Let M be a premouse. We call M a mouse if and only if the
following holds true. For every n < ù, if

ð : N → Cn(M )

1We could have worked with Mitchell-Steel premice as well, but we would then have produced results
which are weaker than Theorems 0.1 and 0.4. Of course, Theorems 0.3 and 0.5 would not have been
affected, though.
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is a weak n-embedding (cf. [9, p. 52ff.], [18, Definition 4.1]), whereN is a countable
premouse, thenN is (n,ù1, ù1 + 1) iterable (cf. [18, Definition 4.4]).

Let M be a premouse. In particular, M is an amenable J -structure; the reducts
M n for n < ù and the rest of the fine structural concepts may then be defined as
in [16]. All reducts M n , n < ù, are amenable, and we may take fine ultrapowers
“by the Dodd-Jensen procedure of codingM 0 onto ñn(M ), taking a Σ0 ultrapower
of the coded structure, and then decoding” (cf. [9, p. 40], cf. also [16, §8]).
If P is an amenable J -structure, then we shall write SPα for the α

th level of the
S-hierarchy which produces P . In particular, SP

P∩OR = P . We shall need the
following well-known fact.

Lemma 1.2. LetM be a premouse. Letκ be a cardinal ofM , letM be sound aboveκ,
and let pM ↾ (n + 1) be solid and universal. Suppose that ñn+1(M ) ≤ κ < ñn(M ).
Then cfV (ñn+1(M )+M ) = cf

V (κ+M ) = cfV (ñn(M )).

Proof. Write ç = cf(κ+M ). Let us first show that ç = cf(ñn(M )). By hypothesis,
ñn(M ) = M n ∩ OR, so that we need to see that cf(M n ∩ OR) = ç. Again by
hypothesis,

M
n = HullM

n

1 (κ ∪ {pn+1(M )}).

Let (îi : i < ç) ∈ V be increasing and cofinal in κ+M . For each i < ç, let
αi < M

n ∩OR be the least α such that

Hull
SMnα
1 (κ ∪ {pn+1(M )}) ∩ (îi , κ

+M ) 6= ∅.

Wemust have that (αi : i < ç) is non-decreasing and cofinal inM
n ∩OR, and hence

cf(M n ∩OR) = ç.
Now let us verify that cf(ñn+1(M )+M ) = ç. Let

M = Cn+1(M ) = Hull
M

n (ñn+1(M ) ∪ {p(M )}),

and let
ð : M →rΣn+1 M

be the core embedding. By hypothesis, ñn+1(M )+M = ñn+1(M )+M . Also, ð is
cofinal atM

n
. Moreover,M is sound above ñn+1(M ), so that by what we proved so

far (applied toM rather thanM ), cf(M
n
∩ OR) = cf(ñn+1(M )+M ). Putting these

things together yields

cf((ñn+1(M )
+M )) = cf((ñn+1(M )

+M )) = cf(M
n
∩OR) = cf(M n ∩OR) = ç.

⊣ (Lemma 1.2)

We now state the Condensation Lemma (cf. [5, §8, Lemma 4]).

Lemma 1.3. LetM be a mouse which does not have a superstrong extender, and let
N be a premouse. Let

ð : N →Σ0 M

be such that ð 6= id, and set κ = crit(ð). Suppose n < ù is such that ñn+1(N ) ≤
κ < ñn(N ). Suppose further that N is sound above κ and in fact ð is weakly rΣn+1
elementary (cf. [16, Definition 5.12]).2

ThenN is a mouse and one of the following holds true.

2A weakly rΣn+1 elementary map is Σ
(n)
0 elementary in the language of [5].
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(a)N is the κ-core ofM and ð is the core map,3

(b)N ◁M ,
(c) N = Ultk(M ||ç;EMã ), where M |κ = N |κ has a largest cardinal, say ì,

EMã 6= ∅, ì = crit(EMã ) < κ < ã ≤ ç < M ∩ OR, κ = ì+M ||ã , ç is the least ç ≥ ã

such that ñù(M ||ç) ≤ κ, k < ù is least such that ñk+1(M ||ç) ≤ κ, and in fact EMã is
generated by {ì}.

The following is a trivial consequence of the Condensation Lemma 1.3.

Lemma 1.4. LetM be a mouse which does not have a superstrong extender, and let
N be a premouse. Let

ð : N →Σù M

be such that ð 6= id, and set κ = crit(ð). Suppose that ñù(M ) = ð(κ) and M is
sound.
ThenN ◁M (in particular,N is a sound mouse).

Proof. Notice that ñù(N ) = κ and N is sound by the full elementarity of ð.
But then (a) of Lemma 1.3 is ruled out because otherwise ñù(M ) = ñù(N ), and
(c) of Lemma 1.3 is ruled out because otherwiseN would not be sound. Therefore
N ◁M by Lemma 1.3. ⊣ (Lemma 1.4)

§2. K c constructions. We need a K c construction which is an amalgamation
of [1] and [8].

Definition 2.1. A K c construction (also called an array) is a sequence

(Nî ,Mî : î < è)

of mice,4 where è ≤ OR+ 1, such that for all î < è,
(a)Mî is the core ofNî ,

(b) if Nî is active, then î = î + 1 for some î, and setting α = Nî ∩ OR,
Nî |α = Mî , i.e., Nî results fromMî by adding a top extender,

(c) if Nî is passive and î = î + 1 for some î, then setting α = Mî ∩ OR,

Nî ||α = Mî and Nî ∩OR = α + ù, i.e., Nî results fromMî by constructing one
step further, and
(d) ifNî is passive and î is a limit ordinal, thenNî is the “lim inf” of theMî for

î < î, i.e., for allN ,N ◁Nî iff there is some î < î such that whenever î ≤ i < î,
Mi ||(N ∩OR) = N .

A K c construction is determined by a criterion for which extender to add at
a given stage of the construction. A classical K c construction is the one which
is presented in the last section of [9]. More liberal K c constructions are the ones
of [1, Section 2], [8, §2], and [6, §1]. Our criterion for constructing K c will be
“being certified by a collapse” which is a strengthening of [8, Definition 1.6] for
Jensen premice as well as a strengthening of [6, §1, p. 5].
A cardinal ã is called countably closed (or, ù-closed) iff çℵ0 < ã for every ç < ã.

3I.e., N is the transitive collapse of the appropriate fine structural hull of κ ∪ {pn+1(M )} taken
overM , and ð is the inverse of the transitive collapse which may also obtained by coiterating (M ,N , κ)
withM .
4We shall not be interested in arrays which contain premice which are not mice.
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Definition 2.2. Let M be a premouse with no top extender, say M =
(Jα[E];∈, E), and let F be an extender with κ = crit(F ) and ë = F (κ) such
that (Jα[E];∈, E, F ) is a premouse. We say that F is certified by a collapse iff
for some regular ù-closed cardinal ã ≥ ë with 2<ã = ã there is some elementary
embedding

ð : H → Hã+

such that (the universe of)H is transitive, ùH ⊂ H , ã = ð(κ), E ↾ κ ∈ H , and

F = (ð ↾ (P (κ) ∩ Jα[E]))|ë,

i.e., F is derived from ð. In this situation, we also say that ð ↾ (P (κ) ∩ Jα[E]) is
certified by a collapse.

