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The study of the contagion law of credit risk is very important for financial market supervision. The existing credit risk contagion
models based on complex network theory assume that the information between individuals in the network is symmetrical and
analyze the proportion of the individuals infected by the credit risk from a macro perspective. However, how individuals are
infected from a microscopic perspective is not clear, besides the level of the infection of the individuals is characterized by only
two states: completely infected or not infected, which is not realistic. In this paper, a credit risk contagion model based on
asymmetric information association is proposed. The model can effectively describe the correlation among individuals with
credit risk. The model can analyze how the risk individuals are infected in the network and can effectively reflect the risk
contagion degree of the individual. This paper further analyzes the influence of network structure, information association,
individual risk attitude, financial market supervision intensity, and individual risk resisting ability on individual risk contagion.
The correctness of the model is verified by theoretical deduction and numerical simulation.

1. Introduction

Credit risk refers to the risk of economic loss caused by the
failure of the counterparty to fulfill the obligations stipulated
in the contract, and it is the main type of financial risk. In
recent years, the contagion effects of credit risk occur fre-
quently in financial markets, which have caused severe
impacts on the financial market and economic development
of almost all market economy countries. The subprime mort-
gage crisis, which originated in the United States in 2008,
eventually became a global financial crisis and shocked the
global capital market. The global financial risks caused by
the subprime mortgage crisis in the United States are directly
reflected in the credit risks and contagion effects in the finan-
cial market. Credit is the cornerstone of the market economy,
and the risk of the capital market is largely from the credit
crisis. The contagion of credit risk will increase the complex-
ity of credit risk in the capital market and reduce the trans-
parency of credit risk in the capital market. At present, the
introduction and rapid development of CRT (credit risk

transfer) market make credit risk management more difficult,
and the credit risk contagion is more extensive [1–4]. There-
fore, the study of the contagion law of credit risk in the finan-
cial market has attracted much attention of researchers.

At present, the research on the contagion model of credit
risk in the financial market mainly includes the following
three categories: the simplified model, the structured model,
and the complex network evolution model. The stochastic
theory-based simplified model and structured model are used
to describe the impact and contagion effects on the creditor
under different circumstances of credit default strength and
default loss rate of the debtor [5–10]. The method of struc-
tural model assumes that the dynamic process of corporate
assets depends on a set of common state variables, and that
the interfirm default correlation arises from the dynamic evo-
lution of the firm’s asset value [9]. The simplified model
directly models the process of corporate default intensity,
and the default correlation is determined by the intensity of
the default process, without considering the relationship
between the default and the company value. Comparing with
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other models, the simplified model is easier to calculate the
default intensity and becomes the main framework for the
study of the contagion model of credit risk [10]. The simpli-
fied model and the structured model mainly assume that
credit default is exogenous. The influence of endogenous fac-
tors such as psychological behavior, correlation mechanism,
and network structure on the behavior of the model is not
considered in the modeling of credit risk contagion for the
simplified model and the structured model, while the process
of credit risk contagion is the result of many endogenous
factors and exogenous factors [11]. The latest research in
behavioral finance believes that the psychological character-
istics of investors seriously affect people’s psychological
expectations and decision-making behavior [12] and increase
market risk and investors’ attitudes and emotions can be
transmitted in the market [13]. Therefore, in the study of
credit risk contagion, the influence and function of economic
subject’s psychological and behavioral factors cannot be
ignored [14, 15]. Many researches indicate that the network
structure of credit risk holders also has an important impact
on the spread of risk [16]. In addition, empirical research
shows that market supervision has a strong inhibitory effect
on the infection of credit risk [17]. Therefore, credit risk is
not a simple credit default dependency contagion but mixed
with endogenous and exogenous factors: psychological and
behavioral factors, network structure of credit risk holders,
and the market regulator.

