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Obtaining an optimum data representation is a challenging issue that arises in many intellectual data processing techniques such as
data mining, pattern recognition, and gene clustering. Many existing methods formulate this problem as a nonnegative matrix
factorization (NMF) approximation problem. The standard NMF uses the least square loss function, which is not robust to
outlier points and noises and fails to utilize prior label information to enhance the discriminability of representations. In this
study, we develop a novel matrix factorization method called robust semisupervised nonnegative local coordinate factorization
by integrating robust NMF, a robust local coordinate constraint, and local spline regression into a unified framework. We use
the l2,1 norm for the loss function of the NMF and a local coordinate constraint term to make our method insensitive to outlier
points and noises. In addition, we exploit the local and global consistencies of sample labels to guarantee that data
representation is compact and discriminative. An efficient multiplicative updating algorithm is deduced to solve the novel loss
function, followed by a strict proof of the convergence. Several experiments conducted in this study on face and gene datasets
clearly indicate that the proposed method is more effective and robust compared to the state-of-the-art methods.

1. Introduction

Owing to the rapid development of data collection and stor-
age techniques, there has been an increase in the demand for
effective data representation approaches [1] to cope with
image and gene information, particularly in the fields of pat-
tern recognition, machine learning, and gene clustering. For
large databases, an efficient representation of data [2–4] can
improve the performance of numerous intelligent learning
systems such as those used for classification and clustering
analysis. In many application fields, the input samples are
represented in high-dimensional form, which is infeasible
for direct calculation. The efficiency and effectiveness of
learning models exponentially decrease with each increase
in the dimensionality of input samples, which is generally
referred to as the “curse of dimensionality.” Accordingly,
dimensionality reduction [5–7] is becoming increasingly
important as it can overcome the curse of dimensionality,
enhance the learning speed, and even offer critical insights

into the essence of the issue. In general, dimensionality
reduction methods can be divided into two categories: feature
extraction [5, 8, 9] and selection [10–14]. Feature selection
involves selecting discriminative and highly related features
from an input feature set, whereas feature extraction com-
bines original features to form new features of data variables.

In recent years, there has been an increasing interest in
feature extraction. Many feature extraction methods are
designed to obtain a low-dimensional feature of high-
dimensional data. These methods include singular value
decomposition (SVD), principal component analysis (PCA)
[5], nonnegative matrix factorization (NMF) [15, 16], and
concept factorization (CF) [17]. Despite the different motiva-
tions of these models, they can all be interpreted as matrix
decomposition, which often finds two or more low-
dimensional matrices to approximate the original matrix.
Factorization leads to a reduced representation of high-
dimensional data and belongs to the category of methods
employed for dimension reduction.
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Unlike PCA [5] and SVD, NMF [15, 16] factorizes a
sample matrix as a product of two matrices constrained by
nonnegative elements. One matrix comprises new basis vec-
tors that reveal the semantic structure, and the other matrix
can be regarded as the set of coefficients composed of linear
combinations of all sample points based on the new bases.
Owing to their ability to extract the most discriminative fea-
tures and their feasibility in computation, many extension
versions [4, 18, 19] of NMF have been developed from var-
ious perspectives to enhance the original NMF. Sparseness-
constrained NMF [20] has been introduced by adding l1
norm minimization on the learned factor matrices to
enhance sparsity for data representation. Fisher’s criterion
[21] has been incorporated into NMF formulation and is
used to achieve discriminant representation. The semi- and
convex-NMF formulations [22] relax the nonnegativity con-
straint of NMF by allowing the basis and coefficient matrices
to have mixed signs, thereby extending the applicability of
the method. Liu et al. [23] proposed a constrained NMF in
which the label information is incorporated into the stan-
dard NMF for data representation. Cai et al. [24] extended
NMF and proposed a graph-regularized NMF (GNMF)
scheme, which imposes intrinsic geometry latent in a high-
dimensional dataset onto the traditional NMF using an
affinity graph. Chen et al. [9] presented a nonnegative local
coordinate factorization (NLCF) method that imposes local-
ity constraint onto the original NMF to explore faithful
intrinsic geometry.

Traditional NMF and its variants usually adopt the
square Euclidean distance to measure the approximation
error. Although it has a solid theoretical foundation in math-
ematics and has shown encouraging performance in most
cases, the square Euclidean distance is not always optimal
for decomposition of a data matrix. The squared error has
proved to be the best for both Gaussian and Poisson noise
[25]. However, in real-world applications, data that violate
the assumptions are usually involved. The squared loss is sen-
sitive to outlier points and noises when the reconstruction
error is measured. Even a single outlier point may sometimes
easily dominate the objective function. In recent years, some
variants have been presented to enhance the robustness of
the classical NMF. A robust type of NMF that factorizes the
sample matrix as the summation of two nonnegative matri-
ces and one sparse error matrix was presented by Zhang
et al. [26]. Zhang et al. [27] presented a robust NMF (RNMF)
using the l2,1 norm objective function, which can deal with
outlier points and noises. Zhang et al. [28] presented a robust
nonnegative graph-embedding framework (RNGE) that
can simultaneously cope with noisy labels, noisy data, and
uneven distribution.

Supervised learning algorithms [29–32] generally can
achieve better performance than unsupervised learning tech-
niques when label information is available in many applica-
tions. The motivation of semisupervised learning methods
[33–38] is to employ numerous unlabeled samples as well
as relatively few labeled samples to construct a better high-
dimensional data analysis model. A surge of research interest
in graph-based semisupervised learning techniques [37–39]
[40] has recently occurred. Gaussian fields and harmonic

functions (GFHF) [33] is an efficient and effective semisuper-
vised learning methods in which the predicted label matrix is
reckoned on the graph with respect to manifold smoothness
and label fitness. Xiang et al. [37] presented a method called
local spline regression (LSR) in which an iterative algorithm
is built on local neighborhoods through spline regression.
Han et al. [38] presented a model of video semantic recogni-
tion using semisupervised feature selection via spline regres-
sion (S2FS2R). These methods not only consider label
information but also employ the local and global structure
consistency assumption.

