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People are able to use temporal cues to anticipate the timing of an event, enabling them to
process that event more efficiently. We conducted two experiments, using the fixed-
foreperiod paradigm (Experiment 1) and the temporal-cueing paradigm (Experiment 2),
to assess which components of information processing are speeded when subjects use such
temporal cues to predict the onset of a target stimulus. We analyzed the observed temporal
expectation effects on task performance using sequential-sampling models of decision
making: the Ratcliff diffusion model and the shifted-Wald model. The results from the
two experiments were consistent: temporal expectation affected the duration of nondeci-
sion processes (target encoding and/or response preparation) but had little effect on the
two main components of the decision process: response-threshold setting and the rate
of evidence accumulation. Our findings provide novel evidence about the psychological

processes underlying temporal-expectation effects on reaction time.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

People are able to use temporal cues to anticipate with
great precision the timing of an event, enabling them to
optimize the processing of that event. For example, people
can use the onset of amber traffic lights to direct the tem-
poral focus of attention towards the moment in time in
which the lights will turn green (or red, depending on
the region of the world they are in), allowing them to
speed up their response to the green signal. Experimental
psychologists have long known that response times (RTs)
are faster if a target is preceded by a warning signal that
is presented at a constant, or at least predictable, temporal
delay (reviewed in Hackley, 2009; Niemi & Nddtdnen,
1981; Nobre, Correa, & Coull, 2007). This beneficial effect
is also observed for choice RTs, even though the warning
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signal contains no information about the identity of the
upcoming stimulus. The ability of people to use temporal
cues is also evident in the brain: neurons in several brain
areas encode the probability that a stimulus will occur at
any given point in time (Ghose & Maunsell, 2002; Janssen
& Shadlen, 2005; Riehle, Griin, Diesmann, & Aertsen, 1997).
The goal of the current study was to increase our under-
standing of which components of information processing
are speeded when people can predict the onset of a target
stimulus.

The effects of temporal expectation on task perfor-
mance have been studied with two different paradigms,
developed in largely separate literatures (see Correa,
2010; Coull, 2010; Rolke & Ulrich, 2010 for reviews). One
is the foreperiod paradigm, in which the warning signal
is a perfect predictor of the interval (or foreperiod) between
the onsets of the warning signal and the target. Foreperiod
duration is typically varied between blocks of trials. The
typical finding in this paradigm is that RTs increase
progressively as the duration of the foreperiod is
increased and therefore harder to estimate (Klemmer,
1956; Niemi & Nadtdnen, 1981). The other paradigm is
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the temporal-cueing paradigm, in which a cue predicts
with some certainty (e.g., 80%) the interval between the
onsets of the cue and the target. The cue-target interval is
varied within blocks of trials. The typical finding in this
paradigm is that RTs are faster when the cue-target inter-
val is validly cued (i.e., confirms the participant’s expecta-
tion) than when the interval is invalidly cued (Correa,
Lupiafiez, Milliken, & Tudela, 2004; Coull & Nobre, 1998;
Kingstone, 1992). The manipulation within blocks of cue-
target intervals and the dissociation of expected and actual
cue-target intervals (on invalidly cued trials) make the
temporal-cueing paradigm more suitable for event-related
fMRI studies, which have examined the brain areas that are
activated when people process the temporal cue and orient
their attention (reviewed in Coull, 2004). However, we be-
lieve that the key behavioral effects obtained in the two
paradigms are likely to reflect similar underlying mecha-
nisms: in both paradigms participants are required to ori-
ent their attention to particular moments in time; and
experimental manipulations (foreperiod duration or cue
validity) affect the degree to which participants are pre-
pared at the moment when the target is presented.

Which aspects of information processing are responsi-
ble for the decrease in RTs as temporal certainty increases?
One possible account is that temporal certainty facilitates
encoding of the target (cf. Jepma, Wagenmakers, Band, &
Nieuwenhuis, 2009; Niemi & Nadtdnen, 1981). Another
possibility is that temporal certainty affects a critical
parameter of the decision process that is based on the sen-
sory evidence obtained during stimulus encoding. The
mechanism underlying two-choice decisions is well de-
scribed by the accumulation of noisy information from a
stimulus over time (Gold & Shadlen, 2007; Grice, 1968;
Smith & Ratcliff, 2004). Information accumulates toward
one or the other of two decision thresholds until one of
the thresholds is reached; then the response associated
with that threshold is initiated. It is possible that orienting
attention to the moment of target onset, or a timed phasic
increase in arousal, speeds up the rate with which evidence
is accumulated in the decision process (cf. Grosjean, Rosen-
baum, & Elsinger, 2001). Another possibility is that in-
creased temporal certainty does not change the rate of
information build-up but instead causes a lowering of the
decision threshold (or, equivalently, a rise in starting point;
Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 2010).
That is, participants begin to decrease the threshold in
anticipation of the target. As a result, responses are faster
because decisions are made on the basis of less evidence
(Posner, 1978). A final account assumes that increased cer-
tainty about the timing of an upcoming target can be used
to prepare the motor system, without committing to any
particular response (Bertelson, 1967; Sanders, 1980). This
may speed up the execution of a specific motor response
to the target, much like a pre-heated engine will make a
car start quicker in any direction.

Previous research has found substantial evidence
regarding the locus of temporal certainty effects: To exam-
ine the response execution account, researchers have con-
ducted choice-RT experiments that examined the effect of
foreperiod on the lateralized readiness potential (LRP), a
difference wave that indexes hand-specific response

preparation. The onset of the LRP indicates the moment
at which the motor cortex associated with the responding
hand becomes more active than the ipsilateral motor cor-
tex, an early indication of the forthcoming motor response.
The general finding is that the effect of foreperiod on the
interval between LRP onset and the overt response is small
or absent, which has led researchers to conclude that there
is very little evidence for a foreperiod effect on the
duration of motor preparation and execution (e.g.,
Hackley, Schankin, Wohlschlaeger, & Wascher, 2007;
Miiller-Gethmann, Ulrich, & Rinkenauer, 2003). However,
Tandonnet and colleagues have suggested that these LRP
findings may be misleading. They examined the
Laplacian-transformed event-related potential (ERP) wave-
forms to obtain separate estimates of the ipsilateral and
contralateral motor cortex response. Although effect sizes
were modest, Tandonnet and colleagues found that in-
creased temporal certainty decreased the time between
the onset of the contralateral negativity indexing the mo-
tor command and the electromyographic (EMG) onset
(Tandonnet, Burle, Vidal, & Hasbroucq, 2003, 2006), sug-
gesting a speedup of motor preparation. When they used
the same data to compute the monopolar (i.e., standard)
and the Laplacian LRPs, they found no foreperiod effect
on the LRP-to-response interval. This suggests that the
double-subtraction methods used to compute the LRP
can obscure subtle latency effects present in the constitu-
ent ERP waveforms. Tandonnet and colleagues further
found that increased temporal certainty shortened the
time between EMG onset and the actual key press
(Tandonnet et al., 2003; see also Hasbroucq, Akamatsu,
Mouret, & Seal, 1995). This indicates that temporal cer-
tainty can also influence the duration of motor execution.

While there are small but robust effects of temporal
certainty on the duration of motor processes, these effects
cannot fully account for temporal expectation effects on
RT. In particular, several studies have found that increased
temporal certainty reduces the interval between the stim-
ulus and the P3/LRP onset, two established markers of the
combined duration of stimulus encoding and decision
making (Correa, Lupiafiez, Madrid, & Tudela, 2006; Miil-
ler-Gethmann et al., 2003). These studies suggest that tem-
poral expectation effects on RT must also have an earlier
locus.