The method of complex network is paid more and more
attention in the research of financial risk contagion in recent
years. The financial risk contagion system is a self-organized
social system [18]. Complex networks can visually describe
the complex relationship between credit risk individuals
and can effectively analyze endogenous and exogenous fac-
tors that affect risk transmission [19, 20]. Cimini and Serri
[21] defined a systemic risk metric that estimated the poten-
tial amplification of losses in interbank markets accounting
for both credit and liquidity contagion channels. This work
indicated that losses reverberate among banks and eventually
were amplified because of the complex structure of interbank
exposures, which lead to the occurrence of the financial crisis.
Bardoscia et al. [22] proposed a dynamical “microscopic”
theory of instability by iterating balance sheet identities of
individual banks and by assuming that transfer of shocks
from borrowers to lenders. Allen and Gale [23] pioneered a
study of risk contagion in the interbank market. They
believed that the transmission of financial risks mainly
depended on the internal relations of the financial system,
such as the structure of lending relationship. This work indi-
cated that sparse networks were more likely to infect risks,
and the reason was that the tight network dispersed the
impact of single bank failures on the overall system, which
was similar to a complex social system [24]. But the opposite
view was that the tight network reduced the risk of a single
bank but increased the correlation between banks, thereby
increasing the risk of contagion [25, 26]. The work [27] for-
malized an extension of a financial network model originally
proposed by Nier et al. [25]. Acemoglu’s work [28] showed
that the network structure is not a monotonic linear relation-
ship with contagion effects. When the negative impact was

less than a certain threshold, the tight network was more sta-
ble; while the negative impact was greater than a particular
threshold, the weak link network was more stable. Upper
[29] summarized the simulation methods of the spread of
network risk in the interbank market, discussed the assump-
tions and applications of various simulation methods, and
pointed out that infectious default could not be completely
eliminated. Gai and Kapadia [30] pointed out that the
high connectivity of the financial network can reduce the
probability of infection but also increase the risk of infec-
tion when the problem occurs. Li’s work [31] indicated that
the increased connectivity between banks reduced contagion
effects, but will lead to liquidity problems, causing the risk
infection. Heise and Kühn [32] studied dynamic risk conta-
gion in the financial network and pointed out that the deriv-
ative securities risk exposure was an additional channel of
contagion, which could reduce losses but did not rule out
very large tail risks, and that risk contagion and loss may be
increased in stressful situations. Filiz et al. [33] used algebraic
geometry technique and maximum likelihood estimation
method to study the problem of bank related default in sim-
ple graphs. Mastromatteo et al. [34] used the information
transfer method and the maximum entropy theory to study
the systemic risk of financial network structure, which
highlighted the sparsity and heterogeneity of financial
networks. Glasserman and Young [35] used the complex
network theory to investigate the bankruptcy costs and
mark-to-market losses resulting from credit quality deterio-
ration or a loss of confidence. Bardoscia’s work [36] indicated
that the origin of instability resided in the presence of specific
types of cyclical structures. Tonzer [37] analyzed whether
international linkages in interbank markets affected the sta-
bility of interconnected banking systems. Li and Sui [38]
investigated contagion risk in an endogenous financial net-
work. Deng’s work [39] investigated how systemic risk was
affected by the structure of the banking system.

