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Sage nicht alles, was du weißt, aber
wisse immer, was du sagst.
Don’t say everything that you know, but
always know what youre saying.

Matthias Claudius (1740 – 1815)

Abstract

An important finding of the game theoretic research on signaling games is the insight
that under many circumstances, a signal obtains credibility by incurring costs to the
sender. Therefore it seems questionable whether or not cheap talk — signals that are not
payoff relevant — can serve to transmit information among rational agents. This issue is
non-trivial in strategic interactions where the preferences of the players are not aligned.

Researchers like Crawford & Sobel, Rabin, and Farrell demonstrated, however, that
even in the case of partially divergent interests, cheap talk may be informative. They as-
sume that signals have an exogenously given meaning that is common knowledge between
the players, and they explore the conditions under which such a signal is credible.

This discussion has obvious relevance to the program of Gricean pragmatics in linguis-
tics. According to Grice’s “Cooperative Principle”, this research tradition only considers
scenarios where the interests of the players are aligned. Nevertheless the assumption of
differential signaling costs introduces an element of non-aligned interests here.

The present paper proposes a framework that combines these two research strands.
Using an inference protocol of iterated best response, it gives a recipe how the interlocutors
derive rationalizable strategies from exogeneously given “literal” meanings of signals. No
special assumptions about the alignment of interests or signaling costs are made.

After introducing the formal model, the paper sketches several applications of this
models to problems in linguistic pragmatics, like scalar implicatures, the division of prag-
matic labor, and the interpretation of measure terms.

∗Address for correspondence: University of Tübingen, Department of Linguistics, Wilhelmstr. 19,
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1 Introduction

On August 16, 2012, the Republican presidential candidate Mitt Romney made the following
statement about the taxes he paid over the preceding years:

“But I did go back and look at my taxes and over the past 10 years I never
paid less than 13 percent. I think the most recent year is 13.6 or something like
that.”

If Romney paid 20 percent in taxes in all these years except the previous one, this state-
ment would still be true. Also, it might be possible that the statement is untrue, and he in
fact only paid 10 percent during all those years. Nevertheless, most pundits will infer from
this statement that Romney’s minimum tax rate over the past 10 years is between 13 and 14
percent, that his average tax rate in the same period is not much higher, and that in 2011,
he paid between 13.5 and 13.7 percent (probably closer to 13.5 than to 13.7).

These inferences are based (a) on common knowledge about Romney’s preferences and (b)
the assumption that he is rational. It is certainly in his interest to say the truth. Otherwise
some newspaper or blog might find out that he was lying, and this would severely damage
his presidential ambitions. Furthermore, he probably prefers voters to believe that he paid a
high tax rate. So if his average tax rate had been below 13 percent, he wouldn’t have dared
to make this statement, and if it had been above 13 percent, he would have named a higher
figure. Regarding the most recent year, he chose a rather precise figure with one digit after
the decimal point, plus the qualifying expression or something like that. This indicates that
there is a certain margin or error, which is in the order of magnitude of 0.1 percent.

This example illustrates several important points about communication between rational
agents using a common language. It shows that the truth conditions of a message are crucial
for its interpretation. However, the information that is transmitted is usually not identical
with these truth conditions. Rather, it is derived from them via rational deliberation, taking
the strategic preferences of sender and addressee(s) into account.

The tension between what is said and what is meant, and the systematic relationship
between the two, is the central concern of linguistic pragmatics in the tradition of Paul
Grice’s work (see especially Grice 1975). Grice assumes that conversation is a kind of rational
interaction, and therefore general principles of rational interaction apply. Grice’s famous
Maxims of Conversation, being subordinate to the Cooperation Principle, give an informal
description of the preferences of the interlocutors. They serve as heuristics to compute what
is meant from what is said.

Game theory is a branch of applied mathematics that specifically deals with the princi-
ples of interaction among rational agents. It is thus natural to employ game theory for a
formalization of the Gricean program. To put in in the words of Robert Stalnaker (2005):

“As many people have noticed, Gricean ideas naturally suggest a game theoretic
treatment. The patterns of iterated knowledge and belief that are characteristic of
game theoretic reasoning are prominent in Grice’s discussions of speaker meaning,
and the pattern of strategic reasoning that Grice discussed in the derivation of
conversational implicatures are patterns that game theory is designed to clarify. ...
[G]ame theory provides some sharp tools for formulating some of Grice’s ideas[.]
... And I think Gricean ideas will throw some light on the problems game theorists
face when they try to model communicative success.”
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It is worth noting that information transmission among rational agents that have a com-
mon language (i.e. a language where signals have a literal meaning that is common knowledge
between the interlocutors) has been investigated in the economics literature as well. Key pub-
lications from this area Rabin (1990) and Farrell (1993). There, and in subsequent work, it is
usually assumed that the preferences of the interlocutors are not identical. A central question
is under what conditions genuine information transmission is possible.

Game theoretic approaches to linguistic pragmatics has become an active area of research
in recent years. There are essentially two approaches that are being pursued. Prashant Parikh
(see for instance Parikh 2001, 2010) assumes that rational communication takes place in a
Nash equilibrium, i.e. that each agent behaves rationally given the behavioral disposition of
the other agent. This is a standard assumption in most work in game theory. If a game has
more than one equilibrium, the players have to agree on a protocol for equilibrium selection
to achieve efficient interaction. Parikh gives a such a criterion for equilibrium selection,
so-called Pareto optimality. Similarly, Robert van Rooij (see for instance van Rooij 2004)
proposes that pragmatic reasoning is based on selecting a specific Nash equilibrium, namely
an evolutionarily stable one.

In Parikh’s model, it is part of the structure of the game that the sender necessarily sends
a true message. If this assumption is lifted, uniqueness of a Pareto optimal Nash equilibrium
is not guaranteed. Quite generally, if there is no a priori preference for truthfulness, commu-
nication games have many symmetric equilibria, and it is not possible to select among them
solely on the basis of rationality considerations.1

This is one of the reasons why the other research tradition of game theoretic pragmatics
shuns the notion of Nash equilibria. Following the basic idea from Rabin (1990), it is rather
assumed that truthfulness is a kind of default assumption that is overridden only if the ratio-
nal self-interests of the interlocutors requires it. Rationality considerations may or may not
lead to a Nash equilibrium. They will, however, always lead to strategies that are rationaliz-
able, i.e. that are consistent with the assumption that it is common knowledge between the
interlocutors that they are both rational.

In this paper, a detailed implementation of this rationalizability based research program
is spelled out. In comparison to related proposals such as Franke (2009, 2011), I will make
very weak assumptions about the knowledge states of the interlocutors. In particular, they
may have only partial knowledge about each others preferences, and they may employ private
knowledge that is not known to the other player.

In the next section, I will briefly recapitulate some basic ideas about rational communi-
cation from the game theoretic literature. I will modify this model by incorporating some
concepts from Gricean pragmatics informally in Section 3, and I will present a formal frame-
work for computing pragmatic interpretation from the literal meaning of expressions and the
preferences and beliefs of the language users in Section 4. Section 5 contains a series of ex-
amples that serve to illustrate the empirical predictions of this model and to compare it to
other neo-Gricean theories such as bidirectional Optimality Theory. In Section 6 this model
is compared to Michael Franke’s IBR model of game theoretic pragmatics. Sections 7 and 8
contain additional pointers to related work and concluding remarks.
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2 Signaling games

Let us consider a very elementary example for a situation where communication may make a
difference. Suppose Sally pays Robin a visit, and Robin wants to offer his guest something to
drink, either tea or coffee. Sally is either a tea drinker or a coffee drinker, and Robin prefers
the outcome where Sally receives her favorite drink over the other outcome, but he does not
know Sally’s preferences.

We may formalize this scenario as follows: There are two possible worlds, w1 and w2.
In w1, Sally prefers tea; in w2 she prefers coffee. Robin has a choice between two actions.
Offering tea would be action a1, and offering coffee is action a2. Sally knows which world
they are in, but Robin does not know it. Let us assume that Robin assigns both worlds an
a priori probability of 50%. So the scenario can be represented by Table 1. Rows represent
possible worlds and columns represent Robin’s actions. The first number in each cell gives
Sally’s payoff for this configuration, and the second number Robin’s payoff.

a1 a2

w1 1; 1 0; 0
w2 0; 0 1; 1

Table 1: A simple coordination scenario

Without any further coordination between the players, Robin will receive an expected
payoff of 0.5 for either action, and hence Sally will also receive, on average, a payoff of 0.5.
They can do better though if they communicate. Suppose it Robin expects that Sally says
“tea” in w1 and “coffee” in w2. Then the rational course of action for Robin is to perform a1

if he hears “tea”, and to perform a2 upon hearing “coffee”. If Sally knows that Robin will
react to these signals in this way, it is in fact rational for her to say “tea” in w1 and “coffee”
in w2.

So adding the option for communication may improve the payoff of both players. Techni-
cally, the original scenario (which is not really a game but a decision problem because Sally
has no choice to make) is transformed into a signaling game. Here the sender (Sally in the
example) can send signals, and she can condition the choice of signals on the actual world.
So a strategy for the sender is a function from possible worlds to signals. The receiver (Robin
in the example) can condition his action on the signal received. So a strategy for the receiver
is a function from signals to actions. (Analogous scenario’s are studied extensively by Lewis
1969.)

The above example suggests that rational players will benefit from the option of commu-
nication. Things are not that simple though. If Sally says “I want tea” in w1 and “I want
coffee” in w2, and Robin interprets “I want tea” as a1 and “I want coffee” as a2, both players
benefit. Let us call this mapping from world to signals to actions L1. They would receive the
same benefit though if Sally said “I want coffee” in w1 and “I want tea” in w2, and Robin
interprets “I want coffee” as a1 and “I want tea” as a2, which I will call L2.2 Pure reason
does not provide a clue to decide between these two ways to coordinate. It is thus consistent
with rationality that Sally assumes Robin to use L2 and thus to signal according to L2, while
Robin assumes Sally to use L1, and thus will interpret her signals according to L1. In this
situation, Robin will perform a2 in w1 and a1 in w2. Both players would receive the worst
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possible expected payoff of 0 here.
These considerations ignore the fact that the two signals do have a conventional meaning

which is known to both players. L1 is a priori much more plausible than L2 because in L1

Sally always says the truth, and Robin always believes the literal meaning of Sally’s message.
Rational players cannot always rely on the honesty/credulity of the other player though.