A deficiency here is that ZFC does not prove the existence of a regular ù-closed
cardinal ã with 2<ã = ã. However, if ã is regular and ù-closed (for instance,
ã = (ìℵ0)+ for some ì), then in V Col(ã,ã) we shall have that ã is regular and
ù-closed and 2<ã = ã. This will suffice for our purposes.
Let us now first verify that being “certified by a collapse” is essentially stronger
than the notion of being “certified” from [8, Definition 1.6].
In order to define being “certified,” let us assume thatV = L[A], whereA ⊂ OR.
We may assume that P (κ) ⊂ L2κ [A ∩ 2κ] and ùκ ⊂ Lκℵ0 [A ∩ κℵ0 ] for all infinite
cardinals κ. If α is an ordinal, then we writeH α for the structure

(Lα [A ∩ α];∈, A ∩ α).

If κ is an infinite cardinal with 2<κ = κ, then (the universe of) H κ is Hκ, i.e., the
collection of sets which are hereditarily smaller than κ.
The class of Σ1+ formulae is defined in [8, Definition 1.3]; it is a class which is
strictly between Σ1 and Σ2. A formula is said to be Σ1+ (cf. [8, Definition 1.3]) iff it
is of the form

∃v0 ∃v1 ∃v2(
ùv0 ⊂ v0 ∧ v2 = A ∩ v3 ∧ ϕ(v0, v1, v2, v3, v4)),

where ϕ is Σ0 (cf. [8, Definition 1.3]).
If F is an extender with κ = crit(F ) and ë = F (κ), and if U is a countable
set, then F is called countably complete with respect to U iff there is a map ô such
that U ∩ ë ⊂ dom(ô), ô ↾ U ∩ ë : U ∩ ë → κ is order-preserving, and for all
î ∈ U ∩ë and for every X ∈ dom(F )∩U we have that if î ∈ F (X ), then ô(î) ∈ X
(cf. [8, Definition 1.1]).
The following is a reformulation of [8, Definition 1.6] to the context of Jensen
premice.

Definition 2.3. Let F be an extender with κ = crit(F ) and ë = F (κ). We
say that F is certified iff, letting ä be the least regular cardinal such that ä ≥
(Card(ë)ℵ0)+, 2<ä = ä, and ä is countably closed, we have that for all countable
U ≺Σ1+ H ä there is some ô : U →Σ1+ H κ witnessing that F is countably complete
with respect to U .

We emphasize that if there is no regular countably closed cardinal ä > ë such
that 2<ä = ä, then F cannot be certified. We also emphasize that whether a given
extender is certified may depend on the choice of A.
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Lemma 2.4. Let F be an extender with κ = crit(F ) and ë = F (κ). If F is certified
by a collapse, witnessed by ð : H → Hã+ , whereA∩ð(κ) ∈ ran(ð), then F is certified
in the sense of Definition 2.3.

Proof. This is by the proof of [8, Lemma 3.6]. Let

ð : H → Hã+

witness that F is certified by a collapse, where A ∩ ð(κ) ∈ ran(ð). Notice that
if ä is as in Definition 2.3, then ë < ð(κ) = ã yields that in fact ä ≤ ã. Also,
H ä ≺Σ1+ H ã ≺Σ1+ V (cf. [8, Lemma 1.5]). Let U ≺Σ1+ H ä be countable and

let ó : U ∼= U , where U transitive. Let (an, Xn : n < ù) be a list of all pairs
(a,X ) such that a ∈ [U ∩ ë]<ù , X ∈ P ([κ]Card(a)) ∩H ∩ U , and a ∈ ð(X ). Let
an = ó−1(an) = ó−1”an for n < ù. Notice that (an, Xn : n < ù) ∈ H .
Now ó witnesses that in Hã+ there is some ϕ : U →Σ1+ H ð(κ) such that ϕ”an ∈
ð(Xn) for all n < ù. By elementarity of ð, there is hence some ϕ ∈ H ,
ϕ : U →Σ1+ H κ, such that ϕ”an ∈ Xn for all n < ù. Let ϕ0 ∈ H be a wit-
ness, and set ô = ϕ0 ◦ ó−1. Then ô : U →Σ1+ H κ, and moreover ô(an) ∈ Xn for all
n < ù, i.e., ô witnesses that F is countably complete with respect to U . Hence the
map ô is as desired. ⊣ (Lemma 2.4)

Without the hypothesis that A ∩ ð(κ) ∈ ran(ð) we wouldn’t get that H ð(κ) ∈
ran(ð) in the proof of Lemma 2.4, so that we couldn’t pull the existence of the map
ϕ back toH .
We may now use a similar argument to show that being “certified by a collapse”
is stronger than being “robust.” In order to define “robustness,” we need the Chang
model.
If B is any set, then we recursively define C0(B) = TC({B}), Cα+1(B) =
Def(Cα(B)) ∪ [α]ù , where Def(Cα(B)) is the set of all subsets of Cα(B) which
are definable over Cα(B) with parameters from Cα(B), and if ë is a limit ordinal,
then Cë(B) =

⋃
{Cα(B) : α < ë}. If Jâ [E] is a J -model, and if ç ≤ â and ì are

ordinals, then we write C
E

ç,ì for

Cì((Jç[E], E ↾ ç))

and CEç,ì for the structure

(C
E

ç,ì;∈, (C
E

ç,ì : ì < ì)).

Notice that “v = CEç,ì” is Σ1+ in the parameters E ↾ ç and ì.

Definition 2.5. Let M be a potential premouse with top extender F such that
κ = crit(F ) and ë = F (κ). Then F is called robust iff for all U ⊂ ë and W ⊂
P (κ) ∩M which are both countable, there is some order preserving ô : U → κ
which witnesses that F is countably complete with respect to U ∪W and such that
for all U ′ ⊂ U , setting â = sup(U ′) and â = sup(ô”U ′), if ϕ is a Σ1 formula, then

CE
â,κ

|= ϕ(ô”U ′, ô”U )⇐⇒ CEâ,∞ |= ϕ(U ′, U ).

Lemma 2.6. Let F be an extender with κ = crit(F ) and ë = F (κ). If F is certified
by a collapse, then F is robust.
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Proof. This is by the proof of [6, §1, Lemma 4.1]. Let

ð : H → Hã+

witness that F is certified by a collapse. Let U ⊂ ë andW ⊂ P (κ) ∩M both be
countable, let g : ù → U be bijective, let ~a = (aî : î < 2

ℵ0) be an enumeration of
P (ù), let

T = {(ϕ, î) : ϕ is Σ1, î < 2
ℵ0 , and CEsup(g”aî),∞ |= ϕ(g”aî , U )},

and let U ∗ ≺Σ3 Hã+ be countable and such that U ∪W ∪ {U,W, g, ~a, T} ⊂ U ∗.
In much the same way as in the proof of Lemma 2.4 we may construct a map
ô : U ∗ →Σ3 H which witnesses that F is countably complete with respect to U

