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Abstract

Various accounts of distinctively mathematical explanations (DMEs) of complex
systems have been proposed recently which bypass the contingent causal laws
and appeal primarily to mathematical necessities constraining the system. These
necessities are considered to be modally exalted in that they obtain with a greater
necessity than the ordinary laws of nature. This paper focuses on DMEs of the
number of equilibrium positions of pendulum systems, and considers three dif-
ferent DMEs which bypass causal features — (D1): that there are four or more
equilibrium positions of any double pendulum system because its configuration
space obtains a torus with at least four critical points (Lange 2016, p. 27); (D2):
that k-th Betti number of the configuration space of any n-uple pendulum yields
k-stable directions of the pendulum system; and (D3): that any pendulum sys-
tem has 2n number of equilibrium positions. It then argues that there is a tension
between the modal strength of these DMEs and their epistemic hooking, and we
are forced to choose between (a) a purported DME with greater modal strength
and wider applicability but poor epistemic hooking, or (b) a narrowly applicable
DME with lesser modal strength but with the right kind of epistemic hooking. It
also aims to show why some kind of DMEs despite their strong modality are un-
appealing for working scientists. The broader goal is to show why such tensions
weakens the case for DMEs for pendulum systems in general.

A number of distinctively mathematical explanations (DMEs) have been
proposed in the literature (Baker 2012; Lange 2016; Mancosu 2008; Steiner
1978) where the explanatory power of the explanans derives not by accu-
rately describing the causal nexus of a target system but by appealing to
some modally exalted mathematical facts that seem to constrain the sys-
tem with a necessity surpassing that of the ordinary laws of nature. This
paper focuses on Lange’s (2016) version of these DMEs for complex sys-
tems such as the double pendulum. Lange shows that a constraint on the
number of equilibrium positions of a double pendulum can be obtained
bypassing the causal features of the pendulum system. He argues that any
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double pendulum system, whether simple or complex, has four or more
equilibrium positions and this fact is modally constrained by some dis-
tinctively mathematical facts which appeal only to the configuration space
of the system (a torus) irrespective of the contingent laws governing these
systems (2016, p. 31). Such DMEs are then termed non-causal ’explana-
tions by constraint’ because the explanatory features of the target system,
i.e. the number of equilibrium positions, remains invariant even if contin-
gent laws of nature were to change. A number of desideratum have been
recently proposed to evaluate these DMEs (Baron 2016; Craver & Povich
2017; Povich 2019), including: the (1) modal desideratum: which evalu-
ates the modal strength of the DME; and (2) the distinctiveness desider-
atum: which segregates the parts of the mathematical explanation that
are distinctively mathematical from the parts that are merely doing rep-
resentational work or cause-tracking work such as in the flagpole-shadow
explanation or the train example.1 I propose a new desideratum to eval-
uate DMEs - the epistemic desideratum, which illuminates the hooking
between the DME and the target system. (I will use an intuitive way of
judging the epistemic desideratum which will be clear from a detailed dis-
cussion of the case studies in this paper.) I am going to argue that the
epistemic desideratum is in conflict with the modal desideratum and/or
the distinctiveness desideratum for the chosen case study of double pen-
dulums, which I will also suitably extend to n-uple pendulums. I evaluate
the modal strength and epistemic hooking of the DME for double pendu-
lums by introducing counterpossibles, both mathematical and physical,
covering a related family of complex systems. I then pose a dilemma for
the proponents of DMEs of choosing between (a) a purported DME with
greater modal strength and wider applicability but poor epistemic hook-
ing, or (b) a narrowly applicable DME with lesser modal strength but with
the right kind of epistemic hooking. I show this by expanding the pool of
DMEs by considering three of these candidates:

(D1) There are four or more equilibrium positions of any double pendu-
lum.

(D2) For any n-uple pendulum, the number of equilibria with k stable di-
rections is equal to the k-th Betti number of its configuration space (n-
dimensional torus), where a stable direction implies a pendulum rod point-
ing downward.