Temporal certainty improves various aspects of percep-
tion (Bausenhart, Rolke, & Ulrich, 2008; Martens &
Johnson, 2005; reviewed in Nobre et al., 2007). Impor-
tantly, it also improves performance in psychophysical
variants of the two paradigms discussed above, in which
target stimuli are briefly presented and then masked: In-
creased temporal certainty enhances perceptual sensitivity
(d-prime) in both the foreperiod paradigm (Rolke, 2008;
Rolke & Hofmann, 2007) and the temporal-cueing para-
digm (Correa, Lupiidfiez, & Tudela, 2005). However,
although highly informative, these findings cannot adjudi-
cate between effects on encoding and the rate of evidence
accumulation (cf. Rolke & Hofmann, 2007; see also Smith &
Ratcliff, 2009). That is, perceptual sensitivity may be
enhanced because encoding lasts shorter and evidence
accumulation can start earlier, or because evidence accu-
mulation progresses at a faster rate; both scenarios result



428 M. Jepma et al./ Cognition 122 (2012) 426-441

in more evidence by the time the target stimulus is masked
and subjects must make a decision.!

Two recent studies have tried to distinguish between
these accounts (Bausenhart, Rolke, Seibold, & Ulrich,
2010; Seibold, Bausenhart, Rolke, & Ulrich, 2011). Bausen-
hart et al. investigated the foreperiod effect on the shape of
speed-accuracy tradeoff functions obtained with the re-
sponse-signal method. They found that foreperiod affected
the intercept but not the slope of these functions, provid-
ing evidence for changes in encoding duration but not
the rate of evidence accumulation. Seibold et al. (2011)
investigated whether the foreperiod effect depends on
manipulations that affect decision threshold (proportion
of catch-trials and nogo-trials). They reasoned that, accord-
ing to evidence-accumulation models, decision-threshold
manipulations should be independent of manipulations
that affect the onset of evidence accumulation but interact
with manipulations that affect the rate of evidence accu-
mulation. Seibold et al. found additive effects of foreperiod
length and catch/nogo-trial proportion on reaction time,
suggesting that foreperiod length affects the onset of the
evidence-accumulation process. Together, these and other
behavioral findings (Seifried, Ulrich, Bausenhart, Rolke, &
Osman, 2010) provide substantial evidence that temporal
certainty affects the duration of stimulus encoding.

While there is substantial evidence that temporal cer-
tainty affects the duration of encoding and motor pro-
cesses, the picture is less clear for the two main
components of the decision process: threshold setting
and rate of evidence accumulation. According to the re-
sponse-threshold account, increased temporal certainty re-
sults in a well-timed lowering of the response threshold,
such that decisions are made on the basis of less evidence.
A straightforward prediction of this account is that the fas-
ter RTs should be accompanied by a higher proportion of
errors—choice errors in choice-RT tasks and false alarms
in simple-RT tasks in catch trials. Unfortunately, studies
with simple-RT tasks generally do not report false-alarm
proportions, or do not include catch trials in the design.
Furthermore, response accuracy in choice-RT tasks is gen-
erally near ceiling, which necessarily results in negligible
and non-significant foreperiod effects. In the rare two-
choice RT studies in which accuracy was off ceiling, forepe-
riod effects on accuracy were small or absent. An exception
is an experiment reported by Posner, Klein, Summers, and
Buggie (1973), who found a speed-accuracy tradeoff when
comparing foreperiods of 400 ms and 800 ms. A distinct
feature of the results in this study were the extremely fast
responses, due to speed emphasis in the task instructions.
As we have discussed elsewhere (Jepma et al., 2009), the
effect of lowering the decision threshold on the probability

! Two similar possible mechanisms have been proposed to explain how
spatial attention facilitates the encoding of transient stimulus information
to a durable visual short-term memory (VSTM) trace (Smith & Ratcliff,
2009). According to the gain model (Smith & Wolfgang, 2004) attention
increases the rate at which stimulus information is transferred to VSTM;
according to the orienting model (Smith, Ratcliff, & Wolfgang, 2004)
attention reduces the delay before VSTM trace formation begins. These
theories focus on spatial-cueing effects in visual signal detection, which is
not directly relevant to the present research; hence we will not discuss
them here.

that the evidence-accumulation process reaches that
threshold by mistake (i.e., resulting in an error), is larger
when the threshold is closer to the starting point, as is
the case when instructions emphasize speed. Thus, the in-
crease in error rates with higher temporal certainty (fore-
period =400 ms) in the experiment of Posner and
colleagues is consistent with the response-threshold ac-
count and may have become apparent because of a small
distance between starting point and threshold. Taken to-
gether, a review of speed-accuracy tradeoff data yields lit-
tle evidence for or against the response-threshold account.
Furthermore, as we will discuss later, although the re-
sponse-threshold account predicts a speed-accuracy
trade-off, the observation of a speed-accuracy trade-off is
not uniquely diagnostic of shifts in response threshold.

Finally, as noted above, there is preliminary evidence
that temporal certainty in the foreperiod paradigm does
not affect the rate of evidence accumulation (Bausenhart
et al,, 2010). Aside from those results, there are no data
informing the evidence-accumulation account, in part be-
cause standard behavioral indices predicted by the evi-
dence-accumulation account cannot be distinguished
from predictions of the encoding account (cf. Rolke & Hof-
mann, 2007). Therefore, other methods are needed to test
whether temporal certainty affects components of the
decision process.

We conducted two experiments using two paradigms
that are commonly used in temporal-certainty research:
the fixed-foreperiod paradigm (Experiment 1) and the
temporal-cueing paradigm (Experiment 2). Nearly all pre-
vious work has focused on either the foreperiod paradigm
or the temporal-cueing paradigm, which explains the lack
of integration of the two literatures (but see Los & Van den
Heuvel, 2001; Mo & Kersey, 1980; Zahn, 1970). To enable a
comparison of the temporal-certainty effects in the two
paradigms, we identified the psychological process(es)
underlying the observed temporal-certainty effects in both
paradigms using two sequential-sampling models for dis-
tributions of response times and error rates. One goal
was to confirm the hypothesis that temporal certainty af-
fects the duration of nondecision processes, as suggested
by the literature reviewed above. However, the models
we used were particularly useful for testing the evi-
dence-accumulation and response-threshold accounts, be-
cause each of these components of decision making
corresponds with a unique parameter in both models.
Therefore, our primary goal was to examine whether the
values of these decision-making parameters changed as a
function of temporal certainty.

2. Experiment 1

In Experiment 1 we investigated which components of
information processing are affected by temporal certainty
using a diffusion-model analysis of the fixed-foreperiod ef-
fect on RT and accuracy. The diffusion model is a model of
two-choice decision making that defines the decision pro-
cess as the continuous accumulation of noisy stimulus
information over time, from a starting point towards one
of two decision criteria or thresholds (Ratcliff & Rouder,
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Fig. 1. An illustration of the diffusion model. The parameters are:
a=boundary separation, z=starting point, v=drift rate, T, =mean
nondecision time. The sample paths represent moment-by-moment
fluctuations in the evidence favoring the two possible responses, which
is due to noise in the decision process. The decision process starts at zand
terminates when one of the two boundaries is reached. The duration of T,
determines the additional time needed for stimulus encoding and
response execution.

1998; see Fig. 1). When one of the two thresholds is
reached, the corresponding response is initiated. There
are several reasons to assume that the diffusion model
gives an accurate reflection of how the decision process
is implemented in the brain. First, the diffusion process is
the optimal decision process: it provides the fastest re-
sponses for a fixed level of accuracy, or the highest accu-
racy for a fixed response time (Wald, 1947). Second, the
diffusion model explains the dynamics of neuronal activity
during decision-making behavior (Gold & Shadlen, 2007;
Smith & Ratcliff, 2004). And third, the diffusion model suc-
cessfully accounts for RT distributions and error rates in a
variety of two-alternative forced-choice tasks (e.g., Ratcliff,
Van Zandt, & McKoon, 1999).