There is something in common between the financial sys-
tem and the ecosystem. The contagion of financial risks is
very similar to the spread of epidemics [40]. In recent years,
epidemic models have been introduced into the field of eco-
nomics and finance to study the diffusion effects of economic
and financial risks [41]. Garas et al. [42] introduced the epi-
demic contagion mechanism into the actual financial net-
work model. This work used the SIR epidemic model to
simulate the contagion of the crisis in the global economic
network combining with ecology, epidemiology, and com-
plex network theory. Haldane [43] studied the relationship
among network complexity, diversity, and financial vulnera-
bility and explained the reasons for the vulnerability of the
network structure. Chen and He [44] constructed a network
model of credit risk contagion with related factors of credit
principal behavior and revealed some relations among credit
subjects in social networks. This work also studied the risk
attitude of credit subject and the ability to resist credit risk.
All above works show the advantages of complex network
theory in the application of risk contagion. However, there
are still some points needed to be improved: (i) Above
models basically analyzed the characteristics of network risk
contagion from a macro perspective, mainly analyzed the
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proportion of individuals infected; however, there is no
analysis of how individuals are infected in the network;
(ii) The connection relation of network nodes is not well
stated, and the relation among network nodes in most
studies is symmetrical; (iii) In the above models, individ-
uals are infected at two levels, that is, they are either
completely infected or not infected, while in real financial
networks, individuals are infected to varying degrees. Toi-
vanen [45] used an epidemiologic SIR model to model the
spreading of the contagion in the interbank network and
analyzed the importance of individual bank-specific factors
on financial stability. Brandi and Clemente [46] developed an
Exposed-Distressed-Bankrupted model based on SIR model
for the dynamics of liquidity shocked reverberation between
banks. The above two works effectively analyzed the process
of individual credit risk contagion from the perspective of
liquidity, and banks were shown to be in three discrete
states: exposed, distressed, and bankrupted. Moreover, the
asymmetric risk contagion probability was established based
on loan correlation.

Based on the above analysis, based on the existing corre-
lation theory and the complex network theory, this paper
establishes an asymmetric information association model.
Considering micro behavior of investors, such as the risk atti-
tude, the ability to resist risks, and the monitoring behavior
of financial market supervisors, this paper studies the conta-
gion behavior of individuals and its evolution mechanism. In
this paper, the association between risk holders is asymmet-
ric, which can analyze the evolution process of individual risk
contagion. And the degree of individual infection is ranged
from 0 to 1 instead of two levels: completely infected or not
infected. Compared with the work of Toivanen and Brandi
and Clemente [45, 46], the proposed model considers more
factors and uses different infectious model, the definition of
interbank relationship function is different, and banks are
infected to varying degrees.

2. Credit Risk Contagion Model

In the financial market, the contagion of credit risk is a com-
plex process related to social psychology, economic behavior,
and information communication. In this process, the credit
risk holder propagates the risk to other individuals through
information association or interest association. Risk conta-
gion is a game process of various factors. The strength of
financial market supervision, individual ability to resist risks,
and individual attitude to risk plays an important role in the
process of risk transmission.

2.1. The Assumptions and Notation. In this paper, we assume
that the network structure of credit risk propagation in the
financial market remains unchanged. In the financial market,
the probability of the individual being infected by the credit
risk is related to four factors, such as the relationship among
the credit risk holders, the risk attitude, the ability to resist
risks, and the monitoring strength of the financial market
regulators. At the same time, we assume that the number of
individuals in the network is N , which is limited. All param-
eters used in this paper are defined as follows.

(i) λ is the average contagion rate of credit risk in the
financial network, and λ ∈ 0, 1 .

(ii) u is the monitoring strength of the financial market
regulators, and u ∈ 0,∞ .

(iii) ζ is the effect strength of credit event, and ζ > 0.
(iv) ri ζ , i = 1, 2,… ,N , are individual attitudes and

emotions to credit risk contagion, which can char-
acterize the impact of credit events on individual
behavior in financial markets. And ri η ≥ 0, ri ζ
> 0, and r′i ζ > 0, which indicate that the influence
of credit events has an increasing marginal impact
on individual risk aversion.

(v) θi, i = 1, 2,… ,N , are the ability or resilience of
individuals to resist credit risk contagion in finan-
cial markets, and θi ∈ 1,∞ .

(vi) Lij, i, j = 1, 2,… ,N are the information association
between individuals with market risk holders, and
Lij ∈ 0, 1 . In the actual risk propagation network,
the relation between individuals is bidirectional
and asymmetrical. Thus, L is an asymmetric
matrix. In fact, in this work, Lij can be considered
as bilateral exposures in a real financial network.
This article focuses on the point of physical dynam-
ics, so the expression “information association” is
used. The lending relationship between financial
institutions can be regarded as information asso-
ciation, that is to say, Lij is the liability matrix. In
real financial networks, Lij can be obtained through
maximum entropy [29], exponential random
graphs [47, 48], or minimum density [49] based
on the balance sheet of financial institutions.