1For instance, a trigonometric identity tan θ = h/l, where l is the length of the shadow
and h is the height of the flagpole, explains the height of the shadow, but this is not a
distinctively mathematical explanation since the trigonometric identity merely tracks the
causal features of the target system and does not constrain it (Povich 2019). Similarly,
for the train example, the reason why a train covers a distance of 10 km in 1 hour when
going at the speed of 10km/hr is not because the formula time = distance/velocity is a
constraint, rather it is only explicating physical constraints on the system (Baron 2016).
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Figure 1: A double pendulum with stiff rods and its four equilibrium posi-
tions: from Lange (2016)

(D3) The number of equilibrium positions for any n-uple pendulum is 2n.

The plan for the paper is as follows. In section 1, I discuss (D1), which
is Lange’s explanation of the double pendulum based on configuration
spaces, and highlight its lack of appeal to working scientists when the strat-
egy backing (D1) is extended to other kinds of pendulum systems. In sec-
tion 2, I propose (D2) as an alternative strategy to extend the DME to any
n-uple pendulum, and show how this strategy is modally stronger and
more appealing to working scientists than (D1). In section 2.1, I discuss
some methodological concerns with using configuration spaces to predict
the constraint on the number of equilibrium positions for pendulum sys-
tems, and how such concerns deflate the modality but enhance the epis-
temic desideratum of (D1) and (D2). In section 2.2., I discuss a simpler
version (D3) of these distinctively mathematical explanations and show
why it fares better on the modal desideratum but poorer on the epistemic
and distinctiveness desideratum. I then briefly discuss how a causal ex-
planation of the number of equilibrium positions, having a better epis-
temic hooking but weaker modality, can subvert the problems faced by
(D1), (D2) and (D3). The broader goal is to show why the peculiar kind
of tension between modality, distinctiveness and epistemic hooking dis-
cussed in this paper weakens the case for DMEs for pendulum systems in
general.

1 Concerns with Lange’s account

In this section, I briefly sketch out the causal and non-causal version of the
explanation or (D1) for the double pendulum given by Lange (2016). Then
I show that the strategy of using the invariance properties of the configu-
ration space in the DME is unappealing for other kinds of pendulum sys-
tems. This discussion paves way for the alternative strategy (D2) discussed
in the next section.
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The potential energy (P.E.) function for a double pendulum, in Figure
1, can be written as:2

U(α, β) = −mgym −MgyM

ym = Lcosα

yM = Lcosα +Kcosβ

U(α, β) = −mgLcosα−Mg(Lcosα +Kcosβ)

∂U

∂α
= mgLsinα+MgLsinα

∂U

∂β
= mgKsinβ

One way to find out the number of equilibrium positions of the pendu-
lum is to find positions where the partial derivatives of U(α, β) are zero
- these are positions where sinα and sinβ are zero: (0, 0), (0, π), (π, 0) and
(π, π). Lange (2016) calls this as a causal explanation since the explana-
tion crucially relies on tracking the causal features of the system involv-
ing a change in the P.E. function. Another way to find out these equilib-
rium positions involves reasoning with the configuration space of the dou-
ble pendulum which remain invariant despite any physical alterations to
the pendulum system or a change in the contingent force laws acting on
the system. (Newton’s second law is here considered as a framework law
which can do with any kinds of forces.)3 The configuration space of the
double pendulum obtains a torus of genus or g = 1. If we assume that the
P.E. function remains finite and continuous, U(α, β) also obtains a torus
(a distorted one though). If U(α, β) also satisfies a Morse function (hav-
ing a non-degenerate Hessian matrix), then the Euler characteristic of the
Morse function can be used to find a lower bound on the number of crit-
ical points of U(α, β). Since Nmax − Nsaddle + Nmin = 2 − 2g for a compact
space and g = 1 for the torus, given there is at least one minima and one
maxima, there must be at least two saddle points. This implies total four
or more critical points for U(α, β). Lange maps this back to the pendu-
lum claiming that the double pendulum must also have at least four or
more critical or equilibrium points, and that it is is a non-causal explana-
tion or ’explanation by constraint’ because it only appeals to the configu-
ration space of the double pendulum which is a torus. He also claims that
this DME works for any kind of double pendulum, with stiff rods, non-stiff
roads, complex pendulum and so on (p. 31).