Consider the scenario from Table 2 (unless otherwise indicated, I will always assume a uniform
probability distribution over possible worlds):

a1 a2

w1 1;−1 −1; 1
w2 −1; 1 1;−1

Table 2: A simple zero sum scenario

Here the interests of Sally and Robin are strictly opposed; everybody can only win as
much as the other one looses. Here too, there are two signals that Sally can send. We call
them f1 and f2. They both have a conventional literal meaning: [[ f1 ]] = {w1} and [[ f2 ]] = {w2}.
If Robin is credulous, he will react to f1 with a2 and to f2 with a1. If Sally believes this and
is rational, she will be dishonest and send f1 in w2 and f2 in w1. If Robin is not quite so
credulous, he may anticipate this and switch his strategy accordingly, etc. In fact, it turns
out that with or without communication, any strategy is rationalizable in this game.3 The
lesson here is that communication might help in situations where the interests of the players
are aligned, but it does not make a difference if these interests are opposed.

The most interesting scenarios, of course, are those where the interests of the players are
partially, but not completely aligned. In a very influential paper, Crawford and Sobel (1982)
showed that in such intermediate scenarios communication can be beneficial to both players.
I will discuss a modified version of their scenario here.

Suppose Sally is starting in a new job, and Robin is her employer. Sally has a certain
skill level that can be expressed by some (possibly negative) integer w. Robin will employ
her at a certain level in the professional hierarchy that is summarized by some real number
a.4 According to Robin’s preferences, Sally’s position in the hierarchy is as close as possible
to her skill level. Let us say that his utility function is

uR(w, a) = −(w − a)2

Sally would prefer to be placed somewhat higher in the hierarchy, because this would give
her a higher income. However, she does not want to be over-estimated too much because the
strain might be too hard. Ideally, she wants to be over-estimated by 1. So her utility function
is

uS(w, a) = −(w + 1− a)2

We assume that each integer is a possible signal, and a signal f is true of some skill level w
iff f = w.

When filling out her paperwork, Sally has to specify her skill level. Suppose Sally uses
some signal f . If Robin trusts her, he will choose a = f . Sally has an incentive to exploit
this and to choose the signal f = w+ 1, where w is her actual skill level. If Robin anticipates
this, he will choose the action a = f − 1 instead. Taking this into account, Sally should
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actually choose the signal f = w + 2. If Robin expects this, he will choose a = f − 2, which
incites Sally to use f = w+ 3 etc. As long as there are no penalties for exaggeration and it is
not specified how far Sally is prepared to go in her deception, it is not possible to draw any
conclusions beyond w ≤ f from Sally’s signal.

Now suppose there are only two messages, f+ and f−. The literal meaning of f+ and
f− are w ≥ −2 and w ≤ −3 respectively. Furthermore, let us assume that Robin’s prior
probability function over Sally’s skill level, call it p∗, is as follows:

p∗(w) =
2−|w|

3
.

If Robin is credulous, upon observing f+ he will choose the action that maximizes his expected
utility given p∗ and f+’s truth conditions. This is

arg max
a

∑
w∈ [[ f+ ]]

uR(w, a)p∗(w|w ∈ [[ f+ ]]) =
∞∑

w=−2

wp∗(w)/
∞∑

w=−2

p∗(w)

= 4/11 ≈ 0.36.5

Conversely, upon observing f− and believing it, Robin’s best choice is

arg max
a

∑
w∈ [[ f− ]]

uR(w, a)p∗(w|w ∈ [[ f− ]]) =
−3∑

w=−∞
wp∗(w)/

−3∑
w=−∞

p∗(w)

= −4.

If w ≤ −3, i.e. if f− is true and if Sally expects Robin to believe her message, it is in
Sally’s interest to use f− rather than f+, because then −4 is closer to her desired action w+1
than 4/11. On the other hand, if w ≥ −2, f+ is the better choice. So in each w, it is rational
for Sally to say the truth. Symmetrically, if Robin expects Sally to say the truth, it is rational
for him to believe her. This pair of strategies — the honest sender strategy and the credulous
receiver strategy — actually form a Nash equilibrium. This means that no player would have
an incentive to change their strategy if they knew the other player’s strategy.

This example illustrates two important insights: (a) it can be rational for both players to
use communication even if their interests are not completely aligned, and (b) whether or not
it is rational to be honest/credulous may depend on the space of available messages. If Sally
could use signals with a very specific meaning, this might tempt her into trying to deceive
Robin, which, if anticipated, would lead to a breakdown of communication. If only sufficiently
vague messages are available, this temptation does not arise.

Table 3 represents another example that may illustrate this point. It is taken from Rabin
(1990).

In w1, Sally’s and Robin’s interests are identical; they both want Robin to take action a1.
So if Sally sends f1, Robin has no reason to doubt it, and he will react to it by performing
a1. Prima facie, it might seem that the same holds for w2. Here, both players would prefer
Robin to take action a2. However, in w3 Sally also prefers Robin to take action a2, while
Robin would prefer a3 if he knew that w3 is the case. So in w3 the interests of the players
diverge, and Sally might be tempted to send the signal f2 both in w2 and w3. Robin is thus
well-advised not to believe f2 in its literal meaning. If he does not know whether he is in w2
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a1 a2 a3

w1 10; 10 0; 0 0; 0
w2 0; 0 10; 10 5; 7
w3 0; 0 10; 0 5; 7

Table 3: Partially aligned interests

or in w3, his rational action is to hedge his bets and to perform a3 after all, which guarantees
him an expected payoff of 7 (against an expected payoff of 5 for a2).

After performing these reasoning steps, Sally will perhaps convince herself that she has
no chance to manipulate Robin into performing a2. The best thing she can do both in w2

and in w3 is to prevent him from performing a1. It is thus rational for Sally to say f23 (where
[[ f23 ]] = {w2, w3}) both in w2 and w3. So the situation that is most beneficial for both players
is the one where only the signals f1 and f23 are used, Sally uses each signal if and only if it
is true, and Robin believes her and acts accordingly. In Rabin’s terminology, f1 is credible in
this scenario, while f2 would not be credible. Simplifying somewhat, a message f is credible
(according to Rabin 1990) if it is rational for the sender to use it whenever it is true provided
she can expect it to be believed, and if it is rational for the receiver to act as if she believed
it provided the sender uses it whenever it is true.

Incidentally, f23 would not come out as credible in Rabin’s model. The reason is that in
w2 or w3, Sally might try to convince Robin that they are in w2 and thus to induce action a2.
This is not possible via credible communication, but Sally might believe that she is capable
to outsmart Robin by taking some other action.6

As was argued in the beginning, rationality alone is insufficient to coordinate players in
such a way that signals receive a stable interpretation. This is even the case if signals do have a
conventionalized meaning that is known to all players (as is the case for expressions from some
natural language if both players know that language). Rabin proposes that, beyond being
rational, reasonable sender will always send a true credible message if this is possible, and
reasonable receivers will always believe any credible message.7 In many cases, this reduces the
space of rationalizable strategies significantly and thus ensures a certain amount of information
transmission that is in the interest of both players.

3 Gricean reasoning

The kind of reasoning that was informally employed in the last section is reminiscent to
pragmatic reasoning in the tradition of Grice (1975). First, information can only be exchanged
between rational agents if it is in the good interest of both agents that this information transfer
takes place. This intuition, which Grice captured in his Cooperative Principle, is implicit in
the notion of credibility. Also, Rabin adopts a default assumption that messages are used
according to their conventional meaning, unless overarching rationality considerations dictate
otherwise. This corresponds to Grice’s Maxim of Quality. Furthermore, the first part of the
Maxim of Quantity — “make your contribution as informative as is required (for the current
purpose of the exchange)” — is implicit in the notion of rationality. For instance, suppose
Sally is in world w1 in the scenario described in Table 3. Then rationality requires her to
transmit the information {w1} if there is a reliable way of doing so. If she would send a
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a1 a2 a3

w1 10; 10 0; 0 9; 9
w2 0; 0 10; 10 9; 9

a1 a2 a3

w1 10; 10 0; 0 6; 6
w2 0; 0 10; 10 6; 6

Table 4: context c1: scalar implicature/ context c2: no scalar implicature

message which Robin would interpret as {w1, w2}, this would leave Robin in a state where he
does not know whether a1 or a2 is the appropriate action. So sending an under-informative
message would be irrational for Sally.

Despite these similarities, there are some crucial differences between Rabin’s model and
Gricean reasoning. To illustrate this, let us consider a schematic example of a scalar impli-
cature. The utility structure is given in the left panel of Table 4. Suppose, as before, that
there are three messages, f1, f2 and f12, with the conventionalized meanings {w1}, {w2}, and
{w1, w2} respectively. However, we now assume that sending a message may incur some costs
for the sender, and that different messages incur different costs. In the specific example, we
assume that c(f1) = c(f12) = 0, and c(f2) = 2, where c(f) is the cost that the sender has
to pay for sending message f . So the sender’s utility is now a three-place function uS that
depends on the actual world, the message sent, and the action that the receiver takes. If
vS(w, a) is the distribution of sender payoffs that is given in the left panel of Table 4 above,
the sender’s overall utility is

uS(w, f, a) = vS(w, a)− c(f)

You can imagine that Robin wants to know who was at the party last night, and Sally
knows the answer. In w1, all girls were at the party, and in w2 some but not all girls were
there. f1 is the message “All girls were at the party”, f2 is “Some but not all girls were at
the party”, and f12 is “Some girls were at the party.” Obviously f2 is more complex than
the other two messages, which are approximately equally complex. This is covered by the
assignment of costs.