The diffusion model can be helpful in evaluating the
various accounts of the foreperiod effect because some of
the main model parameters correspond closely to the dif-
ferent processing components emphasized by these ac-
counts. The three most important parameters of the
model in this respect are the drift rate, the boundary sep-
aration, and the nondecision component. The drift rate
() is the mean rate of evidence accumulation in the deci-
sion process, which depends on the quality of the stimulus
and the perceptual system. The higher the absolute value
of the drift rate, the faster a decision threshold is reached.
If accurate predictions of target onset time increase the
drift rate of the diffusion model, this would support the
idea that high temporal certainty induces a faster build-
up of information. The boundary separation (a) is the dis-
tance between the two decision criteria. This parameter
determines on how much evidence a decision is based,
and can be controlled strategically by the decision maker.
If the decision maker uses temporal prediction to briefly
lower the boundary separation, this would provide support
for the notion that the foreperiod effect reflects a lowering
of the decision threshold (Posner, 1978). Besides the deci-
sion process, there are other components of processing in-
volved in a two-choice RT task, namely stimulus encoding
and response execution which, respectively, precede and
follow the decision process. In the diffusion model, these
nondecision processes are combined into one nondecision
component, T.,. A shortening of the nondecision compo-
nent by accurate prediction of target onset would indicate

that stimulus encoding and/or motor execution are
speeded.

We applied the diffusion model to data from a standard
lexical-decision task, in which participants were asked to
classify letter strings as a word or a nonword, with task
instructions emphasizing response speed in half of the
blocks and response accuracy in the other half of the
blocks. The diffusion model has been shown to provide a
good fit of lexical-decision data, accounting for the effects
of the experimental variables on RTs for correct and error
responses, shapes of the RT distributions, and accuracy val-
ues (Ratcliff, Gomez, & McKoon, 2004; Wagenmakers,
Ratcliff, Gomez, & McKoon, 2008). Importantly, each letter
string was preceded by a warning signal, and the stimulus-
onset asynchrony between the two stimuli, the foreperiod,
was varied between blocks (500 or 2700 ms). Our major
aim was to examine which model parameter(s) could best
account for the corresponding differences in task
performance.

2.1. Methods

2.1.1. Participants

Fourteen students participated (11 women; aged
18-29 years; mean age = 21.5; all native Dutch speakers).
All participants reported normal hearing and normal or
corrected-to-normal vision. Each participant completed
two sessions of approximately 90 min each, on separate
days. Participants received either 18 euros or course cred-
its for participation.

2.1.2. Design and procedure

Participants were tested individually in a dimly lit
room. Stimuli were presented in silver on a navy blue back-
ground on a personal-computer screen. Each trial started
with the presentation of a 200-ms asterisk symbol (visual
angle = 0.8°) in the center of the screen, which marked
the onset of the foreperiod. This warning signal was fol-
lowed by the remainder of the foreperiod (300 ms or
2500 ms) during which a fixation plus (0.3°) was on the
screen. Then a letter string was presented (Courier New
font; visual angle = 2.7° for 4-letter words and 4.0° for 6-
letter words), and participants were instructed to decide
whether or not the letter string was a Dutch word by press-
ing the ‘z’ or the ‘[’ key. The key assignment was balanced
across participants. The letter string remained on the
screen until a response was made, after which the fixation
plus reappeared for an intertrial interval of (1.1 + X) s, with
X being a random variable that followed an exponential
distribution with a mean of 1s (X varied between 157
and 5350 ms). This random interval was used to emphasize
the importance of the warning signal as a temporal refer-
ence for preparation (cf. Rolke & Hofmann, 2007).

The word stimuli were 800 Dutch words and 800 non-
words. Both the words and the nonwords consisted of 4,
5 or 6 letters (195 4-letter, 251 5-letter and 354 6-letter
words as well as nonwords). The frequency of the words
ranged from 0.07 to 5.48 per million (mean =347,
SD = 1.28; Baayen, Piepenbrock, & Gulikers, 1995). The
nonwords were generated by replacing one letter of an
existing word; vowels were replaced by vowels and
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consonants by consonants. The words that were used to
generate the nonwords were not used as word stimuli.

In each of the two sessions, participants completed two
practice blocks of 24 trials, followed by 16 experimental
blocks of 50 trials: 25 with a word and 25 with a nonword.
The combination of speed-accuracy instructions and fore-
period changed after every two blocks according to an
ABCD DCBA order that was the same in both sessions and
varied across participants. Before the start of each block,
participants received an on-screen announcement of the
upcoming foreperiod (long or short) and speed-accuracy
instructions (focus on accuracy or speed), after which they
could press the space bar to start the block. In speed blocks,
participants were instructed to respond as quickly as pos-
sible, but without making a lot of errors, and responses
slower than 650 ms were followed by a message TOO
SLOW of 1s. When a response was faster than 250 ms,
the message TOO FAST was displayed for 1 s. No accuracy
feedback was given in these blocks. In accuracy blocks, par-
ticipants were instructed to respond as accurately as possi-
ble, but without taking more time to respond than
necessary, and incorrect responses were followed by a
message ERROR of 1s. Responses faster than 250 ms or
slower than 1200 ms were followed by a TOO FAST or
TOO SLOW message. At the end of each block the mean
RT and the proportion of correct responses appeared on
the screen, and participants could take a short break before
initiating the next block.

2.1.3. Diffusion-model analysis

For fitting the diffusion model to the data we used the
Diffusion Model Analysis Toolbox (DMAT; Vandekerckhove
& Tuerlinckx, 2008). DMAT estimates parameters by max-
imizing a multinomial likelihood function. The data that
are used to fit the diffusion model are the RT distributions
for correct and incorrect responses, and the percentage
correct responses. The raw data can be found in Supple-
mentary material.

We fitted four different diffusion models to the data.
The following parameter settings applied to all models:
(1) The intertrial variability in nondecision time (st) was
held constant across all conditions. (2) The starting point
of the diffusion process (z) was set at a fixed proportion
of the boundary separation, such that the bias in starting
point was constant across conditions. (3) Boundary separa-
tion (a) and the intertrial variability in starting point (sz)
were free to vary between the speed and accuracy condi-
tions (Ratcliff & Rouder, 1998, Experiment 1; Ratcliff,
Thapar, & McKoon, 2001, Experiment 2). (4) Mean drift rate
(v) and intertrial variability in drift rate (1) were free to
vary between the word and nonword trials (Ratcliff,
Thapar, Gomez, & McKoon, 2004).The four models differed
with regard to the parameters that were free to vary as a
function of foreperiod duration. In one model (the all-free
model), T, a, and v were all left free to vary. In addition,
there were three models in which either T, a, or v could
vary, whereas the other parameters were held constant
(the T, model, a model, and » model, respectively).

The models were fitted to the data in two ways. First,
the models were fitted to each participant’s data individu-
ally. When a participant made 10 or fewer errors in a

condition, the participant’s error data for this condition
were not included in the fitting procedure. On average, this
resulted in the exclusion of error data from 9.8% of the con-
ditions. Constraints were built in over conditions to iden-
tify the parameters; hence exclusion of this error data
from the fitting procedure is unlikely to result in a system-
atic bias. Second, the models were fitted to the averaged
data. The averaged data was obtained by calculating the
accuracy and the RTs for correct and error trials associated
with the .1, .3, .5, .7 and .9 quantiles for each individual
participant, and then averaging these values across partic-
ipants. (Note that the quantile RTs are not the mean RTs
within bins (Ratcliff, 1979), but the boundary RTs of each
quantile.)

2.2. Results

2.2.1. Behavioral results

Fig. 2 shows the mean correct RT and mean percentage
correct as a function of foreperiod duration, instruction
and word type. RTs shorter than 250 ms or longer than
2500 ms were excluded from analysis, which resulted in
the exclusion of 0.6% of the trials. In accordance with pre-
vious studies, RTs were shorter on short-foreperiod trials
than on long-foreperiod trials (573 ms vs. 625ms;
F(1,13)=53.6, p<0.001, 1112, =0.81), yielding a reliable
foreperiod effect of 52 ms. Furthermore, RTs were shorter
following speed instructions than following accuracy
instructions (563 ms vs. 635 ms; F(1,13)=23.3, p<0.001,
72 =0.64), and shorter for words than for nonwords
(584 ms vs. 615 ms; F(1,13)=10.6, p = 0.006, 1712, = 0.45).
There were no significant interactions between the three
variables.