(vii) f i t , i = 1, 2,… ,N , is the degree to which the
credit risk is transmitted, and f i t ∈ 0, 1 . Previous
studies had only two states: infected or not infected,
ignoring the degree of infection. In this paper, the
degree of infection is taken into consideration.

(viii) η is the speed that individuals restore to the health
status after being infected credit risk.

2.2. The Credit Risk Contagion Model. The contagion mech-
anism of credit risk in the financial system is similar to the
physical phenomenon of network flow. In financial markets,
individuals who are strongly associated with individuals who
have been infected by credit risk are more likely to be
infected. In this work, the average intensity of infection for
individual i by other infected individuals is defined as

Θi t =
〠jLij f j t

〠jLij
1

From the (1), the intensity of contagion Θi t monoton-
ically increases with f j t . For a fixed structure risk contagion
network, the contagion process of credit risk can be regarded
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as a Markov process. For any individual i, the degree of infec-
tion satisfies the differential equation as follows:

df i t
dt

=
g 〠jLij λri ζ 1 − f i t

uθi
Θi t − ηf i t , 2

where g x is the monotonically increasing convex function.
In this work, g x = x/1 + x ∈ 0, 1 is used. The first item in
the right of (2) indicates that the intensity increases in which
individuals are infected by infected individuals, and the sec-
ond item is the recovery of individuals who are infected by
credit risk. This work models credit risk contagion drawing
on virus infection model. On the one hand, individuals with
a large degree are easy to be infected by credit risks. On the
other hand, individuals who are highly associated with
infected individuals are also susceptible to infection. Previous
works [25, 27] indicated that this credit risk contagion mech-
anism in the financial system is similar to the physical phe-
nomenon of network flow. g ∑jLij Θi t represents the
effect of other related financial institutions to node i. g ∑j

Lij reflects the connection strength of node i and other
nodes, and the greater the association with other nodes, the
easier the node iwill be infected.Θi t is the average infection
degree of the nodes connected to node i. The bigger Θi t is,
the more likely the node i is to be infected. λ is the average
contagion rate of credit risk in the financial network, and
the bigger λ is, the greater the node i will be infected. ri ζ
represents individuals’ attitudes and emotions towards credit
risk contagion, depicting the impact of credit event influence
on individual behavior in financial markets. The bigger ζ, the
bigger ri ζ , the greater the credit risk will affect the individ-
ual, which makes the individual more susceptible to be
infected. u is the strength of market regulation, the stronger
the regulation is, the more stable the financial market is,
and the lower the degree of individual credit risk infection.
θi is the ability or resilience of individual to resist credit risk
contagion. In the real financial system, which can be regarded
as the fundraising capability and management capability of
financial institutions in times of crisis. When df i t /dt =
0, the contagion intensity of node i in the equilibrium state
of credit risk contagion system can be obtained as

f i =
g 〠jLij α ri ζ /uθi Θi

1 + g 〠jLij α ri ζ /uθi Θi

, 3

where α = λ/η is risk transfer rate of credit risk contagion.
From (3), it can be obtained that ∂f i/∂ri ζ > 0, ∂2 f i/∂
ri ζ

2 < 0, ∂f i/∂ζ > 0, ∂2 f i/∂ζ
2 < 0, ∂f i/∂u < 0, ∂2 f i/∂u2 >

0, ∂f i/∂θi < 0, and ∂2 f i/∂θ2i > 0. Obviously, the contagion
intensity of credit risk is a monotonic increasing convex
function of individual risk attitude and the influence of credit
events, and the contagion intensity of credit risk is a mono-
tonically decreasing concave function of financial market
supervision intensity and individual risk resisting ability.
Thus, risk aversion can increase the infection and impact of
credit risk, and individual risk resistance and financial mar-
ket regulation will reduce the contagion of credit risk. Then,
we plug (3) into (1) and can get an autonomous equation:

Θ1

Θ2

⋮

ΘN

=

0 L12
〠jL1j

… L1N
〠jL1j

L21
〠jL2j

0 … L2N
〠jL2j

⋮ ⋮ … ⋮
LN1

〠jLN j

LN2
〠jLN j

… 0

×

T1Θ1
1 + T1Θ1

T2Θ2
1 + T2Θ2

⋮
TNΘN

1 + TNΘN

,

4

where T j = g ∑jLij α rj ζ /uθj . Equation (4) describes
the influence strength of infected nodes on i node when the
credit risk contagion system reaches equilibrium. This equa-
tion also describes the conditions and the factors that need to
be satisfied when the credit risk contagion system reaches
equilibrium. Obviously, Θi = 0, i = 1, 2,… ,N , is the trivial
solution of (4). The trivial solution Θi = 0, i = 1, 2,… ,N ,
indicates that there is no risk contagion in the network. How-
ever, nontrivial solutions are not the concern of contagion,
and nonzero nontrivial solutions Θi ≠ 0 are important for
risk contagion networks.

Theorem 1. In the incomplete market, when the credit risk
system is in equilibrium status, there is only a unique equilib-
rium f i > 0 for i = 1, 2,… ,N at most in the credit risk conta-
gion system.

Proof. Let

F1 Θi =Θi, 5

F2 Θi =
〠jLij T jΘj Θi /1 + T jΘj Θi

〠 jLij
6

It obviously that the intersection point of (5) and (6) is
the solution of (4). Solving first and two order derivatives of
(6), we get

dF2 Θi

dΘi
=

〠jLij dΘj Θi /dΘi T j/ 1 + T jΘj
2

〠 jLij
, 7

d2F2 Θi

dΘ2
i

=
〠jLij d2Θj/dΘ2

i T j /1 + T jΘj
2 − 2Lij dΘj/dΘi

2T2
j /1 + T jΘj

3

〠jLij
8
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From (4), it is easy to find that dΘj Θi /dΘi > 0 and

d2Θj Θi /dΘ2
i < 0. Thus, dF2 Θi /dΘi > 0, and d2F2 Θi /d

Θ2
i < 0. Equations (7) and (8) indicate that (6) is mono-

tonic increasing convex function. Due to Θi =∑jLij f j/∑j

Lij ≤ 1, we get

Equation (9) indicates that there are at most two fixed
points of (4) in the interval 0, 1 shown in Figure 1, in
which Θi = 0, when Θj = 0, j = 1, 2,… ,N , is a fixed point.
If (4) has nontrivial solutions Θi ≠ 0, the following condi-
tions must be satisfied:

dF2 Θi

dΘi Θi=0
> 1 10

It can be obtained from (10) that

α > 1
〠j LijLji ri ζ rj ζ /u2θiθj g Lj g Li /LiLj

,

11

where Li =∑jLij. From the above, when (11) is satisfied, there
is a unique equilibrium Θi > 0. If there is a unique equilib-
rium Θi > 0 for i = 1, 2,… ,N , then there is a unique equilib-
rium f i > 0 for i = 1, 2,… ,N in the credit risk contagion
system. Theorem 1 is proved.

In the credit risk contagion network, the threshold of risk
transfer rate is closely related to the node’s afferent informa-
tion. If the credit event has a greater impact on the individual
behavior of the financial market, namely, the bigger ri ζ ,
then the smaller the threshold of risk transfer rate for the
infection of node i. In addition, the threshold of risk transfer
rate is directly related to the ability to resist the risk of infec-
tion and the regulation of financial markets.

Theorem 2. If the average connection information LAave i
(Lave i =∑ jLij/ki, ki is the degree of node i) of the network
A is greater than the average connection information LBave i
of the network B, at the same time, A and B have the same net-
work structure, and other parameter’s value is the same, then
the infection intensity f Ai of the network A is greater than the
infection intensity f Bi of the network B.