Despite NMF’s appealing advantages, it suffers from the
following problems in real-world applications: (1) data may
often be contaminated by noise and outliers due to illumina-
tion (e.g., specular reflections), image noises (e.g., scanned
image data), occlusion (e.g., sunglasses and scarf in front of
a face), among others. Although NMF can deal with noise
in the test data to some extent, it will suffer from severe per-
formance degradation when the training samples have noise.
(2) In an NMF method, a data point may be represented by
the base vectors, which are far from the data point, resulting
in poor clustering performance. The standard NMF does not
preserve the locality during its decomposition process,
whereas local line coding can preserve such properties. (3)
One of the challenges for classification tasks in the real world
is the lack of labeled training data. Therefore, data labeled by
an expert is often used as an alternative. Unfortunately, des-
ignating labels requires considerable human effort and is thus
time-consuming and difficult to manage. In addition, an
accurate label may require expert knowledge. However, unla-
beled samples are relatively easy to obtain.

To address all the aforementioned issues, we present an
efficient and effective matrix factorization framework called
robust semisupervised nonnegative local coordinate factori-
zation (RSNLCF) in which both data reconstruction func-
tions and a local coordinate constraint regularization term
are formulated in a l2,1 norm manner to make our model
robust to outlier points and noises. By integrating Green’s
functions and a set of primitive polynomials into the local
spline, the local and global label consistency of data can be
characterized based on their distribution. The main work of
our study and its contributions are summarized as follows:

(i) The proposed RSNLCF model is robust to outlier
points and noises as a result of employing the l2,1
norm formulations of NMF and a local coordinate
constraint regularization term. In addition, to guar-
antee that the data representation is discriminative,
local spline regression over labels is exploited.

(ii) Unlike traditional dimension reduction approaches
that treat feature extraction and selection separately,
the proposed RSNLCF algorithm integrates the two
aspects into a single optimization framework.

(iii) We present an efficient algorithm to solve the
presented RSNLCF model and provide the proof of
rigorous convergence and correctness analysis of
our model.
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The remainder of this paper is organized as follows.
Related studies are introduced in Section 2. We introduce
our RSNLCFmethod and the optimization scheme in Section
3 and offer a convergence proof in Section 4. We describe and
analyze the results of our experiments in Section 5. We con-
clude and discuss future work in Section 6.

2. Related Work

In this section, we summarize the notations and definitions
of norm used in this study and briefly review NMF.

2.1. Notations and Definitions. Matrices and vectors are
denoted by boldface capital and lowercase letters, respec-

tively. x p = ∑n
i=1 xi

p 1/p
denotes the lp norm of the vector

x ∈Rn. xi and x j denote the ith row and the jth column of
matrix X = xij , respectively. xij is the element in the ith
row and jth column of X, Tr X denotes the trace of X if X
is a square matrix, and XT denotes the transposed matrix of
X. The Frobenius norm of the matrix X ∈RM×N is defined as

X F = 〠
M

i=1
〠
N

j=1
x2ij 1

The l2,1 norm of a matrix is defined as

X 2,1 = 〠
M

i=1
xi 2 = 〠

M

i=1
〠
N

j=1
x2ij = Tr XTDX , 2

where D is a diagonal matrix with Dii = 1/2 xi 2. However,
xi 2 could approach zero. For this case, we define Dii = 1/2
xi 2 + ε, where ε is a very small constant.

Assume that the matrix samples are represented as X =

xi Li=1, x j
N

j=L+1 , where xi Li=1, x j
N

j=L+1 denotes labeled and

unlabeled data, respectively. The labels of xi∣Li=1 are denoted
as li ∈ 1, 2,… , Lc with Lc being the total number of catego-
ries. Let F ∈RL×Lc be a label indicator binary matrix with the
jth entry f ij = 1 if and only if xi is labeled with the jth class;
f ij = 0 otherwise. We also introduce a predicted label matrix

Y ∈RN×Lc , where each row is the predicted label vector of the
data xi.

2.2. NMF. Given a nonnegative matrix X ∈RM×N
+ , each col-

umn of X is a sample point. The main idea of NMF is to find
two nonnegative matrices U = uik ∈RM×K

+ and V = vjk ∈
RK+N

+ that minimize the Euclidean distance between X and
UV. The corresponding optimization problem is as follows:

min
U,V

  X −UV 2
F

s t  U ≥ 0,V ≥ 0,
3

where · F is the Frobenius norm. To solve the objective
function, Lee and Seung [15] proposed an iterative multipli-
cative updating algorithm as follows:

u t+1
jk ← u t

jk

XVT
jk

UVVT
jk

,

v t+1
ki ← v t

ki

UTX
ki

UTUV
ki

4

By NMF, each column of U and ui can be viewed as the
basis, while the matrix V can be treated as the set of the coef-
ficients. Each sample point xi is approximated by a linear
combination of the K bases, weighted by components of V.

3. The Proposed RSNLCF Framework

In this section, we introduce our novel learning method for
image clustering (RSNLCF), which is used to find an effective
and robust representation of data.

3.1. Robust Sparse NMF. The square loss function based on
the Frobenius norm is used to learn the data representations
in NMF. However, it is very sensitive to outlier points and
noises. Therefore, our robust representation model is repre-
sented as

min
U,V

  X −UV 2,1 + λ V 2,1, 5

where λ > 0 is the regularization parameter. Because the l2,1
norm reduces the components occupied by the large magni-
tude of error in the loss function, the corrupted samples
never dominate the objective function. In this sense, the loss
function X −UV 2,1 is insensitive to outlier points and
noises. Meanwhile, the regularization term V 2,1 ensures
that V is sparse in rows. This means that some of V’s rows
approximate zero. Consequently, V can be considered the
combination coefficient for the most discriminative features.
Feature selection is then achieved by V, where only the fea-
tures related to the nonzero rows in V are chosen.