∗

such that ô(~a) = ~a, ô(T ) = T , ô(ã) = κ, ô(A ∩ ã) = A ∩ κ, and ô(E ↾ ã) = E ↾ κ.
The point now is that “v = CEç,ì” is Σ1+ in the parameters E ↾ ç and ì (and A is

not needed). Therefore,

∀ϕ ∈ Σ1 ∀î < 2
ℵ0 ((ϕ, î) ∈ T ⇐⇒ CEsup(g”aî),∞ |= ϕ(g”aî , U ))

is a true Π3 statement, and because H ã ≺Σ1+ V and by the choice of U
∗ and ô, we

get

∀ϕ ∈ Σ1 ∀î < 2
ℵ0 ((ϕ, î) ∈ T ⇐⇒ CEsup(ô(g)”aî),κ |= ϕ(ô(g)”aî , ô(U )))

to hold true.
Let U ′ ⊂ U and write â = sup(U ′) and â = sup(ô”U ′). If U ′ = g”aî , where
î < 2ℵ0 , then ô(g)”aî = ô”U

′. Also, ô(U ) = ô”U . We therefore get that

CEâ,∞ |= ϕ(U ′, U ))⇐⇒ (ϕ, î) ∈ T ⇐⇒ CE
â,κ

|= ϕ(ô”U ′, ô”U )),

as desired. ⊣ (Lemma 2.6)

The maximal certified K c construction will now be defined via the concept of
extenders which are “certified by a collapse.”

Definition 2.7. The maximal certified K c construction is the unique K c con-
struction

(Nî ,Mî : î < è)

such that
(a) for all î < è, Nî is active with top extender F if and only if there is some î

such that î = î + 1 and F is the unique extender G such that (Mî ;∈, E
Mî , G) is

a premouse and G is certified by a collapse, and
(b) è is largest such that such a K c construction exists.
If è = OR + 1, and if for every î, if there is an extender G such that
(Mî ;∈, E

Mî , G) is a premouse andG is certified by a collapse, then there is a unique
such G , then we write K c for MOR and say that the certified K c exists, or simply:
K c exists.

The following theorem is a version of [19, Theorem 9.14], which produced such
a theorem for the first time. (Cf. also [1, Theorem 2.28] and [6, §1, Theorem 1].)

Theorem 2.8. Let (Nî ,Mî : î < è) be the certifiedK
c construction, and let î < è.

Let n < ù, and let
ð : P → Nî
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be a weak n-embedding, where P is countable. Let T be a countable putative n-
bounded normal iteration tree on P . Let â be the length of T . Then exactly one of
the following holds.
(a) â = â + 1 for some â and for some î ≤ î and some k < ù there is a weak
k-embedding

ó : MT
â

→ Nî .

Moreover, if there is no drop along [0, â]T , then î = î, k ≤ n, and ð = ó ◦ ðT
0â
.

(b) there is a maximal branch b through T such that for some î ≤ î and some
k < ù, there is a weak k-embedding

ó : MTb → Nî .

Moreover, if there is no drop along b, then î = î, k ≤ n, and ð = ó ◦ ðTb .

Proof. By Lemma 2.6, every certified extender is robust. The theorem there-
fore follows immediately from [6, §1, Theorem 1], which shows what we aim
to see from the hypothesis that (Nî ,Mî : î < è) is a “robust K

c construction.”
⊣ (Theorem 2.8)

[1, Theorem 2.28] states a more detailed version of what may be shown along
these lines.
We want to stress that we could not have used [8, §2] in the proof of Theorem 2.8
because (as we observed after the proof of Lemma 2.4) we need A ∩ ð(κ) as
a hypothesis in Lemma 2.4. Because of this, our use of [6] rather than [8] avoids
problems in arguments later in the paper. However we show in the last section that
these problems can be surmounted in such a way that the main results of this paper
can be based on [8] after all.
In order to show now that the certified K c exists, we need an anti large cardinal
hypothesis. The following definition is from [1, Definition 3.1].

Definition 2.9. LetM be a premouse. ThenM is called domestic iff there is no
α ≤M ∩OR such that
(a)M ||α is active, and if κ = crit(F ), then
(b) κ is a limit of ordinals ä such thatM |α |= “ä is a Woodin cardinal,” and
(c) κ is a limit of ordinals ì such thatM |κ |= “ì is a strong cardinal.”

The following theorem is the main result of [1], cf. [1, Theorem 3.2]. (Cf. [1] on
the concepts which are used in this statement.)

Theorem 2.10. Let (Nî ,Mî : î < è) be the maximal certified K
c construction,

and let î < è. Let n < ù, and let

ð : P → Nî

be a weak n-embedding, where P is countable. Assume î to be the least î such that
there is some weak n-embedding ð : P → Nî , and let ð be the leftmost ð such that
ð : P → Nî is a weak n-embedding. LetT be a countablen-boundednormal iteration
tree onP of limit length.
If Nî is domestic, then there is at most one cofinal branch b through T which is
super-realizable.

As explained in [1] (cf. [1, Corollary 3.3]), Theorem 2.8 and Theorem 2.10 show
the following.
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Corollary 2.11. If there is no non-domestic premouse, then the certifiedK c exists
and is a mouse.

We shall need below that there is no “sharp” for K c in the sense of the following
lemma which was shown in [5].

Lemma 2.12. Suppose that the certified K c exists, but there is no superstrong car-
dinal in K c . Let κ < ë be cardinals of K c , and let ô = κ+K

c

and ç = ë+K
c

.
There is no

ð : K c |ô →Σ0 K
c |ç

such that κ = crit(ð), ð(κ) = ë, and ð ↾ (P (κ) ∩K c) is certified by a collapse.
Moreover, if ë is regular in V , then there is no mouse S ▷ K c |ë such that there is
some

ð : K c |ô →Σ0 S

such that κ = crit(ð), ð(κ) = ë, and ð ↾ (P (κ) ∩K c) is certified by a collapse.

Proof. Let us first prove the first statement. Assume that there is some such ð.
Let F be the extender on K c derived from ð, i.e., F = ð ↾ (P (κ) ∩ K c). Set
ç̃ = sup(ð”ô) ≤ ç. Notice that ð : K c |ô →Σ1 K

c |ç̃. We may consider the potential
premouseM = (K |ç̃, F ) which results from K |ç̃ by adding F as its top extender.
Let α < ë be the least cutpoint of F (cf. [24], i.e., if f ∈ κκ ∩K c and î < α, then
ð(f)(î) < α) such that F |α /∈ K c |ç̃, or α = ë if there is no such cutpoint. We may
factor ð as

K c |ô →ð N = Ult0(K
c |ô, F |α)→k K c |ç̃,

where crit(k) = α and k(α) = ë. By the Condensation Lemma 1.3,N ◁K c |ç̃ and
of course α is a cardinal of K c . Set è = N ∩OR = sup(ð”ô).
Notice that (K c |è, F |α) is now a premouse (by the choice of α), and of course
F |α is certified by a collapse.
Let (ãi : i < è) be increasing and cofinal in è such that for all i < è,
ñù(K c ||ãi) = α. For each i < è, let îi be least such that for all î ≥ îi ,

ñù(Mî) ≥ α andK
c ||ãi E Mî .

