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Abstract

By an !1{tree we mean a tree of power !1 and height !1. An !1{tree is called
a Kurepa tree if all its levels are countable and it has more than !1 branches.
An !1{tree is called a Jech{Kunen tree if it has � branches for some � strictly
between !1 and 2!1 . In x1, we construct a model of CH plus 2!1 > !2, in
which there exists a Kurepa tree with no Jech{Kunen subtrees and there exists
a Jech{Kunen tree with no Kurepa subtrees. This improves two results in
[Ji1] by not only eliminating the large cardinal assumption for [Ji1, Theorem
2] but also handling two consistency proofs of [Ji1, Theorem 2 and Theorem 3]
simultaneously. In x2, we �rst prove a lemma saying that an Axiom A forcing of
size !1 over Silver's model will not produce a Kurepa tree in the extension, and
then we apply this lemma to prove that in the model constructed for Theorem
2 in [Ji1], there exists a Jech{Kunen tree and there are no Kurepa trees.

0 Introduction

The �rst model in which there is a Jech{Kunen tree was probably discovered by T.

Jech [Je1] in 1971. In fact, the tree in that model is a Kurepa tree with less than 2!1

branches. Later, in 1975, K. Kunen [K1] showed that, under CH and 2!1 > !2, the

existence of a Jech{Kunen tree is equivalent to the existence of a compact Hausdor�

space with weight !1 and cardinality strictly between !1 and 2!1. Such a space is

interesting because a compact Hausdor� space with weight ! cannot have cardinality

strictly between ! and 2!. Let us also look at the natural correspondence between a

tree and a linearly ordered set (see [T] for the details). Assuming CH and 2!1 > !2,

we can easily see that the existence of a Jech{Kunen tree is equivalent to the existence

of a (Dedekind) complete dense linear order with density !1 and cardinality strictly

between 2!1 and !1. Note that a separable complete dense linear order is order{

isomorphic to an interval of the real line and therefore has cardinality 2!. K. Kunen

proved also that the non{existence of Jech{Kunen trees under CH and 2!1 > !2

is equiconsistent to the existence of an inaccessible cardinal (consult [Ju, Theorem

4.8] for details). Kunen's model of non{existence of Jech{Kunen trees is a slight

1Mathematics Subject Classi�cation Primary 03E35.

1



modi�cation of J. Silver's model (see [K2]) for non{existence of Kurepa trees. It is

easy to show that there are no Kurepa trees in Kunen's model by imitating Silver's

argument. Since in Jech's model both Kurepa trees and Jech{Kunen trees exist and

in Kunen's model neither of them exist, it is natural to ask whether or not there are

any di�erences between the existences of both trees.

In [Ji1], the following results were proved.

(1) Assuming the consistency of an inaccessible cardinal, it is consistent with CH

and 2!1 > !2 that there exists a Jech{Kunen tree which has no Kurepa subtrees [Ji1,

Theorem 2].

(2) It is consistent with CH and 2!1 > !2 that there exists a Kurepa tree which

has no Jech{Kunen subtrees [Ji1, Theorem 3].

(3) CH and 2!1 > !2 plus Generalized Martin's Axiom (see [B] and [W] for the

de�nition) imply that every Jech{Kunen tree has a Kurepa subtree [Ji1, Theorem 4].

(4) It is consistent with CH and 2!1 > !2 plus Generalized Martin's Axiom that

there exists a Kurepa tree with 2!1 branches and every Kurepa tree has a Jech{Kunen

subtree [Ji1, Theorem 5].

In [Ji2], I proved that assuming the consistency of two inaccessible cardinals, it

is consistent with CH and 2!1 > !2 that there exist Kurepa trees and there are no

Jech{Kunen trees.

In [SJ1], we proved that assuming the consistency of an inaccessible cardinal, it

is consistent with CH and 2!1 > !2 that there exist Jech{Kunen trees and there are

no Kurepa trees.

In [SJ2], we proved that one inaccessible cardinal is enough to prove the result of

[Ji2].