3.2. Robust Local Coordinate Constraint. Motivated by the
concept of local coordinate coding [41], we present a robust
local coordinate constraint as a regularization term for image
clustering. First, we define coordinate coding.

Definition 1. Coordinate coding [41] can be written as con-
cept pair (γ, C), where C is defined as a set of anchor points
with d dimensions and γ is a map of x ∈Rd to γv x v∈Cγv
x v. It induces the following physical approximation of x
in Rd γ x =∑v∈Cγv x v.

For the local coordinate coding system, NMF can be con-
sidered as coordinate coding in which the columns of the
matrix U can be viewed as a set of anchor points, and each
column of the coefficient matrix V represents the corre-
sponding coordinate coding for each data point. We might
further hope that each sample point is represented as a linear
combination of only a few proximate anchor points. A natu-
ral assumption here would be that if xi is far away from the
anchor points uk, then its coordinate coding vki with respect
to uk will tend to be zero and thus achieve sparsity and
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locality simultaneously. The local coordinate constraint [41]
can be defined as follows:

min
U,V

 〠
N

i=1
〠
K

k=1
vki uk − xi 2

2 = min
U,V

 〠
N

i=1
xi1T −U Λ1/2

i
2
F
,

6

where xi denotes the ith column of X, uk is the kth column of
U, vki is the coordinate of xi with respect to uk, and Λi =
diag vi ∈RK×K , diag vi indicates a conversion of the vec-
tor vi into a diagonal matrix in which the kth diagonal ele-
ment is vki.

The local coordinate constraint employs a square loss.
When the dataset is corrupted by outlier points and noises,
the local coordinate constraint may fail to achieve sparsity
and locality simultaneously. In order to alleviate the side
effect of noisy data, our robust local coordinate constraint
can be formulated as

min
U,V

 〠
N

i=1
xi1T −U Λ1/2

i 2,1, 7

where the Frobenius norm-based square loss function has
been substituted by the l2,1 norm.

3.3. Local Spline Regression. In this subsection, we briefly
introduce local spline regression [42].

Given N data points x1, x2,… , xN sampled from the
underlying submanifold M, we use set N xi = xij

k

j=1
to

denote xi and its k − 1 nearest neighbor points, where ij ∈
1, 2,… ,N , andYi = yi1, yi2,… , yik

T is the local predicted
label matrix for the ith region. The task of local spline regres-
sion is to seek the predicting function gi RM →ℝ in order
to map each data point xi j ∈R

M to the local predicted class

label yij = gi xi j . The model of local spline regression can

be expressed as

min
gi

 〠
k

j=1
yij − gi xij

2
+ γS gi , 8

where S gi is a regularization term and γ > 0 is a small
positive regularization parameter to control the smoothness
of the spline [42]. If S gi is defined as a seminorm of a
Sobolev space, gi can be solved by the following objective
function [43]:

gi x = 〠
d

j=1
βi,jpj x + 〠

k

j=1
αi,jGi,j x , 9

where d = Cs
M+s−1, in which s is the order of the partial deriv-

atives [43]. pj x
d
j=1

and Gi,j are a set of primitive polyno-

mials and a Green’s function, respectively. The coefficients
αi and βi can be achieved by solving the following problem:

Ki PT
i

Pi 0

αi

βi

=
Yi

0
, 10

where Ki is a symmetrical matrix with elements Kr,c = Gr,c
xir − xic , and Pi is a matrix with its elements Pi,j = pi xij .

The local spline regression model can then be expressed as
[42]

min
Yi

 YT
i MiYi, 11

where Mi is the upper left k × k submatrix of the inverse
matrix of the coefficient matrix in (10). Because the local pre-
dicted label matrix Yi is a part of the global predicted label
matrix Y, we can construct a selection matrix Si ∈Rk×N for
each Yi such that

Yi = SiY, 12

where the selection matrix Si is defined as follows:

Si r, c =
1, if r = ic,

0, otherwise
13

After the local predicted label matrices are established, we
combine them by minimizing the following loss function:

min
Yi

 〠
N

i=1
YiMiYi = 〠

N

i=1
YTSTi MiSiY = YTMY, 14

where

M = 〠
N

i=1
STi MiSi 15

Based on the studies of [33, 34], the predicted label
matrix Y of the labeled data points should be consistent
with the ground truth labels matrix F. With the consis-
tence constraints, the objective function (14) can be written
as follows:

min
Y

 Tr YTMY + ηTr Y − F TE Y − F , 16

where E is a diagonal matrix whose diagonal elements are 1
for labeled data and 0 for unlabeled data, and the elements
of F are defined as follows:

f ij =
1, if xi is labeled as class j,

0, otherwise
17

When η is sufficiently large, the optimal solution Y to the
problem (16) makes the second term approximately equal to
zero. Thus, the objective function (16) guarantees local and
global structural consistency over labels. All the elements of
Y are restricted to be nonnegative.

3.4. Objective Function of RSNLCF. By combining the
RNMF (5), robust local coordinate constraint (7), and
semisupervised local spline regression (16) into a unified
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framework, we can formulate the objective function as
follows:

min
U,V

  X −UV 2,1 + μ〠
N

i=1
xi1T −U Λ1/2

i 2,1 + λ V 2,1

+ τTr YTMY + η Y − F TE Y − F ,

18

where τ and μ are two trade-off parameters. We call (18) our
proposed RSNLCF.

4. Optimization

The objective function (18) involves the l2,1 norm, which is
nonsmooth and cannot have a closed form solution. Conse-
quently, we propose to solve it as follows.

