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Under the complicated environment of large wind turbines, the vibration signal of a wind turbine has the characteristics of coupling
and nonlinearity. The traditional feature extraction method for the signal is hard to accurately extract fault information, and there is
a serious problem of information redundancy in fault diagnosis. Therefore, this paper proposed a multidomain feature fault
diagnosis method based on complex empirical mode decomposition (CEMD) and random forest theory (RF). Firstly, this paper
proposes a novel method of complex empirical mode decomposition by using the correlation information between two-
dimensional signals and utilizing the idea of ensemble empirical mode decomposition (EEMD) by adding white noise to
suppress the problem mode mixing in empirical mode decomposition (EMD). Secondly, the collected vibration signals are
decomposed into IMFs by CEMD. Then, calculate 11 time domain characteristic parameters and 13 frequency domain
characteristic parameters of the vibration signal, and calculate the energy and energy entropy of each IMF components. Make all
the characteristic parameters as the multidomain feature vectors of wind turbines. Finally, the redundant feature vectors are
eliminated by the importance of each feature vector which has been calculated, and the feature vectors selected are input to the
random forest classifier to achieve the fault diagnosis of large wind turbines. Simulation and experimental results show that this
method can effectively extract the fault feature of the signal and achieve the fault diagnosis of wind turbines, which has a higher
accuracy of fault diagnosis than the traditional classification methods.

1. Introduction

As a kind of abundant, renewable, and efficient clean energy,
wind energy has developed rapidly in recent years. Currently,
wind power generation technology has become an important
research area for countries to compete and has been pro-
moted to the height of national strategy [1–3]. As the
installed capacity of wind turbines becomes larger and larger,
the structure of the turbines becomes more andmore compli-
cated, and they work under harsh conditions for a long
period of time. Therefore, higher requirements are put on
the fault diagnosis technology of the wind turbines [4, 5]. It
is of great significance for wind turbine condition monitoring
and fault diagnosis accurately and comprehensively to
extract the fault feature of vibration signals [6–8].

Since the wind turbine fault vibration signals with the
characteristics of nonlinear and nonstationary [9], at present,
many scholars have done some research on the fault feature
extraction of a wind turbine. The main method uses vibration
sensors which acquire the vibration signal of wind turbine,
utilize some methods with strong applicability for feature
extraction, and then use fault diagnosis methods to diagnose
the fault by utilizing fault information extracted for wind
turbine. The methods for signal processing include wavelet
transform (WT) [10, 11], Hilbert-Huang transform, empiri-
cal mode decomposition (EMD) [12, 13], and variational
mode decomposition (VMD) [14, 15]. For instance, Gao
et al. [16] utilize load mean decomposition (LMD) decom-
posing the vibration signal into multiple product functions.
The characteristic parameters were achieved by the
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multiscale entropy method of processing the main product
functions. The characteristic parameters were entered into
the least square support vector machine (SVM) for fault
diagnosis of the wind turbine.

Muralidharan and Sugumaran [17] compute the wavelet
features by using discrete wavelet transform (DWT) from
the vibration signals. And the rough sets are generated by
wavelet features to classify using the fuzzy logic. Jiao et al.
[18] use the EMD method to decompose the original vibra-
tion signals into finite intrinsic mode functions (IMFs) and
a residual. And the energy of the first four IMFs is extracted
as vibration signal fault feature. A probabilistic neural net-
work (PNN) model is established to achieve the fault classifi-
cation. However, these methods all use the signal processing
method to extract the time-frequency characteristic informa-
tion of the vibration signal, and the feature information
extracted is often not comprehensive enough.

In order to comprehensively extract the fault feature
information, many scholars have studied the method of mul-
tidomain feature fault diagnosis. Tang et al. [19] proposed a
novel method for fault diagnosis based on manifold learning
and Shannon wavelet support vector machine. And the
Shannon wavelet support vector machine (SWSVM) is estab-
lished to recognize faults by using the mixed-domain features
extracted. Gan et al. [20] obtain the time domain and
frequency domain characteristics of vibration signals by
singular value decomposition (SVD) and utilize the multi-
domain manifold learning to achieve this method to realize
the fault diagnosis of mechanical equipment. Shen et al.
[21] decompose the vibration signal into IMFs by empirical
mode decomposition (EMD). 13 time domain characteristic
parameters and 16 frequency domain characteristic param-
eters were extracted, and the parameters into the support
vector machine model for fault diagnosis were input. How-
ever, there are still some shortcomings in the current
research of multidomain feature fault diagnosis. It includes
that the effect of traditional time-frequency signal process-
ing methods is often not ideal, and with the increase of
feature vectors, it is more difficult for the wind turbine to
diagnose and there will be redundant feature information in
multidomain feature vectors.