Percentage correct was lower on short-foreperiod trials
than on long-foreperiod trials (80.7% vs. 82.4%, indicating
that the increased speed on short-foreperiod trials was
accompanied by a small but reliable drop in accuracy
(F(1,13)=12.6, p = 0.004, 112 = 0.49). This drop in accuracy
on short-foreperiod trials was present in the accuracy con-
dition (83.9% vs. 87.2%) but not in the speed condition
(77.6% vs. 77.7%), as reflected in a significant interaction
between foreperiod duration and instruction (F(1,13)=
8.2, p=0.013, nﬁ = 0.39). As expected, percentage correct
was higher when the instruction emphasized accuracy
than when it emphasized speed (85.5% vs. 77.7%;
F(1,13)=32.0, p< 0.001, 175 = 0.71).

2.2.2. Experimental effects on the diffusion-model parameters

To assess which parameters were affected by foreperiod
duration, we analyzed the foreperiod effect on the esti-
mates of the T,,, a and v parameters in the all-free model.
Table 1 shows the average parameter estimates across par-
ticipants. As expected, the boundary separation was smal-
ler when the instruction emphasized speed than when it
emphasized accuracy (F(1,13)=32.9, p<0.001, nf, =
0.72). In addition, (absolute) drift rates were higher for
words than for nonwords (F(1,13)=72.8, p<0.001,
;712, = 0.85). Importantly, neither boundary separation
(F(1,13)=2.2, p=0.16) nor drift rate (F(1,13)=0.01,
p=0.91) was affected by foreperiod. In contrast, the non-
decision component, T,,, was significantly smaller on trials
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Fig. 2. Mean correct RT and proportion correct in Experiment 1 as a function of word type, instruction (speed/accuracy) and foreperiod duration.

Table 1

Parameter estimates for the fit of the all-free model (SD in parentheses) in
Experiment 1. T, = non-decision time (in seconds) comprising stimulus
encoding and response execution; a = boundary separation; v = drift rate.

Parameter Short FP Long FP

Ter 446 (.045) 482 (.045)
a (speed) .078 (.011) .080 (.010)
a (accuracy) .102 (.018) 109 (.019)
v (words) 295 (.139) 314 (1171)
v (nonwords) —.253 (.109) —.269 (.108)

with a short foreperiod than on trials with a long foreperi-
od (t(13) = 6.0, p < 0.001). These results suggest that reduc-
ing temporal uncertainty shortens one or more
nondecision processes, but does not substantially affect
the decision process itself.

2.2.3. Model selection

To further assess the effect of foreperiod duration on the
different model parameters, we tested which model had
the best fit to the data. To compare the adequacy of the
four models (i.e., the all free model, T,, model, a model,
and v model) in explaining the observed data we used
the Bayesian Information Criterion (BIC), a statistical crite-
rion for model selection. The BIC is a decreasing function of
the goodness-of-fit for the estimated model, and an
increasing function of the number of free parameters to
be estimated. Thus, the best model is the model with the
lowest BIC value. In addition, the raw BIC values were
transformed to a probability scale, enabling a more intui-
tive comparison of the probabilities of each model being
the best model (Wagenmakers & Farrell, 2004). The trans-
formation of BIC values to probability values consists of
three steps. First, for each model i, the difference in BIC
with respect to the model with the lowest BIC value is
computed (i.e., 4;(BIC)). Second, the relative likelihood L
of each model i is estimated by means of the following
transformation: L (M;|data) a exp[—0.5 4;(BIC)], where o

stands for “is proportional to”. Third, the model

Table 2
BIC values for each model in Experiment 1 (SD in parentheses).

Df BIC p(BIC)
all-free model 16 7112 (492) <0.01
T., model 12 7102 (492) >0.99
a model 13 7131 (491) <0.0001
v model 13 7195 (512) <0.0001

Note: p = BIC model probability.

probabilities are computed by normalizing the relative
model likelihoods, which is done by dividing each model
likelihood by the sum of the likelihoods of all models. Table
2 summarizes the average BIC values and probabilities of
each of the four models. The T,, model was by far the best
model (F(3,39)=18.3, p <0.001, 115 = 0.59). In the individ-
ual analyses, the T., model was the best model for 10 of the
14 participants.

Since boundary separation (a) varied as a function of
instruction, and drift rate (») as a function of word type,
the a model and » model had more free parameters (13)
than the T, model (12). To examine the possibility that
the T., model was favored because of its fewer free param-
eters, we fitted an additional a model to each participant’s
data in which the effects of instruction and foreperiod on a
were additive instead of fully free. Similarly, we fitted an
additional » model to each participant’s data in which
the effects of word type and foreperiod on v were additive.
These additive a and » models had the same number of free
parameters as the T., model. The average BICs of the addi-
tive a and » models were somewhat larger but did not dif-
fer significantly from the fully-free versions of these
models (p=0.21 and p=0.98 for the a and v models,
respectively). Importantly, the additive a and » models
had higher BICs than the T, model (ps < 0.01), suggesting
that the conclusion in favor of the T,, model was not due
to the fewer free parameters of this model. For the sake
of completeness we also examined the models in which
combinations of two parameters (T, and a; T, and v; a



432 M. Jepma et al./ Cognition 122 (2012) 426-441

and ») were free to vary as a function of foreperiod
duration. The average BIC values of these three models
were all higher than that of the T,, model, suggesting that
the effects of temporal uncertainty could be explained best
by a change in nondecision time alone.

2.2.4. Model fits

To examine the RT distributions, we averaged the .1, .3,
.5,.7 and .9 quantile RTs across participants. Fig. 3 shows
the mean correct quantile RTs as well as the mean propor-
tions correct in each condition. The predicted quantile RTs
and proportions correct from the best model (the T, mod-
el) are indicated as well. Fig. 3 shows that all five quantile
RTs of the correct responses were shorter on short-forepe-
riod trials than on long-foreperiod trials. However, the
absolute foreperiod effect was small relative to the differ-
ences between the quantile RTs, which makes visual
inspection difficult. To examine the foreperiod effect in
more detail, we calculated the RT difference between
short-foreperiod trials and long-foreperiod trials (i.e., the
foreperiod effect) for each of the five correct RT quantiles.
We then plotted the foreperiod effect as a function of re-
sponse speed (the average of the quantile RTs in the
long-foreperiod trials and short-foreperiod trials).

The resulting delta plot provides a way of zooming in on
the foreperiod effect at different points of the RT
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Fig. 3. The observed and predicted (by T, model) .1, .3, .5, .7 and .9
correct quantile RTs in Experiment 1, plotted against the corresponding
proportions correct, as a function of word type, instruction (speed/
accuracy) and foreperiod duration.

distribution (e.g., Ridderinkhof, 2002). Fig. 4 shows the del-
ta plots for the observed data and for the data produced by
the best-fitting T,,, a and » models. The foreperiod effect is
rather constant across the .1-.7 quantiles, as is predicted
by the T, model, but is somewhat increased for the .9
quantile for the word conditions. The a and » models both
predict that the foreperiod effect gradually increases as RTs
become longer. Most of the conditions in the observed data
did not show this pattern, which explains why the T, pro-
vided a better account of the data than the a and » models.

2.3. Discussion

We applied the diffusion model to the data from a lex-
ical-decision experiment in which the visual imperative
stimuli (letter strings) were preceded by a short or long
foreperiod. The diffusion-model analysis of these data pro-
vided important evidence regarding the source of the fore-
period effect. The fit of a model in which all critical
parameters were left unconstrained showed that the fore-
period effect was largely accounted for by a change in the
nondecision component T.,.. A comparison of models in
which only one parameter was allowed to vary between
short and long-foreperiod trials pointed in the same direc-
tion: for almost all of the participants the T, model was
best able to explain the data. The T, model was also signif-
icantly better than a model in which all three parameters
were free to vary as a function of foreperiod duration. Fi-
nally, consistent with previous studies (Hohle, 1965;
Leth-Steensen, 2009), the foreperiod effect was relatively
constant across the RT distribution. This implies that in-
creased temporal certainty did not alter the shape of the
RT distribution but shifted the complete distribution to
the left, which is consistent with an effect on the nondeci-
sion component.