Denote X −UV = a1,… , aM T, xi1T −U Λ1/2
i =

b1,… , bK T
and V = v1,… , vM T. When considering the

nonnegative constraint onU,V, and Y, the objective function
(18) could be reformulated as

O = Tr X −UV TA X −UV

+ μTr 〠
N

i=1
xi1T −U Λ1/2

i B xi1T −U Λ1/2
i

T

+ λTr VTCV + τTr YTMY + η Y − F TE Y − F ,

s t  U ∈RM×K > 0, V ∈RK×N > 0, F ∈RN×Lc > 0,
19

where A, B, and C are three diagonal matrices with their
diagonal elements given as Aii = 1/2 ai 2, Bii = 1/2 bi 2,
and Cii = 1/2 vi 2, respectively.

4.1. Update Rules. The objective function O of RSNLCF in
(19) is not convex in U,V, andY together. Therefore, it is
unrealistic to expect an algorithm to find the global minima.
In this subsection, we describe our development of an itera-
tive algorithm based on the Lagrangian multiplier method,
which can achieve local minima. Following some algebraic
steps, the objective function can be written as follows:

O = Tr XXTA +UVVTUTA − 2XVTUTA

+ μ〠
N

i=1
xi1TΛi1xTi B − 2xi1TΛiUTB +UΛiUTB

+ λTr VTCV + τTr YTMY + η Y − F TE Y − F

20

To tackle the nonnegative constraint on U, V, and Y, the
objective (20) can be rewritten as the Lagrangian multiplier.

ℒ = Tr XXTA +UVVTUTA − 2XVTUTA

+ μ〠
N

i=1
xi1TΛi1xTi B − 2xi1TΛiUTB +UΛiUTB

+ λTr VTCV + τTr YTMY + η Y − F TE Y − F

− Tr ΨUT − Tr ΦVT − Tr ΘYT ,

21

where Ψ = ψjk , Φ = ϕki , and Θ = θis are the Lagrangian
multipliers. Let the partial derivatives of the objective func-
tion (21) with respect to U, V, and Y be zero. Thus, we have

Ψ = 2AUVVT − 2AXVT − 2μBXVT + 2μBUH,

Φ = 2UTAUV − 2UTAX + μ G − 2UTBX +D + 2λCV,
Θ = 2τMY + 2τηE Y − F ,

22

where H is a diagonal matrix whose entries are row sums
of V. G = g,… , g T is a K ×N matrix whose columns are
g = diag XTBX ∈RN . D = d,… , d is a K ×N matrix,
and d = diag UTBU ∈RK .

Based on the Karush-Kuhn-Tucker conditions [44] ψjk

ujk = 0, ϕkivki = 0 and θisyis = 0, we obtain

AUVVT
jk
ujk − AXVT

jk
ujk − μ BXVT

jk
ujk

+ μ BUH jkujk = 0,

2 UTAUV
ki
vki − 2 UTAX

ki
vki + 2λ CV kivki

+ μ G − 2UTBX +D
ki
vki = 0,

MY isyis + η E Y − F isyis = 0

23

The corresponding equivalent formulas are as follows:

AUVVT
jk
u2jk − AXVT

jk
u2jk − u BXVT

jk
u2jk

+ μ BUH jku
2
jk = 0,

24

2 UTAUV
ki
v2ki − 2 UTAX

ki
v2ki + 2λ CV kiv

2
ki

+ μ G − 2UTBX +D
ki
v2ki = 0

25

MY isy
2
is + η E Y − F isy

2
is = 0 26

Solving (24), (25), and (26), we obtain the following
update rules, given by

u t=1
jk ← u t

jk

AXVT + μBXVT
jk

AUVVT + μBUV
jk

, 27

v t=1
ki ← v t

ki

2 UTAX + μUTBX
ki

2UTAUV + μG + μD + 2λCV
ki

, 28

y t+1
is ← y t

is
η EF is

MY + ηEY is
29
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In this manner, we obtain the solver for the objective
function (19).

4.2. Convergence Analysis. In this subsection, we demonstrate
that the objective function (20) converges to a local optimum
by using the update rules (27), (28), and (29) after finite iter-
ations. We adopt the auxiliary function approach [16] to
prove the convergence. Here, we first introduce the definition
of an auxiliary function.

Definition 1. Z q, q′ is an auxiliary function for F q if the
following properties are satisfied:

Z q, q′ ≥ F q , Z q, q = F q 30

Lemma 1. If Z is an auxiliary function for F, then F is nonin-
creasing under the update:

h t+1 = argmin
q

Z q, q t 31

Proof 1.

F q t+1 ≤ Z q t+1 , q t ≤ Z q t , q t = F q t 32

Lemma 2. For any nonnegative matrices A ∈ℝn×n, B ∈Rk×k,
S ∈ Rn×k, S′ ∈Rn×k, and A, B are symmetric, and then the
following inequality holds

〠
n

i=l
〠
k

p=1

AS′B
ip
S2ip

Sip′
≥ Tr STASB 33

The convergence of the algorithms is demonstrated in
the following:

For given X, the optimizing objective function (20) w.r.t.
V is equivalent to minimizing

O V = Tr VTUTAUV − 2Tr UTAXVT + µTr VTG
− 2µTr UTBXVT + µTr VTD + λTr VTCV

34

Theorem 1. The following function

Z V,V′ =〠
ki

UTAUV′
ki
V2

ki

Vki′
− 2〠

ki

UTAX
ki
Vki′

1 + log
Vki

Vki
+ μ〠

ki

Gki

V2
ki + V′

2

ki

2Vki′

− 2μ〠
ki

UTBX
ki
Vki′ 1 + log

Vki

Vki′

+ μ〠
ki

Dki

V2
ki + V′

2

ki

2Vki′
+ λ〠

ki

CV′
ki
V2

ki

Vki′
35

is an auxiliary function for O V .