Complex empirical mode decomposition (CEMD) is
based on the principle of bivariate empirical mode decom-
position, which uses the correlation information between
two-dimensional signals to decompose synchronously and
utilizes the principle of ensemble empirical mode decom-
position (EEMD) through adding white noise to suppress
mode mixing. This method can effectively improve the
problem of mode mixing in EMD. As a classical algorithm
in ensemble learning, random forest (RF) can not only
effectively solve the problems of artificial neural network
such as slow convergence and over-fitting but can also
solve the shortcomings of the SVM algorithm’s inability
to process large sample data [22–24].

Considering the advantages of the two algorithms, this
paper proposes a multidomain feature fault diagnosis
method based on complex empirical mode decomposition
and random forest theory and applies it to the fault diagnosis
of wind turbines. The specific arrangement of this paper is

organized as follows. The view on the principle of complex
empirical mode decomposition (BEMD) is illustrated in
Section 2. Section 3 describes the method of multidomain
feature vector extraction. Section 4 gives brief introduc-
tions of random forest theory. Section 5 describes the multi-
domain feature fault diagnosis method based on CEMD and
random forest theory. Section 6 is the simulation verification
of CEMD this paper proposed. Section 7 applies the pro-
posed method to fault signals of rolling bearing. Conclusions
come in Section 8.

2. The Principle of Complex Empirical
Mode Decomposition

2.1. The Basic Theory of CEMD. At present, many scholars
have done some research on the algorithm of CEMD. Tanaka
and Mandic [25, 26] proposed a complex empirical mode
decomposition to process two-dimensional signals, but the
essence of this method is to perform empirical mode decom-
position on the real and imaginary parts of the complex data
composed of two-dimensional signals. But this method does
not consider the correlation between real and imaginary
parts in the decomposition process. Rilling et al. [27] pro-
posed a new algorithm of bivariate empirical mode decom-
position (BEMD) which fully considers the correlation
between the real and imaginary parts, and unified decom-
posed complex data signals contained real and imaginary
parts so that the decomposition results also have physical
meanings. Therefore, this paper uses this method to perform
complex data empirical mode decomposition. The main pro-
cess is as follows [27]:

Step 1. Determine the projection direction φk = 2kπ/N ,
where 1 ≤ k ≤N .

Step 2. The two-dimensional signal (t) is projected onto
the ϕk.

pφk
t = Re e−φkx t 1

Step 3. Extract the corresponding moment for the local max-
imum of X tkj ; then, the set tkj , eiφkpkj is interpolated. Get

the maximum envelope eφk
′ t in the direction φk.

Step 4. Calculate the mean of the maximum envelope eφk
′ t

in each direction.

m t = 2
N
〠
N

k=1
eφk
′ t 2

Step 5. Similar to the EMD decomposition process, calculate
the residual component:

S t = x t −m t , 3

whether the S t meets the requirements of IMF. If satis-
fied, proceed to Step 6. If not, repeat carried out Steps
2–6, until S t satisfies the conditions of the intrinsic
mode function IMF.
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Step 6. Record the resulting IMF, and remove it from the
original signal. And obtain the IMF1 as c1 t = h t ; residual
component can be expressed as

r1 t = x t − c1 t 4

Step 7. Repeat the above steps until you get all the IMFs. The
original signal can be expressed as

x t = 〠
K

k=1
ck t + rK t , 5

where K represents the total number of IMFs.