Proof. We assume that if the average connection informa-
tion LAave i of the network A is greater than the average
connection information LBave i of the network B, there is
ΘA

i <ΘB
i . Let

Q Lij = Lij
g 〠jLij α ri ζ /uθi Θi

1 + g 〠jLij α ri ζ /uθi Θi 〠jLij
12

We defined α ri ζ /uθi Θi/ 1 + g ∑ jLij α ri ζ /uθi
Θi = Pi and α ri ζ /uθi Θi =Mi. It can be obtained that

dQ Lij
dLij

=
Pi 〠jLij − Lij

〠jLij
2

+
MiLij

〠jLij 1 + g 〠jLij Mi

2

dg 〠 jLij

dLij

13

It obviously that ∑jLij − Lij > 0 and dg ∑jLij /dLij > 0.
Thus, dQ Lij /dLij > 0, and Q Lij is a monotonically
increasing function. According to the stochastic dominance
condition, if the average connection information of the net-
work A is greater than the average connection information
of the network B, then LAij first-order stochastic dominates

LBij. Therefore, ∑jQ LAij >∑jQ LBij for any ΘA
i =ΘB

i > 0, that
is, F2 ΘA

i =ΘA
i > F2 ΘB

i =ΘB
i . This result is contradic-

tory, and the hypothesis is not tenable. Thus, if the average
connection information LAave i of the network A is greater
than the average connection information LBave i of the net-
work B, there is ΘA

i >ΘB
i .

Equation (3) shows that f i is a monotonically increasing
function of Θi. Thus, if ΘA

i >ΘB
i , then f Ai > f Bi , namely, The-

orem 2 is true.
From Theorem 2, we can see that if the network is

more closely related, and the influence of credit risk con-
tagion will be greater. The key reason is that the ability
to interact with individuals is stronger with the stronger
association of network. The individual’s behavior conver-
gence effect is stronger when credit risk occurs, the infec-
tion of credit risk is accelerated, and the influence of credit
risk is increased.

3. Numerical Simulation Analysis

In order to further verify the effectiveness of the proposed
model in characterizing the credit risk contagion, this paper
simulates the model from different angles: (i) evolution pro-
cess of risk contagion under different average degree <k > ;
(ii) evolution process of risk contagion under different aver-
age connection weights Lave (Lave =∑ijLij/N < k > ); (iii) evo-
lution process of risk contagion under different network
structures; (iv) evolution process of risk contagion under

F2 Θi ≤
〠jLijg 〠 jLij α ri ζ /uθi /1 + g 〠jLij α ri ζ /uθi

〠jLij < 〠jLij/〠jLij
= 1 9
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different parameters’ values of ri ζ , u, and θi. In this work,
the parameters’ values of λ and η are 0.9 and 0.1, respectively,
and the risk transfer rate α = λ/η is 9. It can be assumed that
only one random individual p is infected at the initial state,
and the infection rate is f p = 0 5.

In order to reflect effectively the evolution law of network
under conditions of different value <k > and Lave, the value
of ri ζ /uθi is firstly set as 1 firstly and the network structure
is a random network. The method presented in this paper can
reflect the degree of infection of individuals. Figure 2 shows
the distribution of the degree of individual infection with
<k > = 16 and Lave = 0 1. From Figure 2, it is obvious that
the degree of infection of individuals is not 0 or 1, and all
the individuals are infected, but individuals are infected in
different degrees, which is different from the existing models
using complex network theory.

In a real financial network, the degree of individual infec-
tion is different. The model in this paper is more consistent
with the real financial network. It is interesting that when
all the other parameters are fixed, the results of network evo-
lution are only related to the average degree of the network
but not to the scale of the network. The network scale is
defined as the total number of nodes in the network (N).
Figure 3 shows that the average infected degree is same for

different network scale with same <k > . In the following sim-
ulation, the scale of the network is set as 1000.

Figure 4 shows how the evolution of the network varies
with <k > under different average connection weights Lave.
Figure 4 indicates that the average infected degree f ave
increases with the increase of <k > . Under the same condi-
tions, if the network is more intensive, then the level of credit
risk contagion is higher. This is because the network is more
intensive, the dissemination of information between individ-
uals is more conducive, and the formation of psychological
groups is easier.