In contrast, the decision parameters drift rate and
boundary separation, although sensitive to other experi-
mental variables, were not substantially affected by fore-
period duration. In the behavioral analyses, we did find a
potential indication for a foreperiod effect on boundary
separation: there was a speed-accuracy trade-off between
short and long-foreperiod trials when instructions empha-
sized accuracy, but not when instructions emphasized
speed. As noted above, a speed-accuracy trade-off in the
empirical data can provide a diagnostic criterion for a
change in decision threshold. However, because this
empirical pattern was not accompanied by a reliable fore-
period effect on the threshold model parameter, we pro-
pose another explanation of the speed-accuracy tradeoff.
Laming (1979) has suggested that subjects may anticipate
the arrival of a stimulus by starting sampling information
from the perceptual display at the moment when they
think the stimulus will be presented. If subjects start sam-
pling too early, responses will be fast but also less accurate
because they start with sampling noise. We assume that
subjects use this strategy in blocks when the foreperiod
is short and the anticipated timing of the stimulus is rela-
tively good, but not in blocks with a fixed long foreperiod,
when the stimulus onset is much harder to anticipate. In
long-foreperiod blocks, subjects always wait with sam-
pling until the target occurs, and errors due to premature
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Fig. 4. Observed and predicted delta plots showing the foreperiod effect on RT as a function of mean correct quantile RT, instruction (speed/accuracy) and
word type in Experiment 1. The upper panels show the observed delta plots and the fit of the best model, the T, model. The lower panels show the fits of the
v model and the a model. Note that in the » model, the foreperiod effect varies with boundary separation a. This occurs because the changes in » have a
larger impact on RT when a is large (accuracy instruction) than when a is small (speed instruction).

sampling do not occur. According to this account, accuracy
is reduced on short-foreperiod trials not because of a
reduction in boundary separation but because subjects en-
gage in premature sampling (of noise) on a proportion of
the trials.

A prediction of the premature-sampling hypothesis in
terms of diffusion-model parameters is that the inter-trial
variability in starting point (sz) will be larger in short-fore-
period blocks than in long-foreperiod blocks, since prema-
ture sampling will inflate estimates of starting-point
variability. To test this prediction, we fitted a diffusion
model to the data in which not only boundary separation,
drift rate and nondecision time, but also starting-point var-
iability was free to vary as a function of foreperiod dura-
tion. This analysis revealed that estimated starting-point
variability was significantly larger when instructions
emphasized speed than when instructions emphasized
accuracy (F(1,13)=62.2, p<0.001, 175 = 0.83). In addition,
there was a trend-level effect of foreperiod duration
(F(1,13)=3.72, p=0.076, 17’2, = 0.22), as well as a signifi-
cant interaction between foreperiod duration and instruc-
tion on estimated starting-point variability (F(1,13)=
16.8, p=0.001, r]ﬁ = 0.56).2 Follow-up contrasts indicated
that starting-point variability was larger in short-foreperiod
blocks than in long-foreperiod blocks when instructions
emphasized accuracy (0.034 vs. 0.009; t(13)=3.14,
p=0.008), but not when instructions emphasized speed
(0.062 vs. 0.063; t(13)=0.21, p = 0.84). Importantly, these
effects of instruction and foreperiod on starting-point vari-
ability parallel the effects of instruction and foreperiod on
behavioral accuracy (a drop in accuracy on short-foreperiod
trials in the accuracy condition but not in the speed condi-
tion). These results support the idea that the observed
speed-accuracy trade-off between short and long-foreperiod
trials in the accuracy condition was due to premature

2 For this model, there were also significant effects of speed vs. accuracy
instruction on boundary separation, of word type on drift rate, and of
foreperiod duration on nondecision time.

sampling on a proportion of the short-foreperiod trials.
Interestingly, this proportion of premature-sampling trials
may also be responsible for a part of the observed decrease
in the nondecision component T,: on average, sampling (evi-
dence accumulation) starts earlier on short-foreperiod trials
than on long-foreperiod trials (when subjects always await
the onset of the stimulus), resulting in a shorter encoding
phase. However, this account cannot explain why perceptual
sensitivity is improved on short-foreperiod trials (Correa
et al.,, 2005; Rolke & Hofmann, 2007), indicating that there
must be an additional, effective, shortening of encoding time.

The results from Experiment 1 strongly suggest that in-
creased temporal certainty does not affect the decision
process itself, but instead speeds up nondecision processes,
consistent with our literature review. However, based on
the diffusion-model analysis alone, it cannot be deter-
mined whether the shortening of the nondecision compo-
nent reflects a speeding of stimulus encoding or response
execution, or both.

3. Experiment 2

Besides the foreperiod paradigm, the effects of temporal
expectation on task performance have been studied exten-
sively with the temporal-cueing paradigm. In Experiment
2, we examined whether our conclusion that temporal
certainty in the fixed-foreperiod paradigm affects mainly
nondecision processes can be generalized to the tempo-
ral-cueing paradigm. The temporal-cueing paradigm is
comparable to the variable-foreperiod paradigm in the
sense that the foreperiod varies from trial to trial, but has
the additional feature that the warning signal (cue) pre-
dicts the foreperiod duration with a large degree of cer-
tainty. In Experiment 2, these temporal cues were
presented in the context of a simple-RT task, requiring ra-
pid target detection. In choice-RT tasks, temporal-cueing
effects are either absent (Correa et al., 2004, Experiment
1; Kingstone, 1992) or extremely small (~10 ms or less;
Correa et al., Experiment 2; Griffin, Miniussi, & Nobre,
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Fig. 5. An illustration of the shifted-Wald model. The parameters are:
a=distance between the starting point and the decision threshold,
y = drift rate, and 0 = mean nondecision time.

2001, Experiment 4; Los & Van den Heuvel, 2001,
Experiments 2-3), presumably because target discrimina-
tion interferes with the processing of the cue (Correa
et al., 2004). As it is impossible to perform a model-based
decomposition on effects of this size we used a simple-RT
task, in which temporal-cueing effects are generally larger.
On each trial, a cue predicted with a validity of 75%
whether the cue-target interval was 400 or 1400 ms.
Target brightness (bright or dim) was also varied between
trials. We expected to find a cue-validity effect on RT for
the short cue-target interval, because of differences in
temporal preparation at the moment the target appears.
A similar validity effect is generally not observed for the
long cue-target interval (Correa et al., 2004; Coull & Nobre,
1998), because subjects have time to reorient their
attention to the long cue-target interval after they realize
that a cue indicating the short-cue interval is invalid
(Correa et al., 2004; Karlin, 1959).

We analyzed the data using the shifted-Wald model
(Wald, 1947; Fig. 5), a model based on the Wald distribu-
tion, which represents the density of the first passage
times of a Wiener diffusion process toward a single absorb-
ing boundary. The shifted-Wald model conceptualizes the
decision process as a single-boundary diffusion process,
and successfully accounts for RT distributions in paradigms
in which there is only a single response boundary, such as
simple-RT tasks (Luce, 1986, pp. 51-57), go/no-go tasks
(Heathcote, 2004; Schwarz, 2001; see Carpenter & Wil-
liams, 1995, for a comparable, ballistic approach).

This shifted-Wald distribution can be characterized by
three parameters that correspond closely to the three main
parameters of the diffusion model: the drift rate of the dif-
fusion process (7)), the separation between the starting
point of the diffusion process and the absorbing barrier
(i.e., the decision threshold; o), and a parameter that shifts
the entire RT distribution and thus quantifies the time
needed for nondecision processes ().

3.1. Methods

3.1.1. Participants

Sixteen students participated (14 women; aged 19-
28 years; mean age = 21.8; all native Dutch speakers). Each
participant completed one session of approximately
100 min in return for 13 euros or course credits.