According to Gricean pragmatics, Sally would reason roughly as follows: If I am in w1,
I want Robin to perform a1 because this gives me a utility of 10. a1 is what he would do
if he believed that he is in w1. I can try to convince him of this fact by saying f1. It is
not advisable to say f2, because if Robin believed it, he would perform a2, which gives me
a utility of a mere −2. Also saying f12 is not optimal because if Robin believes it, he will
perform a3, leading to a utility of 9. So it seems reasonable to send f1 in w1.

If we are in w2, it might seem reasonable to say f2 because if Robin believes it, he will
perform a2, which is my favorite outcome. However, I will have to pay the costs of 2, so my
net utility is only 8. If I say f12 and Robin believes it, he will perform a3. As f12 is costless
for me, my net utility is 9, which is better than 8. So in w2 I will send f12.

Robin in turn will anticipate that Sally will reason this way. If he is confronted with the
message f1, he will infer that he is in w1, and he will perform a1. If he hears f12, he will infer
that w2 is the case, and he will perform a2 after all.

Sally, being aware of this fact, will reason: This taken into consideration, it is even more
beneficial for me to send f12 if I am in w2 because this will give me the maximal payoff of 10.
So I have no reason to change the plan of sending f1 in w1 and f12 in w2.
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This reasoning leads to a sender strategy where f12 is sent if and only if {w2} is true.
Following Lewis (1969), we will call the set of worlds where a certain message is sent its
indicative meaning (as opposed to its imperative meaning, which is the set of actions that the
receiver might perform upon receiving that message). In our example, the indicative meaning
of f12 thus turns out to be {w2}, which is a proper subset of its literal meaning {w1, w2}.
The information that w1 is not the case is a scalar implicature — “some” is pragmatically
interpreted as “some but not all.”

The reasoning pattern that is used here makes implicit use of the notion of the best response
of a player to a certain probabilistic belief. A best response to a belief state is a strategy that
maximizes the expected payoff of the player as compared to all strategies at their disposal,
given this belief state. Rational players will always play some best response to their beliefs.

Suppose an external observer (i.e. Robin, or Sally trying to figure out Robin’s expectations,
or Robin trying to figure out Sally’s expectations about his intentions etc., or we as modelers)
has some partial knowledge about Sally’s belief state. There is some set of receiver strategies
R, and the observer knows that Sally expects Robin to play some strategy from R, and
that Sally cannot exclude any element of R for sure. The observer does not know which
probability Sally assigns to the elements of R. Then any probability distribution over R that
assigns positive probabilities to all elements of R is a possible belief state of Sally’s, as far
as the observer’s knowledge is concerned. Hence any best response of Sally’s to such a belief
state is a potential best response, or cautious response, as Pearce 1984 calls it, of Sally’s
to R. All the observer can predict with certainty if he assumes Sally to be rational is that
she will play some cautious response to R. (Since Sally holds a specific private belief, she
will actually only consider a subset of the cautious responses, but the observer does not know
which one.)

The iterative inference process that was used in the computation of the implicature above
can be informally described as follows:

• Sally provisionally assumes that Robin is entirely credulous, and that he conditions his
actions only on the literal interpretation of the message received. Let us call the set8 of
credulous strategies R0. In the first round of reasoning, Sally might ponder any strategy
that is a cautious response to R0. Let us call this set of strategies S0.

• In the next round, Robin might ponder all strategies that are cautious responses to S0.
The set of these strategies is R1.

• ...

• Sn (Rn+1) is the set of strategies that are cautious responses to Rn (Sn).

• If a certain strategy S (R) cannot be excluded by this kind of reasoning (i.e. if there
are infinitely many indices i such that S ∈ Si (R ∈ Ri)), then S (R) is a pragmatically
rationalizable strategy.

In the example, the scalar implicature arises because the difference between vS(w2, a2)
and vS(w2, a3) is smaller than the costs of sending f2. Suppose the utilities would be as
in the right panel of Table 4, rather than as in the left panel. Then the pragmatically
rationalizable outcome would be that Sally uses f2 in w2, while f12 would never be used.
Informally speaking, the reasoning here relies on a tension between the Maxim of Quantity
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and the Maxim of Manner.9 The implicature only arises if the utilities are such that Manner
wins over Quantity.

In a more realistic scenario, Robin might actually not know for sure what Sally’s precise
preferences are. If we call the utility matrix in Table 4 context c1

10, and the utilities in the
right panel in Table 4 context c2, Robin might hold some probabilistic belief about whether
Sally is in c1 or in c2. Likewise, Sally need not know for sure which context Robin is in.
Now in each round of the iterative reasoning process, the players will ponder each strategy
that is a cautious response to any probability distribution over contexts and strategies in the
previous round.11

Sally’s reasoning will now start as follows: In w1, I will definitely send f1, no matter which
context I am in. If I am in context c1, it is better to send f12 if I am in w2 because the costs
of sending the more explicit message f2 exceed the potential benefits. If I am in c2 and w2,
however, it is advisable to use f2.

Robin, in turn, will reason: If I hear f1, we are definitely in w1, and the best thing I can
do is to perform a1, no matter which context we are in. If I hear f2, we are in c2/w2, and I
will perform a2. If I hear f12, we are in c1/w2, and I will also play a2.

So in S1 Sally will infer: f1 will induce a1, and both f2 and f12 will induce a2, no matter
which context Robin is in. Since f12 is less costly than f2, I will always use f1 in w1 and
f12 in w2, regardless of the context I am in. Robin, in R1, will thus conclude that his best
response to f1 is always a1, and his best response to f12 is a2. Nothing will change in later
iterations. So here, the scalar implicature from “some” to “some but not all” will arise in all
contexts, even though context c2 by itself would not license it.

One might argue that this is not quite what happens in natural language use. Here we
predict that f2 would never be used. A more realistic outcome would be that f2 is still
interpreted as {w2}, and that by using it, Sally conveys the message that it is very important
to her that w1 is in fact excluded.

What I believe is going on here is that there are also contexts where Sally does not know
for sure which world she is in. In this case f12 might be sent in w1 after all. Whether or
not Robin derives the implicature in question would depend then on how much probability
he assigns to this option.

To keep things simple, I will confine the technical model to be derived in this article to
scenarios where the sender has complete factual knowledge, i.e. where she knows the identity of
the actual world. A generalization to games where both players have incomplete information
is worked out in Jäger (2011).

4 The formal model

In this section I will develop a formal model that captures the intuitive reasoning from the
previous section.

A semantic game is a game between two players, the sender S and the receiver R. It is
characterized by a set of contexts C, a set of worlds W, a set of signals F , a set of actions A,
a probability distribution p∗, an interpretation function [[ · ]], and a pair of utility functions uS

and uR. In the context of this paper, I will confine the discussion to games where C, W, F ,
and A are all finite. p∗ is a probability distribution over W. Intuitively, p∗(w) is the a priori
probability that the actual world is w. We assume that p∗(w) > 0 for all w ∈ W.

A few words on the notion of a context, as it is used here, are in order. The fact that
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Sally may be in one of several contexts reflects Robin’s uncertainty about Sally’s preferences.
Technically, Sally’s contexts could also be modeled as possible worlds. However, Robin’s prior
belief about the possible world Sally is in is common knowledge, while his prior beliefs about
Sally’s context is not. Therefore worlds and sender contexts are conceptually different, which
justifies the technical distinction. Essentially, assuming different contexts for Sally amounts
to saying that Sally’s true utility function is some convex combination of the possible sender
contexts.

Likewise, having different receiver contexts reflects Sally’s incomplete information about
Robin’s preferences. Using receiver contexts therefore goes beyond the standard notion of
signaling games, because in signaling games, the preferences of the receiver are assumed to
be common knowledge.

Note that sender contexts and receiver contexts do not communicate with each other.
Collapsing a sender context and a receiver context into a single structure (such as the two
tables in Table 4) is merely a matter of notational convenience. If the receiver utilities in the
two contexts in Table 4 where exchanged, we would still be dealing essentially with the same
game.

uS ∈ C × W × F × A 7→ R is the sender’s utility function. There is some function
vS ∈ C ×W ×A 7→ R and some function c ∈ F 7→ R such that

uS(c, w, f, a) = vS(c, w, a)− c(f).

uR ∈ C ×W × A 7→ R is the receiver’s utility function. [[ · ]] ∈ F 7→ ℘(W ) is the semantic
interpretation function that maps signals to propositions.

The space of pure sender strategies S = C × W 7→ F is the set of functions from con-
text/world pairs to signals. The space of pure receiver strategies R = C × F 7→ A is the set
of functions from context/signals pairs to actions.

The structure of the game is common knowledge between the players.
Some auxiliary notations: If M is a finite and non-empty set, ∆(M) is defined as

∆(M) = {q ∈ (M 7→ [0, 1])|
∑
x∈M

q(x) = 1}.

This is the set of probability distributions over M . A related notion is:

int(∆(M)) = {q ∈ (M 7→ (0, 1])|
∑
x∈M

q(x) = 1}.

This is the set of probability distributions over M where each element of M receives a positive
probability. The difference is subtle but important. Both ∆(·) and int(∆(·)) can be used to
model probabilistic beliefs. If we say that a player holds a belief from ∆(C), say, this means
that they may exclude some contexts with absolute certainty. On the other hand, if Sally
believes that Robin plays his strategy according to int(∆(R)) for some set R ⊆ R, then Sally
may have certain guesses, but she is not able to exclude any strategy from R with certainty.
We will use this to capture the intuition that the players may have biases, but they do not
have other sources of established beliefs about the intentions of the other players beyond the
assumption that pragmatic rationality is common knowledge.

