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In recent years, solar energy has attracted a great deal of attentions from scientific researchers because it is a clean and
renewable form of energy. To make good use of solar energy, an effective way to forecast solar radiation is essential to
guarantee the reliability of grid-connected photovoltaic installations. Although an artificial neural network (ANN) is of great
importance, irrelevant variables are utilized which results in complex model and intractable computation cost. To remove
these irrelevant variables, the combination of variable selection methods and ANN are applied. However, how to select the
regularization parameters in these techniques is challenging. This paper successfully investigates a square root elastic net-
(SREN-) based approach to tackle this challenge and selects all the important variables. An Elman neural network (ENN) is
constructed with the important variables selected by SREN as inputs. Based on meteorological data, SRENENN has been
developed for 1-year period in Xinjiang area of China. The present model delivers superior relationship between the estimated
and measure values.

1. Introduction

Owing to the rapid development of the global economy,
energy crisis and environmental pollution problems have
threatened the sustainable development and human health.
More and more countries pay much attention to green and
renewable sources of energy, so it is essential to utilize
sources of clean energy instead of fossil fuel [1, 2]. In fact,
all kinds of energy sources derived from the sun have a
diameter of 1.39× 109m and emit ferocious energy of
3.8× 1020MW, but the earth only obtains a small fraction
of 1.7× 1014 kW [3]. As one of the most significant
forms of green energy, solar energy was used since the
prehistoric times because it can be captured anywhere.
Solar energy is a renewable and clean alternative for
solving the worldwide energy shortage and environmental
problems [4]. It can be applied in several fields including
locating photovoltaic power plants, scheduling electrical
load, and developing low-carbon economy [5]. It is
significant to get the reliable global solar radiation data

for investigating, assessing, and utilizing solar energy
resource. Although ground-based measurements can
obtain the accurate global solar radiation, all the locations
are not available [6]. In recent years, geostationary weather
satellites can be applied to estimate global solar radiation
at ground level, but it is worse than the forecasting models
because it is an indirect approach [7]. In addition, the
weather is intrinsically chaotic and instable which greatly
affects the global solar radiation. These volatilities will
threaten the stability and quality of the whole power
system [8]. Therefore, it is vital to develop some models to
improve the forecasting accuracy of global solar radiation
through several atmospheric factors.

Many researchers attempt to study several soft
computing methods to forecast solar radiation and evaluate
their potential of solar energy. These models include time
series regression models (ARMA, ARIMA, and GARCH),
empirical models, and machine learning techniques (artificial
neural networks, support vector machine, etc.) [9]. Sun et al.
proposed ARMAX-GARCH model to forecast daily global
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solar radiation using several meteorological variables. The
results of experiment showed that global solar radiation
depends more on sunshine duration than temperature
difference at certain stations [10]. David et al. applied the
combination of ARMA and GARCH model to provide
probabilistic forecasts for solar irradiance. The proposed
recursive ARMA-GARCH model was easier to estimate
parameters and got a good accuracy [11]. Quej et al.
developed a new empirical model to predict hourly global
solar radiation applying meteorological factors such as
rainfall, temperature, and humidity at six sites in Mexico.
Through comparing with other models, the proposed model
had the best forecasting precision [12]. Ouderni et al. utilized
several empirical models including Benson model, Page
model, and Angstrom-Prescott-Page model to assess the
solar potential in the gulf of Tunis [13].

As one of the most popular forecasting models,
machine learning techniques including artificial neural
networks (ANNs), intelligent optimization algorithms, and
support vector machines (SVMs) own self-adaptiveness and
robustness and have already been successfully applied to
forecast global solar radiation. ANN techniques include
backpropagation (BP), radial basis function (RBF), multi-
layer perceptron (MLP), and extreme learning machine
(ELM) [14–17]. Benmouiza and Cheknane used k-means
method to find the input samples and took advantage of
nonlinear autoregressive (NAR) neural networks to forecast
hourly global horizontal solar radiation [18]. Chen et al.
presented a model based on fuzzy rules and neural network
to forecast solar radiation; the case study revealed that the
proposed technique achieve excellent forecasting accuracy
[19]. Renno et al. developed two ANN models to estimate
hourly direct normal irradiance and global radiation [5].
Salcedo-Sanz et al. proposed a novel approach Coral Reefs
Optimization-Extreme Learning Machine (CRO-ELM) to
predict daily global solar radiation and achieved satisfactory
results [20]. Gairaa et al. adopt a new hybrid technique
combining the linear ARMA and the nonlinear ANN to
forecast daily global solar radiation in Algeria. The experi-
mental results revealed that the hybrid model is superior to
the single one [21].

Although ANNs have been widely exploited because
of their nonlinear mapping ability, prediction capabilities,
and robustness, the optimal parameters in the network
such as weights, bias, and the number of the hidden layer
nodes are not easy to determine, and the training of the
network is likely to converge to a local minimum [22].
Furthermore, its structure of the network would be quite
intricate if all the variables are applied as inputs. This
will cause the following two problems: (1) the complex
structure makes critically trouble for forecasting and
selection performance and (2) the complex structure
needs much computation time. The weights between the
nodes in an ANN are going to be estimated, and it
would spend a lot of time if ANN has excessive number
of nodes. Based on the above discussion, investigating an
effective method to establish a simple neural network is
essential. Since its structure relies much on the number
of input sets, variable selection techniques are needed to

choose the significant variables which are considered as
inputs of an ANN.

Some researchers focus on selecting some important
variables as inputs of the forecasting models including but
not limited to ANN and SVM. Benghanem et al. applied
Levenberg-Marquardt learning algorithm to construct ANN
to study daily global irradiation of Saudi Arabia. Air temper-
ature, sunshine duration, relative humidity, and day of the
year are used as the input variables which achieved good
forecasting accuracy [23]. Rahimikhoob used temperature
including the highest temperature and the lowest tempera-
ture to forecast global solar radiation in Southwest of Iran
[24]. Qing and Niu developed a new technique long short-
term memory (LSTM) networks to predict hourly solar
irradiance and used the weather data (temperature, wind
speed, dew point, etc.) to enter the networks [25]. Vakili
et al. established MLP neural network to estimate daily solar
irradiance using temperature, wind speed, relative humidity,
and particulate matter 10 [26]. Rohani et al. proposed a
Gaussian process with K-fold cross-validation model to fore-
cast daily and monthly solar radiation using temperature,
humidity, pressure, and sunshine hours as input variables
[27]. It is found that the above hybrid approaches combine
the advantages of several single models and perform better.
Variable selection algorithms can be used to reduce high-
dimensional data that select the optimal input variables or
model [28, 29]. Jović et al. studied the solar radiation and
used adaptive neuro-fuzzy inference system (ANFIS) to
select the most relevant factors from temperature, mean
sea level, and relative humidity as the predictors [30].
Almaraashi applied four different feature selection methods
to determine the input space and forecast daily solar
radiation in Saudi Arabia based on a multilayer neural
network [31]. Aybar-Ruiz et al. adopted a grouping genetic
method to select the relevant atmospherical features in
extreme learning machine model for predicting global
solar radiation [32]. Mori chose meteorological variables
using graphical modelling to estimate solar radiation [33].
Jiang and Dong developed penalized kernel SVM approaches
to select structural variables and forecast global horizontal
radiation [34].

As far as we know, the current research papers focus on
the way to select variables by trying some specific combina-
tions or groups. However, there is no theoretical guarantee
of the way to determine these combinations and considering
all the possible combination of variables is time-consuming.
Penalized variable selection methods are advocate to select
the important variables directly without trying possible
combinations, and they are more straightforward to use.
Furthermore, compared with the conventional ANNs and
SVMs, Elman neural network (ENN) is a local recurrent
neural network with a single hidden layer, which owns fast
learning rate, good dynamic characteristics, and high global
stability [35, 36]. In this paper, an ENN structure can be
selected as the forecasting technique for global solar
radiation forecasting. This work advocates square root
elastic net variable selection procedure in the Elman neu-
ral network (SRENENN) approach to forecast the global
solar radiation in the Xinjiang area of China. The primary
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novelty and contributions of this study are provided in the
following list:

(1) An ENN is applied to forecast global solar radiation
with meteorological variables.