3.1.2. Design and procedure

All stimuli were presented in the center of the screen on
a black background. Each trial started with a white fixation
point that was displayed for a quasi-random duration

between 500 and 1500 ms (in steps of 200 ms). This was
followed by the 50-ms presentation of a gray, short (visual
angle = 0.6° x 0.2°) or long (1.4° x 0.2°) horizontal rectan-
gular bar in the center of the screen. This cue provided
information about the subsequent cue-target interval.
Specifically, the short bar indicated that the target would
appear early (i.e., cue-target interval = 400 ms) on 75% of
the trials (valid cue) and Ilate (cue-target inter-
val = 1400 ms) on 25% of the trials (invalid cue). The long
bar indicated that the target would appear late (cue-target
interval = 1400 ms) on 75% of the trials (valid cue) and
early (cue-target interval =400 ms) on 25% of the trials
(invalid cue). The cue was followed by a blank screen for
the remainder of the cue-target interval (350 ms or
1350 ms). Then the target, a white (bright) or dark gray
(dim) circle (visual angle=1.0°) was presented for
100 ms, followed by a blank screen until the participant
made a response. Then the next trial began. When no re-
sponse was registered within 2 s of target onset, the mes-
sage “You have not responded” was presented for 1s. If a
response with RT <100 ms was registered, the message
“Too fast! Wait with responding until the circle appears”
was presented for 2 s.

Before the start of the experiment, participants were
dark-adapted for 5 min in a room sealed from light. Dark
adaptation increases the difference in RTs between bright
and near-threshold stimuli (cf. JaSkowski, Kurczewska,
Nowik, van der Lubbe, & Verleger, 2007). The actual exper-
iment started with 16 practice trials, followed by 16 blocks
of 112 trials. Each block contained 28 trials with each com-
bination of cue-target interval (short, long) and target
brightness (bright, dim), 7 (25%) of which were invalidly
cued. There was a 1-min break between blocks and a 5-
min break halfway through the experiment. Participants
were instructed to press the space bar as soon as they de-
tected the target. They were encouraged to use the cue to
optimize performance. At the end of each block the mean
RT and the proportion of correct responses (=non-anticipa-
tions) appeared on the screen.

3.1.3. Shifted-Wald-model analysis

To assess the processing components that are affected
by temporal uncertainty, the parameters 7y, «, and 0 were
left free to vary as a function of cue validity and cue-target
interval. In addition, the parameters y and 0 were free to
vary as a function of target brightness, but « was not,
reflecting the notion that subjects cannot instantaneously
adjust the decision threshold once the (dim or bright) tar-
get is presented.

To reduce the impact of a few very short and long reac-
tion times on the parameter estimates, we fitted to the
data a mixture of the shifted-Wald distribution and a uni-
form distribution of response contaminants (e.g., Ratcliff &
Tuerlinckx, 2002; Zeigenfuse & Lee, 2010). The uniform
distribution of contaminants ranged from 100 ms to
1000 ms - the RTs below and above these boundaries were
excluded from analysis.

Participant heterogeneity in the parameter estimates
for the mixture-shifted-Wald model was taken into ac-
count using hierarchical Bayesian modeling (e.g., Farrell
& Ludwig, 2008; Gelman & Hill, 2007; Rouder, Lu,
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Speckman, Sun, & Jiang, 2005; Rouder, Sun, Speckman, Lu,
& Zhou, 2003; Shiffrin, Lee, Kim, & Wagenmakers, 2008).
Hierarchical Bayesian methods reduce the variability in
the recovered parameters and produce more accurate
parameter estimates than single-level maximum likeli-
hood estimation (Farrell & Ludwig, 2008; Rouder et al.,
2005). The hierarchical Bayesian approach assumes that
the parameters of individual participants are drawn from
group-level distributions that specify how the individual
parameters are distributed in the population. The group-
level distributions thus define the between-subjects
variations of the parameters and can themselves be char-
acterized by a set of parameters. One of the benefits of
hierarchical modeling is that knowledge from the group-
level distribution serves to shrink noisy estimates for indi-
vidual participants to less extreme values.

In the Bayesian hierarchical model, individual parame-
ters v;, o, 0; — for the shifted-Wald distribution - and 7; -
the mixture proportion- are assumed to come from
group-level distributions with means p,, p po and pg.
These distributions were assumed to be normal, both for
the shifted-Wald parameters and for the probit-trans-
formed mixture proportion. The mean and standard devia-
tion of the group-level distributions needed to be assigned
prior distributions; these distributions were uninformative
in the sense that the posterior distributions were not
noticeably influenced by increasing or decreasing the
width of the prior distributions.?

Parameter estimation for the mixture-shifted-Wald
model was carried out by means of Markov chain Monte
Carlo (MCMC) sampling in the WinBUGS program (Lunn,
Spiegelhalter, Thomas, & Best, 2009; Lunn, Thomas, Best,
& Spiegelhalter, 2000). The raw RT data and the WinBUGS
code that was used to fit the model can be found in Supple-
mentary material. For reasons of speed and robustness, the
likelihood function for the mixture between uniform and
shifted-Wald distributions was coded separately and made
available via the WinBUGS Development Interface
(WBDev; e.g., Wetzels, Lee, & Wagenmakers, 2010). The
MCMC sampling used three separate chains; each chain
had a burn-in of 20,000 iterations, after which 20,000 fur-
ther samples were drawn with a thinning factor of 10. This
left 2000 samples per chain for a total of 6000 samples for
each posterior distribution. Visual inspection and
calculation of the R-hat statistic (Gelman & Rubin, 1992)
confirmed that the three chains had converged to the
same distribution (i.e., for all group-level parameters,
R-hat = 1.00).

The results showed that the probability of a response
contaminant was very low; for the group-level mean
parameter, the mode of the posterior distribution was only
.004. Nevertheless, inclusion of the contaminant distribu-
tion had a pronounced effect on the estimated nondecision
time 0 - without the contaminant distribution, 6 was

3 Because of numerical underflow errors for the likelihood, the Wald
distribution does not allow one to use completely uninformative prior
distributions. For this reason, we used prior distributions that were
uninformative within a range that is plausible for data from a simple-RT
task. See Supplementary material for a precise specification of the prior
distribution, the model code, and the model output.

estimated to be implausibly low. Note that in the absence
of a contaminant distribution, the entire distribution of 0
has to be lower than the minimum observed RT. Thus,
the inclusion of the contaminant distribution made the
model more robust to misspecification due to the presence
of outliers, even though the probability of observing an
outlier was very low.

3.2. Results

3.2.1. Behavioral results

RTs shorter than 100 ms and longer than 1000 ms were
excluded from analysis, which resulted in the exclusion of
1.8% of the trials. The proportion of trials on which partic-
ipants failed to respond was 0.6% (<1.5% misses for all par-
ticipants). The number of misses was larger on invalid than
on valid trials, F(1,15)=13.4, p=0.002, 1712, =047. Fig. 6
shows mean RT as a function of cue-target interval, cue
validity, and target brightness. RTs were faster for bright
targets than for dim targets (282ms vs. 351 ms;
F(1,15)=274.6, p<0.001, 1112, =0.71); and faster for the
long cue-target interval than for the short cue-target
interval (307 ms vs. 326 ms; F(1,15)=13.2, p=0.002,
115 = 0.47). Furthermore, as expected, RTs were faster on
validly cued than on invalidly cued trials (308 ms vs.
324 ms; F(1,15)=29.5, p<0.001, 1712, = 0.66), indicating
that participants used the cues to optimize their perfor-
mance. As expected, the effect of cue validity was much
larger for the short cue-target interval (28 ms) than for
the long cue-target interval (6ms; F(1,15)=12.2,
p=0.003, 1712, = 0.45). This 2-way interaction effect was
qualified by a significant 3-way interaction (F(1,15)=
13.6, p = 0.002, 1712) = 0.48), indicating that the cue-validity
effect was the largest when the cue-target interval was
short (i.e., when participants could not reorient their atten-
tion on invalidly cued trials) and the target was dim (i.e.,
when there was room for improvement in RT
performance).