2.2. The Decomposition Principle of CEMD. The decom-
position principle of CEMD this paper proposed is based
on the bivariate empirical mode decomposition proposed
by Rilling et al. [27]. The specific construction ideas are
as follows:

Let x0 t be the original vibration signal collected by the
vibration sensor. Let xn t be the white noise signal with a
certain amplitude. Thus, a complex signal xc t constitutes
as follows:

xc t = x0 t + ixn t 6

Project the complex signal xc t into all directions [19]:

pφk
t = Re e−iφk x0 t + ixn t 7

Substituting (7) into Euler’s formula can simplify

pφk
t = x0 t cos φk + xn t sin φk 8

Formula (6) indicates, when sin φk ≠ 0, in other words,
φk ≠ kπ k = 1, 2,… . The projection pφk t is equivalent to

adding white noise with limited amplitude to observation sig-
nals that scale at different scales. It can be seen that, in the
given direction, the added noise has an effect on the selection
extreme points for the signal. Then, the complex data can be
obtained by again projecting the resulting project. That is to
say, the data should be interpolated in Step 3 which can be
expressed as eiφkpkj :

eiφkpkj = eiφk x0 t cos φk + xn t sin φk

= x0 t cos2φk + xn t coxφk sin φk

+ i x0 t cos φk sin φk + xn t sin2φk

9

Then, the real and imaginary parts of the complex signal
xc t obtained are interpolated separately. Assume that the
interpolated value of the real part x0 t of the complex signal
is x0′ t . Assume that the interpolated value of the imaginary
part xn t of the complex signal is xn′ t . So the interpolation
of the complex signal can be expressed as

ejφkpkj = x0′ t cos2φk + xn′ t cos φk sin φk

+ i x0′ t cos φk sin φk + xn′ t sin2φk

10

After finding the envelope of the maximal values in each
direction, we need to average the projections of the complex
signal to obtain the centroids in all directions. When the
number of projection directions selected approaches infinity,
the idea of integration can be used. Considering that the pro-
cessing object of this method is the real part of the complex
data that collected original vibration signal, therefore, only
the real part of the complex signal needs to be integrated.
The result is as follows:

2π

0
x0′ t cos2φk + xn′ t coxφk sin φkdφ

=
2π

0
x0′ t cos2φkdφ +

2π

0
xn′ t coxφk sin φkdφ

= x0′ t
2π

0
cos2φkdφ + xn′ t

2π

0
coxφk sin φkdφ

= π ⋅ x0′ t

11

It can be seen that white noise is added as the imagi-
nary part of the complex data, and the projection that the
decomposition of imaginary noise projects on the real part
can assist in the selection of extreme points of the real
part. So the phenomenon of mode mixing can be reduced.
In addition, the added white noise is completely canceled
when the average is calculated, and it does not affect the
original signal.

3. Multidomain Feature Vector Extraction

In order to obtain comprehensive fault feature informa-
tion, this paper uses parameter statistical analysis, Fourier
transform, and complex empirical mode decomposition
to extract multidomain feature vectors from fault diagnosis
signals. There are 11 time domain feature vectors, 13 fre-
quency domain feature vectors, and specific time-frequency
characteristics [28]. The specific parameters are shown in
Tables 1 and 2.

In addition, considering that when the drive system of
the wind turbine fails, the energy in different frequency
bands of the fault vibration signal will change, and the
energy distribution of each frequency band will also
change accordingly. Since the CEMD algorithm proposed
in this paper can decompose the original vibration signal
into stable IMF components in different frequency bands,
on the basis of the decomposition of CEMD, the energy
of each IMF component and the energy distribution of
each frequency band are calculated to obtain the time-
frequency domain characteristics of fault diagnosis. The
specific time-frequency characteristic parameters are calcu-
lated as follows.

The fault vibration signals x t of wind turbines can
be decomposed by CEMD to obtain the intrinsic mode
functions (IMFs). And calculate the energy information
E1, E2,… , En of each component to reflect the energy of
every IMF.

It is known from the conservation of energy that the sum
of the energy of n components should be equal to the total
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energy of the original signal. And define the energy entropy
to reflect the energy distribution of each IMF component.
The energy entropy formula can be expressed as

HEN = −〠
n

i=1
pi lg pi, 12

where pi represents the proportion of the energy of the ith
intrinsic mode function IMFi in the total energy. pi = Ei/E
and E =∑n

i=1Ei.

4. Random Forest Theory and Algorithm

The random forest [29] is based on the decision tree. It is
composed of multiple decision trees, and the final result is
decided by the voting principles of multiple decision
trees. The basic process is as follows: firstly, the original
samples were resampled by using the bootstrap method.
Randomly select S samples from the original sample set to
form the bootstrap sample set, and using different bootstrap
sample sets to train, the decision tree was obtained.
When constructing the decision tree, a subset of m attributes
is randomly selected from the all feature attribute set,
and the attributes of the subset are used to implement
feature classification.