Definition 1 Let φ ⊆ W be a proposition and p ∈ ∆(W) be a probability distribution over
worlds.

A∗(c, φ, p)
.
= arg max

a∈A

∑
w∈φ

p(w)uR(c, w, a)

11



A∗(c, φ)
.
= A∗(c, φ, p∗)

So A∗(c, φ, p) is the set of actions that might be optimal for the receiver if he is in context c,
his (probabilistic) prior belief about the possible worlds is p, and this prior belief is updated
with the information that he is in φ. A∗(c, φ) is the set of actions that the receiver believes
to be optimal in c if he updates the prior belief p∗ with φ. (Recall that p∗ is Robin’s prior
probability distribution over W.)

The central step in the iterative process described above is the computation of the set of
strategies that maximize the expected payoff of a player against some probability distribution
over contexts and strategies of the other player. The notion of a best response captures this.

Definition 2

• Let r∗ ∈ R be a receiver strategy, σ ∈ ∆(S) a probability distribution over S, and
q ∈ ∆(C) a probability over contexts. (σ, q) represent a belief of the receiver.

r∗ ∈ BR(σ, q)

(r∗ is a best response of the receiver to (σ, q)) iff

∀c ∈ C : r∗ ∈ arg max
r∈R

∑
s∈S

σ(s)
∑
c′∈C

q(c′)
∑
w∈W

p∗(w)uR(c, w, r(c, s(c′, w)))

• Let s∗ ∈ S a sender strategy, ρ ∈ ∆(R) a probability distribution over R, and q ∈ ∆(C)
a probability over contexts. (ρ, q) represent a belief of the sender.

s∗ ∈ BR(ρ, q)

(s∗ is a best response of the sender to (ρ, q)) iff

∀c ∈ C∀w ∈ W : s∗ ∈ arg max
s∈S

∑
r∈R

ρ(r)
∑
c′∈C

q(c′)uS(c, w, s(c, w), r(c′, s(c, w)))

In Pearce (1984), the notion of a cautious response against some set P of strategies
is proposed. A cautious response to P is any pure strategy of the opposing player that is a
best response to some probability distribution over P that assigns positive probability to all
members of P .

Definition 3

• Let S ⊆ S be a set of sender strategies. The set of cautious responses to S is defined
as

CR(S) =
⋃

σ∈int(∆(S))

⋃
q∈int(∆(C))

BR(σ, q)

• Let R ⊆ R be a set of receiver strategies. The set of cautious responses to R is defined
as

CR(R) =
⋃

ρ∈int(∆(R))

⋃
q∈∆(int(C))

BR(ρ, q)
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Suppose we know that Sally knows which context and world she is in, she believes for sure
that Robin will play a strategy from R, and there is no more specific information that she
believes to know for sure. We do not know which strategy from R Sally expects Robin to play
with which likelihood, and which context Sally believes to be in. Under these conditions, all
we can predict for sure is that Sally will play some strategy from CR(R) if she is rational.

The same seems to hold if we only know that Robin expects Sally to play some strat-
egy from S. Then we can infer that Robin, if he is rational, will certainly play a strat-
egy from CR(S). However, we may restrict his space of reasonable strategies even fur-
ther. Suppose none of the strategies in S ever make use of the signal f . (Formally put,
f ∈ F −

⋃
s∈S range(s).) Then it does not make a difference how Robin would react to f , but

he has to decide about the imperative meaning of f nevertheless (because receiver strategies
are total functions from context/form pairs to actions). It seems reasonable to demand (and
it leads to reasonable predictions, as we will see below) that Robin should, in the absence of
evidence to the contrary, still assume that f is true. To take an example, suppose the teacher
announces in class that whoever did the graffiti on his car will be punished. Then the teacher
asks who did it. It is then rational for all students to deny it. If somebody raises their hand
nevertheless, the teacher will be surprised but will assume that that person is guilty all the
same.

If Robin encounters such an unexpected signal, he will have to revise his beliefs. In the
previous paragraph I argued that this belief revision should result in an epistemic state where
f is true. However, no further restrictions on Robin’s belief revision policy will be stated.
In particular, we will not demand that Robin will fall back to p(·|[[ f ]]), i.e. to the result of
updating his prior belief with the literal interpretation of f . Robin will have to figure out an
explanation why Sally used f despite his expectations to the contrary, and this explanation
can bias his prior beliefs in any conceivable way. We have to assume though that the result of
this believe revision is a consistent belief state, and that Robin will act rationally according
to his new beliefs.

We can now proceed to define the iterative reasoning procedure that was informally de-
scribed in the previous section.

Definition 4 (Iterated cautious response sequence)

R0
.
= {r ∈ R|∀c ∈ C∀f ∈ F : r(c, f) ∈ A∗(c, [[ f ]])}

Sn
.
= CR(Rn)

Rn+1
.
= {r ∈ CR(Sn)|
∀f ∈ F −

⋃
s∈Sn

range(s)∀c ∈ C∃p ∈ int(∆(W)) : r(c, f) ∈ A∗(c, [[ f ]], p)}

This notion will be referred to as ICR sequence for short in the sequel.
R0 is the set of credulous strategies of the receiver. Sn is the set of cautious responses of

the sender against Rn. Likewise, Rn+1 is the set of cautious responses of the receiver if he
assumes that the sender plays a strategy from Sn in which he always tries to make sense of
unexpected messages under the assumption that they are literally true.

The sets of pragmatically rationalizable strategies (PRS) are the set of sender strategies
and receiver strategies that cannot be excluded for sure by the iterative reasoning process, no
matter how deeply the reasoning goes.
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This notion is related to Rabin’s notion of message credibility. Intuitively, a message
is credible iff it is used according to its literal meaning in all pragmatically rationalizable
strategies. However, pragmatic rationalizability is more general as it also makes predictions
about the usage of non-credible messages.

Definition 5 (S,R) ∈ ℘(S)× ℘(R), the sets of pragmatically rationalizable strategies, are
defined as follows:

S
.
= {s ∈ S|∀n ∈ N∃m > n : s ∈ Sm}

R
.
= {r ∈ R|∀n ∈ N∃m > n : s ∈ Rm}

Note that there are only finitely many strategies in S and R (because we are only consid-
ering pure strategies). Therefore there are only finitely many subsets thereof. The step from
(Sn, Rn) to (Sn+1, Rn+1) is always deterministic. It follows that the iterative procedure will
enter a cycle at some point, i.e. there are n∗ and i∗ such that for all m > n∗ and for all k:
(Sm, Rm) = (Sm+k·i∗ , Rm+k·i∗). This ensures that (S,R) is always defined.

As was mentioned above, a strategy is called rationalizable iff a rational player might use it,
provided it is common knowledge that all players are rational. The following formal definition
(adapted from Osborne 2003:383) is provably equivalent to this informal characterization:

Definition 6 The strategy pair (s∗, r∗) ∈ S × R is rationalizable iff there exist sets S ⊆ S
and R ⊆ R such that

• S ⊆
⋃
ρ∈∆(R)

⋃
q∈∆(C)BR(ρ, q)

• R ⊆
⋃
σ∈∆(S)

⋃
q∈∆(C)BR(σ, q)

• (s∗, r∗) ∈ S ×R

In words, s∗ and r∗ are rationalizable iff they are elements of some sets S and R such that
every element of S is a best response to some belief of the sender that only considers strategies
in R possible, and every element of R is a best response to some belief of the receiver that
only considers strategies in S possible.

The notion of rationalizable strategies is closely related to the better-known notion of a
Nash equilibrium. If two rational players have a way to coordinate their strategies (by pre-
play communication or precedent, for instance), they will likely end up playing an equilibrium
profile, i.e. a configuration of strategies each of which is rational given the strategies of the
other player(s). If a game has several equilibria (such as all the games discussed here),
rationality alone does not dictate the choice of a particular equilibrium. It can be said with
certainty though that each player will play a rationalizable strategy — even in a one-shot game
in the absence of any coordination devices — provided they are rational and it is common
knowledge that all players are rational.

The set of pragmatically rationalizable strategies are in fact rationalizable:

Theorem 1 For all (s∗, r∗) ∈ S×R: (s∗, r∗) is rationalizable.

Proof: As there are only finitely many subsets of S and R and (Sn+1, Rn+1) is a func-
tion of (Sn, Rn) for all n, there must be some m∗ ≥ 0, i∗ > 0 such that for all k, l ≥
0 : (Sm∗+k·i∗+l, Rm∗+k·i∗+l) = (Sm∗ , Rm∗). Let s ∈ S. Then there must be some l∗ such
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that s ∈ Sm∗+l∗ = CR(Rm∗+l∗) and Rm∗+l∗ ⊆ R. So there are ρ ∈ int(∆(Rm∗+l∗)) and
q ∈ ∆(C) such that s ∈ BR(ρ, q). Trivially, ρ can be extended to some ρ′ ∈ ∆(R) by as-
signing zero probability to all elements of R − Rm∗+l∗ such that BR(ρ, q) = BR(ρ′, q). So
s ∈

⋃
ρ∈∆(R)

⋃
q∈∆(C)BR(ρ, q).

In a similar way, suppose r ∈ R. Then there must be some l∗ such that r ∈ Rm∗+l∗ =
Rm∗+i∗+l∗ ⊆ CR(Sm∗+i∗+l∗−1) and Sm∗+i∗+l∗−1 ⊆ S. By an argument analogous to the
previous case, it follows that r ∈

⋃
σ∈∆(S)

⋃
q∈∆(C)BR(σ, q). Hence

S ⊆
⋃

ρ∈∆(R)

⋃
q∈∆(C)

BR(ρ, q)

and
R ⊆

⋃
σ∈∆(S)

⋃
q∈∆(C)

BR(σ, q).

So any element of S×R is rationalizable. a
This theorem is noteworthy because it demonstrates that players using the ICR recipe

will end up behaving as if they are perfectly rational, even though ICR is a version of bounded
rationality, involving only a limited reasoning depth and starting from default assumptions
that do not presume rationality at all.