3.2.2. Experimental effects on the shifted-Wald model
parameters

The results for the parameters of substantive interest
are shown in Table 3. As expected, drift rate y was higher
for bright than for dim targets, F(1,15) = 76.95, p < 0.001,
1712, = 0.84, but was not affected by cue-target interval
and cue validity (ps > 0.8). Decision threshold « tended to
be lower for the long cue-target interval than for the short
cue-target interval, F(1,15)=3.71, p=0.07, ng =0.20.
Importantly, cue validity only affected the nondecision
component 0. The 0 parameter was significantly smaller
on validly cued trials than on invalidly cued trials,
F(1,15)=7.7, p=0.01, nf, = 0.34. Furthermore, there was
an interaction between cue validity and cue-target inter-
val, F(1,15)=24.4, p<0.001, n2 =0.62, indicating that
the validity effect on 0 was present on trials with a short
cue-target interval (mean = 24 ms) but not on trials with
a long cue-target interval (mean = —3 ms), mimicking the
validity effects on RT (28 ms and 6 ms, respectively). Final-
ly, 0 was smaller for bright targets than dim targets,
F(1,15)=32.6, p < 0.001, 17; = 0.69.
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Fig. 6. Mean RT in Experiment 2 as a function of cue-target interval (CTI), cue validity, and target brightness (bright, dim).

Table 3

Parameter estimates for the fit of the mixture-shifted-Wald model in Experiment 2. The upper half of the table reports the averages of the individual parameter
values (SD in parentheses), and the lower half of the table reports the posterior means of the group-level normal distributions from which the individual
parameters were drawn. 0 = non-decision time (in seconds) comprising stimulus encoding and response execution; o = decision threshold; y = drift rate.

Parameter Short cue-target interval Long cue-target interval
Invalid cue Valid cue Invalid cue Valid cue
Averages of the individual parameter values 0 (dim) 156 (.153) .131 (.066) .152 (.068) .156 (.075)
0 (bright) .118 (.036) .095 (.050) 122 (.040) 0.123 (.054)
y (dim) 6.26 (1.12) 6.44 (1.50) 6.40 (1.31) 6.31 (1.10)
7 (bright) 8.01 (1.84) 7.58 (1.61) 7.79 (2.06) 8.01 (1.85)
o 1.37 (.26) 1.34 (.26) 1.17 (.34) 1.14 (.34)
Means of the group-level parameter distributions 1o (dim) .156 (.016) 132 (.019) .152 (.020) .156 (.021)
1y (bright) 118 (.011) .095 (.015) 123 (. 012) 124 (.015)
Hy (dim) 6.28 (.35) 6.47 (.43) 6.44 (4 6.33 (.33)
w, (bright) 8.01 (.55) 7.59 (.47) 7.81 (.5 ) 8.01 (.53)
Ly 1.37 (0.09) 1.34 (.09) 1.17 (0.11) 1.14 (.10)

Note: dim = dim target; bright = bright target.

3.2.3. Model fit

Fig. 7 shows the mean observed .1, .3, .5,.7 and .9 quan-
tile RTs in each condition, as well as those predicted by the
shifted-Wald model. The model provided a generally good
fit to the empirical RT quantiles; the largest difference be-
tween the observed and model-predicted quantile RTs was
15 ms, and the average difference was 6 ms. For the short
cue-target interval, all five quantile RTs associated with
bright and dim targets were shorter on validly cued trials
than on invalidly cued trials. This cue-validity effect was
less pronounced or absent for the long cue-target interval.

To examine in more detail the cue-validity effect at dif-
ferent points of the RT distribution, we plotted the ob-
served and predicted cue-validity effect for each of the
five RT quantiles as a function of response speed (the aver-
age of the quantile RTs in the validly cued trials and inval-
idly cued trials). The resulting delta plots are shown in
Fig. 8. For the bright targets, the cue-validity effect at the
short cue-target interval was rather constant across the
five RT quantiles, which suggests that cue validity mainly
affected the nondecision time (i.e., parameter 0 of the
shifted-Wald model). For the dim targets, however, the
cue-validity effect at the short cue-target interval in-
creased with increasing RTs. To assess whether this in-
crease was significant, we subjected the cue-validity
effect at each quantile to a linear-regression analysis with
mean quantile RT and a constant as explanatory factors,
separately for each participant (Burle, van den Wildenberg,
& Ridderinkhof, 2005; De Jong, Liang, & Lauber, 1994). We
then tested whether the average regression coefficient of

mean quantile RT (i.e., the slope of the delta plot) was sig-
nificantly different from 0, using a one-sample t-test. This
test just reached significance (mean regression coeffi-
cient=0.12; SD=0.21; t(15)=2.2, p=0.044), suggesting
that, for the dim targets, part of the cue-validity effect
was attributable to an effect on the decision process. Be-
cause target brightness was varied on a trial-by-trial basis,
processing of bright and dim targets could differ in drift
rate but not in decision threshold. Therefore, the increasing
validity effect with increasing RT for the dim targets was
likely due to a cue-validity effect on drift rate (i.e., param-
eter y of the shifted-Wald model).

3.3. Discussion

We applied the shifted-Wald model to the data from a
simple-RT experiment in which the targets were preceded
by a cue that validly or invalidly indicated the cue-target
interval: short (400 ms) or long (1400 ms). As expected
we found a substantial cue-validity effect on RT for the
short cue-target interval but not for the long cue-target
interval, because the participants had time to reorient their
attention to the long cue-target interval after they realized
that a cue indicating the short-cue interval was invalid
(Correa et al., 2004; Karlin, 1959). The model analysis pro-
vided useful evidence regarding the source of the cue-
validity effect: Cue validity significantly affected the 6
parameter, but not the parameters of the decision process,
y and «. Indeed, the effects of cue validity on the estimated
duration of nondecision processes were very similar in size
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Fig. 7. The observed and predicted .1, .3, .5, .7 and .9 quantile RTs in
Experiment 2 as a function of target brightness (bright, dim), cue-target
interval (CTI) and cue validity.

to the cue-validity effects on RT, both at the short and the
long cue-target interval. The delta plots showed a some-
what more complicated pattern: in one condition (short
cue-target interval, bright targets) the cue-validity effect
was relatively constant across the RT distribution, suggest-
ing that increased temporal certainty decreased the dura-
tion of the nondecision component. In another condition
(short cue-target interval, dim targets) the cue-validity ef-
fect showed an increase across RT bins, suggesting that in-
creased temporal certainty increased the rate of evidence
accumulation. However, the absence of an effect of cue
validity on the y parameter, and the nonsignificant interac-
tions between cue validity and the other variables on
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7, suggest that this effect was relatively minor. Thus, the
cue-validity effect was largely accounted for by a change
in the nondecision component 0.

Another interesting finding in Experiment 2 was the
trend-level effect of cue-target interval on estimated deci-
sion threshold (parameter «; p =.07): the decision thresh-
old was lower for the long cue-target interval than for the
short cue-target interval. At first blush, this finding seems
inconsistent with the absence of an effect of foreperiod on
boundary separation in Experiment 1. But on closer
thought, the two experiments are rather different in terms
of the effect of warning interval. In the simple-RT task of
Experiment 2, participants could substantially lower the
decision threshold if the target had not appeared after
the short cue-target interval: there was no more uncer-
tainty about the timing of the target, the long cue-target
interval was relatively short (1400 ms) and hence easier
to anticipate, and the identity of the response was known.
Accordingly, in Experiment 2 participants responded faster
when the cue-target interval was long compared to when
it was short. Conversely, in the choice-RT task of Experi-
ment 1, the long foreperiod was relatively long (2700 ms)
and hence harder to anticipate, and there was always the
risk of making choice errors if the boundary separation
was set too small. Accordingly, in this experiment partici-
pants responded slower when the foreperiod was long
compared to when it was short. Therefore, the effects of
warning interval on temporal certainty went in opposite
directions in the two experiments, which mirrors the
opposing effects of long and short foreperiods on temporal
certainty in fixed and variable-foreperiod paradigms (Ber-
telson & Tisseyre, 1968; Vallesi, McIntosh, & Stuss, 2009).

4. General discussion

Preparing the system to respond to an upcoming stim-
ulus is energy-consuming and maintaining such a state of
readiness, because stimulus onset time is uncertain, can
be experienced as an aversive state (Gottsdanker, 1975;
Nddtdnen, 1972). This indicates the importance of using
cues to predict stimulus onset and time the system'’s prep-
aration accordingly. We conducted two experiments, using
the fixed-foreperiod paradigm (Experiment 1) and the
temporal-cueing paradigm (Experiment 2), to assess which

observed model
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components of information processing are speeded when
subjects use such temporal cues to reduce uncertainty.
The results from these two experiments were consistent:
temporal certainty affected the duration of nondecision
processes but had little effect on the two critical compo-
nents of the decision process—decision-threshold setting
and the rate of evidence accumulation.