Proof 1. In one sense, Z V,V = O V is obvious. However,
we need to prove that Z V,V′ ≥ O V To accomplish this,
we compare (34) and (35) to find out that Z V,V′ ≥ O V .

By applying Lemma 2, we obtain

Tr UTAUVVT ≤〠
ki

UTAUV′
ki
V2

ki

Vki′
,

λTr VTCV ≤ λ〠
ki

CV′
ki
V2

ki

Vki′

36

To obtain the upper bound for the third and fifth
terms, we use the inequality a2 + b2 ≥ 2ab, which holds
for any a, b ≥ 0, and these third and fifth terms in O V
are bounded by

μTr VTG ≤ μ〠
ki

Gki

V2
ki + V′

2

ki

2Vki′
,

μTr VTD ≤ μ〠
ki

Dki

V2
ki + V′

2

ki

2Vki′

37

To obtain lower bounds for the remaining terms, we
adopt the inequality z ≥ 1 + log z, ∀z, and then

2Tr UTAXVT ≥ 2〠
ki

UTAX
ki
Vki′ 1 + log

Vki

Vki
,

2μTr UTBXVT ≥ 2μ〠
ki

UTBX
ki
Vki′ 1 + log

Vki

Vki′
38

Summing all inequalities, we can obtain Z V,V′ ≥ O V
which obviously satisfies Z V,V′ ≥ O V . Therefore, Z V,
V′ is an auxiliary function of O V .

Theorem 2. The updating rule (28) can be obtained by
minimizing the auxiliary function Z V,V′ .

Proof 1. To find the minimum of Z V,V′ , we set the deriv-
ative ∂Z V,V′ /∂Vki = 0 and obtain

∂Z V,V′
∂Vki

=
2 UTAUV′

ki
Vki

Vki′
−
2 UTAX

ki
Vki′

Vki

+ μ
GkiVki

Vki′
− μ

2 UTBX
ki
Vki′

Vki

+ μ
DkiVki

Vki′
+ λ

2 CV′
ki
Vki

Vki′

39

Thus, by simple algebraic formulation, we can obtain the
iterative updating rule for V as (28).
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Based on the properties of the auxiliary, we prove that the
objective function (20) monotonically decreases under the
updating vki.

The converge proofs showing that updating ujk and yis
can be accomplished using (27) and (29) are similar to the
aforementioned.

5. Experiments and Discussion

We systematically evaluated the performance of our pre-
sented RSNLCF method and compared it to the popular
clustering methods.

5.1. Datasets. Three standard face datasets and the gene data-
set were selected to evaluate different methods. The four
datasets are described as follows:

(i) Extended YaleB dataset: the extended YaleB dataset
contains 2414 frontal face images of 38 individuals.
In this dataset, the size of each face image is
192× 168 and each image was acquired from 64 illu-
minate conditions and nine individual poses. Each
image was resized to 32× 32 in our experiments.

(ii) ORL face dataset: the OR dataset contains 400
images of 40 individuals. All images were captured
at different times and with different variations
including lighting, face expressions (open and closed
eyes, smiling, and not smiling), and specific facial
details (glasses and no glasses). The original images
had a size of 92× 112. Each image was rescaled to
32× 32.

(iii) AR dataset: the AR dataset contains over 4000 fron-
tal face images of 126 individuals (70 men and 56
women) with different facial expressions, illumina-
tion conditions, and occlusions (sunglasses and
scarf). All individuals participated in two photo ses-
sions, and 26 images of each individual were cap-
tured. Each image was scaled to 32× 32.

(iv) Leukemia dataset: the leukemia dataset contains
data related to and samples of acute myelogenous
leukemia (AML) and acute lymphoblastic leukemia
(ALL). ALL can be further classified as T and B
subtypes. This dataset consists of 5000 genes in 38
set of tumor data and contains 19 samples of B cell
ALL B, eight samples of T cell ALL T, and 11 sam-
ples of AML.

5.2. Experimental Design. In this section, we describe our
evaluation metrics, the compared methods, and our parame-
ter selection.

5.2.1. Evaluation Metrics. In our experiments, two widely
used metrics (i.e., accuracy (Acc) and normalized mutual
information (NMI)) were adopted to evaluate the clustering
results [45]. We evaluated the algorithms by comparing the
cluster labels of each data point with its label provided by
the dataset. The Acc metric is defined as follows:

Acc = ∑n
i=1δ map ri , li

n
, 40

where n refers to the total number of samples, ri denotes the
cluster label of xi, and li is the true class label. In addition, δ
x, y is the delta function that is equal to 1 if x = y and 0 oth-
erwise, and map ri is the mapping function that maps the
obtained label ri to the equivalent label from the dataset.
The best mapping function can be determined by using the
Kuhn-Munkres algorithm [46]. The value of Acc is equal to
1 if and only if the clustering result and the true label are
identical. The second measure is the NMI, which is adopted
in order to evaluate the quality of clusters. Given a clustering
result, the NMI is defined as follows:

NMI =
∑c

i=1∑
c
j=1ni,j log ni,j/nin̂j

∑c
i=1ni log ni/n ∑c

j=1n̂j log n̂j/n
, 41

where ni denotes the number of images contained in the ith
cluster Ci based on clustering results, n̂j is the number of
images belonging to the Cj′, and ni,j is the number of images

that are in the intersection of Ci andCj′.

5.2.2. Compared Methods. To verify the clustering perfor-
mance of our RSNLCF, several popular methods were
compared using the same dataset. The methods are listed
as follows:

(i) RNMF using l2,1 norm [27]

(ii) Semisupervised graph-regularized NMF (semi-
GNMF) [24]

(iii) Constrained NMF (CNMF) [16]

(iv) Local centroid-structured NMF (LCSNMF) [47]

(v) Unsupervised robust seminonnegative graph
embedding through the l2,1 norm (URNGE) [28]

(vi) Nonnegative local coordinate factorization (NLCF)
[9]

(vii) Our proposed RSNLCF

Sample images are shown in Figure 1.