(2) Square root elastic net is used to effectively extract
the meteorological variables which are applied as
inputs of ENN, and the optimal model is deter-
mined by the 10-fold cross-validation to improve
forecasting precision.

(3) A novel square root elastic net variable selection
procedure in the Elman neural network (SRENENN)
algorithm is proposed, and the corresponding
forecasting results are compared systematically using
Wilcoxon signed-rank test and Friedman test.

The structure of this study is given: Section 2 describes
the square root elastic net variable selection procedure and
Elman neural network; Section 3 investigates the case study
based on real data analysis; Section 4 provides the fore-
casting accuracies and corresponding experimental results;
the conclusions are presented in Section 5. The schematic
overview of the whole paper is given in Figure 1.

2. Materials and Methods

2.1. Square Root Elastic Net. Based on the dataset Z = X, y ,
the following linear regression model is considered after
centering X and y:

y =Xβ∗ + ε, 1

where y ∈ Rn denotes the target response which is going
to be studied. X ∈ Rn×p represents the data matrix with
n samples and p variables, and β∗ ∈ Rp is the coefficient
for the true model. Let I be the identity matrix, the error
term ε follows Gaussian distribution N 0, σ2I with σ2 > 0.

To obtain an interpretable model, the following optimization
problem is considered:

min
β∈Rp

y −Xβ 2
2

2n
+Ω β; λ , 2

whereΩ β; λ denotes the penalty function with λ represent-
ing the tuning parameter. When Ω β; λ = λ β 1 which is
convex penalty, (2) becomes a well-known LASSO [37] prob-
lem given in (3). LASSO is more easy to compute in big data
because of its convex form.

LASSO =min
β∈Rp

y −Xβ 2
2

2n
+ λ β 1 3

In addition to convex penalty function, nonconvex
penalty function is also proposed to perform variable
selection. For instance, [38] investigate the SCAD penalty
which is given below.

SCAD =Ω β; λ = 〠
p

j=1
ω βj; λ , 4

where ω t; λ = t
0 λ1 z≤λ + aλ − z/a − 1 1 z>λ , a = 3 7 is

selected by general cross-validation. The elastic net (EN)
[39] penalty is given as

EN =Ω β; λ, η = λ β 1 +
η

2
β 2

2 5

In this paper, we are going to fulfill the following
two tasks: (G1) model interpretation and (G2) forecasting
accuracy. Elastic net can be used to achieve these goals
because its penalty function consists of both LASSO
and ridge penalty. However, its forecasting performance
is still affected negatively by the noise level which is
difficult to estimate. To solve this problem, square root
regularization is considered in our work by using square
root error loss function y −Xβ 2 instead of square error

Start: original global
solar radiation data

ENN (Elman
neural network)

Wilcoxon signed-rank test
Friedman test

End: accurately forecasting
of global solar radiation

using SRENENN

Derived SREN algorithm
for fast computation

Variable selection using SREN
(square root elastic net)

Figure 1: A schematic overview of the whole paper.
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loss function y −Xβ 2
2. Therefore, we combine the benefits

of square root error loss and EN penalty by proposing square
root elastic net (SREN) which considers the following
optimization problem.

SREN =min
β∈Rp

y −Xβ 2
n

+ λ β 1 +
η

2
β 2

2 6

Comparing with EN which takes (5) into account,
SREN has the following advantage: two tuning parameters
(λ and η), which are determined by log p /n, can be
selected properly since they do not involve σ that is
extremely difficult to estimate in data analysis. Specifically,
it is known that σ2 = RSS/ n − p , where RSS represents
residual sum of square. When p > n, σ cannot be estimated.
Even when n > p, the high coherence causes a large RSS value
which results in large σ value. SREN avoids estimating σ
in the parameter tuning work which boosts the model
forecasting accuracy.

Square Root LASSO (SRL) [40] considers the optimiza-
tion problem as follows:

SRL =min
β∈Rp

y −Xβ 2
n

+ λ β 1 7

Although both SRL and LASSO use the same L1 penalty,
SRL applies square root error loss function which can
facilitate the parameter tuning work. Comparing with SRL,
SREN adds ridge penalty η/2 β 2

2 which is a L2 type penalty
to handle the high coherence between variables and enforce
more shrinkage to the model. Although they both apply
square root error loss function, SREN is able to get more
accurate result in a model with high coherence. Further-
more, SREN applies two tuning parameters (λ and η) to
adjust the model performance while SRL just use one tuning
parameter λ.

Two novel plans are proposed to design the algo-
rithm for solving (6), which are denoted by Plan A and
Plan B, respectively.

(i) Plan A: denote the following:

ynew =
y

0
,

Xnew =
X

η/2 y −Xβ j
1/2

2
I

8

The algorithm is designed based on the following
iterations:

SREN‐A = β j+1 = arg min
β j ∈Rp

ynew −Xnewβ j
2

2

+ λ y −Xβ j

2
β j

1

9

Notice that soft thresholding operator is able to be
applied to solve (9).

(ii) Plan B: the algorithm is derived based on the
following iterations:

SREN‐B = β j+1 = arg min
β j ∈Rp

y −Xβ j
2

2
+ λ y −Xβ j

2
β j

1

+
η y −Xβ j

2
2

β j
2

2

10

To solve (9) and (10), threshold functions so-
called Θ-estimators [41] are applied in our
work. The definitions of thresholding rules are given
as below.

Definition 1.A thresholding function is a real valued function
Θ t; λ defined for −∞ < t <∞ and 0 ≤ λ <∞ such that

(1) Θ −t; λ = −Θ t; λ ,

(2) Θ t; λ ≤Θ t′; λ for t ≤ t′,
(3) lim

t→∞
Θ −t; λ =∞,

(4) 0 ≤Θ t; λ ≤ t for 0 ≤ t <∞.

It can be told from Definition 1 that Θ ⋅ ; λ is an odd
monotone unbounded shrinkage rule for t, at any λ. Θ can
be used in a vector manner if either t or λ is given as a vector.
The LASSO, SCAD, and EN thresholding functions are
provided as follows:

ΘSOFT t; λ = sgn t t − λ +,

ΘSCAD t; λ =

λ, if t ≤ λ,

aλ − t
a − 1

, if λ ≤ t ≤ aλ,

0, if t ≥ aλ

ΘEN t; λ, η =
sgn t t − λ +

1 + η
,

11

where η > 0, λ > 0 are two regularization parameters.

2.2. Parameter Tuning. Parameter tuning work is of great
importance in assuring the performances of forecasting
methods. Notice that there are two tuning parameters λ
and η used in the proposed method. Cross-validation (CV)
is a famous data-driven method which has been widely
applied in machine learning community. Given a fixed value
for λ and η, the in-sample data will be randomly partitioned
into K pieces of roughly equal size. The forecasting model
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will be trained using K − 1 pieces of in-sample data, and the
test error is computed using the Kth piece. CV will repeat this
procedure for K times. The CV errors are obtained by adding
the test errors, and the optimal regularization parameter is
determined by the smallest CV error.

2.3. Elman Neural Network. Elman neural network (ENN)
was first advocated by Elman in 1990 to solve speech
recognition problem. It is a typically global feed forward
local recurrent network. Its main network structure is
consist of input layer, hidden layer, and output layer
which are also the structure of three-layer feed-forward
neural network [42] and backpropagation network [43].

The weights between different layers are going to be
trained based on learning rule. The feedback connection
has sets of neurons that record the output, and the weights
are fixed. There is also a context layer in ENN which stored
the output of hidden layer in the previous time point. Com-
paring with multilayer perceptron, ENN has a short memory
and performs the task based on sequence prediction which
adapts to time-varying characteristics. The schemes of ENN
can be described in the following way:

ht = Th Whxt +Utht−1 + bh ,

yt = Ty Wyht + by ,
12

Figure 2: Flowchart of SRENENN model.
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where xt is the input vector, ht is hidden layer vector, yt is
output layer, W, U, and b are weights and biases of the
ENN, and Th and Ty are activation functions.