Figure 4 also presents that the connection weight has
an important influence on the evolution of the network.
Figure 5 shows the evolution of credit risk contagion under
two different average connection weights. The simulation
results show that when the average connection weight is
large, the distribution of individual infection is centralized,
and the mean value of infected degree is large. This is because
when the average connection weight increases, the ability of
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Figure 2: The distribution of the degree of individual infection in a
random network with <k > = 16, Lave = 0 1, and ri ζ /uθi = 1.
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Figure 1: The equilibrium relationship graph of credit risk
contagion system.
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risk contagion among individuals becomes stronger, and the
degree of infection among individuals becomes greater. At
the same time, the increase of average connection weight
leads to the increase of convergence among infected individ-
uals, which leads to a more concentrated distribution of
infected degree.

Figure 6 shows how the evolution of the network varies
with Lave under different <k > . Figure 6 indicates that the
average infected degree f ave increases with the increase of
Lave, and as long as small information Lave is associated, con-
tagion can be large.

In order to explain more clearly the impact of the degree
of information association between individuals on risk conta-
gion, we set up the average amount of income information
Lave i =∑jLij/ki (ki is the degree of node i) i = 1, 2,… ,N
for all individuals: 15% for Lave i = 0 1, 15% for Lave i =
0 05, 15% for Lave i = 0 025, 15% for Lave i = 0 01, and 40
% for Lave i = 1. The simulation result is shown in
Figure 7. As described in Figure 7, the degree of infection is
also low for individuals with small average association levels.

This is in line with the actual credit risk network. In the real
credit risk network, if the average correlation degree of an
individual is small, then the individual is less affected by
the risk contagion. Figure 8 shows the evolution process of
individuals with different average degree of association for
the individual. The simulation indicates that the greater the
average connection weight, the faster the individual is
infected. However, the time to reach stability is consistent
for all individuals.

In order to further depict the law of credit risk conta-
gion and its evolution characteristics, according to the het-
erogeneity of the network, two other networks are selected
to compare the simulation experiments: WS network (Watts-
Strogatz network) and BA network (Barabasi network).
Figure 9 shows the evolution of risk contagion for three
different networks under the same parameters: <k > = 16
and Lave = 0 01. In this simulation, the reconnection prob-
ability of WS network is 15%. The initial network node
number of BA network is 22, the initial network is a ran-
dom connection, and the number of nodes generated by
each added node is 8. As shown in Figure 9, the distribu-
tion of individual infections in WS networks is minimal,
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Figure 5: The evolution of credit risk contagion under two different
average connection weights when <k > = 30.
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and the distribution of individual infections in BA net-
works is the most widely distributed.

Figure 10 shows the variation of the average infection
degree f ave with time for three networks. In the simulation,
the average infection rates are 0.1962, 0.2136, and 0.2751
for WS network, random network, and BA network, respec-
tively. It can be seen that the average risk of infection among
individuals in the BA network is highest in three networks
when the average connection weight is small, and that the
nodes with high degree in the BA network are more highly
infected. In the WS network, the risk individuals are infected
to a small extent, and the difference between individuals is
not large. Figure 10 also indicates that under the same con-
ditions, the risk propagation speed of BA network is the
fastest, and the risk propagation speed of WS network is
the slowest. The simulation shows that if the network struc-
ture is more regular, the risk contagion speed is smaller,
and the degree of contagion is lower. Relevant studies

shown that financial networks had significant scale-free
network characteristics [50]. In scale-free networks, a ran-
domly selected node tends to connect key nodes or nodes
with large degree, so the node with large degree is easy to
be infected, which is why the nodes with large degree are
highly infectious in Figure 9. Then, the nodes with large
degree are used as seed nodes to infect other nodes, which
results in higher risk contagion and faster spread of credit
risk than the homogeneous network.