Since we need an inaccessible cardinal to destroy all Kurepa trees or all Jech{

Kunen trees, the assumption of one inaccessible cardinal is necessary to prove the

results of [SJ1] and [SJ2]. But we may not need large cardinal to destroy all Kurepa

subtrees of a particular Jech{Kunen tree and to destroy all Jech{Kunen subtrees of a

particular Kurepa tree. For example, the second result of [Ji1] mentioned above does

not use large cardinals. It is now natural to ask whether or not the large cardinal

assumption for [Ji1, Theorem 2] can be eliminated. In x1 of this paper, we give a
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positive answer to that question by not only eliminating the large cardinal assumption

but also proving Theorem 2 and Theorem 3 of [Ji1] simultaneously.

Let us look at the model used in the proof of Theorem 2 of [Ji1], in which we

use an inaccessible cardinal to kill all Kurepa subtrees of a particular Jech{Kunen

tree. Although we believed that there are no Kurepa trees at all in that model,

we were not able to prove that until now. In searching for a model in which there

exist Jech{Kunen trees and there are no Kurepa trees, Shelah and I in [SJ1] used a

di�erent approach. The construction of the model in [SJ1] is more complicated than

the construction of the model for Theorem 2 of [Ji1]. In x2 of this paper, we are going

to prove that there are no Kurepa trees in the model we constructed for Theorem 2

of [Ji1]. In fact, it is an easy corollary of an interesting lemma we are going to prove.

The lemma says that if we take Silver's model (collapse all cardinals between !1 and

an inaccessible cardinal � by a countable support L�evy collapsing order (see [K2])

as our ground model, then forcing with any partial order of size at most !1 which

satis�es Baumgartner's Axiom A (see [B]) will never create Kurepa trees. This lemma

suggests another interesting question, which I will pose at the end of this paper.

Our notation is fairly standard. We refer the reader to [K2] or [Je2] for set theory.

It is helpful for the reader to have copies of [Ji1] and [SJ1] in hand. We write _a as a

name for a and �a as a name for _a in forcing arguments. We always assume that M

is a countable transitive model of ZFC. By a forcing notion P we mean that P is a

partial order with a largest element 1P. We assume, without loss of generality, that

all trees considered in this paper are subtrees of 2<!1 ordered by reverse inclusion (all

trees grow downward). For a tree T , let T� be the �{th level of T and write ht(t) = �

if t 2 T�, let T �� be the union of all T�'s for � < �, and let ht(T ), the height of T ,

be the least ordinal � such that T� = ;. For any tree T , ; is the unique root of T .

We call a totally ordered subset B of T a branch of T if B intersects every nonempty

level of T . Let B(T ) be the set of all branches of T .

1 A Kurepa (Jech{Kunen) tree without

Jech{Kunen (Kurepa) subtrees

In this section we are going to construct, without using large cardinals, a model of

CH and 2!1 > !2, in which there exists a Kurepa tree with no Jech{Kunen subtrees

and there exists a Jech{Kunen tree with no Kurepa subtrees.
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We call T a normal tree if the following two conditions are true.

(1) For every t 2 T , both t̂ h0i and t̂ h1i are in T .

(2) For every t 2 T� and every � such that � < � < ht(T ), there exists a t0 2 T�

such that t0 <T t.

(3) For every strictly decreasing sequence in T , there is at most one maximal lower

bound in T .

Let � be a regular cardinal. We let K � be the forcing notion

fp : p = hAp; lpi where Ap is a countable normal tree of height �p + 1

for some countable ordinal �p and lp is a one to one function from some

countable subset of � onto the �p{th level of Apg

with the order de�ned as follows: for any p = hAp; lpi and q = hAq; lqi in K � , p � q

if and only if Ap � �q + 1 = Aq, dom(lq) � dom(lp) and for every � 2 dom(lq),

lq(�) � lp(�). K � is the forcing notion used in [Je1] to force a Kurepa tree. Assuming

CH, it is easy to show that K � is !1{closed and has !2{c.c..