The weights in the network are trained by gradient-
based backpropagation through time (BPTT). To reduce
the model complexity of the neural network, L2 regulariza-
tion is often applied and the following optimization problem
is considered:

min
w

l y, ŷ;X,w +
ηo

2
w 2

2, 13

where l y, ŷ;X,w = 1/n y − ŷ Xw denotes the mean
square error of the forecasting model. The network weights
needed to be estimated are given by w. ŷ represents the
estimated forecasting value, and ηo is the tuning parameter.
Notice that the complexity of neural network depends on
the number of input layers and hidden layers. If variable
selection method is applied appropriately, the number of

inputs will be reduced so that a simple neural network can
be constructed.

2.4. Square Root Elastic Net Elman Neural Network Model.
This paper combines the advantages of SREN and ENN

Figure 3: Location description about global solar radiation in the
Xinjiang area.

Inputs: X (centered and scaled), y (centered), M: maximum number of iterations, λ, η: tuning parameters, tol: error tolerance.
Outputs: forecasting errors.
Step 1. Data Splitting
1. Split the original dataset into Training data Dtrm (76% of original data) and test
2. data Dtst (24% of original data).
Scale of data
3. X←X/τ, y← y/τ with τ ≥ X 2/ 2;
Step 2. Cross validation
4. Divide the training data Dtrn into K folds;
5. for i = 1 to K;
6. Use i-th fold as CV test data F and the remaining folds are regarded as CV training data T;
7. Generate grid values of λG = λu

S
u=1 and ηG = ηv

m
v=1.

Step 3. Run SREN algorithm with AGM
8. for u = 1 to s;
9. for v = 1 to m;
10. Initialization: j← 0, β 0 ← 0 ;
11. while β j+1 − β j < tol or j >M do

12. Step 1. ξ j ← β j + ω j−1 − 1/ω j β j − β j−1

13. Step 2. (Plan A). γ j
new ← ξ j +XT

new ynew −Xnewξ j

14. (Plan B). γ j ← ξ j +XT y −Xξ j

15. Step 3. (Plan A). β j+1 ← Θ SOFT γ j
new; λu y −Xβ j

2

16. (Plan B). β j+1 ← ΘEL γ j ; λu y −Xβ j
2, ηv y −Xβ j

2

17. Step 4. ω j+1 = 1 + 1 + 4ω j 2 /2
18. end while
19. end for
20. end for
21. Obtain the solution path B = buv and corresponding sparsity pattern G = guv using CV training data T.
Calculate CV errors
22. Calculate CV errors using F, B and G. Find the optimal tuning parameters
23. λopt and ηopt with respect to the smallest CV error.

Step 4. Establish elman neural network
24. Determine the optimal model parameters using Training data Dtrn with selected variables considered as inputs
Step 5. Evaluate the forecasting performance
26. Calculate the test error using Test data Dtst
27. End for

Algorithm 1: The SRENENN algorithm.
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and proposes a novel forecasting model called SRENENN
model. The flowchart of SRENENN model is shown in
Figure 2, which is designed in the following 5 main steps:

Step 1: Split the original global solar radiation data-
set into training dataset and test dataset (cf.
Section 3 for more details).

Step 2: CV procedure is applied to training data for
selecting the optimal regularization parameters.

Step 3: SREN is used to select the important variables
with regularization parameters.

Step 4: Elman neural network is established with
variables selected by SREN.

Step 5: The forecasting performance is evaluated using
the test dataset.

Algorithm 1 shows SRENENN algorithm with ω −1 = 0,
ω 0 = 1, and β 0 = β −1 defined. When τ ≥ X 2/ 2,
SRENEENN algorithm converges. However, there is no need
to let the algorithm run until convergence to reduce the
computation time. The stop criterion of SRENNE algorithm
is determined based on trial and error. The convergence error
tol is set as 1e – 4, and maximum number of iteration M
is given as 100. SRENENN algorithm uses Accelerated
Gradient Method (AGM) [44] to reduce the number of
iterations so that the convergence can be achieved using
less computation time. AGM has three advantages: (i) it
does not involve any computation of inverse of matrix; (ii)
paralleling the selection of unknown parameter and compu-
tation of gradient; (iii) making use of momentum to increase
the convergence speed.

Define F β = y −Xβ 2 + λ β 1 + η β 2
2/2, and the

convergence of SRENENN algorithm is guaranteed theoreti-
cally in Theorem 1 whose proof is shown in Appendix.

Theorem 1. Let τ be the step size of SRENENN algorithm and
τ ≥ X 2/ 2, and assume the following regularity condition

hold inf ξ∈A Xξ − y 2 > 0, where A collects all the linear com-

bination of β j and β j+1 . Then the following inequality holds

F β j − F β j+1 ≥ c β j+1 − β j
2

2
, 14

for some c > 0.

3. Case Studies

For the real data application, six sites from Xinjiang area
in China are considered to demonstrate the advantages
of the proposed SRENENN model via comparisons with
traditional methods.

3.1. Data Description. Qinghai, Tibet, Xinjiang, and Inner
Mongolia are suitable locations to install photovoltaic power
station because sunshine is quite rich in these areas. That is
why six sites (Site 1, Site 2, Site 3, Site 4, Site 5, and Site 6)
are selected from these regions. The including latitudes and
longitudes of six sites are provided in Figure 3. The dataset
applied in this work is collected from National Renewable
Energy Laboratory (NREL) which is available at http://www.
nrel.gov/gis/solar.html. In addition to global solar radiation
which is going to be studied, seven meteorological variables
including solar zenith angle, precipitation, temperature, wind
direction, wind speed, relative humidity, and pressure are

Table 1: Detailed description of the training and forecasting sets considered.

Training sets Forecasting sets
The proportion of
forecasting sets

Remark

Mar. 9, Mar. 12, Mar. 19, Mar. 21, Mar. 26, Mar. 29,
Apr. 5, Apr. 6, Apr. 13, Apr. 15, Apr. 16, Apr. 21, Apr. 22,
Apr. 23, Apr. 24, Apr. 25, Apr. 28, May 1, May 8

May 9, May 16, May 20,
May 25, May 28, May 29

24% Spring

Jun. 3, Jun. 6, Jun. 8, Jun. 11, Jun. 14, Jun. 15, Jun. 21,
Jun. 24, Jun. 30, Jul. 4, Jul. 6, Jul. 13, Jul. 18, Jul. 31,
Aug. 2, Aug. 3, Aug. 4, Aug. 8, Aug. 12

Aug. 14, Aug. 18, Aug. 23,
Aug. 24, Aug. 27, Aug. 29

24% Summer

Sep. 2, Sep. 4, Sep. 6, Sep. 7, Sep. 10, Sep 20, Sep. 21,
Sep. 22, Oct. 4, Oct. 10, Oct. 11, Oct. 13, Oct. 18,
Oct. 20, Oct. 21, Oct. 23, Oct. 26, Oct. 29, Nov. 1

Nov. 10, Nov. 12, Nov. 17,
Nov. 26, Nov. 27, Nov. 29

24% Autumn

Dec. 2, Dec. 3, Dec. 4, Dec. 9, Dec. 14, Dec. 16, Dec. 22,
Dec. 31, Jan. 3, Jan. 9, Jan. 13, Jan. 22, Jan. 24, Jan. 29,
Feb. 1, Feb. 2, Feb. 4, Feb. 7, Feb. 12

Feb. 16, Feb. 18, Feb. 19,
Feb. 21, Feb. 22, Feb. 25

24% Winter

Table 2: Parameter values of seven forecasting models at six sites.

Models h λ η N Func1 Func2
ENN 5 — — 2000 Tansig Tansig

LASSOENN 10 4 — 2000 Tansig Tansig

PCAENN 5 — — 2000 Tansig Tansig

SCADENN 15 1 — 2000 Tansig Tansig

SRLENN 10 148.8 — 2000 Tansig Tansig

SRENENN-A 5 0.0625 5e − 5 2000 Tansig Tansig

SRENENN-B 15 0.0625 5e − 5 2000 Tansig Tansig
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provided in the dataset. The samples of this dataset are
collected based on the global solar radiation from 11:00 am
to 19:00 pm in 2014 because the solar sources are very abun-
dant during this time interval. The main purpose of this
paper was to choose important variables from seven meteo-
rological variables to perform the forecasting task. The
strategy of splitting the data into training data and test data
is given as follows: 19 days of months in each season are
randomly selected as the training data to establish the
forecasting model. The test data consists of 6 days which
are also selected randomly from the remaining days in every
season. Thus, the size of training data is 684 (19 days×
9hours× 4 seasons = 684), and the size of test data is 216
(6 days× 9hours× 4 seasons = 216). Furthermore, experi-
ments on each season are also implemented based on the
training samples (19 days× 9hours = 171) and forecasting
samples (6 days× 9hours = 54) presented in Table 1; it is
observed that the forecasting performance of different
models is going to be tested using four seasons, and the fore-
casting samples in each season take up approximately 24%,
which is a reasonable proportion.