There are a couple of initial worries which although do not undermine
Lange’s thesis, they reveal certain presumptions that were not explicit ear-
lier or show why his account is unappealing to a working scientist. First,

2Borrowing the format from Lange (2016, pp. 26-27)
3See Ch. 2-4 in Lange (2016) for an elaborate discussion.
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Lange is not quite right in stating that the explanation exploits only the
configuration space of the pendulum, the explanation exploits the config-
uration space of the pendulum only given that the P.E. function remains
’linear’.4 If the P.E. function was non-linear, the strategy fails because a
non-linear P.E. function will not obtain a distorted torus as discussed above.
Consider if the P.E. function was second-order (i.e. U = mgL2), say in some
exotic world, then U(α, β) = −mgLcosα−Mg(Lcosα+Kcosβ) will instead
be U(α, β) = −mgL2cos2α−Mg(Lcosα+Kcosβ)2. Lange’s strategy falls flat
here since now the torus can no longer be mapped on the P.E. function.
One could show using partial derivatives approach that U(α, β) will now
have only one critical point or equilibrium point.5 So in an exotic world
where the P.E. function is a second-order function, the standard DME of
the double pendulum with four or more equilibrium positions fails. One
might add this is not so much of a worry for Lange since he assumes that
these DMEs only make sense when Newton’s second law is applicable, and
one can show, using the principle of least action and symmetry, that a non-
linear P.E. function conflicts with Newton’s second law of motion (in the
form we know of).6 So a non-linear P.E. function violates those very con-
straints that as per Lange supply the explanation by constraint. But the
worry here is that the dependence of the DME on the linearity of P.E. func-
tion is not shown by Lange to be critical for the explanation. Given that
it is a critical link in the explanatory dependence between the number of
equilibrium positions and the invariant configuration space of the double
pendulum, this should be added as an explicit constraint in his account.
The explanatory dependence only arising from the configuration space of
the torus is thus a misnomer.

The second more important worry is that the strategy of using the Euler
characteristic of a Morse function cannot be extended in the same form to
pendulums with higher number of members, say n-uple pendulums. The
configuration space of a n-uple pendulum (and its linear P.E. function) ob-
tains a n-torus with genus 1. Again, Nmax − Nsaddle + Nmin = 2 − 2g for a
compact space, and g = 1 for the n-torus, there must be at least 4 or more

4Saatsi (2018, p. 5) endorses a similar point about P.E. functions and argues that ”Con-
sider, for instance, changing the potential energy function so that it does not pull uni-
formly down, as in the case of a standard gravitational pendulum that Lange probably
has in mind, but instead pulls symmetrically up above the centre of the pendulum, and
down below it, so that there is a plane running through the centre where the potential
energy vanishes. With such forces acting upon the pendulum it will have at least 8 equi-
librium configurations.” Lange (2018) replies to these objections stating that the P.E. func-
tion having a different feature which lends eight equilibrium positions to the pendulum
is a different why-question, and still fails to account for the explanation why there are ’at
least’ four or more equilibrium positions for a double pendulum.

5The derivation is avoided here for brevity but can be easily obtained.
6This is because the Lagrangian L = T (q̇)− V (q) requires V (q) to be linear in q where