(Here and in what follows, (Nî ,Mî : î ≤ OR) is the certified K
c construction). By

thinning out the sequence (ãi : i < è) if necessary, we may and shall also assume
that for each i < è, (P (α) ∩K c ||(ãi+1 + 1)) \ K c ||(ãi + 1) 6= ∅, so that K c ||ãi+1 is
not an initial segment of Mîi . Setting î

∗ = sup({îi : i < è}), î∗ is a limit ordinal
andK c |è E Nî∗ . But we cannot have thatK

c |è◁Nî∗ , as otherwiseK
c |è E Nî for

all sufficiently large î < î∗, and hence for all sufficiently large i < è, K c ||ãj E Mîi
for all j < è.
Therefore,K c |è = Nî∗ = Mî∗ . Because F |α is certified by a collapse, this means
that Nî∗+1 = (Mî∗ , F |α), i.e., Nî∗+1 results from Mî∗ by adding F |α as its top
extender. But we must now in fact haveNî∗+1 ◁K

c .
However, ñ1((Mî∗ , F |α)) < α, because F |α is not superstrong. Thus α is not
a cardinal in K c . Contradiction!
The second statement is shown in exactly the same way. Notice that if ë is regular
in V , then α, the least cutpoint of F , must actually be strictly smaller than ë, so
that the proof still goes through. ⊣ (Lemma 2.12)
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§3. Stacking mice. We now turn to the key ingredient for the proofs of Theo-
rems 0.1 and 0.3, a “covering lemma” for stacks of mice.
Throughout this section, wework under the hypothesis that the certifiedK c exists
and that there is no premouse with a superstrong extender. The aim is now to stack
mice over K c ||κ, where κ is a regular cardinal (in V ).

Lemma 3.1. Assume thatK c exists and that there is no premousewith a superstrong
extender. Let κ be an uncountable regular cardinal. For h ∈ {0, 1}, letM h be a sound
mouse such thatK c ||κ EM h and ñù(M

h) = κ.5 ThenM 0 EM 1 orM 1 E M 0.

Proof. This is an immediate consequence of Lemma 1.4. Let

ð : H → Hè ,

where è > κ is regular, H is transitive, {κ,M 0,M 1} ⊂ ran(ð), and crit(ð) =

ð−1(κ). Set κ = ð−1(κ), M
0
= ð−1(M 0), and M

1
= ð−1(M 1). By Lemma 1.4,

for h ∈ {0, 1}, M
h
◁ M h , so that in fact M

h
◁ K c ||κ, as ñù(M

h
) = κ < κ.

Therefore,M
0

E M
1
orM

1
E M

0
, so thatM 0 E M 1 orM 1 E M 0 by elementarity.

⊣ (Lemma 3.1)

In the light of Lemma 3.1, we may let S denote the “stack” of sound mice
M D K c ||κ with ñù(M ) = κ.

Definition 3.2. Assume that K c exists and that there is no premouse with a su-
perstrong extender. Let κ be an uncountable regular cardinal. Let S = S (κ) denote
the unique premouse such that N E S iff there is some sound mouse M D K c ||κ
with ñù(M ) = κ such thatN E M .

In the situation of Definition 3.2, K c |κ+K
c

E S . However, K c |κ+K
c

◁ S seems
possible. We are now going to show that S does not have a “last mouse” and that
it is in fact itself a mouse:

Lemma 3.3. Assume thatK c exists and that there is no premousewith a superstrong
extender. Let κ be an uncountable regular cardinal, and let S = S (κ). For allM E S

with ñù(M ) = κ there is some N ◁ S such that N ▷M . In particular, S |= ZFC
−

and κ is the largest cardinal of S . Moreover, S is a mouse.

Proof. Suppose first that S = M , where M is a sound mouse with M D K c ||κ
and ñù(M ) = κ. Let â > M ∩ OR be least such that ñù(Jâ [M ]) ≤ κ.

6 (In fact,
â = (M ∩OR) + ù.)
Let us suppose thatñù(Jâ [M ]) = κ. Then Jâ [M ] cannot be amouse, as otherwise
Jâ [M ] E S . Pick a countable N and some k : N → Jâ [M ] such that N is not

ù1 + 1 iterable. Pick a fully elementary ð : Jâ [M ] → Jâ [M ] such that crit(ð) =

ran(ð)∩κ and ran(ð) ⊃ ran(k). ThenM ◁M by Lemma 1.4, and therefore in fact
Jâ [M ]◁K

c ||κ, so thatN is ù1 + 1 iterable after all. Contradiction!

Therefore, ñù(Jâ [M ]) < κ. An application of the Condensation Lemma 1.3 then
gives a contradiction as follows.

5Notice that we in fact require ñù(M h) = κ rather than ñù(M h) ≤ κ. On the other hand, we allow

M h to have extenders EM
h

í on its sequence which “overlap” κ, i.e., such that crit(EM
h

í ) ≤ κ and í > κ.
6We here use the following notation. If N = (Jä [E];∈, E, Eä) is a premouse, and if ä

′ > ä, then
Jä′ [N ] = (Jä′ [E

⌢Eä ];∈, E
⌢Eä).
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Let

ð : H → Hè ,

where è > κ is regular,H is transitive, {κ,M , â} ⊂ ran(ð), and crit(ð) = ð−1(κ) >
ñù(Jâ [M ]). Set κ = ð

−1(κ), M = ð−1(M ), and â = ð−1(â). By Lemma 1.4,

M ◁K c ||κ, so that Jâ [M ] cannot be the crit(ð)-core of Jâ [M ] (using the fact that

there are no extenders aboveM on the sequence of Jâ [M ]); similarily, Jâ [M ] cannot

be an ultrapower of an initial segment of Jâ [M ]. We also certainly cannot have that

Jâ [M ] ◁ Jâ [M ], as otherwise the witness to ñù(Jâ [M ]) = ñù(Jâ [M ]) would be an

element of Jâ [M ]. This gives a contradiction with Lemma 1.3.
We have shown that for all M E S with ñù(M ) = κ there is some N ◁ S with
M ◁N . We are left with having to verify that S is a mouse.
Well, if not, then there is some countableN and some k : N → S such thatN is
notù1+1 iterable. Pick a fully elementary ð : S → S such that crit(ð) = ran(ð)∩κ
and ran(ð) ⊃ ran(k). By Lemma 1.3 applied to cofinally many initial segments of
S we get that S ◁ S and in fact S ◁K c ||κ. Therefore,N is ù1 +1 iterable after all.
Contradiction! ⊣ (Lemma 3.3)

The above argument in fact shows that in the situation of Lemma 3.3, L[S ] is
a mouse and S ∩OR is the cardinal successor of κ in L[S ].
The following “weak covering lemma” for stacks is the key fact. It is due to the
first author. The fact that κ is regular is used heavily in its proof.

Theorem 3.4. Assume that K c exists and that there is no premouse with a super-
strong extender. Let κ ≥ ℵ3 be an ù-closed regular cardinal with 2<κ = κ, and let
S = S (κ). Suppose that κ is a limit cardinal in K c . Then cfV (S ∩OR) ≥ κ.