3.2. Evaluation Criterion. To evaluate the forecasting
performances of the proposed method and other comparing

Table 3: Mean forecasting errors and computation time (in
seconds) of forecasting models at six sites.

Models
MAE

(W/m2)
RMSE
(W/m2)

MAPE
(%)

TIC
(%)

Time
(seconds)

Site 1

SVM 16.04 19.89 2.67 1.31 9.21

ENN 20.98 27.38 5.59 1.8 7.12

LASSOENN 14.5 18.98 3.77 1.25 2.15

PCAENN 18.45 24.24 4.79 1.59 2.13

SCADENN 16.44 21.36 4.23 1.4 5.82

SRLENN 14.87 18.88 2.83 1.24 6.13

SRENENN-A 14.43 18.26 2.73 1.2 3.14

SRENENN-B 13.17 16.51 2.57 1.08 2.58

Site 2

SVM 15.88 22.87 3.69 1.75 15.12

ENN 21.39 27.56 7.62 2.11 12.12

LASSOENN 17.3 21.48 5.71 1.63 3.13

PCAENN 19.06 24.2 6.31 1.85 2.95

SCADENN 19.87 24.75 7.08 1.89 2.73

SRLENN 16.77 20.72 3.7 1.57 2.82

SRENENN-A 18.8 23.37 3.82 1.78 3.21

SRENENN-B 13.63 18.41 3.19 1.41 3.54

Site 3

SVM 18.04 33.73 3.48 2.47 16.12

ENN 19.44 26.29 7.01 1.91 14.12

LASSOENN 16.32 21.04 5.45 1.53 3.51

PCAENN 19.01 25.85 7.33 1.88 5.12

SCADENN 20.19 26.16 6.32 1.9 4.78

SRLENN 19.67 24.97 3.92 1.8 4.55

SRENENN-A 10.61 13.80 2.99 1.15 4.82

SRENENN-B 13.36 17.29 3.21 1.25 3.03

Site 4

SVM 17.31 28.89 4.36 2.29 18.21

ENN 24.87 33.61 11.63 2.66 17.88

LASSOENN 14.66 19.11 6.2 1.51 23.12

PCAENN 17.97 24.08 8.85 1.9 3.54

SCADENN 19.69 25.47 9.44 2.01 3.63

SRLENN 18.63 24.04 4.87 1.89 4.15

SRENENN-A 18.22 25.83 4.83 2.04 5.12

SRENENN-B 13.50 17.52 3.81 1.39 3.09

Site 5

SVM 17.66 30.32 4.33 2.38 13.14

ENN 24.85 33.74 11.32 2.64 10.25

LASSOENN 14.62 19.04 6.06 1.49 4.53

PCAENN 19.23 26.69 11.29 2.08 4.34

SCADENN 19.84 25.61 9.23 2.00 3.12

SRLENN 18.30 23.61 4.69 1.84 4.13

SRENENN-A 18.26 25.79 4.76 2.01 3.58

SRENENN-B 14.35 18.85 4.04 1.47 4.12

Site 6

SVM 15.87 22.75 4.91 1.83 12.27

ENN 24.19 31.31 13.79 2.51 12.34

LASSOENN 14.43 18.76 7.58 1.50 1.77

PCAENN 21.27 28.38 13.63 2.26 1.93

SCADENN 21.43 28.35 13.13 2.25 1.88

SRLENN 18.11 23.52 5.27 1.87 2.12

SRENENN-A 16.26 23.10 5.29 1.84 1.36

SRENENN-B 13.10 16.91 4.23 1.35 1.22
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Figure 4: The computation time (in seconds) of eight models.

Table 4: The total scores of compared methods for evaluation
criteria.

Models MAE RMSE MAPE TIC Total

SVM 20 34 13 34 101

ENN 46 47 47 47 187

LASSOENN 16 16 30 16 78

PCAENN 34 35 41 35 145

SCADENN 42 34 38 34 148

SRLENN 30 20 21 20 91

SRENENN-A 21 23 19 23 86

SRENENN-B 7 7 7 7 28
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Table 5: Mean forecasting errors of forecasting models for each
season at Site 1, Site 2, and Site 3.

MAE
(W/m2)

RMSE
(W/m2)

MAPE
(%)

TIC
(%)

Site 1

Spring

SVM 13.93 16.07 2.30 1.05

ENN 15.21 18.44 2.30 1.22

LASSOENN 12.27 14.68 1.77 0.97

PCAENN 13.12 17.06 1.84 1.12

SCADENN 17.8 20.58 2.92 1.37

SRLENN 14.88 17.19 2.31 1.14

SRENENN-A 14.19 16.88 2.38 1.11

SRENENN-B 11.59 13.83 1.71 0.91

Summer

SVM 15.36 19.12 2.03 1.07

ENN 21.57 26.04 2.49 1.46

LASSOENN 16.02 18.82 1.88 1.06

PCAENN 23.81 26.81 2.82 1.50

SCADENN 19.40 22.26 2.30 1.25

SRLENN 17.41 20.38 2.22 1.14

SRENENN-A 16.70 19.91 2.12 1.11

SRENENN-B 13.04 15.15 1.6 0.85

Autumn

SVM 21.58 27.91 2.67 1.69

ENN 19.50 24.46 2.54 1.47

LASSOENN 10.79 14.50 1.44 0.87

PCAENN 14.56 18.55 1.90 1.11

SCADENN 13.59 17.98 1.78 1.08

SRLENN 16.18 22.92 2.03 1.36

SRENENN-A 16.12 20.79 2.01 1.24

SRENENN-B 8.81 11.08 1.20 0.66

Winter

SVM 15.63 17.78 4.10 1.80

ENN 27.64 37.19 15.03 3.73

LASSOENN 18.92 25.70 9.99 2.56

PCAENN 22.33 31.59 12.61 3.17

SCADENN 21.16 28.53 11.11 2.86

SRLENN 11.04 13.76 4.77 1.37

SRENENN-A 10.73 14.83 4.42 1.48

SRENENN-B 10.71 13.37 4.15 1.34

Site 2

Spring

SVM 19.5 22.91 3.61 1.78

ENN 14.83 18.85 2.60 1.45

LASSOENN 13.35 16.47 2.41 1.27

PCAENN 14.74 18.89 2.90 1.84

SCADENN 17.77 21.03 3.06 1.61

SRLENN 16.44 19.89 3.44 1.53

SRENENN-A 18.92 23.01 3.81 1.78

SRENENN-B 10.53 12.87 2.1 0.99

Table 5: Continued.