T (q̇) is quadratic in q̇, if it has to satisfy the Euler-Lagrange equation. A second-order
function V (q) in q will violate the Euler-Lagrange equations of motion. A detailed discus-
sion will not be pursued here.
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critical/equilibrium points for U(α, β) or the n-uple pendulum. But this
result seems a bit trivial. A triple pendulum has 8 equilibrium positions, a
quadruple-pendulum has 16 and so on, and yet all that the Euler charac-
teristic tells us is there are 4 or more such positions. The explanation that
every n-uple pendulum (with n > 2) has 4 or more equilibrium positions
seems no superior to the explanation that every pendulum has at least 1 or
more equilibrium position - something that may obtain from plain obser-
vation and does not even require tapping into modern algebraic topology.
Lange might still claim that this does not render his explanation incorrect,
but one may note that it does render the explanation lose much of its ap-
peal for pendulums with higher number of members. Say Lange contests
my claim and argues that his explanation was only applicable to double
pendulums and not any other kind of pendulums; if so, then he faces a
dilemma. This goes as follows. While Lange does not show this, his strat-
egy can successfully explain the lower bound on the number of equilib-
rium positions of both spherical pendulums and simple pendulums, and
not only double pendulums. The configuration space of a simple pendu-
lum is a circle which has g = 0. Since a 2D surface like a circle cannot
have a saddle point, and there must be at least one maxima and one min-
ima, Nmax − Nsaddle + Nmin = 2 − 2g yields that there can only be exactly
2 equilibrium positions for a simple pendulum, which is correct. Reason-
ing similarly, for a spherical pendulum the configuration space is that of a
sphere also with g = 0, Since a sphere has no saddles, there must be at least
one minima and one maxima giving exactly 2 equilibrium positions for a
spherical pendulum, which is also correct. The dilemma for Lange then is
to either accept that the successful explanation in all these cases is merely
by coincidence, which defeats his thesis, or to accept that using the Euler
characteristic of the configuration space can be a general strategy of giving
a lower bound on the number of equilibrium positions but this amounts
to accepting that for other kinds of pendulums such as n-uple pendulums
(n > 2) his strategy loses much of its appeal and cannot be of any interest
to a working scientist. (The scientist will certainly want to know at least
the exact lower bound on the number of equilibrium position.) Even if
we step aside these worries, there are some serious problems with Lange’s
account. An improved account follows.

2 Alternative strategy and problems

Now I propose using an alternative strategy of reasoning with higher di-
mension configuration spaces that does not directly involve the Euler char-
acteristic – (D2) – and show why this is a better strategy than Lange’s in that
(a) it applies to any n-uple pendulum system, and (b) it can give the exact
number of equilibrium positions for such pendulum systems. But later I
show why even this strategy (including Lange’s strategy) is not only unap-
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Figure 2: From Gholizadeh et. al. (2018) showing the k-th betti number for
topological surfaces

pealing in some respects but also that reasoning with configuration spaces
can be flawed and misleading in certain contexts such as non-Morse func-
tions. This discussion then opens the floor for a much simpler and effec-
tive treatment of pendulum systems using (D3), which I discuss at the end
of this section.

The Euler characteristic strategy can be suitably modified for the n-
uple pendulums to use Betti numbers.7 Betti numbers are topological in-
variant for compact topological surfaces that are Morse functions (See Fig-
ure 2). The k-th betti number shows the number of k-dimensional holes on
a topological surface. (For any k-dimensional surface n-th betti number is
always zero for any n > k.) This result can be connected with the number
of stable positions obtaining in a pendulum system. (D2): for any n, the k-
th Betti number (where k < n) of the n-dimensional torus can be shown to
be equal to the number of equilibria of the n-uple pendulum with k stable
directions where each stable direction implies a pendulum rod pointing
downward. This is because the number of k-stable directions for an n-uple
pendulum is

(
n
k

)
which is equal to the k-th betti number of the n-torus. The

reason why
(
n
k

)
describes the k-th betti number of the n-torus is because

of the total n number of dimensions one can choose k number of ways to
travel from a given point, and if one reaches the same point after travelling
then such a direction can be designated as a k-dimensional hole. As an il-
lustration, consider this. A double pendulum obtains a torus. As shown
in figure 2, for a torus, β0 = 1 shows the number of connected surfaces,
and β1 = 2 , and β2 = 1 correspond to the number of k-th dimensional
hole (i.e. 1D and 2D) in the torus. A double pendulum can have