A note on computing the ICR sequence The epistemic notion of a cautious response
is closely connected to the algorithmic notion of a weakly undominated (sometimes called
admissible) strategy. Generally, in an n-person matrix game, strategy s for player i is weakly
undominated iff there is no mixed strategies x ∈ ∆(Si) of player i with

∀t ∈ S−i.ui(s, t) ≤
∑
s′∈Si

xs′u
i(s′, t), and

∃t ∈ S−i.ui(s, t) <
∑
s′∈Si

xs′u
i(s′, t).

(Following the standard notational convention in the literature, Si denotes player i’s strat-
egy set, and S−i the set of strategy combinations of all other players except i.) Strategy s is
weakly undominated iff it is a cautious response to the set of strategy combinations from S−i
(see Pearce 1984, Appendix B for a proof).

To compute the cautious responses to a set R of receiver strategies, we determine the
cautious responses to R for each speaker context c and possible world w separately. We
construct a three-person game with the message, the receiver, and the receiver context as
players. The utility for a triple (f, r, c′) (with s ∈ F , r ∈ R, and c ∈ C) is defined as

U c,w(f, r, c′) = uS(c, w, f, r(c′, f)).

The cautious responses to R are those sender strategies that map each context-world pair
(c, w) to some message f that is weakly undominated in U c,w.

The cautious responses to a set of sender strategies S have to be computed separately (a)
for the set of messages that occur in the range of some strategy in S, and (b) for the surprise
messages, i.e. for those messages that are used by neither strategy in S.
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For the first part, we construct for each receiver context c a utility matrix U c for a
three-person with the receiver, the sender, and the sender context as players. For a triple
(r ∈ {r′ �(⋃s∈Sn

range(s)) |r′ ∈ R}, s ∈ S, c ∈ C) (i.e. r is a function from the non-surprise

messages to the actions), we have

U c(r, s, c′) =
∑
w

p∗(w)uR(c, w, r(c′, s(c, w))).

All weakly undominated strategies in this game correspond to cautious responses to S
(confined to the non-surprise messages), and vice versa.

Cautious responses to surprise messages can be computed separately for each surprise
message. For each context c and surprise message f , we construct a two-person game U c,f

with the actions as rows and the possible worlds in [[ f ]] as columns:

U c,f (a,w) = uR(c, w, a)

In each cautious response to S, (c, f) is mapped to some action that is weakly undominated
in U c,f .

The matrix games that figure in the computation of cautious responses to a set of sender
strategies are usually quite large even for rather simple game. For instance, for a game with
two worlds, two contexts, and two messages, we already have 16 sender strategies and 16
receiver strategies. So the three-person games that are needed to compute the set of cautious
responses to some strategy set involves two matrices with up to 16× 16× 2 = 512 cells each.
It usually not practical to do these computations by hand. (In most cases, the matrices can
be reduced considerably by first removing all strategies that are weakly dominated in pure
strategies, but even this may be tedious to do by hand.)

However, there are efficient algorithms to find the weakly undominated strategies using
Linear Programming (see for instance Conitzer and Sandholm 2005 for details). Therefore the
ICR sequence can be computed in a rather straightforward way with the help of a computer.

This procedure will be spelled out in detail in connection with Example 6 below, which is
both simple and revealing.

The considerable complexity of the ICR computation raises the question whether this is
a realistic model of the reasoning processes that are performed in actual conversations. The
ICR model belongs to the rationalistic tradition of game theory in this respect. It spells out
how agents would behave in a given scenario if they were rational. It is well-known that
real people are not rational in this sense. This insight does not necessarily invalidate the
model though. There are three important considerations to be kept in mind here. First,
rationality is an idealization just like the notions of frictionless motion or point masses in
physics. Such idealizations do not represent reality in its entirety, but they capture relevant
aspects of reality. As long as the interaction between real humans is governed by choices
that can be approximated by the notion of rationality, a rationalistic game theoretic model
provides a useful benchmark. Second, people learn from experience. Research on bounded
rationality and on behavioral game theory has shown that under very general conditions, the
outcome of a learning process may lead to a behavior that can be described as rational even
if no rational reasoning is involved (see for instance Fudenberg and Levine 1998 on learning
in games, and Camerer 2003 on experimental results). Third and finally, languages — or
more specifically, the dispositions for linguistic behavior — constantly undergo a process
of replication and selection that can be described by the logic of Darwinian evolution. As
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research in evolutionary game theory has shown (see for instance Hofbauer and Sigmund 1998
for a fairly recent survey), such an evolutionary dynamics — just as many learning dynamics
— frequently converge towards a disposition for apparently rational choices.

5 Examples

In the light of this formal definition, let us consider some of the previous examples again,
which are repeated here for convenience.

Example 1 Completely aligned interests: We assume that for all signals f : c(f) = 0.
There is only one context; vS and uR are given in Table 5.

a1 a2

w1 1; 1 0; 0
w2 0; 0 1; 1

Table 5: Example 1

Here is the sequence of iterated computation of cautious responses, starting with the set
R0 of credulous strategies. The representation should be self-explanatory; every function that
pairs each of the arguments in the left column with one of the arguments in the right column
is part of the strategy set in question.

R = R0 =

 f1 → a1

f2 → a2

f12 → a1/a2


S = S0 =

[
w1 → f1

w2 → f2

]
For a simple game such as this one, it is rather straightforward to compute the ICR

sequence manually. The reasoning is as follows: In R0, Robin’s posterior probability distri-
bution upon observing a message f is the uniform distribution over the set of worlds where
f is true. For f1 this is the singleton {w1}. The action that maximizes his payoff in w1 is a1,
hence f1 → a1. The same reasoning applies to f2. After observing f12, both possible worlds
are equally likely. Hence his expected payoff for both actions is 1/2, and both are therefore
best responses.

To compute S0, we have to consider each possible world in turn. In w0, Sally wants Robin
to perform a1. This can be achieved with probability 1 if she sends f1 (and Robin uses R0).
Using f12 might also have this effect, but since both actions are here according to R0, Sally
will place some positive probability mass on both possible outcomes. So no matter which
probability distribution over Robin’s strategy she uses, the expected payoff for f12 will be
lower than 1. Therefore f1 is the only best response to R0 in w1. The same applies ceteris
paribus to w2.
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a1 a2

w1 1;−1 −1; 1
w2 −1; 1 1;−1

Table 6: Example 2

Example 2 Completely opposed interests: We still assume “cheap talk”, i.e. all messages
are costless. The utilities are repeated in Table 6

Here the iterative procedure enters a never-ending cycle:

R0 =

 f1 → a2

f2 → a1

f12 → a1/a2


S0 =

[
w1 → f2

w2 → f1

]

R1 =

 f1 → a1

f2 → a2

f12 → a1/a2


S1 =

[
w1 → f1

w2 → f2

]
R2 = R0

S2 = S0
...

R =
[
f1/f2/f12 → a1/a2

]
S =

[
w1/w2 → f1/f2

]
So if the interests of the players are completely opposed, no communication will ensue.

Example 3 Rabin’s example with partially aligned interests; the utilities are as in Table 7
and all signals are costless.

a1 a2 a3

w1 10; 10 0; 0 0; 0
w2 0; 0 10; 10 5; 7
w3 0; 0 10; 0 5; 7

Table 7: Example 3
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R0 =


f1/f13 → a1

f2 → a2

f3/f23/f123 → a3

f12 → a1/a2


S0 =

[
w1 → f1/f13

w2/w3 → f2

]

R1 =


f1/f13 → a1

f2/f3 → a3

f12 → a1/a2

f23 → a2/a3

f123 → a1/a2/a3


S1 =

[
w1 → f1/f13

w2/w3 → f12/f23/f123

]

R2 =


f1/f13 → a1

f2 → a2

f3 → a3

f12/f23/f123 → a2/a3


¬(R2(f12) = R2(f23) = R2(f123) = a2)12

S2 = S0

R3 = R1
...

R = R1 ∪R2

S = S0 ∪ S1

In S0, Sally has the option to induce the desired outcome a1 with certainty by using f1

or f13. Using f12 might also induce a1, but it might also induce the sub-optimal a2. As both
options have a positive probability (recall that Sally’s assumptions about Robin’s behavior is
an element of int(∆(R0)), i.e. each element of R0 has non-zero probability), choosing f12 in
w1 has a sub-optimal expected utility. The same kind of reasoning applies in w2 and w3, and
analogously in the subsequent steps of the ICR sequence.

Note that no stable communication will emerge here in w2 and w3. Starting in S0, Sally
has the same set of options in w2 and w3. She may or may not choose to differentiate between
w2 and w3; there are some cautious responses against R1 that do and some that do not.
Depending on Robin’s private belief, he may expect to be able to differentiate between w2

and w3 on the basis of Sally’s signal (and thus react to some signals with a2), or he may
prefer to play safe and choose a3.

The situation changes drastically if the set of signals is confined to f1 and f23. Then we
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have

R = R0 =

[
f1 → a1

f23 → a3

]

S = S0 =

[
w1 → f1

w2/w3 → f23

]
.

Example 4 Next we will reconsider the example of the scalar implicature discussed above.
Now we have two contexts, c1 and c2. The utilities are given in Table 8.

c1 :

a1 a2 a3

w1 10; 10 0; 0 6; 6
w2 0; 0 10; 10 6; 6

c2 :

a1 a2 a3

w1 10; 10 0; 0 9; 9
w2 0; 0 10; 10 9; 9

Table 8: Example 4

The signaling costs are as follows: c(f1) = c(f12) = 0 and c(f2) = 2.13

R0 =

 (c1, f1)/(c2, f1) → a1

(c1, f2)/(c2, f2) → a2

(c1, f12)/(c2, f12) → a3



S0 =

 (c1, w1)/(c2, w1) → f1

(c1, w2) → f2

(c2, w2) → f12


R = R1 =

[
(c1, f1)/(c2, f1) → a1

(c1, f2)/(c2, f2)/(c1, f12)/(c2, f12) → a2

]

S = S1 =

[
(c1, w1)/(c2, w1) → f1

(c1, w2)/(c2, w2) → f12

]

The previous example illustrated how pragmatic rationalizability formalizes the intuition
behind Levinson’s (2000) Q-Heuristics “What isn’t said, isn’t.” This heuristics accounts,
inter alia for scalar implicatures such as the following:

(1) a. Some boys came in.  Not all boys came in.

b. Three boys came in.  Exactly three boys came in.