MAE
(W/m2)

RMSE
(W/m2)

MAPE
(%)

TIC
(%)

Summer

SVM 22.12 34.33 2.90 2.23

ENN 24.32 29.48 3.26 1.92

LASSOENN 20.93 24.54 2.87 1.58

PCAENN 21.88 25.04 2.72 1.34

SCADENN 22.59 26.53 3.15 1.71

SRLENN 20.98 24.88 3.01 1.60

SRENENN-A 23.03 28.38 3.34 1.82

SRENENN-B 13.94 20.55 2.12 1.33

Autumn

SVM 9.63 12.15 1.53 0.84

ENN 17.89 21.97 2.59 1.52

LASSOENN 14.08 17.56 2.19 1.21

PCAENN 13.17 15.65 1.89 1.22

SCADENN 14.84 18.14 2.39 1.25

SRLENN 16.95 21.03 2.58 1.44

SRENENN-A 18.10 22.07 2.61 1.52

SRENENN-B 8.95 10.84 1.39 0.75

Winter

SVM 21.27 24.49 8.23 2.99

ENN 28.51 36.50 22.03 4.42

LASSOENN 20.86 25.78 15.37 3.12

PCAENN 25.91 26.29 17.84 2.81

SCADENN 24.31 31.23 19.73 3.76

SRLENN 12.73 16.14 5.78 1.92

SRENENN-A 15.13 19.03 5.51 2.27

SRENENN-B 12.16 17.07 5.67 2.04

Site 3

Spring

SVM 16.97 20.55 3.16 1.5

ENN 15.62 19.66 2.62 1.43

LASSOENN 13.33 16.38 2.32 1.19

PCAENN 11.66 14.22 1.97 1.03

SCADENN 14.93 18.49 2.56 1.34

SRLENN 17.39 20.70 3.18 1.51

SRENENN-A 12.39 15.61 2.54 1.14

SRENENN-B 9.36 12.44 1.75 0.91

Summer

SVM 17.34 34.33 2.26 2.13

ENN 19.72 23.29 2.57 1.45

LASSOENN 19.16 22.95 2.38 1.42

PCAENN 22.52 25.87 3.06 1.60

SCADENN 26.78 32.93 3.49 2.04

SRLENN 23.64 29.05 3.36 1.79

SRENENN-A 8.88 11.28 1.25 0.70

SRENENN-B 12.78 17.88 1.91 1.10
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approaches, several criteria including mean absolute percent
error (MAPE), mean absolute error (MAE), root mean
square error (RMSE), and Theil inequality coefficient (TIC)
are applied as evaluation criteria [45]. Let yi be true value,
ŷi represents the estimated value, and N denotes to be the
sample size of test data. The best forecasting model provides
the lowest MAPE, MAE, RMSE, and TIC. The evaluation
criteria are provided as below.

MAPE =
1
N
〠
N

i=1

yi − ŷi
yi

× 100%,

MAE =
1
N
〠
N

i=1
yi − ŷi ,

RMSE =
1
N
〠
N

i=1
yi − ŷi

2,

TIC =
1/N ∑N

i=1 yi − ŷi
2

1/N ∑N
i=1ŷi

2 + 1/N ∑N
i=1yi

2
× 100%
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3.3. Wilcoxon Signed-Rank Test. The Wilcoxon signed-rank
test was applied to determine if the proposed SRENENN
model was superior to the SVM, ENN, LASSOENN,
PCAENN, SCADENN, and SRLENN models for global solar
radiation. The Wilcoxon signed-rank test is a nonparametric
statistical hypothesis test used when comparing two matched
or related samples to assess whether their population median
ranks differ (i.e., it is a paired difference test). It can be used as
an alternative to the parametric t-test.

Let N be the sample size or the number of pairs. The
prediction sample size of each method was 216 (6 day-
s× 9hours× 4 seasons = 216), and thus, N = 216. For i = 1,
2,… ,N , let y1,i and y2,i be the forecasting values of two
different approaches and consider the following hypothesis:

Null hypothesis:H0 μ1 ≤ μ2,

Alternative hypothesis:H1 μ1 > μ2,
16

where μ1 and μ2 are medians of sequences Y1 = y1,i ∣
i = 1, 2,… ,N and Y2 = y2,i ∣ i = 1, 2,… ,N . The details
of Wilcoxon signed-rank test process can be listed as
follows [46–48]:

Step 1: For i = 1, 2,… ,N , calculate y2,i − y1,i and sgn
y2,i − y1,i , where sgn ⋅ is the sign function.

Step 2: Exclude pairs with y2,i − y1,i = 0.

Step 3: Let Nr be the reduced sample size. Order the
remaining Nr pairs from smallest absolute dif-
ference to largest absolute difference y2,i − y1,i .
Rank the pairs, starting with the smallest as
rank 1.

Step 4: Calculate the sum W+ of the positive ranks and
the sum W− of the negative ranks.

Step 5: As Nr increases, the sampling distribution of W
converges to a normal distribution. Thus, for larger
samples, Z statistic can be calculated as Z = W −
Nr Nr + 1 /4/ Nr Nr + 1 2Nr + 1 /6. If Z
> Zcritical, then reject H0. For small samples,
W can be calculated as W =min W+,W− . If
W ≥Wcritical,Nr

, then reject H0. Alternatively, a
p value can be calculated from enumeration of
all possible combinations of Z or W given Nr.

3.4. Friedman Test. Friedman test is a nonparametric
statistical test which can be applied to evaluate the perfor-
mances of forecasting methods based on different criteria
on multiple datasets [49]. The Friedman test considers the
following hypothesis:

Null hypothesis:H0 R1 = R2 =⋯ = Rk,

Alternative hypothesis:H1 notH0,
17

where Rj = 1/B ∑ir
j
i with r ji representing the rank of jth

of k algorithms of B datasets. Based on the Friedman
statistics [50]

χ2
F =

12B
k k + 1

〠
j

R2
j −

k k + 1 2

4
, 18

which follows chi square distribution χ2
F k − 1 , an F-distri-

bution statistics F k − 1, k − 1 B − 1 is calculated

F =
B − 1 χ2

F

B k − 1 − χ2
F

19

Table 5: Continued.

MAE
(W/m2)

RMSE
(W/m2)

MAPE
(%)

TIC
(%)

Autumn

SVM 26.54 51.25 3.69 3.45

ENN 16.42 21.89 2.38 1.45

LASSOENN 12.63 16.50 1.89 1.09

PCAENN 14.68 19.15 2.25 1.27

SCADENN 14.31 18.32 2.23 1.21

SRLENN 21.70 28.29 3.11 1.86

SRENENN-A 11.71 15.31 1.71 1.01

SRENENN-B 8.46 11.1 1.21 0.74

Winter

SVM 18.94 24.32 6.23 2.79

ENN 25.98 36.83 20.67 4.17

LASSOENN 20.18 26.52 15.20 3.00

PCAENN 27.22 37.90 22.05 4.27

SCADENN 24.75 31.25 17.00 3.53

SRLENN 15.99 20.51 6.05 2.29

SRENENN-A 12.69 16.37 6.97 1.84

SRENENN-B 11.97 14.83 6.07 1.66
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Table 6: Mean forecasting errors of forecasting models for each
season at Site 4, Site 5, and Site 6.

MAE
(W/m2)

RMSE
(W/m2)

MAPE
(%)

TIC
(%)

Site 4

Spring

SVM 11.99 14.45 2.33 1.15

ENN 17.06 20.67 3.28 1.64

LASSOENN 11.38 14.50 2.18 1.16

PCAENN 16.49 19.51 2.93 1.57

SCADENN 14.18 17.57 2.38 1.40

SRLENN 16.86 19.77 3.63 1.57

SRENENN-A 13.43 18.52 2.92 1.47

SRENENN-B 11.2 13.47 2.02 1.07

Summer

SVM 27.37 49.61 3.71 3.37

ENN 30.07 41.78 4.46 2.81

LASSOENN 16.15 22.13 2.31 1.49

PCAENN 22.87 28.99 3.39 1.94

SCADENN 28.87 34.23 4.24 2.30

SRLENN 25.00 30.95 3.92 2.06

SRENENN-A 17.75 24.39 2.82 1.64

SRENENN-B 15.45 20.99 2.32 1.41

Autumn

SVM 14.13 16.85 2.11 1.21

ENN 27.18 33.28 4.44 2.38

LASSOENN 15.23 18.13 2.48 1.29

PCAENN 19.43 25.01 3.07 1.78

SCADENN 14.96 17.97 2.61 1.28

SRLENN 19.23 26.72 2.91 1.90

SRENENN-A 21.42 28.89 3.31 2.05

SRENENN-B 8.15 10.00 1.30 0.71

Winter

SVM 15.77 19.62 9.32 2.47

ENN 25.19 35.20 34.32 4.42

LASSOENN 15.89 20.81 17.83 2.59

PCAENN 18.37 25.93 26.93 3.22

SCADENN 20.77 28.14 28.53 3.51

SRLENN 13.9 17.51 8.71 2.17

SRENENN-A 20.29 29.96 10.28 3.71

SRENENN-B 13.44 15.8 9.01 1.96

Site 5

Spring

SVM 11.85 14.32 2.29 1.12

ENN 16.93 20.54 3.22 1.61

LASSOENN 12.53 15.59 2.16 1.24

PCAENN 19.09 23.18 3.04 1.85

SCADENN 13.65 17.28 2.16 1.37

SRLENN 16.01 18.61 3.39 1.46

SRENENN-A 13.55 18.24 2.90 1.43

SRENENN-B 7.84 9.61 1.36 0.76

Table 6: Continued.