(
2
1

)
or 2

stable directions when only 1 rod is pointing down which is equal to β1 = 2
, or

(
2
2

)
or 1 stable directions when both rods are pointing down which is

equal to β2 = 1 , and also
(
2
0

)
or 1 stable direction which is equal to β0 = 1

7I am indebted to Daniel Litt and Jeremy Booher for the illuminating exchange of
emails which gave me the idea of deploying Betti numbers for this example. That Betti
numbers can be used to arrive at such an explanation was first suggested by Daniel Litt.
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when 0 rods are pointing down. The same can be illustrated for a sim-
ple pendulum, spherical pendulum and for any higher order pendulum.
Thus the difference between this strategy and Lange’s strategy is evident
in that using Betti numbers yields an exact number of stable equilibrium
positions of any n-uple pendulum compared to the unappealing inexact
number of lower bound suggested by Lange’s strategy. Not only does this
strategy give the number of stable positions for each k-th betti number,
but also tells us the total number of equilibrium positions of any n-uple
pendulum system. To find the total number of equilibrium positions, we
add all the possible number of stable positions of the pendulum or all betti
numbers of the configuration space. Using induction and pascal’s identity
for binomials, we obtain:

k=n∑
k=0

(
n

k

)
=

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ .........+

(
n

n

)
= 2n

The summation of all betti numbers thus gives 2n as the total number of
such positions, which is also equal to (D3) as suggested in the introduc-
tion. (But we come to the derivation of (D3) by a different way in the next
subsection.) This strategy is not only modally superior to (D1), because it
gives an exact number of equilibrium positions for any pendulum, but it is
also epistemically valuable, i.e. satisfies our epistemic desideratum. The
reason why the Betti numbers align well with the equilibrium positions of
the pendulum system is because the P.E. function is a Morse function over
the configuration space and the signature of the Hessian matrix tells us
whether there is a critical point in the Morse function or not. Summing up
all the critical points, we obtain the total number of equilibrium positions
for the pendulum system. This is valuable since there is an explicit linkage
being shown between the purported DME or mathematical constraint and
the total number of equilibrium positions obtaining in the physical sys-
tem, something that was not explicit in (D1) because it only gave a lower
bound without really telling us how do they tie up with the exact number
of equilibrium positions.

2.1 Why the strategy fails?

But why even this strategy is unappealing and flawed? I first discuss why
this strategy fails and then examine in the next subsection, after discussing
(D3), why this is also unappealing in some ways. One of the major pre-
sumptions in using the configuration space of such complex systems to
predict the number of equilibrium positions of the system is that the P.E.
function is a Morse function. This by no means is a trivial presumption,
and I show how both (D1) and (D2) break down if the P.E. function is a
non-Morse function.
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Lange (2016, p.31) argues that the DME for a double pendulum applies
to all kinds of double pendulums, whether with a stiff rod, or a non-stiff
rod, or even a pendulum with a spring. This is because the configuration
space of each of these systems is going to be a torus, and then mutatis
mutandis the constraint on the equilibrium positions obtain. For Morse
P.E. functions mapping onto the configuration space, this does not seem
to be a problem, but when we perturb the system, the P.E. function no
longer remains a Morse function thereby altering its Euler characteristic;
the DME fails to apply generally thereby losing much of its modal strength.
We look into perturbations in a simple pendulum first, since the analysis
of a double pendulum can become quite complicated, but the lesson from
the simple pendulum carries forward mutatis mutandis to n-uple pendu-
lum systems.

Suppose a simple pendulum has non-stiff rods or is suspended by a
non-linear spring. If one adds a non-linear perturbation α2 (where α is the
angle of inclination of the rod from the pivot) in the length of the rod, the
P.E. function looks like:8

U(α) = −mg(L+ α2)cosα

U(α) = −mgLcosα− α2 · cosα

U ′(α) = −mg(Lsinα− 2a · cosα + a2sinα)

U ′′(α) = −mg(Lcosα− a2 · cosα + 4asinα− 2cosα)

We want to obtain conditions where the perturbations render the P.E. func-
tion degenerate, i.e. U ′ = U ′′ = 0.9 When U ′ = 0, we get tanα = 2α

α2+L
.

When U ′′ = 0, we get tanα = −α2+L−2
4α

. Eliminating the trigonometric
identities by simultaneously solving U ′ and U ′′ we get the following poly-
nomial:

2α

α2 + L
= −α

2 + L− 2

4α

α4 + α2(6 + 2L) + (L2 − 2L) = 0

8One may charge me for bringing the non-linear P.E. function in disguise here using
non-linear perturbations, but this case is different from a law-like non-linear P.E. be-
haviour in that (a) we are not imposing perturbations on all kinds of rods - stiff rods are
exempted and thus its P.E. function is also unaffected, and (b) a law-like non-linear P.E.
function as discussed in the previous section is going to yield quite different number of
equilibrium positions than a P.E. function that becomes non-linear by perturbations. One
may verify this by deriving these cases independently by using a law-like non-linear P.E.
function containing terms likeMgl2cos2α instead of a perturbation based non-linear P.E.
function containing terms like Mg(l+ α2)cosα. A persual will consume space and is thus
avoided here.