Proof. Let us write ç = cfV (S ∩ OR). Let (Mi : i < ç) be such that for every
i < ç,Mi is a soundmouse with ñ1(Mi ) = κ (in particular,Mi◁S ),Mi◁Mi+1, and
(Mi : i < ç) is cofinal in S , i.e, for every N ◁ S there is some i < ç with N E Mi .
(Such a sequence exists by Lemma 3.3.)
Let us now suppose that ç < κ. Let è >> κ. We may then pick a continuous
chain (Xα : α < κ) of elementary substructures ofHè of size< κ such that {S , κ}∪
{Mi : i < ç} ⊂ X0 and for all α < κ, Xα ∩ κ ∈ κ, Xα ∈ Xα+1, and ùXα+1 ⊂ Xα+1.
Set κα = Xα ∩ κ, and let

ðα : Sα → S

be the inverse of the transitive collapse of Xα , restricted to the preimage of S . In
particular, ðα has critical point κα . By Lemma 1.4, for every α, Sα E K c ||κ+Sα , i.e.,
if we let ëα = Sα ∩ OR, then Sα = S ||ëα = K c ||ëα or Sα = S |ëα = K c |ëα and

ëα ≤ κ+Sα = κ
+Kc

α . Of course, cfV (ëα) = ç, as beingwitnessed by (ð−1α (Mi) : i < ç).
Let E0 be the set of all α < κ such that α is a successor ordinal or a limit ordinal
of uncountable cofinality. Wemust in fact have ëα < κ+Sα = κ

+Kc

α wheneverα ∈ E0.
This is because if α ∈ E0 and ëα = κ+K

c

α , then because Xα is countably closed, κ is
ù-closed, and 2<κ = κ, then the extender derived from ðα is certified by a collapse.
This contradicts Lemma 2.12.
For α ∈ E0, letPα be the leastP such thatK c ||ëα E P ◁K c and ñù(P ) ≤ κα .
In particular, ëα = κ

+Pα
α . Because κ is a limit cardinal in K c , there must be a club

C ⊂ κ such that for all α ∈ C , κα = α and α is a cardinal in K c . In particular,
ñù(Pα) = κα (rather than ñù(Pα) < κα) whenever α ∈ E0 ∩ C .
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Write E = E0 ∩ C . Notice that E is stationary, and in fact E is closed at points
of uncountable cofinality. Now let, for α ∈ E,

ð̃α : Pα → Qα = ultn(Pα , ðα),

where n is least such that ñn+1(Pα) = κα < ñn(Pα). Notice that Qα is a mouse
because ðα is certified (by a collapse).7

In order to get a contradiction, it suffices to see that there is some α ∈ E
such that ñù(Qα) = κ, because then S ◁ Qα would contradict the definition of S .
Let us assume that for all α ∈ E we have that ñù(Qα) < κ, and work towards
a contradiction.
For α ≤ â < κ we may set ðαâ = ð

−1
â ◦ ðα . Let

ð̃αâ : Pα → Q âα = ultn(Pα , ðαâ ),

where n is least such that ñn+1(Pα) ≤ κα < ñn(Pα). Notice that Q
â
α is a mouse due

to the existence of the canonical factor map k : Q âα → Qα which sends [a,f]ðαâ to

[óâ (a), f]ðα , where a ∈ [ëâ ]
<ù , f : [ä]Card(a) → Pα for some ä such that ðαâ(ä) >

max(a), and f comes from a level n Skolem term overPα (cf. [9, p. 34]).
Fix α ∈ E for a while. Let (Yâ : â < κ) be a continuous tower of elementary
substructures of Hè of size < κ such that Pα ∪ {Pα ,S ,Qα , ð̃α} ∈ Y0 and for all
â < κ, Yâ ∩ OR ∈ κ and Yâ ∈ Yâ+1. There is a club Cα ⊂ C such that for all

â ∈ Cα , ran(ðâ)∩ S = Yâ ∩ S . For â ∈ Cα , let óâ : H â → Hè be the inverse of the
transitive collapse of Yâ . Let â ∈ Cα . We may define

ϕ : Q âα → ó−1â (Qα)

by setting
ϕ(ð̃αâ (f)(a)) = ó

−1
â ◦ ð̃α(f)(a)

for a ∈ [ëâ ]
<ù , f : [ä]Card(a) → Pα for some ä such that ðαâ(ä) > max(a), and f

comes from a level n Skolem term over Pα . This is well-defined by the following
reasoning. Let a, f, . . . be as just described, and let ø be rΣn . Then we have that

Q
â
α |= ø(ð̃αâ(f)(a), . . . ) iff

a ∈ ðαâ({(u, . . . ) : Pα |= ø(f(u), . . . )}) iff

óâ(a) = ðâ(a) ∈ ðα({(u, . . . ) : Pα |= ø(f(u), · · · )}) iff

Qα |= ø(ð̃α(f)(óâ(a)), . . . ) iff

ó−1(Qα) |= ø(ó
−1 ◦ ð̃α(f)(a), . . . ).

But ϕ is easily seen to be surjective: we have that Qα = the set of all ð̃α(f)(a),
where a ∈ [S ∩OR]<ù , f : [ä]Card(a) → Pα for some ä such that ðαâ (ä) > max(a),
and f comes from a level n Skolem term over Pα , so that ó−1(Qα) = the set of
all ó−1 ◦ ð̃α(f)(a), where a ∈ [ëâ ]

<ù , f : [ä]Card(a) → Pα for some ä such that
ðαâ (ä) > max(a), and f comes from a level n Skolem term over Pα . We have
shown that

Q
â
α = ó

−1
â (Qα).

7Qα is a premouse and not a protomouse. For this, we must show that F Qα is a total extender
over Qα . Suppose otherwise. Let ì = crit(FPα ). Then ð̃ is discontinuous at (ì+)Pα . It follows that
(ì+)Pα = κα . Via the elementarity of ð, this his leads to the contradiction that κ is a successor cardinal
in K c .
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In particular, we now have that for all â ∈ Cα , ñù(Q
â
α ) < κâ = â .

Now pick â ∈ E ∩ △α<κCα such that cf
V (â) 6= ç. As κ ≥ ℵ3, this choice is

possible. We have that â ∈ Cα for each α ∈ E ∩ â , so that ñù(Q
â
α ) < κâ = â for

each α ∈ E ∩ â .
We now claim that there is some α ∈ E ∩ â such that

Q
â
α = Pâ .

As ñù(Pâ ) = κâ , this gives a contradiction.
Let n < ù be such that ñn+1(Pâ ) = κâ = â < ñn(Pâ). By Lemma 1.2,

ç = cfV (â+Pâ ) = cfV (ëâ ) = cf
V (ñn(Pâ )). Let us pick a sequence (äi : i < ç) of

ordinals cofinal in ñn(Pâ) = P
n
â ∩OR. Let us writeP = P nâ .

For i < ç, let

ói : N i ∼= Hull
SPäi
1 (â ∪ {pn+1(Pâ )}),

whereN i is transitive. We may construe ói as a Σ0-elementary map fromN i toP .
So by the Downward Extension of Embeddings Lemma (cf. [16, §§3 and 5]), there
is some transitive Ni such that N i = N ni and there is a weakly rΣn+1 elementary
embedding

ói : Ni → Pâ

with ói ⊃ ó i . By the Condensation Lemma 1.3,Ni ◁Pâ |â
+Pâ .