4.1. The Classification Principles of Random Forest Theory.
Random forest (RF) is a collection classifier h a, θk, k = 1,
2,… , K composed of multiple decision trees, where K-
represents the total number of decision trees, θk repre-
sents independent and identical random vectors, and a
represents the randomly input feature vector that is to

say independent variables. The theory uses a simple
majority voting method or takes the average of the output
of each decision tree to determine the final classification
result. Random forests effectively solve the problems of
pan-performance difference and over-fitting in the deci-
sion tree by aggregating multiple CART trees. The specific
algorithm is as follows [30]:

(1) The Bagging method [31] is used to sample a given
set of training samples X to obtain a self-help sample
set θk, that is, to use random sampling technology to
perform random sampling on sample set X. The
number of self-help sample set obtained is equal to
the number of X.

(2) Based on the CART algorithm, a binary tree corre-
sponding to each self-help sample set θk is generated.
The specific process is as follows:

(a) Assuming that there are M feature attributes in
total, when constructing the decision tree of
each node, m feature attributes are randomly
selected from M feature attributes as candidate
attributes for sample classification. The empirical
formula is given in [32], generally, m = M, and
round down.

Table 2: Frequency domain characteristic parameters of vibration
signal.

Number Characteristic expression

1 F1 = 1/K 〠K

k=1s k

2 F2 = 1/ K − 1 〠K

k=1 s k − F1
2

3 F3 = 1/ K F2
3 〠K

k=1 s k − F1
3

4 F4 = 1/KF2
2 〠K

k=1 s k − F1
4

5 F5 = 〠K

k=1 f ks k / 〠K

k=1s k

6 F6 = 〠K

k=1 f k − F5
2s k /K

7 F7 = 〠K

k=1 f
2
ks k / 〠K

k=1s k

8 F8 = 〠K

k=1 f
4
ks k / 〠K

k=1s
2 k

9 F9 = 〠K

k=1 f
2
ks k 〠K

k=1s k 〠K

k=1 f
4
ks k

−1/2

10 F10 = F6/F5

11 F11 = 〠K

k=1 f k − F5
3s k /KF3

6

12 F12 = 〠K

k=1 f k − F5
4s k /KF4

6

13 F13 = 〠K

k=1 f k − F5
1/2s k /KF1/2

6

In the equations in Table 2, s k , i = 1, 2,… , K represents the spectral line of
x n , K is the total number of spectral lines, and f k is the frequency value of
the kth spectrum line.

Table 1: Time domain feature vectors of vibration signals.

Number Characteristic expression

1 T1 = 1/N 〠N

n=1x n

2 T2 = 1/N 〠N

n=1 x n − T1
2

3 T3 = 1/N 〠N

n=1x
2 n

4 T4 = 1/N 〠N

n=1 x n 2

5 T5 = max x n

6 T6 = 〠N

n=1 x n − T1
3 / n − 1 T3

2

7 T7 = 〠N

n=1 x n − T1
4 / n − 1 T4

2

8 T8 = T5/T4

9 T9 = T5/T3

10 T10 = T4/ 1/N 〠N

n=1 x n

11 T11 = T5/ 1/N 〠N

n=1 x n

In the equations in Table 1, x n , i = 1, 2,… ,N represents the given signal
and N is the data length.
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(b) According to the principle of minimum
Gini impurity purity, a feature selected from the
m feature vectors is regarded as the optimal
classification attribute of the node for sample
classification.

(c) According to the characteristics, the nodes are
divided into two branches, and the feature vec-
tors with the best classification effect are searched
from the remaining features, and it is ensured
that each binary tree can fully grow without
pruning.

(3) Repeat Steps 1 and 2 until the tree can accurately clas-
sify the training set, or use all the attributes, and then,
combine the K decision trees to generate a random
forest classification model.

(4) For a given unknown sample, the final output type
result is generally obtained using the majority voting
method [33]. The specific results are as follows:

c = arg maxc
1
K
〠
K

k

I h a, θk = c , 13

where I ⋅ represents the pointer function and c rep-
resents the sample type with the most votes.

For all test samples, the mixed matrix CM is obtained
after voting, where the elements in the mixing matrix
CM i, j represent the number of times that the ith sample
was divided into type j.

When i = j represents the correct classification, the
correct rate CA of randomized forest classification can be
expressed as

CA = 〠M
i=1CM i, j

〠M
i,j=1CM i, j

14

According to the above theory, the number K of decision
trees that are set during the construction of the random forest
classification model has an important influence on the accu-
racy of the model and the calculation efficiency. In general, K
takes around 500 to 1000 [34].