The essential pattern here is as in the schematic example above: There are two expressions
A and B of comparable complexity such that the literal meaning of A entails the literal
meaning of B. There is no simple expression for the concept “B but not A”. In this scenario,
a usage of “B” will implicate that A is false.
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Example 5 Levinson assumes two further pragmatic principles that, together with the
Q-principle, are supposed to replace Grice’s maxims in the derivation of generalized conver-
sational implicatures. The second heuristics, called I-Heuristics, says: “What is simply
described is stereotypically exemplified.” It accounts for phenomena of pragmatic strength-
ening, as illustrated in the following examples:

(3) a. John’s book is good.  The book that John is reading or that he has written is
good.

b. a secretary  a female secretary

c. road  hard-surfaced road

The notion of “stereotypically exemplification” is somewhat vague and difficult to translate
into the language of game theory. I will assume that propositions with a high prior probability
are stereotypical. Also, I take it that “simple description” can be translated into “low signaling
costs.” So the principle amounts to “Likely propositions are expressed by cheap forms.”

Let us construct a schematic example of such a scenario. Suppose there are two possible
worlds (which may also stand for objects, like a hard surfaced vs. soft-surfaced road) w1 and
w2, such that w1 is a priori much more likely than w2. Let us say that p(w1)/p(w2) = 3.
There are three possible actions for Robin; he may choose a1 if he expects w1 to be correct,
a2 if he expects w2, and a3 if he finds it too risky to choose.

There are again three signals, f1, f2 and f12. This time the more general expression f12

(corresponding for instance to “road”) is cheap, while the two specific expressions f1 and f2

(“hard-surfaced road” and “soft-surfaced road”) are more expensive: c(f1) = c(f2) = 5, and
c(f12) = 0.

The interests of Sally and Robin are completely aligned, except for the signaling costs
which only matter for Sally. There are three contexts. In c1 and c2, it is safest for Robin to
choose a3 if he decides on the basis of the prior probability. In c3 it makes sense to choose
either a1 or a2 if he only knows the prior probabilities because the payoff of a3 is rather low
(but still higher than making the wrong choice between a1 and a2). In c1, but not in c2 it
would be rational for Sally to use a costly message if this is the only way to make Robin
perform a1 rather than a3. The precise utilities are given in Table 9.

R0 =

 (c1, f1)/(c2, f1)/(c3, f1)/(c3, f12) → a1

(c1, f2)/(c2, f2)/(c3, f2) → a2

(c1, f12)/(c2, f12) → a3



S = S0 =


(c1, w1)/(c3, w1) → f1/f12

(c1, w2)/(c3, w2) → f2

(c2, w1) → f12

(c2, w2) → f2/f12


R = R1 =

 (c1, f1)/(c2, f1)/(c3, f1)/(c3, f12) → a1

(c1, f2)/(c2, f2)/(c3, f2) → a2

(c1, f12)/(c2, f12) → a1/a3



Here both f1 and f2 retain its literal meaning under pragmatic rationalizability. The
unspecific f12 also retains its literal meaning in c2. In c1 and c3, though, its meaning is prag-
matically strengthened to {w1}. Another way of putting is to say that f12 is pragmatically
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c1 :

a1 a2 a3

w1 28; 28 0; 0 22; 22
w2 0; 0 28; 28 22; 22

c2 :

a1 a2 a3

w1 28; 28 0; 0 25; 25
w2 0; 0 28; 28 25; 25

c3 :

a1 a2 a3

w1 28; 28 0; 0 10; 10
w2 0; 0 28; 28 10; 10

Table 9: Example 5

ambiguous here. Even though it has an unambiguous semantic meaning, its pragmatic inter-
pretation varies between contexts. It is noteworthy here that f12 can never be strengthened to
mean {w2}. Applying it to the example, this means that a simple non-specific expression such
as “road” can either retain its unspecific meaning, or it can be pragmatically strengthened to
its stereotypical instantiation (such as hard-surfaced road here). It can never be strengthened
to a non-stereotypical meaning though.

Example 6 Levinson’s third heuristics is the M-heuristics: “What is said in an abnormal
way isn’t normal.” It is also known, after Horn (1984), as division of pragmatic labor. A
typical example is the following:

(4) a. John stopped the car.

b. John made the car stop.

The two sentences are arguably semantically synonymous. Nevertheless they carry different
pragmatic meanings if uttered in a neutral context. (4a) is preferably interpreted as John
stopped the car in a regular way, like using the foot brake. This would be another example
for the I-heuristics. (4b), however, is also pragmatically strengthened. It means something
like John stopped the car in an abnormal way, like driving it against a wall, making a sharp
u-turn, driving up a steep mountain, etc.

This can be modeled quite straightforwardly. Suppose there are again two worlds, w1

and w2, such that w1 is likely and w2 is unlikely (such as using the foot brake versus driving
against a wall). Let us say that p(w1)/p(w2) = 3 again. There are two actions, a1 and a2,
which are best responses in w1 and w2 respectively. There is only one context. The utilities
are given in Table 10.

Unlike in the previous example, we assume that there are only two expressions, f and f ′,
which are both unspecific: [[ f ]] = [[ f ′ ]] = {w1, w2}. (Or, alternatively, we might assume that
f1 and f2 are prohibitively expensive.) f ′ is slightly more expensive than f , like c(f) = 0 and
c(f ′) = 1.
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a1 a2

w1 5; 5 0; 0
w2 0; 0 5; 5

Table 10: Example 6

R0 =
[
f/f ′ → a1

]
S0 =

[
w1/w2 → f

]

R1 =

[
f → a1

f ′ → a1/a2

]

S1 =

[
w1 → f
w2 → f/f ′

]

R = R2 =

[
f → a1

f ′ → a2

]

S = S2 =

[
w1 → f
w2 → f ′

]
The crucial point here is that in S0, the signal f ′ remains unused. Therefore any rational-

izable interpretation of f ′ which is compatible with its literal meaning is licit in R1, including
the one where f ′ is associated with w2 (which triggers the reaction a2). Robin’s reasoning at
this stage can be paraphrased as: If Sally uses f , this could mean either w1 or w2. Since w1

is a priori more likely, I will choose a1. There is apparently no good reason for Sally to use
f ′. If she uses it nevertheless, she must have something in mind which I hadn’t thought of.14

Perhaps she wants to convey that she is actually in w2.
Sally in turn reasons: If I say f , Robin will take action a1. If I use f ′, he may take either

action. In w1 I will thus use f . In w2 I can play it safe and use f , but I can also take my
chances and try f ′.

Robin in turn will calculate in R2: If I hear f , we are in w1 with a confidence between 75%
and 100%. In any event, I should use a1. The only world where Sally would even consider
using f ′ is w2. So if I hear f ′, the posterior probability of w2 is 100%, and I can safely choose
a2.

If Robin reasons this way, it is absolutely safe for Sally to use f ′ in w2.

Digression: Algorithmic computation of the ICR sequence Let me use this example
to illustrate the algorithmic procedure to compute the ICR sequence that was presented at
the end of Section 4.
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The expected utility for Robin for choosing action a as response to either signal in R0 is∑
w∈W uR(w, a), as both f and f ′ are true in all worlds. For a1 this is 15/4, and for a2 5/4.

Therefore R0 will choose a1 for each action.
To compute S0, we construct a matrix Uw for each world w. (As there is only one context

in this game, c can be omitted.) As R0 is a singleton set, this is trivial. Let r be the only
member of R0:

Uw1 =

r

f 5
f ′ 4

Uw2 =

r

f 0
f ′ −1

As f dominates f ′ in both matrices, S0 always uses f .
To compute R1, first the interpretation of the only non-surprise message, f , is considered.

The rows are the possible sender strategies, confined to the non-surprise messages. As there
is only one such message here, this amounts to the set of actions. The columns are the sender
strategies in S0. There is only one of those, calls it s.

Uf =

s

a1 15/4

a2 5/4

a1 dominates a2. Therefore f is mapped to a1 in S1.
As next step, we construct a matrix for each surprise message, with actions as rows and

the worlds where this message is true as columns. This only applies to f ′ here:

Uf
′

=

w1 w2

a1 5 0
a2 0 5

Neither row dominates the other one, so both actions are cautious responses to S0.
Now we have two receiver strategies in R1: r11 (mapping both f and f ′ to a1) and r12

(mapping f to a1 and f ′ to a2). So the two matrices for the computations of S1 are:

Uw1 =

r11 r12

f 5 5
f ′ 4 −1

Uw2 =

r11 r12

f 0 0
f ′ −1 4

As a response to w1, f dominates f ′. In w2, both messages are undominated. So we have
two sender strategies in S1: s11 (mapping both worlds to f) and s12 (mapping w1 to f and
w2 to f ′). As there are no surprise messages in S1, the matrix for computing R2 is:

U =

s11 s12

r11 15/4 15/4

r12 15/4 5
r21 5/4 0
r22 5/4 5/4

Row r12 strictly dominates r21 and r22, and it weakly dominates r11. Therefore r12 is the
only cautious response to S1.
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The computation of S2 is rather trivial because there is only one receiver strategy in R2:

Uw1 =

r12

f 5
f ′ −1

Uw2 =

r12

f 0
f ′ 4

Clearly f dominates f ′ in w1, and f ′ dominates f in w2.