Lemma 1 (K. Kunen) Let M be a model of GCH, and let � > !2 be an uncountable

regular cardinal in M . Suppose G is a K �{generic �lter over M and TG =
S

p2GAp.

Then in M [G], CH holds, 2!1 = � > !2, TG is a Kurepa tree with � branches and TG

has no Jech{Kunen subtrees.

Proof: See [Ji1, Theorem 3]. �

Let T be a tree, let I be an index set. For a function p from I to T we use supt(p),

the support of p, for the set fi 2 I : p(i) 6= ;g. Let P(T; I) be the forcing notion

fp : p is a function from I to T such that jsupt(p)j < !1g

with the order de�ned by the following: for any p and q in P(T; I), p � q if and only

if for every i 2 I, p(i) �T q(i). Note that P(T; I) is just a countable support product

of jIj copies of T . Therefore P(T; I) has !2{c.c. if CH holds.

An !1{tree T is called properly pruned in countable products if for any countable

limit ordinal �, and for any fps : s 2 2<!g � P(T ��; !) such that

(1) s � t if and only if pt � ps,

(2) for every n 2 !, for every f 2 2!,
S

m2! ht(pf�m(n)) = �,
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(3) for any two di�erent f and g in 2!

f
[

m2!

pf�m(n) : n 2 !g
\
f
[

m2!

pg�m(n) : n 2 !g = ;;

then there exist f and g in 2! such that

8n 2 !;
[

m2!

pf�m(n) 2 T� and

8n 2 !;
[

m2!

pg�m(n) 62 T�:

We de�ne properly pruned trees in countable products because these trees have some

nice properties. (1) If we force with a properly pruned tree, we will not create any

new countable sequences. (2) Forcing with a properly pruned tree will not create any

new branches of Kurepa trees in the ground model. (3) An !1{closed forcing will

not create any new branches of a properly pruned tree. The purpose for considering

properly pruned trees in countable products is that we want to do a countable support

product forcing with a properly pruned tree. The next four lemmas about the trees

which are properly pruned in countable products as well as the detailed proofs can

be found in [SJ1]. We will give only brief sketches of the proofs here to make the

discussion self-contained.

Lemma 2 (CH) There exists an !1{tree T which is properly pruned in countable

products.

Sketch of the proof: Construct the tree recursively on all countable ordinals. For

every limit stage, because of CH, a diagonal argument can be applied for picking

right points to form a new level of the tree. �

We use PT for a tree which is properly pruned in countable products. In the next

two lemmas, we let M be a model of CH, let PT be a �xed properly pruned tree in

countable products in M , and let I be an index set in M .

Lemma 3 Let G be a P(PT; I){generic �lter over M . Then M! \M [G] �M .

Sketch of the proof: It is easy to show that P(PT; I) is !1{Baire [K2] (or !{

distributive in [Je2]). �
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Lemma 4 Let K be an !1{tree such that every level of K is countable. Suppose that

G is a P(PT; I){generic �lter over M . Then B(K) \M [G] �M .

Sketch of the proof: Similar to the argument used by J. Silver to prove that any

!1{closed forcing will not add a new branches to a Kurepa tree. Note that if we

embed the Cantor tree 2<! co�nally into P(PT ��; I) for some limit ordinal �, we can

�nd uncountably many branches of 2<! such that the images of those branches have

lower bounds in P(PT; I). �

Lemma 5 Let P be an !1{closed forcing notion in M and let G be a P{generic �lter

over M . Then B(PT ) \M [G] �M .

Sketch of the proof: If there is a new branch of PT in M [G], then by Silver's

argument the new branch will create an embedding from 2<! co�nally into PT � �

for some countable limit ordinal � such that every in�nite increasing sequence in the

image of the embedding has an upper bound in PT . This contradicts that PT is

properly pruned in countable products. �

Lemma 6 Let M be a model of GCH. Let P = K !4 (see Lemma 1), let PT 2M and

let Q = P(PT; !3). Suppose that G is a P{generic �lter over M and H is a Q{generic

�lter over M [G]. Then in M [G][H] the following are true.