MAE
(W/m2)

RMSE
(W/m2)

MAPE
(%)

TIC
(%)

Summer

SVM 28.51 52.75 3.81 3.56

ENN 30.20 42.22 4.45 2.81

LASSOENN 17.22 22.83 2.47 1.53

PCAENN 22.79 28.43 3.25 1.90

SCADENN 28.76 34.71 4.09 2.32

SRLENN 24.72 30.74 3.84 2.03

SRENENN-A 17.96 24.54 2.84 1.63

SRENENN-B 16.2 22.16 2.19 1.48

Autumn

SVM 14.80 17.95 2.18 1.27

ENN 27.06 33.35 4.36 2.36

LASSOENN 18.35 20.48 2.89 1.45

PCAENN 21.32 26.12 3.31 1.85

SCADENN 15.63 19.97 2.69 1.41

SRLENN 18.73 26.20 2.81 1.84

SRENENN-A 21.16 28.65 3.26 2.01

SRENENN-B 11.28 13.70 1.73 0.97

Winter

SVM 15.50 19.19 9.05 2.38

ENN 25.22 35.26 33.26 4.37

LASSOENN 15.61 20.49 16.91 2.53

PCAENN 18.37 25.71 25.61 3.18

SCADENN 21.96 28.54 27.46 3.54

SRLENN 13.77 15.86 8.71 1.94

SRENENN-A 20.37 30.09 10.11 3.68

SRENENN-B 13.44 16.45 8.01 2.03

Site 6

Spring

SVM 13.38 14.96 2.59 1.21

ENN 18.14 21.81 3.45 1.76

LASSOENN 19.96 23.4 4.37 1.9

PCAENN 18.29 20.70 3.26 1.66

SCADENN 16.02 19.22 2.97 1.55

SRLENN 18.05 21.84 4.23 1.76

SRENENN-A 12.47 18.35 2.68 1.49

SRENENN-B 10.68 13.4 2.09 1.09

Summer

SVM 22.51 35.64 3.20 2.44

ENN 26.88 33.72 3.95 2.30

LASSOENN 15.37 20.50 2.17 1.39

PCAENN 22.66 28.81 3.41 1.95

SCADENN 29.16 34.75 4.32 2.36

SRLENN 20.60 26.34 3.19 1.78

SRENENN-A 15.07 21.66 2.34 1.47

SRENENN-B 11.35 14.38 1.71 0.98
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If the null hypothesis H0 is rejected which means
there exist significant differences between the comparing
algorithms, a post hoc test will be given based on critical
difference (CD).

3.5. Statistical Analysis of Selected Variables. To test whether
the selected variables are significant or not, the following
F test statistic is considered.

F =
RSS1 − RSS0 / p1 − p0

RSS0/ n − p1
, 20

where RSS0 is the residual sum of square for the least
square fit of full model with p1 variables. And the same
for the smaller reduced model with p0 variables. Under
the Gaussian assumption and the null hypothesis that
the smaller model is correct, the F test statistic will have
a F α, p1 − p0, n − p1 distribution. If the F value is larger
than the critical value, then the selected variables are
determined to be significant.

4. Results and Discussion

In this paper, SREN is combined with the Elman neural
network (ENN) to select the important variables and forecast
the global solar radiation. SREN is a penalized variable
selection method using convex penalty function which is
computational efficient. Comparing with subset variable
selection which considers all the possible combinations
of the variables, SREN selected all of the important var-
iables directly.

Lots of approaches are considered for global solar radia-
tion such as SVM, ENN, LASSOENN, SCADENN, SRLENN,
and PCAENN [50]. Comparisons between these methods
and SRENENN are presented in this part.

Table 2 shows the parameters applied in establishing
the comparing forecasting models. The regularization
parameters λ and η are selected as 0.0625 and 5e− 5 in
SRENENN methods using 10-fold cross-validation. In
LASSOENN and SCADENN, the regularization parame-
ters are chosen as 4 and 1. N represents the maximum
number of iterations to establish neural network and is
set as 2000. The activation function from input layer to
hidden layer (Func1) is given as Tansig transfer function
based on trial and error. Similarly, denote Func2 to be
the activation function from hidden layer to output layer
and it is set as Tansig transfer function. The selection of
the number of hidden neurons Nh which determines the
model complexity is important in constructing an ENN.
The best value for Nh is selected from a generated grid
values {5, 10, 15, 20}. The back propagation through time
(BPTT) is applied to construct an ENN with the weights
initialized using random values from the uniform distri-
bution U 0, 1 . Based on trial and error, the gradient
descent with momentum and adaptive learning rate are
set as 0.9 and 0.01. SVM is implemented using R package
“e1071” with rbf kernel function with two unknown param-
eters γ, C selected from two grids 2−5, 2−4,… , 2−1 and
22, 23, 24 using 10-fold cv. All the parameters are selected

in all the models by proper tuning work.
The results presented in Table 3 reveal that SRENENN-B

achieves the best results in terms of forecasting accuracy on
average in all the sites except Site 3 where SRENENN-A has
the best performance. The significant differences are
observed among SRENENN-B, SVM, and ENN methods
which do not involve any dimension reduction. For instance,
MAE obtained by SRENENN-B is much lower than ENN
in Site 2. The error has been reduced by about 37.23% using
fewer variables. Comparing with SVM which also has a good
performance, SRENENN-B improves the forecasting accu-
racy by 17.89%. In Site 4, SRENENN-B has boosted the
RMSE of the ENN and SVM by 47.87% and 39.36%,
respectively. Comparing with PCAENN, LASSOENN, and
SCADENN which performs better than ENN, SRENENN-B
is still the winner in terms of MAE, RMSE, MAPE, and
TIC. It is easy to observe that the PCAENN, LASSOENN,
and SCADENN provide similar performances but LAS-
SOENN delivers better results than PCAENN, SCADENN,
and SRLENN in almost all the sites. From the aspect of
MAPE, LASSOENN provides better results in all sites except
Site 1 and Site 2. Further, it was noticed that the performance
of SVM is better than SRLENN in terms of MAE in Sites 2–6
and SRENENN-A outperforms SRLENN except Site 2. On
the other hand, the computation time of different forecasting
methods is shown in the last column of Table 3. Obviously, it
takes SRENENN-B less computation time than other
approaches. Both SVM and ENN which take all the variables
as inputs use more computation time than penalized ENN
and PCAENN. The computation time of other forecasting
methods is comparable. The corresponding plot is shown in

Table 6: Continued.

MAE
(W/m2)

RMSE
(W/m2)

MAPE
(%)

TIC
(%)

Autumn

SVM 13.14 15.96 1.95 1.15

ENN 28.09 34.57 4.59 2.49

LASSOENN 16.30 18.74 2.71 1.35

PCAENN 22.33 29.98 3.75 2.14

SCADENN 21.03 28.11 3.50 2.01

SRLENN 18.86 25.69 2.99 1.84

SRENENN-A 23.31 29.66 3.60 2.13

SRENENN-B 9.52 12.37 1.48 0.89

Winter

SVM 14.46 17.97 11.90 2.31

ENN 23.66 33.36 43.17 4.28

LASSOENN 15.37 21.36 23.33 2.70

PCAENN 21.83 32.64 44.10 4.14

SCADENN 19.54 29.11 41.72 3.70

SRLENN 14.91 19.57 10.66 2.46

SRENENN-A 14.20 21.17 12.54 2.67

SRENENN-B 11.57 15.39 9.36 1.94
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Figure 4. Therefore, SRENENN-B delivers better forecasting
results with less computation time.