Let us write M αi = ð
−1
α (Mi), for every α < κ and i < ç. Because cf

V (â) 6= ç,
there is some α < â and sets T , T ′ ⊂ ç which are both cofinal in ç such that

i ∈ T =⇒M âi , pM âi
∈ HullP1 (α ∪ {pn+1(Pâ)})

and

i ∈ T ′ =⇒ Ni , ó
−1
i (pn+1(Pâ )) ∈ ran(ðαâ ).

We claim that

HullP1 (α ∪ {pn+1(Pâ)}) ∩ ëâ = ran(ðαâ ) ∩ ëâ .(1)

Well, first let î ∈ ran(ðαâ) ∩ ëâ . Let ðαâ(î) = î. Then î ∈ Hull
M
α
i

1 (α ∪ {pMαi })
for some i ∈ T . But then

î ∈ Hull
M
â
i

1 (α ∪ {p
M
â
i
}) ⊂ HullP1 (α ∪ {pn+1(Pâ)}).

Now let î ∈ HullP1 (α ∪ {pn+1(Pâ )}) ∩ ëâ . We must then have î ∈ Hull
SPäi
1 (α ∪

{pn+1(Pâ)}) for some i ∈ T ′. Fix such i ∈ T ′, and pick a Σ1 Skolem term

ô and a parameter ~å ∈ [α]<ù such that î = ôS
P

äi (~å, pn+1(Pâ)). We have that

â ∈ HullP1 (α ∪ {pn+1(Pâ )}) by (1), “⊃.” We may therefore assume i ∈ T
′ to

be such that â ∈ Hull
SPäi
1 (α ∪ {pn+1(Pâ)}). But then Hull

SPäi
1 (â ∪ {pn+1(Pâ )}) |=

“There is a surjection from â onto î,” and therefore we must have that î + 1 ⊂

Hull
SPäi
1 (â ∪{pn+1(Pâ)}). This implies that î ∈ Hull

N i
1 (â ∪{ó−1i (pn+1(Pâ ))}), and

in fact that î = ôN i (~å, ó−1i (pn+1(Pâ)). We therefore also get that

î ∈ HullN i1 (α ∪ {ó−1i (pn+1(Pâ ))}) ⊂ ran(ðαâ ).
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We have shown (1). Now let

ó : P ∼= HullP1 (α ∪ {pn+1(Pâ )}).

By the Downward Extension of Embeddings Lemma (cf. [16, §§3 and 5]), there is
some transitive P ∗ such that P = (P ∗)n and there is a weakly rΣn+1 elementary
embedding

ó : P ∗ → Pâ

with ó ⊃ ó. By the Condensation Lemma 1.3, P ∗ ◁Pâ . By (1), P |α+P = Sα =
Pα |α+Pα , so that in factP ∗ = Pα . But then again by (1), we must have that

Q
â
α = ultn(Pα ;ðαâ) = ultn(P

∗;ó ↾ P ∗|ëα) = Pâ .

Contradiction! ⊣ (Theorem 3.4)

In the situation of Theorem 3.4, there can be no mouse Q D S with ñù(Q ) ≤ κ,
by the definition of S and by Lemma 1.2. We do not know, though, if there can be
some mouse Q ▷K c ||κ such that ñù(Q ) < κ.

Corollary 3.5. Assume that K c exists and that there is no premouse with a su-
perstrong extender. Let κ be an ù-closed regular cardinal with 2<κ = κ, and let
S = S (κ). Suppose that κ is a limit cardinal in K c . Then there is no mouseM ▷ S
such that ñù(M ) < κ andM is sound above κ.

Proof. Suppose that there were such a mouseM . We may and shall assume that
M is a least counterexample, so that S ∩ OR = κ+M . Let n < ù be least such
that ñ = ñn+1(M ) < κ ≤ ñn(M ). If ñn(M ) = κ, then cf(ñn+1(M )+M ) = κ by
Lemma 1.2, and thus in fact ñn+1(M )+K

c

= ñn+1(M )+M = κ. If ñn(M ) > κ, then
cf(ñn+1(M )+M ) = cf(κ+M ) = κ by Lemma 1.2, and thus again ñn+1(M )+K

c

=
ñn+1(M )

+M = κ. Hence in both cases κ is a successor cardinal in K c . Contradic-
tion! ⊣ (Corollary 3.5)

The proof of Theorem 3.4 also shows the following.

Theorem 3.6. Assume that K c exists and that there is no premouse with a super-
strong extender. Assume CH, and let S = S (ℵ2). Suppose that ℵ2 is a limit cardinal
in K c . Then cfV (S ∩OR) > ù.

Proof. Otherwise we may pick â with cfV (â) + ù1 6= ù = ç in the proof of
Theorem 3.4. ⊣ (Theorem 3.6)

§4. K c and �(κ). A sequence (Cí : í < α) is coherent iff for all limit ordinals
í < α, Cí ⊂ í is club in í and Cí = Cí ∩ í whenever í is a limit point of Cí . Here,
α is allowed to be a successor ordinal, say α = ë+ 1, where ë is a limit ordinal, in
which case Cë is called a thread through (Cí : í < ë). We say that �(ë) holds iff
there is some coherent sequence (Cí : í < ë) without a thread through it. It is easy
to see that�κ implies �(κ+).
Our proofs of Theorems 0.1 and 0.3 will need a result of Todorcevic (cf. [21])
which says that if PFA holds, then for all κ with cf(κ) ≥ ù2, �(κ) fails. Another
ingredient for the proofs of Theorems 0.1 and 0.3 is a result of Zeman and the
second author (cf. [14]) according to which if M is a mouse, then in M , �κ holds
for all cardinals κ which are not subcompact.
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Theorem 4.1. Suppose there is no non-domestic premouse, or just suppose thatK c

exists and there is no subcompact cardinal inK c . Let κ ≥ ℵ3 be regular and countably
closed. If 2<κ > κ, then let us also suppose that the K c of V Col(κ,κ) exists and there
is no subcompact cardinal in the K c of V Col(κ,κ). Then one of the following is true:
(a) �(κ),
(b) �κ.

Proof. Let us first prove this under the additional hypothesis that 2<κ = κ.
If κ is a successor cardinal in K c , say κ = í+K

c

, then �í and hence also �(κ)
holds true in V by [14]. Let us thus assume κ to be a limit cardinal in K c , and
let us also assume that �κ fails. Let S = S (κ). Since �κ holds in S by [14], we
shall have that κ+S < κ+V . In the light of Theorem 3.4, we must then have that
κ = cf(S ∩OR).
By Corollary 3.5, there is no mouseM ▷S such that ñù(M ) < κ andM is sound
above κ.

Claim. The �κ-sequence of S , as defined by Zeman and the second author
cannot be threaded.