Our findings are consistent with two previous studies
that examined correct-RT distributions (Leth-Steensen,
2009) and speed-accuracy tradeoff functions (Bausenhart
et al,, 2010) in the foreperiod paradigm, and found that
manipulations of foreperiod mainly shifted these distribu-
tions while having very little effect on their shapes. Our re-
sults are also in line with the recent finding that foreperiod
effects are independent of decision-threshold manipula-
tions (Seibold et al., 2011). The novel contributions of our
study are that we analyzed temporal certainty effects in
both the fixed-foreperiod paradigm and the temporal-cue-
ing paradigm, using sequential-sampling models of deci-
sion making that took into account response accuracy
and RT distributions on correct and error trials. Our find-
ings therefore provide the strongest evidence to date that
temporal certainty effects on RT reflect a change in the
duration of nondecision processes, not changes in the deci-
sion process.

Although our results cannot distinguish between effects
of temporal certainty on encoding and motor processes,
the literature suggests that the duration of both types of
processes is affected. Temporal certainty modulates many
aspects of perception (Nobre et al., 2007), including per-
ceptual sensitivity in the foreperiod paradigm and tempo-
ral-cueing paradigm (Correa et al.,, 2005; Rolke, 2008;
Rolke & Hofmann, 2007), and the duration of perceptual
processing in a clock paradigm (Seifried et al., 2010). Tem-
poral certainty also modulates various aspects of motor
preparation (Davranche et al., 2007; Miniussi, Wilding,
Coull, & Nobre, 1999; Riehle et al., 1997) and decreases
the duration of motor preparation and execution, although
effect sizes are small (Tandonnet et al., 2003, 2006). Nadtd-
nen, 1971 model suggests that subjects may use temporal
cues to anticipate the arrival of the imperative stimulus by
increasing the level of ‘motor readiness’, such that the time
to reach the ‘motor action limit’ is reduced.* This model is
supported by findings that increased temporal certainty re-
duces the force generated to execute the response (Mattes &
Ulrich, 1997) and the activation of the corresponding pri-
mary motor cortex (Tandonnet et al., 2006).

Our conclusions stand in sharp contrast with those
reached by Hackley (2009) on the basis of a review of
ERP studies with the foreperiod paradigm. Hackley’s main
argument against an encoding account is that temporal
certainty has little or no effect on the latency of the P1
and N1, two early perceptual brain potentials (reviewed
in Correa et al., 2006; see Hackley et al., 2007 for a signif-
icant but very small effect), and the latency of the N2pc
(Hackley et al., 2007), an electrophysiological index of
the allocation of spatial attention. A possible explanation

4 This change in the distance to the motor threshold, which is not
modeled in the sequential-sampling models used here, must be distin-
guished from response-threshold changes in the decision process.

of these findings is that the latency of early ERP compo-
nents is not a reliable index of the duration of task-relevant
encoding processes. For example, because of the parallel
organization of the visual system, the processes underlying
these ERP components may not lie in the pathway that
determines the RT. Hackley et al. (2007) reject this hypoth-
esis with the argument that N2pc latency has been found
to correlate highly with RT in a number of studies.
However, a problem with this argument is that these
N2pc-RT correlations were found in experiments with an
important spatial component (i.e., requiring the N2pc
process to perform the task), whereas the non-significant
effect of foreperiod on N2pc latency was found in a study
in which stimulus location played a negligible role
(Hackley et al., 2007). Another possible explanation,
suggested by Hackley (2009), is that increased temporal
certainty leads to increased visual-cortex activation in
response to the visual imperative stimulus, as reflected in
increased P1 and N1 amplitudes (i.e., a nonchronometric
change), changes that then propagate forward to produce
a greater speed of subsequent encoding processes. This
proposal is consistent with P1/N1 amplitude effects of
temporal certainty (Correa et al., 2006) and with our recent
proposal regarding the temporal locus of the accessory
stimulus effect (Jepma et al., 2009).

Hackley’s (2009) argument against the motor prepara-
tion account is that foreperiod duration has little or no ef-
fect on the interval between LRP onset and the overt
response (e.g., Hackley et al., 2007; Miiller-Gethmann
et al., 2003). However, as we discussed above, a limitation
of the LRP double-subtraction measure is that it is blind to
the respective contributions of each individual motor cor-
tex. When Tandonnet et al. (2003, 2006) used Laplacian-
transformed ERP waveforms to obtain separate estimates
of the ipsilateral and contralateral motor cortex response,
they found that increased temporal certainty decreased
the duration of motor preparation of the responding hand
(by 25ms and 18 ms in the 2003- and 2006-studies,
respectively). Tandonnet and colleagues suggested that
the effect of interest (i.e., timing of preparation of the
responding hand) may be masked in the LRP by prepara-
tory effects on activation in the ipsilateral, non-involved
motor cortex. It is unclear whether similar subtle latency
effects were also present in the constituent ERP waveforms
in the LRP studies reviewed by Hackley (2009). In any case,
future ERP research needs to resolve the issue of how the
onset of motor preparation processes should be measured.

The notion that increased temporal certainty reduces
the time needed for stimulus encoding provides a possible
explanation for the finding that flanker and Simon interfer-
ence effects are increased when the moment of stimulus
onset is validly predicted by a cue (Correa, Cappucci, No-
bre, & Lupiafiez, 2010). If evidence accumulation can start
earlier, perceptual processing may still be dominated by
the flankers (Gratton, Coles, Sirevaag, Eriksen, & Donchin,
1988) or location of the Simon stimulus (Hommel, 1994),
resulting in the accumulation of more task-irrelevant
information or noise. This will tend to increase interference
effects, even when overall response times are decreased.
This account does not explain why valid temporal cues
led to decreased spatial Stroop interference effects (Correa
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et al., 2010). Understanding of this result awaits the devel-
opment of mechanistic processing models of the spatial
Stroop task.

Our conclusion that temporal certainty has little effect on
the decision threshold might appear incompatible with
occasional findings (including in Experiment 1) that
temporal certainty causes a speed-accuracy tradeoff, a phe-
nomenon that has been taken as diagnostic of decision-
threshold modulations. However, on the basis of results in
Experiment 1, we have suggested that a speed-accuracy
tradeoff can be explained by an alternative hypothesis:
when temporal certainty is high and the moment of
stimulus onset is relatively easy to anticipate, subjects
may engage in premature sampling of stimulus information
on a proportion of the trials. Such premature sampling will
lead to faster but less accurate responses because subjects
will start with sampling noise. Thus, behavioral speed-
accuracy trade-offs may be explained not only by changes
in decision threshold but also by changes in premature
sampling, which is an interesting topic for future research.

Our results provide important clues about the compo-
nents of information processing that are speeded when
people use temporal cues to anticipate the onset of an
imperative stimulus. But ultimately we also need to under-
stand the neural mechanisms underlying this control of
temporal expectation. Neuroimaging and patient studies
have suggested an important role for prefrontal structures
in controlling temporal expectation in the foreperiod para-
digm (Hackley et al., 2009) and the temporal-cueing para-
digm (Coull & Nobre, 1998; Trivifio, Correa, Arnedo, &
Lupiafiez, 2010). Other studies have identified norepineph-
rine as a key neuromodulator underlying temporal cer-
tainty effects (Coull, Nobre, & Frith, 2001; Witte &
Marrocco, 1997), consistent with the finding that the firing
rate of locus coeruleus neurons increases during the warn-
ing interval in the foreperiod paradigm (Yamamoto & Oza-
wa, 1989). It will be a challenge for future studies to
determine the exact mechanisms by which prefrontal
structures and/or the locus coeruleus-norepinephrine sys-
tem control the duration of nondecision processes as a
function of degree of temporal expectation.
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