This paper utilizes the mean decrease in accuracy and the
mean decrease in the Gini index to measure the importance
of feature vectors in random forests. The mean decrease in
accuracy directly measures the effect of each feature on the
accuracy of the random forest model. The main idea of this
method is to disrupt the sequence of each feature vectors
and measure the effect of sequence variation on the accuracy
of the model. Obviously, the sequence of scrambling will have
a much greater effect on the accuracy of the model if the fea-
ture vectors are more important. The mean decrease in the
Gini index is another characteristic metric for the feature
extract. The Gini index or information gain is usually used
to measure the importance of feature vectors in the decision
tree. Thus, the average number of decrease impurity in the
Gini index of every feature vector can be used for the value
of feature selection for random forests.

5. Multidomain Fault Diagnosis Based
on CEMD-RF

In order to more comprehensively extract the fault feature
information from the wind turbine vibration signal and solve
the problem that the traditional fault diagnosis method has
low recognition accuracy, this paper proposes a multidomain
feature fault diagnosis method based on complex data empir-
ical mode decomposition (CEMD) and random forest the-
ory. The extraction process is shown in Figure 1, and the
specific implementation steps are as follows:

Step 1. In signal acquisition. Utilize the vibration sensor to
collect the fault vibration signal of the wind turbine operated.

Step 2. Calculate the time domain and frequency domain
feature vectors of the original vibration signal. Statistical
parameter analysis and Fourier transform were used to
calculate the 11 time domain feature vectors and 13 fre-
quency domain feature vectors of the wind turbine vibra-
tion signal collected.

Step 3. The fault vibration signal is decomposed by CEMD to
obtain n intrinsic mode functions.

Step 4. Calculate the time-frequency characteristics of the
IMFs. The energy and energy entropy of each IMF compo-
nent are calculated.

Step 5. Build a training sample set X. 11 time domain feature
vectors, 13 frequency domain feature vectors, and n+1 time-
frequency domain feature vectors are calculated to form a
training sample set X.

Step 6. Establish a random forest theory classifier. The train-
ing sample set X is trained to get the classifier of the corre-
sponding random forest theory.

Step 7. Calculate the importance of each feature vector. Using
the random forest classifier in Step 6, the out of bag (OOB)
error of each feature vectors is calculated.

Step 8. Eliminate redundant feature vectors. According to the
importance of each characteristic parameter obtained by Step
7, the less important characteristic parameters are eliminated
to achieve redundant feature information eliminated.

Step 9. Build a new feature training set X′. The feature
parameters after Step 8 are selected as the new training
sample set X′.

Step 10. In fault pattern recognition, the random forest
classifier based on the selected feature training set X′ is
established to realize the fault pattern recognition of the
wind turbine.
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6. Simulation Verification

In order to verify the advantage of complex data empirical
mode decomposition (CEMD) this paper proposed in
dealing with mode mixing in EMD, simulations were

performed using simulation signals, considering that the
mode mixing problem in EMD is usually caused by the
presence of intermittent components or discontinuous
components in the signal. Therefore, the two steady-state
sine signals are superimposed with an intermittent signal
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Figure 2: Simulation signal.

Collect vibration data from
wind turbine

Calculate the fault feature
vectors of time and frequency

domain of vibration signal

Decompose the vibration
signal using CEMD
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energy entropy of each IMF
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Build random forest
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Build a new feature
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Fault pattern
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Figure 1: Flow chart of multidomain fault diagnosis based on CEMD-RF.
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to form a simulation signal. The simulation signal is
shown in Figure 2, where the frequency of two steady-
state sine signals is, respectively, 200Hz and 400Hz and
the amplitude is 2. The frequency of the intermittent
signal is 2000Hz, and the amplitude is 0.5. The superim-
posed composite signal is shown in the lowermost layer
of Figure 2.

First, the composite simulation signal is decomposed
by the EMD method. The results of the decomposition are
shown in Figure 3. The Hilbert spectrum of the decom-
position results is shown in Figure 4. As Figure 3 has
shown, the high-frequency components and low-frequency
components of the original composite simulation signal

appear together in IMF1 so that the high-frequency intermit-
tent signal is not effectively extracted. This indicates that
mode mixing has occurred. Figure 4 reflects the mode mixing
that exists in the EMD method.