Proof. Suppose otherwise. Say D threads the canonical �κ-sequence of S . Let
ë = (κ+)S . (I.e., ë is the set of ordinals of S .) Then D is club in ë. If [12, Lemma
4.6] can be applied here, then there is a unique premouse Q such that Q extends
S and collapses ë. (For this, we use that ë has uncountable cofinality.) However,
since there is no mouseM ▷ S such that ñù(M ) < κ andM is sound above κ, we
must have ñù(Q ) = κ; but this contradicts the definition of S , which would make
Q a proper initial segment of S .
Now in fact [12, Lemma 4.7], as stated, applies toK rather than to S . But its proof
shows that Q is a mouse. In that proof, substitute S forK and our Theorem 4.4 for
the weak covering theorem for K , and stop at line 19 on page 110. ⊣ (Claim)

This shows Theorem 4.1 under the additional hypothesis that 2<κ = κ.
Let us now drop the hypothesis that 2<κ = κ, so that we may no longer directly
apply Theorem 3.4. However, insideV Col(κ,κ) wedo have thatκ is regular, countably
closed, and 2<κ = κ. We may thus run the above argument with the K c and the
S(κ) of V Col(κ,κ). Let us write

(K c)∗ = (K c)V
Col(κ,κ)

and

S
∗ = (S (κ))V

Col(κ,κ)

.

So S∗ is the stack over (K c)∗|κ produced inside V Col(κ,κ). Notice that S∗ ∈ V by
the homogeneity of Col(κ, κ).
We may now argue as above to get either �(κ) or else �κ. Notice that the

�-sequences of S∗ are in V by S∗ ∈ V , that S∗ ∩OR ≤ κ+V , that S∗ ∩OR < κ+V

implies cfV (S∗ ∩ OR) = κ, and that the unthreadability of the �κ-sequence of
S∗ in V Col(κ,κ) trivially implies the unthreadability of the �κ-sequence of S∗ in V .

⊣ (Theorem 4.1)

Proofs of Theorems 0.1 and 0.3 and of Corollary 0.2. Theorem 0.1 is imme-
diate. To show Corollary 0.2, suppose PFA to hold. This implies ℵℵ0

2 = ℵ2, so
that if the conclusion of Corollary 0.2 were to fail, Theorem 4.1 would give �(ℵ3)
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or else �ℵ3 (which implies �(ℵ4)). On the other hand, by [21], both �(ℵ3) as
well as �(ℵ4) fail under PFA. Contradiction! Theorem 0.3 is also immediate.

⊣ (Theorems 0.1, 0.2, and 0.3)

§5. Weak covering at weakly compact cardinals. In this section, we prove Theo-
rems 0.4 and 0.5.
The following Lemma is due to the third author.

Lemma 5.1. Assume thatK c exists and that there is no premousewith a superstrong
extender. Let κ be a weakly compact cardinal, and let S = S (κ) (cf. Definition 3.2).
Then S ∩OR = κ+V .

Proof. Set ç = S ∩OR. Suppose that ç < κ+. We aim to derive a contradiction.
Let è > κ be a < κ-closed regular cardinal. Let

ó : M →Σ100 V

be such that M is transitive, Card(M ) = κ, S ∪ {è} ⊂ ran(ó), and <κM ⊂ M .
InsideM , there is some

÷ : P →Σù H
M
ó−1(è)

such that P is transitive, Card(P) = κ inM , S ⊂ ran(÷), and <κP ⊂ P (inM , and
therefore also in V ).
Because κ is weakly compact, there is some

ð : M →Σù N,

where N is transitive, <κN ⊂ N , and crit(ð) = κ. Let us write W = (K c)N , so
that ð(S ) = (S (ð(κ)))N is the stack of sound mice end-extending W ||ð(κ) and
projecting to ð(κ) from the point of view of N . Let us also write ë = ð(κ).
Notice that ð(S ) is a mouse, as ð is countably complete.

Claim 1. S =W |κ+W .

Proof. By the Condensation Lemma 1.3, S ◁ð(S ), and therefore S EW |κ+W .
If S ◁W |κ+W , then there is someM ▷ S such thatM ◁W |κ+W and ñù(M ) = κ.
But because any such M is a sound mouse, this contradicts the definition of S .
Hence S =W |κ+W . ⊣ (Claim 1)

Claim 2. ð ↾ P ∈ N .

Proof. This is by Kunen’s old argument. As P (κ) ∩M ⊂ N , every set in M
which is hereditarily of size≤ κ inM is also an element ofN . In particular, P ∈ N ,
and if f : κ → P is bijective, f ∈ M , then f ∈ N . For x ∈ P, say x = f(î),
we have that ð(x) = ð(f(î)) = ð(f)(î), so that ð ↾ P may be computed inside N
from f, ð(f). ⊣ (Claim 2)

Let us define an extender F by F = ð ↾ S . Of course, F = (ð ↾ P) ↾ S , so that
F ∈ N by Claims 1 and 2.

Claim 3. N |= “F is certified by a collapse.”

Proof. Set k = ð(÷) ◦ (ð ↾ P). By Claim 2, k ∈ N . We have that

k : P →Σù ð(H
M
ó−1(è)) = H

N
ð◦ó−1(è),
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where ð ◦ó−1(è) is a< κ-closed cardinal inN and <κP ⊂ P inN (as well as in V ).
Because F = k ↾ S , k witnesses that F is certified by a collapse inside N (cf. [8]).

⊣ (Claim 3)

Let us consider the potential premouse S∗ = (ð(S );F ) which results from ð(S )
by adding F as its top extender. For all we know, S∗ need not satisfy the Initial
Segment Condition (cf. [24, p. 283]), though. Let α ≤ ë be the least cutpoint of S∗,
i.e., α is least such that if f ∈ κκ ∩ S and î < α, then iF (f)(î) < α. We then have
that

S
∗∗ = (ð(S )|α+ð(S );F |α)

does satisfy the Initial Segment Condition and is hence a premouse. Notice that
S∗∗ ∈ N .

Case 1. α < ë.

Then ð(S )|α+ð(S ) =W |α+ð(S ). However, F |α is certified by a collapse inside N
by Claim 3, so that we may apply Lemma 2.12 inside N to get a contradiction.

Case 2. α = ë, i.e., S∗∗ = S∗.

Notice that the generators of F must be unbounded in ë, as ë is an inaccessible
cardinal ofN . Therefore, S∗ is a premouse with a superstrong extender. Using [3],
S∗ can in fact easily be verified to be a mouse. Contradiction! ⊣ (Lemma 5.1)

Proofs of Theorems 0.4 and 0.58 . Suppose one of the conclusions of Theo-
rems 0.4 or 0.5 to fail. Let S denote S (κ) as constructed in V Col(κ,κ

+). We may
apply Lemma 5.1 inside V Col(κ,κ

+) to see that κ+V has size κ in S . However, S ∈ V
by the homogeneity of Col(κ, κ+). Contradiction! ⊣ (Theorems 0.4 and 0.5)

§6. An amendment. In the proofs of ourmain Theorems, we cannot directly work
with the K c construction of [8], as the definition of the K c of [8] makes reference
to some A ⊂ OR such that V = L[A]. If 2<κ > κ in the situation of the proof of
Theorem 4.1, then for theK c ofV Col(κ,κ) as [8] would define it,K c ||κ will be defined
by way of some A ∩ κ ⊂ κ which in V Col(κ,κ) codes all of Hκ and can therefore not
exist in V , so that there is no reason forK c ||κ to be in V . A similar problem arises
in the proof of Theorems 0.4 and 0.5. We also refer the reader to the discussion
right after the proof of Theorem 2.8.
In this final section, we describe how to manage using the K c construction of [8]
(and thereby avoid having to cite [6]) in order to arrive at proofs of our main
theorems.
Let κ ≥ ℵ3 be regular and countably closed, but possibly 2<κ > κ. The goal is
to isolate some A ⊂ κ and use it to locally define a K c ||κ, which we shall denote

by K c,A||κ, in a fashion as in [8] such that even in V Col(κ,κ) and also in V Col(κ,κ
+),

K c,A||κ will have the key “universality” properties which are needed so as to arrive
at proofs at our main theorems.
To commence, we need a localization of the concept of being “certified” from [8].
Let us from now on fix a regular and countably closed cardinal κ ≥ ℵ3.