Finally, we discuss the impact of parameters ri ζ , θi, and
u on risk contagion. In this paper, individual risk attitudes
ri ζ , individual ability to resist risks θi, and the regulatory
strength of financial markets u constitute yi ri ζ , θi, u = ri
ζ /θiu, which is a monotonically proportional increasing
function of ri ζ , and is a monotonically proportional
decreasing function of θi and u. Therefore, we study the
impact of yi on risk contagion, and we can get the influence
of various parameters on risk contagion. Figure 11 shows
the infection distribution of individuals when yi is randomly
selected in 0, 1 . From the simulation, compared with the
simulation in Figure 2, we can see that because of the differ-
ent risk attitude and risk resistance ability, the degree of risk
contagion varies widely.

Figure 12 shows the relationship between the degree risk
contagion and yi. It can be seen that the degree of individual
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Figure 9: The evolution of risk contagion for three different
networks with <k > = 16 and Lave = 0 01.
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Figure 10: The variation of the average infection degree f ave with
time for three networks.
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risk contagion increases with the increase of yi. Figure 13
shows the average intensity of individual risk contagion in
the network under different average value yave (yave =∑N

i=1yi
/N) in two conditions: with same initial fluctuation, f p 0 =
0 5 (p is a fixed value); with random fluctuation, f i 0 is the
random number in 0, 1 for i = 1, 2,… ,N . From the simula-
tion results, we can see that the risk in the network is sup-
pressed when the average value yave is less than the
threshold value yr . That is, the risk can be effectively con-
trolled if the market regulation capability is strong enough
or the individual’s ability to resist risks is adequate. When
the value of yave is larger than the threshold value yr , the
degree of the risk infection of the whole network is increased
with the increase of yave. That is to say, if the individual risk
attitude is stronger, then the individual is more likely to
be infected by the risk. In addition, it can be seen from
the simulation comparison that even if the initial values
of the f i are different, and the network converges to the
same stable point with the same parameters, which is in
accordance with the Theorem 1.

4. Conclusion and Discussion

In this paper, the theory of propagation dynamics in complex
networks is introduced into the study of credit financial risk
contagion. This paper focuses on asymmetric information
association among individuals. Considering the individual
risk attitude, individual risk resisting ability, and financial
market supervisor’s monitoring strength, a network model
of credit risk contagion is established. Furthermore, this
paper uses numerical simulation to study the influence
and mechanism of these factors on credit risk contagion.
Through theoretical deduction and numerical simulation,
this paper gets a series of conclusions which has an important
theoretical value and management significance. The main
points are as follows: (i) In the risk network, individuals are
infected to varying degrees, which is consistent with the char-
acteristics of the real financial network; (ii) In an incomplete
financial market, there exists only positive equilibrium point

of credit risk contagion system, and the contagion intensity
of credit risk is a monotonic increasing convex function of
individual risk attitude and the influence of credit events,
and the contagion intensity of credit risk is a monotonically
decreasing concave function of financial market supervision
intensity and individual risk resisting ability; (iii) The
greater the amount of information the individual receives
from each other, the greater the degree of risk contagion;
(iv) The denser the network, the higher the average infec-
tion rate of individuals in the network; (v) The greater the
average association information of the network, the higher
the average infection rate of individuals in the network;
(vi) The stronger the heterogeneity of the network, the fas-
ter the speed of credit contagion, and the greater the aver-
age level of credit contagion.

These conclusions have important theoretical value and
practical significance for credit risk management practice.
The network theory of financial risk contagion is a cross field
of comprehensive finance, network theory, and system
dynamics. The conclusions in this paper need to be further
demonstrated in practice. This article is only a preliminary
exploration of the infection of credit risk, and there are many
points that can continue to be discussed. In a real financial
network, the greater degree of the individual, the greater
the transmission of information to other individuals, which
has not been taken into account in this paper. In addition,
the interbank market with overlapping portfolios will pro-
mote the spread of risk [51, 52]. Furthermore, the measure-
ment of the quantity of information transfer between
individuals can be analyzed by means of transfer entropy
and mutual information. In addition, the real credit risk con-
tagion network may be of community structures and multi-
plex network, which can be empirically studied on the basis
of the proposed model in the future.
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