(1) CH.

(2) 2!1 = !4.

(3) TG =
S

p2GAp is a Kurepa tree with no Jech{Kunen subtrees.

(4) PT is a Jech{Kunen tree with !3 branches.

(5) There are no Kurepa subtrees of PT with exactly !3 branches.

Proof: (1) is true because this two{step forcing extension does not add any new

countable sequences of M . (2) is true because M satis�es GCH and both P and Q

have !2{c.c. and both P and Q have size less than or equal to !4.

We prove (3). Suppose that T 0 is a Jech{Kunen subtree of TG in M [G][H]. Note

that T 0 is also a Kurepa tree. Since jT 0j = !1 and Q has !2{c.c., there exists an

I � !3 such that jIj = !1 and T 0 2 M [G][HI ], where HI = H \ P(PT; I). Without

loss of generality, we can assume that I 2 M . By Lemma 4, T 0 is still a Jech{Kunen

tree in M [G][HI ]. Since

M [G][HI ] = M [HI ][G]
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and the de�nition of P is absolute with respect to M and M [HI ], TG is a Kurepa

tree which has no Jech{Kunen subtrees inM [HI ][G] by applying Lemma 1 toM [HI ].

This contradicts that T 0 is a Jech{Kunen subtree of TG in M [G][HI ].

We prove (4). Notice that

M [G][H] =M [H][G]:

Since P is !1{closed in M [H] (no new countable sequences of M are added), every

branch of PT in M [H][G] is already in M [H] by Lemma 5. Besides, PT has only !3

branches in M [H], so that PT has !3 branches in M [G][H].

We now prove (5). Suppose that K is a Kurepa subtree of PT with exactly

!3 branches in M [G][H]. Then there exists an I � !3 such that jIj = !1 and

K 2 M [G][HI ]. By the proof of (3), K has still !3 branches in M [G][HI ]. But in

M [G][HI ] PT has at most !2 branches by the same reason as in the proof of (4). It

is impossible for PT to have a subtree with !3 branches. �

Let � be a regular cardinal and let I and J be two sets. We use Fn(I; J; �) for

the forcing notion

fp : p � I � J; p is a function and jpj < �g

ordered by reverse inclusion. We may omit � when � = !.

Theorem 7 It is consistent with CH and 2!1 > !2 that there exists a Kurepa tree

with no Jech{Kunen subtrees and there exists a Jech{Kunen tree with no Kurepa

subtrees.

Proof: Let M [G][H] be the model in Lemma 6, and let R = Fn(!1; !2; !1) (R is

just a standard collapsing order which collapses !2). Let F be an R{generic �lter

over M [G][H]. We want to show that

�M =M [G][H][F ]

is the model we are looking for.

It is obvious that CH holds. In �M 2!1 = !3 because !2 in M [G][H] has been

collapsed. It is also easy to see that TG is a Kurepa tree with !3 branches in �M . PT

has !2 branches in �M because R is !1{closed so that forcing with R will not create

any new branches of PT .
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Claim 7.1 In �M , TG has no Jech{Kunen subtrees.

Proof of Claim 7.1: Suppose that T 0 is a Jech{Kunen subtree of TG in �M .

Then
�M j= (jB(T 0)j = !2):

Without loss of generality, let 1R force that _T 0 is a Jech{Kunen subtree of TG. Since

R is !1{closed, then

B(TG) \ �M � M [G][H]:

In �M , since jRj = !1 and T 0 has !2 branches, then there exists an r0 2 R such that

the set

S = fB 2 B(TG) : (r0 
 B 2 B( _T 0))M [G][H]g

has cardinality !2. Note that S is actually in M [G][H] and !
�M
2 = !

M [G][H]
3 . So

T 00 =
S
S is a subtree of TG with !3 branches in M [G][H]. This contradicts Lemma

6.

Claim 7.2 In �M , PT has no Kurepa subtrees.