5.2.3. Parameter Selection. Some parameters had to be tuned
in the evaluated algorithms. To compare different algorithms
fairly, we ran them using different parameters and chose the
best average performance obtained for comparison. We set
the number of clusters to be the same as the true number of
categories on three image datasets and the leukemia dataset.
Note that there was no parameter selection for RNMF and
CNMF when the number of clusters was given. The regular-
ization parameters were searched over the grid {0.001, 0.01,
0.1, 1, 10, 100, 1000} for semi-GNMF, URNGE, NLCF, and
RSNLCF. The neighborhood size k to build the graph was
chosen from 1, 2,… , 10 , and the 0-1 weighting scheme
was adopted for its simplicity in the graph-based methods
of semi-GNMF and URNGE. We applied the approach
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presented in literature [16] to adjust automatically the value
of λ for LCSNMF.

5.3. Face Clustering under Illumination Variations. The
robustness of the approaches to illumination changes was
tested widely with the extended YaleB dataset. Figure 1(a)
shows some samples from this dataset. We used only the
frontal face images of the first 18 individuals. Our experi-
ments were performed with various numbers of clusters.
For the fixed cluster number k, the images of k categories
from the extended YaleB dataset were randomly selected
and mixed for evaluation. For semisupervised methods
semi-GNMG, CNMF, and URNGE, eight face images per
individual were randomly chosen as labeled samples; the rest
of the dataset was used as unlabeled samples. On the cluster-
ing set, the compared methods were used to achieve new data
representations. For a fair comparison, we used k-means to
cluster samples based on the new data representations. The
results of k-means are related to initialization. We repeated
the experiments 20 times with different initialization param-
eters. The clustering results were measured by the commonly
used evaluation metrics, Acc and NMI. Table 1 shows the
detailed clustering results on different clustering numbers.
The final row shows the average clustering accuracy (NMI)
over k. Compared with the second best method, our method
(RSNLCF) achieves an 11.41% improvement in clustering

accuracy. For mutual information, it achieved a 10.63%
improvement over the second best algorithm.

5.4. Face Clustering under Pixel Corruptions. Two experi-
ments were designed to test the robustness of RSNLCF
against random pixel corruptions on the ORL face dataset.
For the semisupervised algorithms of semi-GNMG, CNMF,
URNGE, and RSNLCF, three images per individual were ran-
domly chosen as labeled samples, and the remaining images
were used as unlabeled samples. In the first experiment, each
image was corrupted by replacing the pixel value with inde-
pendent and identically distributed samples whose lower
and upper bounds were the minimum and maximum pixel
value of the image, respectively. The corrupted pixels of each
image varied from 10 to 90% in increments of 10%.
Figure 1(b) shows several examples. Because the corrupted
pixels were randomly selected for each test sample, we
repeated the experiments 20 times. Figure 2 displays the rec-
ognition accuracies over different levels of corruption. The
recognition accuracies of the methods decreased rapidly as
the level of corruption increased. From Figure 2, which
depicts the recognition accuracies, we can observe that the
proposed method consistently outperformed the others.
When the samples had a high percentage of pixel corruption,
the methods failed to obtain improved recognition perfor-
mance because of inadequate discriminative information.

(a)

(b)

(c)

(d)

Figure 1: Sample images. (a) Extended YaleB dataset, (b) ORL dataset with random pixel corruption, (c) ORL dataset with random block
occlusions, and (d) AR dataset with contiguous occlusions by sunglasses and scarves.
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In the second experiment, 40% of the pixels randomly
selected from each sample were replaced by setting the pixel
value as 255. The number of corrupted samples of each indi-
vidual is gradually increased from 10 to 90%. We conducted

the evaluations 20 times at different corruption percentages
and computed the average recognition accuracies of Acc
and NMI. Figure 3 illustrates clustering Acc and NMI curves
of RSNLCF and the proposed method’s six competitors

Table 1: Clustering performance on the extended YaleB dataset.

k RNMF Semi-GNMF CNMF LCSNMF URNGE NLCF RSNLCF

Acc (%)

2 78.43± 16.23 90.47± 15.25 76.61± 15.34 92.25± 17.34 91.02± 18.83 89.54± 13.26 96.25± 15.64
4 69.52± 15.01 84.85± 14.43 65.62± 12.36 88.75± 14.76 86.33± 16.76 83.03± 12.74 94.63± 14.53
6 53.45± 5.55 82.36± 9.63 63.74± 6.75 86.14± 4.94 84.23± 5.66 77.64± 13.24 92.37± 9.85
8 52.76± 3.46 83.71± 7.81 65.42± 6.41 85.79± 6.91 85.39± 5.78 75.83± 7.33 90.18± 6.63
10 53.24± 3.47 77.05± 4.17 63.68± 5.25 78.04± 5.79 74.58± 2.43 70.42± 4.87 88.31± 4.14
12 55.11± 4.53 72.84± 3.15 63.25± 4.34 75.65± 4.36 73.34± 2.76 71.72± 7.23 87.26± 3.56
14 52.05± 3.26 71.57± 2.24 61.58± 3.86 73.91± 3.43 72.16± 2.14 68.52± 2.13 87.11± 2.34
16 51.97± 3.17 67.85± 2.45 59.91± 3.42 69.35± 3.82 68.35± 1.82 65.46± 3.14 85.67± 3.16
18 51.53± 3.32 67.58± 3.01 57.33± 2.97 71.64± 3.58 69.09± 2.23 65.83± 3.71 85.32± 3.01
Avg. 57.56 77.59 64.13 80.17 78.28 74.22 89.69