9For a double pendulum, we will have to obtain degeneracy conditions according to
the Hessian matrix, but the larger point follows from here.

9



Let us take a peculiar value of L and see if this polynomial is solvable.
For L=0.5, the polynomial becomes α4 + 7α2 − 0.75 = 0. There are 4 solu-
tions to this equation: (-0.324, +2.665, +0.324, -2.66). For all these values
of α, U ′ and U ′′ are zero and the P.E. function becomes degenerate, or fails
to be a Morse function. There are general ways to arrive at this formula-
tion of the problem by assuming that the perturbation is f(α) instead of
α2, and then deducing the conditions of degeneracy where U ′ = U ′′ = 0
holds, such as:

f ′(α)

f(α) + L
= −f(α) + L− f ′′(α)

2f ′(α)

It can thus be shown that there are several varieties of non-stiff rods where
such perturbations yield a non-Morse function on the configuration space
of the P.E. function and thus a general way of arriving at the number of
critical points using Euler characteristic or Betti numbers (a topological
invariant for Morse functions) fails. (The same could be shown for dou-
ble pendulums and n-uple pendulums by assuming higher order pertur-
bations but the derivations are being avoided here for paucity of space.)
Morse-Bott theory or the stratified Morse theory can tackle non-degenerate
cases but in these cases the situation becomes quite complicated since
the topological invariant differs from case to case and there is no general
solution that can be applied for obtaining a modally stronger and widely
applicable DME. The reason why (D1) and (D2) fail in these cases because
Euler characteristic and Betti numbers are the specific properties of Morse
functions, they are not actually topological invariants that apply to both
Morse and non-Morse functions, or to say that they are not topological in-
variants that apply regardless of the nature of the function involved. Since
a topological invariance cannot be guaranteed in cases where perturba-
tion is introduced, one can no longer rely on configuration spaces to ex-
tract a distinctively mathematical explanation; the larger strategy there-
fore fails. Therefore, for non-Morse function the modality of the (D1) and
(D2) breaks down, or becomes restricted to Morse function. Introducing
perturbations thus weakens the modality but improves our understanding
of the epistemic hooking of (D1) and (D2) through cases where they fail to
work.

2.2 A simpler DME?

But all these problems could be avoided by a simpler distinctively math-
ematical explanation (D3), that there for any n-uple pendulum, there are
exactly 2n number of equilibrium positions. One could arrive at this result
inductively by considering the following. A simple pendulum has 2 or 21

equilibrium positions, i.e. when the rod is pointing down or pointing up. A
double pendulum has two such rods. Both the rods can either point down
or up. There are 2 × 2 or 22 ways of doing this so a double pendulum has