Proof of Claim 7.2: Suppose that T 0 is a Kurepa subtree of PT . Then in �M ,

T 0 has !2 branches. By the same reason, there exists an r0 2 R such that the set

S 0 = fB 2 B(PT ) : r0 
 B 2 B( _T 0)g

has cardinality !3 in M [G][H]. Let T 00 =
S
S 0. Then T 00 is a subtree of PT . T 00 has

now !3 branches in M [G][H]. T 00 is also a Kurepa tree in M [G][H] because T 00 is a

subtree of the Kurepa tree T 0 in �M . This contradicts Lemma 6. �

Remark: In [Ji1, Theorem 2], I proved the consistency of a Jech{Kunen tree with

no Kurepa subtrees. In the proof, one inaccessible cardinal is used. Here we not only

eliminated the large cardinal assumption but also put the results of [Ji1, Theorem 2]

and [Ji1, Theorem 3] together in one model.

2 A new consequence of an old model

In this section let � be always an inaccessible cardinal. We use Lv(�; �) for L�evy

collapsing order [K2], which collapses all cardinals between � and � in the ground

model. Let P = Lv(�; !1) in M and let G be a P{generic �lter over M . J. Silver
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showed that there are no Kurepa trees in M [G]. Let's call the model M [G] a Silver's

model.

In [Ji1, Theorem 2], I constructed, by assuming an inaccessible cardinal, a model

of CH and 2!1 > !2, in which there exists a Jech{Kunen tree with no Kurepa subtrees.

It is a three{step iterated forcing extension. LetM [G] be the Silver's model mentioned

above. In M [G] let H be a Fn(!1; 2){generic �lter over M [G]. Note that Fn(!1; 2)

is absolute with respect to M and M [G]. Let CT = (h2<!1;�i)M [G], i.e. a complete

binary tree with height !1 in M [G]. Since forcing with Fn(!1; 2) adds a lot of

new reals to M [G], CT becomes very incomplete in M [G][H]. This incompleteness

enable us to increase the size of 2!1 by an !1{closed forcing without adding any new

branches to CT . As a consequence, CT becomes a Jech{Kunen tree in M [G][H][F ],

where F is an (Fn(!3; 2; !1))
M [G][H]{generic �lter over M [G][H]. If CT has a Kurepa

subtree T 0 in M [G][H][F ], then it is easy to show that CT has a Kurepa subtree in

M [G][H] because we need only !1 conditions to determine T 0 while T 0 has more than

!1 branches, which are in M [G][H]. Now by an argument due to K. Devlin (see [D]

or [Ji1]), there are no Kurepa trees in M [G][H]. That leads a contradiction. We can

easily see that the last step forcing above did not create Kurepa subtrees in CT , but

it is harder to show that in M [G][H][F ], there are no Kurepa trees at all. In order

to construct a model of CH and 2!1 > !2, in which there are Jech{Kunen trees but

there are no Kurepa tree, S. Shelah and I tried a di�erent approach [SJ1]. Recently I

discovered that we can directly prove that there are no Kurepa trees in M [G][H][F ].

This result is a simple corollary of a lemma, which says that if P is a forcing notion

of size !1 and satis�es Baumgartner's Axiom A (see [B]) in a Silver's model, then

forcing with P will not create any Kurepa trees in the forcing extension.

Let P be a forcing notion. P is said to satisfy Axiom A i� there exists a collection

f�ngn2! of partial orderings on P such that

(1) �0 is the original order of P;

(2) for any p; q 2 P, p �n+1 q implies p �n q;

(3) if fpngn2! is a sequence in P such that for every n 2 !; pn+1 �n pn, then there

is a q 2 P such that q �n pn for all n 2 !;

(4) for every p 2 P and for every n 2 !, if A � P is predense below p, then there

exist a countable subset B of A and a q �n p such that B is predense below q.