NMI (%)

2 82.91± 18.13 92.51± 18.52 78.81± 16.28 94.36± 19.84 93.35± 17.46 91.71± 17.15 98.46± 14.75
4 72.63± 17.92 87.24± 16.35 71.58± 13.41 92.71± 15.14 90.78± 15.46 85.53± 15.94 96.38± 13.52
6 63.42± 5.21 85.91± 6.47 68.37± 8.86 90.25± 9.48 86.13± 6.48 82.82± 12.03 94.35± 7.51
8 62.14± 2.96 86.86± 3.72 70.54± 7.97 89.37± 8.16 88.73± 6.52 80.34± 5.02 93.82± 5.73
10 64.06± 3.01 84.25± 3.26 69.72± 6.33 87.54± 5.42 86.82± 4.36 79.16± 2.92 92.73± 6.22
12 63.41± 3.05 80.82± 2.33 68.98± 4.64 85.28± 5.37 84.94± 4.53 80.47± 3.77 90.69± 4.91
14 58.99± 2.11 79.34± 3.44 67.67± 5.78 84.91± 4.98 83.12± 3.98 77.55± 1.76 90.43± 3.01
16 57.23± 2.17 77.85± 2.97 65.98± 4.58 82.11± 4.12 81.66± 3.54 76.46± 2.44 89.27± 4.62
18 55.59± 2.03 77.51± 2.25 64.67± 3.98 83.79± 4.43 82.36± 3.28 77.59± 1.99 89.21± 4.75
Avg. 64.49 86.02 69.59 87.81 86.43 81.29 97.06
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Figure 2: Clustering Acc and NMI curves across percentages of corrupted pixels of each image for the comparedmethods on the ORL dataset.
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versus the percentage of corrupted images. From Figure 3,
which depicts the comparison results on the ORL dataset,
we can clearly see that the RSNLCF obtained the best recog-
nition accuracy in all situations.

5.5. Face Clustering under Contiguous Occlusions. We vali-
dated the robustness of RSNLCF against partial block occlu-
sions (see Figure 1(c) for examples). Two experiments were
conducted on the ORL face dataset. For the semisupervised
algorithms of semi-GNMG, CNMF, URNGE, and RSNLCF,
we randomly selected three samples from each category and
used their category number as the label information. The first
experiment was performed with a fixed contiguous block
occlusion size of 40× 40 pixels. We chose r of the face sam-
ples of each individual for occlusion, with r varying from
10 to 90%. The position of the block was randomly selected.
The evaluations were performed 20 times for each r, and the
means of Acc and NMI were recorded. Figure 4 shows the
means of clustering Acc and NMI of the compared methods
on different percentages of corrupted images. As shown in
Figure 4, the performances of NMF, RNMF, semi-GNMF,
CNMF, URNGE, and NLCF were lower than that of
RSNLCF. With an increasing number of occluded samples,
the clustering accuracy of RSNLCF dropped and thus
matched expectations considerably.

In the second experiment, we simulated various levels of
contiguous occlusions in each image by using an unrelated
image of size p × p with p ∈ 5, 10, 20,… , 80 . The evalua-
tions were conducted 20 times at each occlusion level, and
the average Acc and NMI curves were recorded. Figure 5
plots clustering Acc and NMI results of the compared
methods under different occlusion levels. Although the clus-
tering accuracy of eachmethod degradedwith each increment

in occlusion level, RSNLCF consistently exceeded other
methods. When the occlusion size increased to 50× 50, the
occluding part dominated the image and caused the clustering
performance to diminish rapidly.

5.6. Face Clustering under Real Occlusions. We evaluated the
robustness of RSNLCF against real malicious occlusions. The
AR dataset adopted in this experiment contains 2600 frontal
face images from 100 individuals (50 males and 50 females
from two photo sessions). Figure 1(d) shows some face sam-
ples with real occlusions by sunglasses and scarf. Note that
because RNMF, LCSNMF, and NLCF are unsupervised algo-
rithms, we did not compare them here. In this experiment,
we randomly selected r face images per individual as labeled
samples, in which r was varied from four to 18, respectively,
in increments of two. The remaining images were unlabeled
samples. For each configuration, we conducted 20 test runs
with each method. The mean and the standard deviation
of clustering accuracy were recorded. Table 2 tabulates the
detailed clustering results by Acc and NMI on the AR data-
set and shows our algorithm achieved 8.55, 12.82, and
14.53% Acc improvement over URNGE, CNMF, and semi-
GNMF, respectively.

For NMI, the recognition rate of RSNLCF was 7.06,
9.66, and 10.87% higher than URNGE, CNMF, and semi-
GNMF, respectively.

5.7. Gene Data Clustering on the Leukemia Dataset. Finally,
we assessed clustering performance on the leukemia dataset.
The gene expression dataset was rather challenging in terms
of clustering issues, because it contains numerous features
but only a few samples. We filtered out genes with max/
min < 15 and max−min < 500, leaving a total of 1999 genes.
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Figure 3: Clustering Acc and NMI curves across percentages of corrupted images for the compared methods on the ORL dataset.
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Note that because RNMF, LCSNMF, and NLCF are unsuper-
vised algorithms, we did not compare them here. For each
category of data, c = 2, 3, 4, 5, 6, 7, 8 samples were randomly
chosen and labeled, with the remaining samples being unla-
beled. As the samples were randomly selected, for each c,
we repeated each experiment 20 times and calculated the
average clustering accuracy. Figure 6 plots clustering Acc
and NMI results of the compared methods under different

numbers of labeled samples. We can observe that our
RSNLCF approach achieved the best clustering performance
of all the compared approaches.