10



4 equilibrium positions. A triple pendulum has three such rods, so there
are 2× 2× 2 or 23 ways of doing this and so on. So for a n-uple pendulum,
the number of equilibrium positions should be 2n. This explanation not
only gives an exact number of equilibrium positions but also bypasses the
problems related to the topological invariance of Morse and non-Morse
configuration spaces as in (D1) and (D2). It thus remains unaffected by
any perturbations one may add to the linear P.E. function, the number of
equilibrium positions remain 2n. But this explanation exploits a less so-
phisticated topological property of the path space of the pendulum sys-
tems, that each equilibrium position of a rod is at a distance of π radians
from each other. This topological property will remain invariant if (a) the
P.E. function remains finite, continous and linear, and (b) Newton’s second
law of motion operates in its current form. (But it breaks down like (D1) or
(D2) when P.E. function is non-linear.) So the modality is enhanced con-
siderably compared to (D1) and (D2). This answers the question why (D2)
is unappealing because there is a simpler way to arrive at the prediction.
But notably the epistemic hooking is weakened because the explanation
does not make clear why the distance between two equilibrium positions
must be π radians. Or in other words, why does a path-space of 2π radi-
ans contains exactly two equilibrium points per rod with each of them π
radians apart? That such a topological property holds in all other pendu-
lum systems is inductively assumed under this strategy (D3). Further, it is
not clear whether this explanation satisfies Craver & Povich’s (2017) ’direc-
tionality desideratum’ since the mathematics employed here may well be
doing representational work rather than explanatory work, and may face
the same problem cited with flagpole-shadow explanations that are some-
times cited to counter Lange’s account of DMEs. The height of the flagpole
constrains the length of the shadow and thereby explains it, but the length
of the shadow does not constrain the height of the flagpole. Similarly, one
could explain that every n-uple pendulum must have or is constrained to
have 2n number of equilibrium positions, but an explanation does not ob-
tain in the opposite direction because a system that has 2n such positions
(or similar positions) is not constrained to be an n-uple pendulum. Fur-
ther, the pattern 2n can be found across a variety of other systems such
as counting bits, finding sector size for disk drives or the number of sec-
tors per track, and number of tracks per surface in such drives - these are
all some power of two. Also, the logical block size in disk drives is nearly
always some power of two. All these patterns occur in these systems with-
out sharing any topological property with double pendulums or any other
pendulums. That is, binary digits or logical blocks will not have any Betti
numbers or Euler characteristic associated with them. The formalism sup-
porting (D2)

∑k=n
k=0

(
n
k

)
= 2n that gave us the total number of equilibrium

positions for n-uple pendulums using Betti numbers will not make any
sense for logical blocks or binary digits. So, both the directionality desider-
atum and the epistemic desideratum seem problematic here as (D3) fails

11



to satisfy them. This is despite (D3) having a modal force greater than (D1)
and (D2), both of which had better epistemic hooking than (D3).

Also one may note here that the causal explanation involving only po-
tential energy derivatives does not face the problem of directionality or
poor epistemic hooking. We understand that a double pendulum has ex-
actly four equilibrium positions because the partial derivatives of the P.E.
function flatten out at the critical points, and by looking into the signature
of the Hessian matrix one can find out the nature of these critical points
(maxima, minima or saddle). If there is a change in the system, such as
the perturbations we introduced in the previous section where (D1) and
(D2) fail, the causal explanation can still provide an accurate answer while
retaining the epistemic hooking. That is, the causal explanation works for
both Morse and non-Morse functions or to say it covers both degenerate
and non-degenerate critical points in the total number of equilibrium po-
sitions without sacrificing on the applicability of the explanation. But the
causal explanation does not fare well on modality as Lange (2016, p.28)
points out. No general account of such causal explanation can be used to
reason that any kind of double pendulum system (irrespective of the kind
of forces acting on it) is going to have four or more equilibrium positions.
Such a fact will have to be derived on a case to case basis by considering
each of the forces on the system and then finding the total number of criti-
cal points of the P.E. function - that such an exercise is always going to yield
four or more critical points is not cognitively salient from the nature of the
causal explanation. Thus, we face a general tension between the modal
desideratum, directionality desideratum and the epistemic desideratum,
in not only all the accounts of DMEs (D1, D2 & D3) but also in the causal
explanation.

Conclusion

The upshot of this discussion is that there is a conflict between under-
standing and modality in distinctively mathematical explanations. The
DMEs that seem modally stronger fare poorer on epistemic hooking, and
the DMEs that fare better on the epistemic hooking are modally weaker.
This paper highlights that the epistemic desideratum cannot be sidelined
when evaluating DMEs since DMEs with strong modality but poor epis-
temic hooking are likely to fare poor on the directionality desideratum
and thus face the charge of not being a true DME. Further, the epistemic
desideratum is also important in that it allows us to look into the grounds
on which the explanation may fall flat and thus improve our understand-
ing of the modal desideratum. Finally, the conclusion that one cannot
maintain modality, epistemic hooking and distinctiveness altogether shows
that the modal necessity associated with certain DMEs does not seem to
be as exalted as the case is made out to be.
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