Remarks: (1) Forcing with P which satis�es Axiom A will not collapse !1. (2) If
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P has size !1 in addition, then P has obviously !2{c.c., and hence forcing with P will

preserve all cardinals. (3) If P satis�es Axiom A in a ground model M and _Q is a

P{name such that 1P 
\ _Q satis�es Axiom A", then the forcing notion of the two{step

iteration P � _Q satis�es Axiom A in M . The proofs for all these facts can be found in

[B].

Lemma 8 In a model M , let P be a forcing notion of size !1, which satis�es Axiom

A, and let Q be a forcing notion which is !1{closed. Let G be a P{generic �lter over

M and let H be a Q{generic �lter over M [G]. Suppose in M [G], T is an !1{tree

such that for every � < !1, T� is countable. Then

B(T ) \M [G][H] �M [G]:

Proof: Suppose that there exists a branch

B 2 B(T ) \ (M [G][H]rM [G]):

Without loss of generality we can assume that

1P 
 1Q 
 ( �B 2 B( _T ) \ (M [ _G][ �H]rM [ _G])):

In order to carry on the induction let's �rst enumerate 2<! in the order type !. Let

I(s) = 2n +
X

i<n

s(i)2n�1�i

for each n 2 ! and s 2 2n. It is easy to see that I(s) is obtained by attaching a 1 to

the beginning of s and reading the result as the binary notation for an integer. Next

we construct inductively three sequences fpn : n 2 !g � P, fqs : s 2 2<!g � Q and

fXs : s 2 2<!g � [!1]
�! (where [!1]

�! means the set of all �nite or countable subset

of !1) such that the following are true:

(1) p0 = 1P, qhi = 1Q and Xhi = f0g;

(2) for every n 2 !, pn+1 �n pn;

(3) for any s; t 2 2<!, s � t implies qt � qs;

(4) for every n 2 !, there exists a �n < !1 such that
S
f
S
Xs : s 2 2<ng < �n �

minfminXs : s 2 2ng;

(5) for i = 0; 1, for every s 2 2<!,

pI(s) 
 (9� 2 Xs 9xi 2 _T� (x0 6= x1) (qŝ hii 
 (xi 2 �B))):
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Claim 8.1 The lemma follows from the construction.

Proof of Claim 8.1: Let p 2 P such that p � pn for every n 2 !. For every

f 2 2! let qf be the lower bound of fqf�n : n 2 !g. Let � =
S

n2! �n. Since we have

that

p 
 qf 
 (9x 2 �B \ _T�);

then we have

p 
 (9x 2 _T� and 9q0f � qf such that q0f 
 x 2 �B):

Let G be a P{generic �lter over M containing p. Working within M [G], let xf 2 T�

and q0f � qf for every f 2 2! \M such that

q0f 
 xf 2 _B:

If f 6= g, then xf 6= xg. Since (2!)M is still uncountable in M [G], we have now

jT�j � !1. This contradicts that every level of T is countable in M [G].

We now do the construction.

Assume that we have constructed fpI(s) : s 2 2<ng, fqŝ hii : s 2 2<n; i = 0; 1g

and fXs : s 2 2<ng. We want now to construct pI(s), qŝ hii and Xs inductively for all

s 2 2n and i = 0; 1. First, we �x a countable ordinal �n such that

�n >
[
f
[

Xs : s 2 2<ng:

Assume that we have found pI(s), qŝ hii and Xs for all s such that I(s) � m� 1, where

2n � m < 2n+1 and i = 0; 1. Let s 2 2n such that I(s) = m.

Since pI(s)�1 � pI(s�n�1), then

pI(s)�1 
 (9� 2 Xs�n�1 9x 2 _T� (qs 
 x 2 �B))

by (5).

Claim 8.2 There exists a p0 �I(s)�1 pI(s)�1, there exists a countable Xs � !1r�n

and there exist q0i � qs for i = 0; 1 such that

p0 
 (9� 2 Xs; 9xi 2 _T� (x0 6= x1) (q
0
i 
 xi 2 �B)):

Proof of Claim 8.2: Let P = f�p� : � 2 !1g be an enumeration of P. Let

i = 0; 1. We construct inductively fp�; qi�; �� : � < �g for some � 2 !1 or � = !1

such that
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(1) fp� : � < �g is a maximal antichain below pI(s)�1,

(2) qi0 � qs and qi� � qi�0 if �0 � �,

(3) �� � �n for every � < � and

(4) p� 
 (9xi 2 _T��(x0 6= x1) (q
i
� 
 xi 2 �B)).