5.8. Parameter Sensitivity. In our proposed method, several
parameters were tuned beforehand. We observed that
RSNLCF is insensitive to τ in the range of [10−3,103]. Accord-
ingly, we fixed η to be 106 and τ to be 10 for both the
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Figure 5: Clustering Acc and NMI curves of the compared methods under different occlusion levels with each image in the ORL dataset.
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ORL dataset.
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Table 2: Clustering performances on the AR dataset.

r
Acc (%) NMI (%)

Semi-GNMG CNMF URNGE RSNLCF Semi-GNMG CNMF URNGE RSNLCF

4 58.29± 3.74 55.93± 3.72 63.28± 3.94 82.29± 2.54 68.65± 5.34 67.79± 3.51 72.37± 4.29 86.27± 2.28
6 64.53± 3.62 60.56± 4.54 69.06± 4.31 86.07± 4.19 72.49± 3.38 68.28± 4.43 76.85± 4.32 89.46± 4.93
8 67.37± 3.22 69.17± 3.93 74.19± 3.71 87.25± 2.68 78.13± 3.67 80.33± 3.25 81.24± 2.36 91.57± 2.28
10 74.87± 4.13 76.57± 2.76 79.73± 2.38 88.48± 3.85 83.48± 3.36 84.52± 2.37 87.63± 3.48 92.84± 3.58
12 79.38± 3.03 82.32± 2.83 88.01± 3.52 92.64± 2.23 85.21± 2.02 88.32± 3.76 90.27± 3.52 94.12± 2.93
14 85.95± 3.31 90.58± 2.53 91.49± 2.36 93.54± 2.17 88.27± 2.37 92.46± 2.43 92.34± 2.86 96.43± 3.54
16 86.39± 3.71 91.35± 4.54 92.92± 2.42 94.83± 2.79 89.38± 2.58 93.25± 3.38 93.94± 2.48 97.07± 2.72
18 88.83± 3.27 92.82± 4.55 94.73± 2.67 96.71± 2.35 91.03± 2.64 94.38± 3.46 95.52± 2.69 98.91± 2.76
Avg. 75.70 77.41 81.68 90.23 82.46 83.67 86.27 93.33
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Figure 6: Clustering Acc and NMI curves of the compared methods under different numbers of labeled samples for the leukemia dataset.
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Figure 7: Clustering accuracy of the proposed method with respect to the parameters μ and λ on the extended YaleB dataset.
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extended YaleB and leukemia datasets. To study the sensitiv-
ity of RSNLCF with respect to the remaining parameters (i.e.,
μ and λ), we varied these parameters. In the experiment, we
plotted the Acc and NMI of RSNLCF with respect to μ and
λ. Figures 7 and 8 show clearly the 3D results of RSNLCF.
The horizontal axes are the parameters μ and λ, and the ver-
tical axis represents the clustering accuracy of RSNLCF. In
the 3D graphs, the square/circle marker indicates the best μ
/λ for varying μ/λ. Next to each marker at the cross point is
a digit number representing the value of Acc or NMI. We
can notice from Figures 7 and 8 that the clustering perfor-
mance varied with different combinations of μ and λ. How-
ever, it is unknown theoretically how to choose the best
parameter. The regularization parameters should be associ-
ated with the characteristics of the dataset.

5.9. Convergence Analysis. In the previous section, we proved
the convergence of our presented method. In our study, an
experiment was performed to compare all algorithms’ speed
of convergence on the extended YaleB and leukemia datasets.
The two parameters μ and λ were both fixed at 10. The time
is measured using a computer with Intel Core™ I7 2600 and
16GBmemory. Figure 9 demonstrated the objective function
value versus computational time for different algorithms.
The horizontal and vertical axes here represent training
times and the value of the objective function, respectively.
We can observe from Figure 9 that the objective function
value of all algorithms decreases steadily with the time
increase, and RSNLCF requires less time than other graph-
based methods, demonstrating that the proposed method
was effective and efficient.

5.10. Overall Observations and Discussion. In our experi-
ments, we considered several groups of experiments based
on different databases, where the extended YaleB mainly
involved illumination changes, the ORL database focused

on pixel corruptions and block occlusions, the AR database
included face images with different facial variations, sun-
glasses, and scarf occlusions, and the leukemia dataset con-
tained a large number of features but only a few samples.
From the aforementioned experimental results, we gained
the following several attractive insights:

(i) In most cases, the performance of CNMF was usu-
ally lower than that of the graph-based approach,
which demonstrates the superiority of intrinsic geo-
metrical structure representation in discovering
potential discriminative information.

(ii) Regardless of the datasets, our RSNLCF algorithm
outperformed all six other methods. The reason lies
in the fact that RSNLCF is designed for simultaneous
application to local and global consistencies over
labels simultaneously to uncover an underlying sub-
space structure. In addition, RSNLCF proved robust
to outlier points and noises as a result of employing
the l2,1 norm formulations of NMF and the local
coordinate constraint regularization term.

(iii) Future research on this topic will include how to
use multicore processors [48, 49] to accelerate
our proposed method and how to extend the idea
of semisupervised learning to the existing cluster-
ing algorithms.

6. Conclusion

In this study, we proposed a novel matrix decomposition
method (RSNLCF) to learn an efficient representation for
data in a semisupervised learning scenario. An efficient itera-
tive algorithm for RSNLCF was also presented. The conver-
gence of the presented method was theoretically proved.
Extensive experiments over diverse datasets demonstrated
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that the presented method is quite effective and robust at
learning an efficient data representation for clustering tasks.
More importantly, experimental results revealed that our
optimization algorithm quickly converges, indicating that
our method can be utilized to solve practical problems.
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Figure 9: The curve of objective function value versus computational time on the extended YaleB and leukemia datasets. (a) RNMF, (b) semi-
GNMF, (c) CNMF, (d) LCSNMF, (e) URNGE, (f) NLCF, and (g) RSNLCF.
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