In order to solve the problem of mode mixing in the pro-
cess of EMD, this paper uses EEMD and CEMD, respectively,
to decompose the composite simulation signal to compare
and verify the advantages of CEMD in dealing with the prob-
lem of mode mixing. The decomposition results are shown in
Figures 5–8.

Figures 5 and 7 show the decomposition results of
EEMD. As shown in Figure 5, IMF1 is the high-frequency
intermittent signal given. IMF2 and IMF3 are the steady-
state sine signals with the frequency of 400Hz. IMF4 is the
steady-state sine signal with the frequency of 200Hz. From
the decomposition results, EEMD can solve the problem of
mode mixing in EMD to some extent. However, the white
noise added in the decomposition process of EEMD will
also have a certain influence on the original signal. The
Hilbert spectrum in Figure 7 can clearly reflect this phe-
nomenon. In addition, the EEMD decomposition also
has a serious problem of excess decomposition, such as
the IMF5, IMF6, and IMF7 shown in Figure 5. The
decomposition results of CEMD are shown in Figures 6
and 8. Compared with EEMD, in the decomposition pro-
cess of CEMD, because the white noise is regarded as an
imaginary part; it only influences the selection of the
extreme point and does not add white noise to the original
signal. Therefore, the method has almost no effect on the
original signal. As shown in Figure 8, the decomposition
result by CEMD is very clearly. This method effectively
solves the problem of mode mixing existing in EMD and
does not affect the original signal. In addition, as shown
in Figure 6, except for the residual part, the decomposition
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result only remains the IMF5 component that can be negligi-
ble. Therefore, CEMD can effectively solve the problem of
excessive decomposition existing in EEMD. However, this
method has some shortcomings in handling high-frequency
components. As shown in Figure 6, CEMD decomposes
the set high-frequency signal into two components which
are IMF1 and IMF2 as shown in Figure 6. But the problem
can be solved by superposing the frequency components.
It can be seen that the complex data empirical mode
decomposition this paper proposed has a great advantage
in signal processing.

7. Analysis of Rolling Bearing Faults

To verify the effectiveness and efficiency of the proposed
method in practical applications, this paper uses the data
from the Case Western Reserve University (CWRU) Bearing
Data Center website [35] to conduct experimental analysis.
The motor speed is f r = 1750 rpm (29.17Hz), and the sam-
pling frequency is 12 kHz.

According to the multidomain fault diagnosis method
proposed in this paper based on CEMD and RF, 11 time
domain feature vectors, 13 frequency domain feature vectors,
and time-frequency feature vectors obtained by the CEMD of
the collected vibration signals are calculated. Combine all
above feature vectors into a vector set X, X = T1,… , T11,
F1,… , F13, E1,… , En,HEN . And mark the fault status of
the corresponding bearing C = 0, 1, 2, 3 as the input of clas-
sifier. A total of 480 sets of data were selected, 400 sets of data
were trained, and 80 sets of data were used as out-of-pocket
data (OOB) to verify the classification accuracy.

First, the bearing fault classification is classified.
The four states of health, inner ring fault, outer ring
fault, and ball fault of the corresponding bearing are,
respectively, regarded as the input of the classifier C = 0, 1,
2, 3 . When only 24 feature vectors of time domain and
frequency domain are used to classify the failure, the
results of the classification are shown in Figure 9.
Figure 9 shows that the classification accuracy of the
method this paper proposed can reach 100% when less
than 20 decision trees are generated.
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Figure 8: Hilbert spectrum of CEMD.
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Figure 6: The decomposition results of CEMD.
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Then, classify the different fault levels of the same fault.
This paper takes the inner ring fault of the rolling bearing
as an example. The four states of health, fault with the size
of 0.1778mm, fault with the size of 0.3556mm, and fault
with the size of 0.5334mm of the corresponding bearing
are regarded as the input of the classifier C = 0, 1, 2, 3 .
When only 24 feature vectors of time domain and fre-
quency domain are used to classify the failure, the results
of the classification are shown in Figure 10. Figure 10
shows that the classification accuracy of the method this
paper proposed can reach 100% when less than 50 decision
trees are generated.

Finally, classify the different load conditions of the
same fault. This paper takes the inner ring fault of rolling
bearing as an example. The ball bearings of the type
6205-2RS SKF on the motor shaft end were artificially
made a fault point with the size of 0.1778mm. The
four load statuses of load status 0 (1797 r/min), load
status 1 (1772 r/min), load status 2 (1750 r/min), and

load status 3 (1730 r/min) are regarded as the input
of the classifier. The results of the classification are
shown in Figure 11.