Table 4 depicts the scores of the compared models. The
best model will give the lowest total score. Obviously,
SRENENN-B provides the lowest score among all the
compared methods (see the last column), followed by
LASSOENN, SRENENN, SRLENN, SVM, PCAENN,
SCADENN, and ENN. Tables 5 and 6 show the perfor-
mances of compared forecasting approaches including four
seasons. It is not difficult to find SRENENN-B that gives
the highest forecasting accuracy. SVM provides better results
than other methods in spring, autumn, and winter while
ENN gives the worst result in four seasons. The results are
quite similar as what we observe in Table 3.

The results using Wilcoxon signed-rank test between
SRENENN-B and other forecasting approaches are summa-
rized in Tables 7 and 8, which show Z statistic values
and p values. In this study, the significant level is set as 0.05
so that the Z critical value is 1.96. From the tables, it is easy
to observe that all of the Z statistic values are larger than
1.96 and p values are much smaller than 0.05. Thus, the null
hypothesis is rejected and we decide that the proposed
SRENENN-B model is significantly different from the other
models. Since SRENENN-B has provided the smallest errors
at all sites, it is concluded that SRENENN-B is superior over
other models in terms of forecasting accuracy.

Table 9 reveals MAE, RMSE, MAPE, and TIC values of
the SRENENN and other forecasting approaches. The results

Table 7: The results of Wilcoxon signed-rank tests between SRENENN-B and other competitors (p values are in the parenthesis).

Sites SVM ENN LASSOENN PCAENN SCADENN SRLENN SRENENN-A

Site 1 5.58 (0.00) 3.91 (0.00) 4.67 (0.00) 4.48 (0.00) 5.47 (0.00) 4.92 (0.00) 3.22 (0.00)

Site 2 6.30 (0.00) 4.33 (0.00) 4.31 (0.00) 5.69 (0.00) 6.37 (0.00) 4.68 (0.00) 2.68 (0.00)

Site 3 3.51 (0.00) 2.33 (0.00) 5.85 (0.00) 4.30 (0.00) 5.95 (0.00) 4.90 (0.00) 5.71 (0.00)

Site 4 4.95 (0.00) 4.41 (0.00) 6.24 (0.00) 6.18 (0.00) 6.06 (0.00) 4.53 (0.00) 3.69 (0.00)

Site 5 2.78 (0.00) 3.91 (0.00) 5.20 (0.00) 6.18 (0.00) 6.06 (0.00) 4.53 (0.00) 4.36 (0.00)

Site 6 5.69 (0.00) 3.02 (0.00) 4.81 (0.00) 5.14 (0.00) 5.99 (0.00) 5.34 (0.00) 3.69 (0.00)

Table 8: The results of Wilcoxon signed-rank tests between SRENENN-B and other competitors for each season at Sites 1–6 (p values are in
the parenthesis).

Models ENN LASSOENN PCAENN SCADENN SRENENN-A SRENENN-B

Site 1

Spring 0.38 (0.00) 1.53 (0.00) 2.47 (0.00) 0.45 (0.00) 2.04 (0.00) 3.07 (0.00)

Summer 1.16 (0.00) 5.12 (0.00) 0.52 (0.00) 2.88 (0.00) 0.05 (0.00) 1.15 (0.00)

Autumn 1.60 (0.00) 2.42 (0.00) 2.99 (0.00) 3.18 (0.00) 2.44 (0.00) 4.50 (0.00)

Winter 3.28 (0.00) 2.69 (0.00) 2.09 (0.00) 1.78 (0.00) 2.31 (0.00) 3.18 (0.00)

Site 2

Spring 1.63 (0.00) 1.65 (0.00) 2.70 (0.00) 3.20 (0.00) 3.53 (0.00) 2.71 (0.00)

Summer 2.10 (0.00) 2.18 (0.00) 2.74 (0.00) 3.20 (0.00) 2.38 (0.00) 1.72 (0.00)

Autumn 2.32 (0.00) 2.10 (0.00) 1.57 (0.00) 3.20 (0.00) 2.90 (0.00) 3.49 (0.00)

Winter 1.27 (0.00) 0.56 (0.00) 0.62 (0.00) 3.20 (0.00) 1.76 (0.00) 2.31 (0.00)

Site 3

Spring 3.07 (0.00) 1.56 (0.00) 2.25 (0.00) 1.38 (0.00) 2.70 (0.00) 5.94 (0.00)

Summer 2.26 (0.00) 2.17 (0.00) 1.58 (0.00) 2.08 (0.00) 2.18 (0.00) 2.31 (0.00)

Autumn 1.21 (0.00) 2.62 (0.00) 2.87 (0.00) 3.06 (0.00) 1.81 (0.00) 2.99 (0.00)

Winter 1.22 (0.00) 2.02 (0.00) 0.97 (0.00) 1.87 (0.00) 2.11 (0.00) 0.75 (0.00)

Site 4

Spring 0.19 (0.00) 1.24 (0.00) 3.45 (0.00) 2.22 (0.00) 5.02 (0.00) 2.88 (0.00)

Summer 2.95 (0.00) 2.38 (0.00) 2.28 (0.00) 2.73 (0.00) 3.13 (0.00) 1.19 (0.00)

Autumn 0.08 (0.00) 2.39 (0.00) 3.18 (0.00) 2.83 (0.00) 2.19 (0.00) 2.86 (0.00)

Winter 0.95 (0.00) 2.79 (0.00) 2.25 (0.00) 2.12 (0.00) 2.98 (0.00) 2.39 (0.00)

Site 5

Spring 1.97 (0.00) 0.84 (0.00) 0.45 (0.00) 0.22 (0.00) 4.02 (0.00) 3.02 (0.00)

Summer 2.99 (0.00) 3.17 (0.00) 2.28 (0.00) 2.73 (0.00) 3.13 (0.00) 1.41 (0.00)

Autumn 3.08 (0.00) 2.83 (0.00) 3.18 (0.00) 2.83 (0.00) 2.19 (0.00) 2.03 (0.00)

Winter 1.87 (0.00) 3.02 (0.00) 2.25 (0.00) 2.12 (0.00) 2.98 (0.00) 2.88 (0.00)

Site 6

Spring 2.78 (0.00) 1.39 (0.00) 1.74 (0.00) 3.56 (0.00) 3.56 (0.00) 2.01 (0.00)

Summer 3.11 (0.00) 3.09 (0.00) 1.18 (0.00) 2.11 (0.00) 1.87 (0.00) 1.53 (0.00)

Autumn 1.91 (0.00) 2.58 (0.00) 1.81 (0.00) 2.11 (0.00) 1.04 (0.00) 3.14 (0.00)

Winter 2.37 (0.00) 1.54 (0.00) 1.43 (0.00) 2.55 (0.00) 1.73 (0.00) 2.47 (0.00)

13Complexity



of Friedman test show that the F distribution statistics
follows F 7, 35 distribution and the critical value of it is
0.39. Thus, the null hypothesis that the ranks of compared
methods are equal with each other is rejected. This means
that a post hoc test based on Bonferroni-Dunn test is needed
to make more comparisons. The CD value is calculated as
3.59 based on [49]. Therefore, SRENENN performs signifi-
cantly better than ENN, PCAENN, SCADENN, LASSOENN,
and SVM for RMSE and TIC. This is because the average
ranks between SRENENN-B and these competitors are larger
than 3.59. On the other hand, SRENENN-B does not show
great improvement over SRENENN-A and SRLENN in
terms of evaluation criteria.

Figure 5 summarized the results of estimated values
against the true value. It is not difficult to tell that the
estimated values of SRENENN-B are closer to the true value
than other compared approaches. ENN provides the worst
results because all the variables are employed as inputs. Thus,
there must be some redundant features contained in the
ENN. SRENENN-B gives good forecasting results in all
the sites which demonstrates that the selected variables
temperature, pressure, solar zenith angle, wind direction,
and wind speed are considered to be important for inputs
of ENN. Table 10 reveals statistical analysis of selected
variables. It is observed that all the variables selected are
significant because F values are much greater than critical

Table 9: The results based on Friedman test for compared methods.