Example 7 M-implicatures have been used as motivating example for bidirectional Op-
timality Theory (see for instance Blutner 2001) as a framework for formal pragmatics. It
has been shown in Jäger (2002) that the set of (weakly) bidirectionally optimal form-meaning
pairs can be computed by an iterative procedure that has some similarity to the one given in
Definition 4. It is thus an interesting questions how the two frameworks relate.15

Weak bidirectionality predicts that simple forms are paired with stereotypical meanings
and complex forms with atypical meanings. The prediction is even stronger though: if the
set of forms in question can be ordered according to complexity in a linear way, such as
c(f1) < c(f2) < · · · < c(fn), and the set of meanings has the same cardinality and can also
be ordered in a linear fashion (such as p(w1) > p(w2) > · · · > p(wn), then the bidirectionally
optimal pairs are all pairs (fi, wi).

Let us see what pragmatic rationalizability predicts. Suppose there are three worlds with
p(w1) > p(w2) > p(w3). Also, there are three forms with c(f) < c(f ′) < c(f ′) which are
semantically synonymous, namely [[ f ]] = [[ f ′ ]] = [[ f ′′ ]] = {w1, w2, w3}. There are three actions
such that exactly one action is optimal for each world for both players. There is only one
context; the utilities are as in Table 11.

a1 a2 a3

w1 5; 5 0; 0 0; 0
w2 0; 0 5; 5 0; 0
w3 0; 0 0; 0 5; 5

Table 11: Example 7

Here is the iterative reasoning sequence:

R0 =
[
f/f ′/f ′′ → a1

]
S0 =

[
w1/w2/w3 → f

]

R1 =

[
f → a1

f ′/f ′′ → a1/a2/a3

]

S = S1 =

[
w1 → f
w2/w3 → f/f ′/f ′′

]

R = R2 =

[
f → a1

f ′/f ′′ → a2/a3

]
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Pragmatic rationalizability makes significantly weaker predictions than bidirectional OT.
We do predict a division of pragmatic labor in the sense that the cheapest form, f , is special-
ized to the most probable interpretation w1 (and the corresponding best action a1), while the
more complex forms f ′ and f ′′ are specialized to the non-stereotypical meanings. However,
no further specialization between f ′ and f ′′ is predicted.

This seems to be in line with the facts. Next to the two expressions in (4), there is a third
alternative, which is still more complex than (4b).

(5) John brought the car to a stop.

Also, there are various non-standard ways of making a car stop. The most probable way
besides using the foot brake is perhaps to use the hand brake, driving against a wall is even
less likely. So bidirectional OT would predict that (4b) carries the implicature that John
used the hand brake, while (5) is restricted to even more unusual ways of stopping a car. The
present framework only predicts that both (4b) and (5) convey the information that John
acted in a somehow non-stereotypical way. While intuitions are not very firm here, it seems
to me that the predictions of bidirectional OT might in fact be too strong here.

Example 8 Here is another example that has been analyzed by means of bidirectional OT
in the literature. Krifka (2002) observes that the pragmatic interpretation of number words
follows an interesting pattern that is reminiscent of Levinson’s M-heuristics:

“RN/RI principle:

a. Short, simple numbers suggest low precision levels.

b. Long, complex numbers suggest high precision levels.”

(Krifka 2002:433)

This can be illustrated with the following contrast:

(6) a. The distance is one hundred meter.

b. The distance is one hundred and one meter.

The sentence (6b) suggests a rather precise interpretation (with a slack of at most 50 cm),
while (6a) can be more vague. It may perhaps mean something between 90 and 110 meter.
Actually, (6a) is pragmatically ambiguous; depending on context, it can be rather precise or
rather vague. The crucial observation here is: A shorter number term such as “one hundred”
allows for a larger degree of vagueness than a more complex term such as “one hundred and
one.”

Krifka also observes that the degree of vagueness of a short term can be reduced by making
it more complex — for instance by modifying it with “exactly”:

(7) The distance is exactly one hundred meter.

Krifka (2002) accounts for these facts in terms of bidirectional OT, assuming a general
preference for vague over precise interpretation. Krifka (2007) contains a revised analysis
which employs game theoretic pragmatics. Space does not permit a detailed discussion of
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Krifka’s proposals; in the following I will just briefly sketch how pragmatic rationalizability
accounts for Krifka’s observations.

Suppose there are two equiprobable worlds, w1 and w2. Suppose the distance in question is
exactly 100 meter in w1 and 101 meter in w2. There are three signals: f1 (“The distance is one
hundred meter.”), f ′1 (“The distance is exactly one hundred meter.”) and f2 (“The distance
is one hundred and one meter.”). So we have [[ f1 ]] = [[ f ′1 ]] = {w1}, and [[ f2 ]] = {w2}. Let us
assume that c(f1) = 0 and c(f ′1) = c(f2) = 4.5. There are two actions. a1 is optimal for w1

and a2 for w2. Furthermore, there are two contexts. In c1, precision is very important. This
means that the differential costs of using an expensive message are lower than the difference
in utility between a1 and a2. In c2 it is the other way round.

Table 12 gives the numerical utilities:

c1 :

a1 a2

w1 10; 10 0; 0
w2 0; 0 10; 10

c2 :

a1 a2

w1 4; 4 0; 0
w2 0; 0 4; 4

Table 12: Example 8

Here is the iterative reasoning sequence:

R0 =



(c1, f1) → a1

(c1, f
′
1) → a1

(c1, f2) → a2

(c2, f1) → a1

(c2, f
′
1) → a1

(c2, f2) → a2


S0 =

[
(c1, w1)/(c2, w1)/(c2, w2) → f1

(c1, w2) → f2

]

R = R1 =



(c1, f1) → a1/a2

(c1, f
′
1) → a1

(c1, f2) → a2

(c2, f1) → a1/a2

(c2, f
′
1) → a1

(c2, f2) → a2



S = S1 =

 (c1, w1) → f1/f
′
1

(c1, w2) → f2

(c2, w1)/(c2, w2) → f1


The two complex expressions f2 and f ′1 are always interpreted in a precise way under the

PRSs. The simple expression f1 is pragmatically ambiguous between a precise interpretation
(in c1) and a vague interpretation (in c2).
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6 Comparison to Franke’s IBR model: scalar implicatures
again

In a series of recent publications, Michael Franke has developed the Iterated Best Response
model (IBR model) of game theoretic pragmatics (see Franke 2009, 2011). This model is
conceptually very similar to the present model, so let me briefly discuss where the models
differ.

Franke gives a detailed procedure how a linguistic example is to be transformed into a
game. In these games, the actions are always isomorphic to the possible worlds (or types,
as he calls it), and the utility function is based on type matching, i.e. both players score 1
if Robin picks the action that corresponds to the correct world, and 0 otherwise. He also
considers so-called epistemic games where types are sets of possible worlds, i.e. information
states. This models scenarios where Sally is not fully informed (or, to be precise, where it is
not common knowledge that she is).

These design decisions are of course fully compatible with the ICR model (see Jäger
2011 for a variant of the ICR model where incomplete knowledge of the sender about the
true possible world is incorporated). The crucial difference lies in the way a response to
a non-singleton set of possible opposing strategies are computed. While the ICR model
considers all possible probability distributions over the set of possible strategies (as long as
they assign positive probability to all possibilities), Franke assumes that the Principle of
Insufficient Reason (see Jaynes 2003) applies. This means that all possibilities receive the
same probability. A best response to a set of strategies is thus conceived as a best response
to the uniform distribution over these strategies.

This corresponds to a subtle difference in the epistemic foundations of the two models. In
Franke’s model, the agents have exactly the same amount of information as the modeler. If,
at a certain stage of the iterative reasoning process, the opposing player has more than one
option, the reasoning agent has no reason to prefer any of these options over another. In the
present model, it is very well possible that the agents have certain prior assumptions about
the dispositions of the other player. The ICR model computes the predictions that we can
make if we do not know these prior assumptions.

This can be illustrated with an abstract example. Reconsider the utility matrix from
Example 6, which is repeated here for convenience: As in Example 6, we assume that there

a1 a2

w1 5; 5 0; 0
w2 0; 0 5; 5

Table 13: Example 9

are two messages, f and f ′, which are both true in both worlds. However, we now assume
that both worlds are equally likely and that both messages are costless.

The ICR sequence comes out as:

R = R0 =
[
f/f ′ → a1/a2

]
S = S0 =

[
w1/w2 → f/f ′

]
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In Franke’s model, (R0, S0) is likewise a fixed point. His R0 is a mixed strategy though
where Robin performs both actions with equal probability, no matter which signal is observed.
Likewise, his S0 is a mixed strategy where Sally sends either message with 50% probability,
regardless of the world she is in.

While both models agree that it is not possible to predict any reliable information exchange
in this scenario, the interpretation of this result is different. Franke’s model predicts that in
fact no information transmission takes place. It is fully consistent with the ICR result though
that Sally uses f in w1 and f ′ in w2 with a probability close to 1, and that Robin interprets f
as a1 and f ′ as a2, also with a probability close to 1. It is thus consistent with the predictions
of the ICR model that a differentiation of meanings takes place — it is just not possible to
predict from the available information how it looks like.

While this consideration may be rather abstract and meta-theoretical, the following ex-
ample points to a more substantial difference.