Figure 11(a) shows the diagnostic results by 24 fea-
ture vectors of time domain and frequency domain of
vibration signal. Figure 11(b) shows the diagnostic
results by multidomain feature vectors of the vibration
signal. In comparison, the misjudgment rate of diagnosis
results by 24 feature vectors of time domain and fre-
quency domain is basically stable at 0.25. That is to
say, the accuracy of diagnosis is stable at about 75%.
However, the misjudgment rate of multidomain feature
diagnosis can be reduced to less than 0.2; that is, the
accuracy of the diagnostic results is stable at more than
80%. Therefore, the accuracy of fault diagnosis can be
improved by using the CEMD method and taking the
feature vectors of the time-frequency domain into
account in fault diagnosis.

However, there is some information redundancy in the
feature vectors including time domain, frequency domain,
and time-frequency domain. In order to solve the problem
of information redundancy caused by increasing the fea-
ture vectors, this paper calculates the importance of all
the feature vectors based on the random forest theory.
The results are shown in Figure 12. This paper uses the
mean decrease in accuracy and the mean decrease in the
Gini index to measure the importance of feature vectors
as shown in Figure 12. Taking into account the size of
the two indicators of each feature vector, the feature vec-
tors which two indicators are all smaller are eliminated.
Then, the random forest classification model is recon-
structed by the feature vectors that have been selected.
The finally fault diagnosis results are shown in Figure 13.
The misjudgment rate of diagnosis results can be reduced
to less than 0.15 by removing redundant feature vectors.
That is to say, the accuracy of diagnosis is stable at more
than 80%.

To further illustrate the effectiveness of the proposed
method, this paper makes a comparison of diagnosis
results among this paper proposed and genetic algorithm
back propagation (GA-BP) neural network, support vector
machines (SVM), and extreme learning machine (ELM).
The diagnosis accuracy of the three methods is obtained
by using time domain and frequency domain feature
vectors and multidomain feature vectors. For compari-
son, EEMD is utilized to decompose the original signal
into IMFs. This paper separately classifies vibration sig-
nals including the difference bearing fault classification,
the difference fault degree, and the difference load con-
dition. The diagnosis accuracy of every method is shown
in Table 3.

As shown in Table 3, not the three traditional
methods but random forest, the diagnosis accuracy by
using multidomain feature vectors is much higher than
the diagnosis accuracy by using time domain and fre-
quency domain feature vectors. Therefore, utilizing mul-
tidomain feature vector can improve the accuracy of
fault diagnosis for the wind turbine. And compared with
the three traditional methods the GA-BP, SVM, and
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Figure 9: Diagnosis results of different fault categories.
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ELM methods, the multidomain feature fault diagnosis
method based on CEMD-RF proposed in this paper
has a higher accuracy of diagnosis for the wind turbine.
In addition, the diagnosis accuracy of CEMD-RF is
higher than CEMD. Thus, the CEMD method that this
paper proposed can improve the diagnosis accuracy.

8. Conclusions

This paper proposes a multidomain feature based on com-
plex empirical mode decomposition (CEMD) and random
forest theory (RF) for the problems of mode mixing existing
in EMDmethods and feature information redundancy in the
multidomain fault diagnosis method. The specific conclu-
sions are as follows:

(1) Complex empirical mode decomposition (CEMD)
eliminates the mode mixing in the integration aver-
age process of EEMD caused by adding white
noise. Therefore, compared with the result of
EEMD, the decomposition results of CEMD have
a clearer IMF spectrum and have no effect on the
original signal.

(2) Increasing the number of feature vectors can effec-
tively improve the fault diagnosis accuracy of the
wind turbine. By utilizing time domain, frequency
domain, and time-frequency domain feature vectors
of the wind turbine vibration signal, the method this
paper proposed can comprehensively extract the fault
information of the unit and effectively improve the
fault diagnosis accuracy of the wind turbine.
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(3) The multifault diagnosis method based on the
CEMD-RF proposed in this paper can effectively
solve the problem of information redundancy in
multifeature fault diagnosis. By eliminating redun-
dant feature vectors based on the calculated impor-
tance of each feature vector, this method can
effectively improve the fault diagnosis accuracy.
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