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Average χ2
F FF

MAE

SVM 5 2 4 3 3 3 3.33

34.70 23.86

ENN 8 8 6 8 8 8 7.67

LASSOENN 3 4 3 2 2 2 2.67

PCAENN 7 6 5 4 6 6 5.67

SCADENN 6 7 8 7 7 7 7.00

SRLENN 4 3 7 6 5 5 5.00

SRENENN-A 2 5 1 5 4 4 3.50

SRENENN-B 1 1 2 1 1 1 1.17

MAPE

SVM 2 2 3 2 2 2 2.17

39.50 79.00

ENN 8 8 7 8 8 8 7.83

LASSOENN 5 5 5 5 5 5 5.00

PCAENN 7 6 8 6 7 7 6.83

SCADENN 6 7 6 7 6 6 6.33

SRLENN 4 3 4 4 3 3 3.50

SRENENN-A 3 4 1 3 4 4 3.17

SRENENN-B 1 1 2 1 1 1 1.17

RMSE

SVM 5 4 8 7 7 3 5.67

31.90 15.77

ENN 8 8 7 8 8 8 7.83

LASSOENN 4 3 3 2 2 2 2.67

PCAENN 7 6 5 4 6 7 5.83

SCADENN 6 7 6 5 4 6 5.67

SRLENN 3 2 4 3 3 5 3.33

SRENENN-A 2 5 1 6 5 4 3.83

SRENENN-B 1 1 2 1 1 1 1.17

TIC

SVM 5 4 8 7 7 3 5.67

31.89 15.77

ENN 8 8 7 8 8 8 7.83

LASSOENN 4 3 3 2 2 2 2.67

PCAENN 7 6 5 4 6 7 5.83

SCADENN 6 7 6 5 4 6 5.67

SRLENN 3 2 4 3 3 5 3.33

SRENENN-A 2 5 1 6 5 4 3.83

SRENENN-B 1 1 2 1 1 1 1.17
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values Fcrit. Furthermore, the coefficients of determination
R2 are approximately one which indicates that the estab-
lished model is trustworthy.

Figure 6 reveals the boxplots in terms of RMSEs of the
compared forecasting models everyday in order to reveal

the benefits of SRENENN. Figures 6(a)–6(f), (A), (C), (E),
(G), (I), and (K), show the RMSEs of each model with limita-
tion including all the outliers. Median is applied here to make
the comparisons because it is less sensitive to outliers. Here,
RMSEs of ENN are far larger than other forecasting
approaches at all the sites. From Figures 6(a)–6(f), (B), (D),
(F), (H), (J), and (L), obviously, SRENENN-B gives the low-
est RMSE values. Therefore, based on boxplots (A)–(L) in
Figures 6(a)–6(f), SRENENN-B delivers better forecasting
performances.

5. Conclusions

Global solar radiation is a vital and hot research topic.
Looking for a way to predict the global solar radiation
accurately is crucial. There are a number of methods derived
to achieve this goal. Our work investigated and studied the
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Figure 5: The scatter plots of actual and forecast global solar radiation by seven models: bold black dash line represents the perfect fit.

Table 10: The results of statistical analysis of selected variables by
SREN at Sites 1–6.

Sites R Fcrit F value Significant level α

Site 1 0.98 0.06 318.23 0.05

Site 2 0.99 0.05 250.12 0.05

Site 3 0.99 0.15 212.34 0.05

Site 4 0.99 0.06 10.12 0.05

Site 5 0.99 0.08 15.13 0.05

Site 6 0.99 0.09 28.74 0.05
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SRENENN method. The key findings of this paper are
demonstrated as follows:

(1) To build an interpretable model and overcome the
selection inconsistency of existing variable selection
methods, this work studies the square root loss func-
tion and elastic net and proposes the square root elastic
net (SREN) which is a novel variable selection method.

(2) To boost the computational capacity of ENNand other
penalize ENN models, this paper derives a simple-to-
implement and fast algorithm to implement SREN.
The experiments of computation time demonstrate
the computation efficiency of the proposed algorithm.

(3) To improve the forecasting accuracy of ENN and
other penalize ENN models, this paper establishes
SRENENNmodel using the inputs selected by SREN.

To sum up, the proposed SRENENN model provides
better forecasting performances than the traditional
methods based on the real data application of six locations
in Xinjiang area of China. For the future research, the fol-
lowing research directions will be focused on: (i) explore
the performance of SRENENN model on a solar radiation
problem under complex weather condition; (ii) investigate
the application of SREN on other time series forecasting
models; and (iii) study the application of SREN on high-
dimensional data.

Appendix

Proof 1. A proof is provided based on [51, 52]. Define the
object function as F β = y −Xβ 2 + λ β 1 + η β 2

2/2. A
surrogate function is defined as

1: SVM 2: ENN 3: LASSOENN 4: PCAENN 5: SCADENN
8: SRENENN-B7: SRENENN-A6: SRLENN

It is obvious that the model SRENENN-A and SRENENN-B
are better than other comprtitors beacause their abnormal
forecast values are lower than others.
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Figure 6: Boxplot of RMSEs of ENN, (a) LASSOENN, (b) PCAENN, (c) SCADENN, (d) SRLENN, (e) SRENENN-A, and (f) SRENENN-B
for six sites in one year. (A, C, E, G, I, K) presents the RMSEs of each model without any limitation, and (B, D, F, H, J, L) presents the RMSEs of
each model with the limitation.
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G β, γ = y −Xβ 2 +
1

y −Xβ 2
γ − β TXT Xβ − y

+
β − γ 2

2
2 Xβ − y 2

+ λ β 1 +
η

2
β 2

2

A 1

After some simple algebra, min
γ

G β, γ is the same as

min
γ∈Rp

1
Xβ − y 2

γ − β TXT Xβ − y +
β − γ 2

2
2 Xβ − y 2

+ λ β 1 +
η

2
β 2

2,
A 2

which can be reformulated as

min
γ∈Rp

1
Xβ − y 2

1
2

γ − β +XTy −XTXβ 2
2

+ λ Xβ − y 2 β 1 +
η

2
Xβ − y 2 β 2

2

A 3

Applying Lemma 7 in reference [53], we obtain that

γ j
opt = ΘEL β j +XTy −XTXβ j ; λ Xβ j − y

2
, η Xβ j − y

2
,

A 4

in Plan A. For Plan B we also have

γ j
opt = Θ SOFT β j +XT

newynew −XT
newXnewβ j ; λ Xβ j − y

2

A 5

and notice that

G β, γopt + δ − G β, γopt ≥
δ 2

2
2 Xβ − y 2

A 6

Combining with the iterates defined by (9) or Eq. (10)
and using Taylor expansion, we can get

for some ξ j = ν j β j + 1 − ν j β j+1 with ν j ∈ 0, 1 . A
simple reformulation of (A.7) yields that

F β j − F β j+1 ≥
1
2

2

Xβ j − y
2

−
X 2

2

Xξ j − y
2

β j+1 − β j
2

2

A 8

Under the regularity condition inf ξ∈A Xξ − y 2 > ε and

τ large enough, F β j is monotone decreasing. Define
M ≔ F β 0 and let X 2

2 < 2ε/M, we have C = 2/
Xβ j − y 2 − X 2

2/ Xξ j − y 2. Thus, using the optimal
conditions, β j has a unique limit point β∗. Furthermore,
β∗ satisfies the KKT condition which means it is a global
minimum. This completes our proof.

Nomenclature

Abbreviation

ENN: Elman neural network
EL: Elastic net
MAE: Mean absolute error
MAPE: Mean absolute percentage error
RMSE: Root mean square error
SRL: Square root LASSO
SREN: Square root elastic net
TIC: Theil inequality coefficient
CD: Critical difference.

English Symbols

h: Number of nodes in the hidden layer
n: Sample size
N : Maximum number of iterations in ENN
p: Number of variables

F β j+1 +
1
2

β j+1 − β j T I
Xβ j − y

2

−
XTX

Xξ j − y
2

β j+1 − β j

≤G β j , β j+1 ≤ G β j , β j −
1

2 Xβ j − y
2

β j+1 − β j T
β j+1 − β j

= F β j −
1

2 Xβ j − y
2

β j+1 − β j T
β j+1 − β j ,

A 7
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X: Data matrix
y: Response variable.

Greek Symbols

β∗: True variables
β j : The estimate in the jth iteration
η: Regularization parameter for l2 part
Θ: Thresholding rules
λ: Regularization parameter for l1 part
σ: Noise level.
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