Definition 6.1. Let A ⊂ κ. Let F ∈ Hκ be an extender with ì = crit(F ) and
ë = F (κ). We say that F is A-certified iff for all countable u ⊂ ë and for all
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countable Y ⊂ dom(F ), there is some order-preserving ô : u → ì such that for all
α ∈ u and X ∈ Y , α ∈ F (X ) iff ô(α) ∈ X , and

(Lκ[A];∈, (α : α ∈ u)) ≡Σ1+ (Lì[A];∈, (ô(α) : α ∈ u)).

Cf. [8, Lemma 1.8] for a formulation of “being certified” which also uses types as
does Definition 6.1.

Definition 6.2. Let A ⊂ κ The maximal A-certified K c ||κ construction is the
unique K c construction

(Nî ,Mî : î < è)

such that
(a) for all î < è,Nî is activewith top extenderF if andonly if there is some î such

that î = î + 1 and F is the unique extender G ∈ Lκ[A] such that (Mî ;∈, E
Mî , G)

is a premouse and G is certified by a collapse, and
(b) è ≤ κ + 1 is largest such that such a K c construction exists.
If è = κ+1, then we writeK c ||κ forMκ and say that theA-certifiedK c ||κ exists.

The arguments of [8] show the following. (Compare with Corollary 2.11.)

Lemma 6.3. If there is no non-dometic premouse, then for every A ⊂ κ the
A-certified K c ||κ exists and is a mouse.

We now want to pick an A ⊂ κ so that we have the appropriate version of
Lemma 2.12 for the A-certified K c ||κ. Let us assume that for every A ⊂ κ the
A-certified K c ||κ exists.
In order to find an A as desired, let us construct a sequence

((Aî : î < κ), (ãî : î < κ), (Nî ,Mî : î < κ))

such that the following hold true for every î < κ.

1. Aî ⊂ ãî and if î ≤ î, then Aî = Aî ∩ ãî .
2. For every A ⊂ κ with Aî = A ∩ ãî , Lãî [Aî] ≺Σ1+ Lκ[A].
3. Lãî [Aî] |= “(Ni ,Mi : i ≤ î) is the sequence consisting of the first î+1models
from the maximal Aî-certified K

c ||κ construction.”

4. If î = î + 1, whereMî does not have a top extender, and if there are ã ≥ ãî ,
B ⊂ ã, and F ∈ Hκ such that Aî = B ∩ ãî , Lã [B] ≺Σ1+ Lκ[A] for every

A ⊂ κ withB = A∩ã, and settingM = (Mî ;∈, E
Mî , F ) andN = the core of

M , Lã [B] |= “(Ni ,Mi : i < î)⌢(M ,N ) is the sequence consisting of the first
î + 1 models from the maximal B-certified K c ||κ construction,” then there is
an F ∈ Lãî [Aî ] such thatMî = (Mî ;∈, E

Mî , F ) andNî = the core ofMî .

There is no problem with this construction. The second item can be arranged by
having ãî = sup{ã

i
î |i < ù1}, where each Lã iî [Aî ∩ ã

i
î ] is closed under ù-sequences

(here we use Card(α)ℵ0 < κ) and each Lã i+1
î
[Aî ∩ ã

i+1
î ] contains witnesses to all Σ1+

statements with parameters in Lã i
î
[Aî ∩ ã

i
î] which are true in some Lκ[A], where

A ⊂ κ is such that A ∩ ã iî = Aî ∩ ã
i
î .

Let A ⊂ κ be given by (Aî : î < κ), i.e.,

A =
⋃

î<κ

Aî .
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Let us write K c,A||κ for the premouse of height κ which is produced by

(Nî ,Mî : î < κ).

We shall now prove the following version of Lemma 2.12.

Lemma 6.4. Let A and K c,A||κ be defined as above, and suppose that there is no
inner model with a superstrong cardinal. Let S denote the unique premouse such that
N E S iff there is some sound mouseM D K c,A||κ with ñù(M ) = κ and N E M .
There is then no elementary embedding

ð : H → Hκ++

such that H is transitive and ùH ⊂ H , ì = crit(ð) < κ = ð(ì), {A,S} ⊂ ran(ð),
andP (ì) ∩K c,A||κ ⊂ H .

Proof. We imitate the proof of Lemma 2.12. Suppose there were some such
embedding ð. Let F = ð ↾ P (ì) ∩ K c,A||κ. As in the proof of Lemma 2.12, there
is then some α < κ and some î∗ < κ such that (Mî∗ , F |α) would be a premouse.
The proof of Lemma 2.4 shows that F |α isA-certified in the sense of Definition 6.1.
We claim that with î = î∗, F |α witnesses that the hypothesis in the last item of
the above recursive definition of

((Aî : î < κ), (ãî : î < κ), (Nî ,Mî : î < κ))

is satisfied. This will finish the proof of Lemma 6.4, because there will then be some
G ∈ Lκ[A] such thatMî∗+1 results fromMî∗ by adding G as a top extender, which
– as in the proof of Lemma 2.12 – contradicts the fact that α must be a cardinal in
K c,A||κ.
Let ((uk , Yk) : k < Card(α)

ℵ0) be a list of all pairs (u,Y ) such that u ⊂ α is
countable and Y ⊂ P (ì) ∩K c,A||κ is countable. As Lãî∗ [A ∩ ãî∗ ] ≺Σ1+ Lκ[A] and

because F |α is A-certified, we may let (ôk : k < Card(α)
ℵ0) be such that for all

â ∈ uk and X ∈ Yk , â ∈ F |α(X ) iff ôk(â) ∈ X , and

(Lãî∗ [A ∩ ãî∗ ];∈, (â : â ∈ uk)) ≡Σ1+ (Lì[A ∩ ì];∈, (ô(â) : â ∈ uk)).

We may then pick ã ≥ ãî∗ and B ⊂ ã with B ∩ ãî∗ = Aî∗ such that Lã [B] ≺Σ1+
Lκ[A∗] for every A∗ ⊂ κ with B = A∗ ∩ ã and

((uk , Yk , ôk) : k < Card(α)
ℵ0) ∈ Lã [B].

(Again, notice that Card(α)ℵ0 < κ.) This is easily seen to show that F |α indeed
witnesses that the hypothesis in the last item of the above recursive definition is
satisfied. ⊣ (Lemma 6.4)

The reader will happily verify that Lemma 6.4 will still be true in any forcing
extension of V which does not add any bounded subsets of κ. We could therefore
have usedK c,A||κ to run the arguments in the preceeding sections to arrive at proofs
of our main theorems.
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EINSTEINSTR. 62
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