Franke (2009) (page 77 pp.) construes the simple scalar implicature scenario as the fol-
lowing game. We have two possible worlds, w∀ (where all boys came to the party) and w∃¬∀
(where some but not all boys came to the party). There are three messages, fs (“Some
boys came to the party.”) with [[ fs ]] = {w∀, w∃¬∀}, fa (“All boys came to the party.”) with
[[ fa ]] = {w∀}, and fsbna (“Some but not all boys came to the party”) with [[ fsbna ]] = {w∃¬∀}.
The latter signal incurs a small cost, while the other two messages are costless. The utility
matrix is based on type matching. It is shown in Table 14.

a∀ a∃¬∀
w∀ 1; 1 0; 0
w∃¬∀ 0; 0 1; 1

Table 14: Example 10

Here the ICR sequence comes out as shown in the left panel of Table 15. Consider the
computation of S0. In w∀, the optimal outcome of a∀ can be induced with certainty by using
fa, and with an unknown probability in (0, 1) by using fs. As both signals are equally cheap,
the former is the safer bet. In w∃¬∀, however, fs might be the better option because it is
cheaper than fsbna. If Sally considers it sufficiently likely that Robin will map fs to a∃¬∀, it
is rational for her to use this message, because the risk of being misunderstood is offset by
the reduced message costs. If Sally assumes that fs will be mapped to a∀ with sufficiently
high probability, it is better for her to use fsbna.

Due to this indeterminacy, fsbna is not a surprise message in S0. Therefore Robin will
conclude with certainty that Sally is in w∃¬∀ when observing it, and accordingly choose a∃¬∀.

In Franke’s model, fs will be mapped to both actions with equal likelihood in R0. Sally’s
expected payoff for using it in w∃¬∀ is thus 0.5. Using fsbna will induce a∃¬∀ with probability
1. If the costs of fsnba are smaller than 0.5, she will therefore choose it. fs comes out as a
surprise message in S0.

In the ICR model, it is assumed that the only information that Robin draws from observing
a surprise message is that this message is true. If we apply this principle in connection with
the Principle of Insufficient reason, we get the IBR sequence as shown in the left panel of
Table 15. Both a∀ and a∃¬∀ are equally good responses to fs under the assumption that fs
is true. Therefore the best response to S0 is again R0.
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R0 =

 fs → a∀/a∃¬∀
fa → a∀
fsbna → a∃¬∀


S0 =

[
w∀ → fa
w∃¬∀ → fs/fsbna

]

R = R1 =

 fs → a∃¬∀
fa → a∀
fsbna → a∃¬∀


S = S0 =

[
w∀ → fa
w∃¬∀ → fs

]

R = R0 =

 fs → a∀/a∃¬∀
fa → a∀
fsbna → a∃¬∀


S = S0 =

[
w∀ → fa
w∃¬∀ → fsbna

]

Table 15: Comparison ICR vs. IBR

Franke discusses this problem at length. His solution is to adopt a more sophisticated
method for interpreting surprise messages. Briefly put, when Robin observes a surprise mes-
sages, he wonders in which world Sally could possibly benefit from deviating from her strategy.
In the current example, Sally will achieve her maximal payoff anyway when she is in w∀. In
w∃¬∀, she might hope to save message costs by sending a costless surprise message. Therefore
Robin’s best explanation for observing fs is that Sally is in w∃¬∀, and he will accordingly
choose a∃¬∀.

To sum up, Franke’s model uses a coarser method for choosing a response when the
strategy of the opposing player is not known. This reduces the complexity of the computations
considerably. On the other hand, it may lead to unwelcome results as soon as message costs
enter the picture. To remedy this problem, Franke has to adopt a more complex belief revision
policy for the interpretation of surprise messages.

It should be noted that Franke’s model (including this belief revision policy) makes the
same predictions as bidirectional OT in scenarios such as Example 7.

7 Related work

The essential intuition behind the proposal laid out here is that the literal meaning of signals
constitutes their default interpretation, and that rational communicators decide about their
communicative strategies by iteratively calculating the best response to this default strategy.
Similar ideas have been proposed at various places in the literature, sometimes implicitly,
even though the precise technical implementation offered here is to my knowledge novel.

As briefly discussed above, Rabin (1990) gives a definition when a message should count
as credible. Within the present framework, his definition could be recast as: a message f is
credible iff for each n and for each s ∈ Sn, [[ f ]] ⊆ s−1(f). This equivalence only holds under
certain side conditions pertaining to the space of available messages, but essentially Rabin’s
definition of credibility relies on an iterated calculation of best responses, starting with the
credulous receiver strategies.

Stalnaker (2005) proposes an informal notion of credibility that could be interpreted as
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follows: f is credible iff there is some s ∈ S0 such that f ∈ range(s), and for each s ∈ S0 :
s−1(f) ⊆ [[ f ]].

Benz and van Rooij (2007) develop a pragmatic interpretation procedure that can, in the
present framework, be approximated by the rule: Sally should choose her signals according to
S0, and Robin should interpret them according to R1. They assume an additional constraint
though requiring that only honest strategies will be admitted in S0.

In Jäger (2007) I propose to calculate the pragmatically licit communication strategies by
starting with a strategy based on the literal interpretation of signals and iteratively computing
the best response strategy until a fixed point is reached. So this approach is similar in spirit
to the present one to a certain degree. Nevertheless the two theories differ considerably in
detail. In Jäger (2007) I assumed an update rule where Sn+1/Rn+1 are mixed strategies that
differ only infinitesimally from Sn/Rn. The reasoning process that is modeled this way is
quite unlike the Gricean inference schemes that are dealt with in the present framework.

The present paper is a revised version of a manuscript that was written in 2008 and has
been in circulation under the title “Game Theory in Semantics and Pragmatics” since then.
Some of the ideas laid out there have been taken up and developed further in subsequent work
such as Franke (2009), Jäger and Ebert (2009), Franke (2011), Jäger (2011), and Franke and
Jäger (2012). The most significant innovation here arguably is Franke’s usage of the Principle
of Insufficient Reason to narrow down the space of strategies at each level of the iterative
reasoning sequence to a single strategy.

8 Conclusion

This article is primarily aimed at introducing readers with a background in linguistic seman-
tics and pragmatics to some of the issues that game theorists worry about when study the
conditions for communication between rational agents. At the same time, the article might be
of use for economists and philosophers with a background in game theory that are interested
in the specific problems of linguistic pragmatics and the potential of game theoretic methods
in this domain.

The question whether or not it is rational to communicate at all in a particular situation
has largely been ignored in the linguistic research tradition because a complete alignment of
interests is usually assumed. The game theoretic research has shown that communication can
be rational even if the interests of the interlocutors are only partially aligned.

A second issue that is prominent in the game theoretic discussion is the role of conven-
tionalized meaning of messages in situations where a simple-minded assumption of honesty
and credulity is in partial conflict with rationality. This is also one of the core concerns of
Gricean pragmatics. I proposed a game theoretic formalization of Gricean reasoning that both
captures the intuitive reasoning patterns that are traditionally assumed in the computation
of implicatures, and that addresses the problem of the credibility of signals under partially
aligned interests of the interlocutors.
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Notes

1The analogous problem also arises in van Rooij’s model.
2In the game-theoretic terminology, both L1 and L2 constitute strict Nash equilibria.
3A strategy s is rationalizable if there is a consistent set of beliefs such that s maximizes the expected payoff

of the player, given these beliefs and the assumption that rationality of all players is common knowledge.
4The decision to use integers for sender types and real numbers for actions is purely out of mathematical

convenience.
5The first step follows from a standard result in statistics, according to which the best estimator for a

squared-error loss function — such as uR in the example — is the expected value (see for instance Jaynes
2003, p. 416). The second step utilizes the facts that

∑∞
w=1 2−w = 1 and

∑∞
w=1 w · 2−w = 2, which can both

easily be shown via complete induction.
6Thanks to Michael Franke for pointing this out to me.
7In many scenarios, the intuitions about what constitutes a credible message is somewhat less clear than

in the ones presented here. This has led to a lively debate about how credibility should be precisely defined.
The interested reader is referred to Rabin (1992); Farrell (1993); Farrell and Rabin (1996); Zapater (1997);
Stalnaker (2005) and the literature cited therein.

8There might be more than one credulous strategy because several actions may yield the same maximal
payoff for Robin in certain situations.

9Grice’s Maxim of Quantity is “ Make your contribution as informative as is required (for the current
purposes of the exchange). Do not make your contribution more informative than is required.”, and the
Maxim of Manner “Be Clear. Avoid obscurity of expression. Avoid ambiguity. Be brief (avoid unnecessary
prolixity). Be orderly.” (cf. Grice 1975).

10I use the term “context” in such a way here that the preferences of the players may vary between contexts
(as well as between worlds), while the literal meaning of messages is invariant between contexts. So this notion
of context has nothing to do with the knowledge state of the discourse participants or the interpretation of
indexical expressions.

11Epistemically speaking, this means that I do not assume any common belief about which context the
players are in, even though they might hold private beliefs.

12Note that in S2, both in w2 and w3 Sally sends one of the messages f12, f23 and f123. Robin assumes
that in each world, Sally uses some probability distribution over these messages. If he thinks that there is one
message that is sufficiently more likely to be sent in w2 than in w3, this message will induce a high posterior
probability for w2, which in turn makes it rational for him to pick a2. It is not possible though that all three
messages are more likely to be sent in w2 than in w3. Therefore it is never rational for Robin to pick a2 for all
three messages.

13One reviewer remarked that the usage of significant signaling costs is somewhat unusual as compared to
most of the signaling game literature. The standard assumption is that costs are nominal, i.e. that they are
vanishingly small in comparison to other determinants of utilities, and that they only play a role as tie-breakers.
I find the assumption of nominal signaling costs unrealistic though in the context of linguistic communication.
There is always a certain limit to the tolerable complexity of the expression that is being used, so at some
point speakers will always sacrifice precision for brevity.

14The idea that Robin is prepared to revise his prior assumptions in any arbitrary way upon observing a
surprise message is technically implemented by existentially quantifying over Robin’s probability distribution
p in the last line of Definition 4, rather than using his prior distribution p∗.

15See Franke and Jäger (2012) for a detailed discussion of the relation between bidirectional OT and game
theoretic reasoning.
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Zapater, Iñigo. 1997. Credible proposals in communication games. Journal of Economic The-
ory 72, 173–197.

34