� = 0. Let p00 � pI(s)�1. In addition, we require p00 � �p0 if �p0 and pI(s)�1 are

compatible. Since

p00 
 (qs 
 ( �B 62M [ �G][ _H]));

then

p00 
 (9� > �n 9xi 2 _T�0(x0 6= x1) 9q
i
0 � qs (q

i
0 
 xi 2 �B));

and hence in M there exists a p0 � p00, there exists a �0 > �n and there exist qi0 � qs

such that

p0 
 (9xi 2 _T�0(x0 6= x1) (q
i
0 
 xi 2 �B)):

Assume that we have found p�, q
i
� and �� for all � < � for some � < !1.

We are done if fp� : � < �g is already maximal under pI(s)�1. Note that the

set fp� : � < �g is countable. Let pI(s) = pI(s)�1, let qŝ hii be a lower bound of the

decreasing sequence fqi� : � < �g (Q is !1{closed in M) and let Xs = f�� : � < �g.

Otherwise, let p0� � pI(s)�1 such that p0� is incompatible with every p� for all � < �.

We also require that p0� < �p� if �p� is compatible with pI(s)�1 and incompatible with

every p� for all � < �. Let qi be a lower bound of fqi� : � < �g. We have now

p0� 
 (qi 
 ( �B 62M [ _G][ �H])):

Then

p0� 
 (9� > �n 9x
j
i 2 _T� (x

0
i 6= x1i ) 9q

j
i � qi (q

j
i 
 x

j
i 2 �B));

where j = 0; 1. Hence inM there exists a p� � p0�, there exist q
j
i � qi and there exists

a �� > �n such that

p� 
 (9xji 2 _T�� (x
0
i 6= x1i ) (q

j
i 
 x

j
i 2 �B)):

We can now pick j0 and j1 such that

p� 
 (9xjii 2 _T�� (x
j0
0 6= x

j1
1 ) (q

ji
i 
 x

ji
i 2 �B)):

Choose qi� = q
ji
i .
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Note that if fp� : � < �g has never been a maximal antichain below pI(s)�1 for

every countable ordinal �, then fp� : � < !1g must be a maximal antichain below

pI(s)�1 because for every �p� 2 P such that �p� � pI(s)�1, either �p� is compatible with

some p� for some � < � or �p� is above p�. Because P satis�es Axiom A, we can �nd

a p0 �I(s)�1 pI(s)�1 and � < !1 such that fp� : � < �g is predense under p0. Now let

q0i = qi� and Xs = f�� : � < �g. Then we have

p0 
 (9� 2 Xs 9xi 2 _T� (x0 6= x1) (q
0
i 
 xi 2 �B)):

This ends the construction of the claim. We choose pI(s) = p0 and qŝ hii = q0i. Note

that we have Xs already.

We have shown that the lemma follows from Claim 8.2. �

Recall thatM [G] is said to be a Silver's model if G is a (Lv(�; !1))
M{generic �lter

over M , where � is an inaccessible cardinal in M .

Lemma 9 Let M [G] be a Silver's model. In M [G] let P be a forcing notion of size

!1, which satis�es Axiom A. Let H be a P{generic �lter over M [G]. Then there are

no Kurepa trees in M [G][H].

Proof: Without loss of generality we can assume that P 2 M because P has size

!1. Suppose that T is a Kurepa tree in M [G][H]. We are going to prove the lemma

by deriving a contradiction.

For any subset I of �, we use LI = Lv(I; !1) for the set of all p 2 L = Lv(�; !1)

such that dom(p) � I. If G is a subset of L, we use GI for the set G \ LI .

Since T has size !1 and M [G][H] = M [H][G], there exists an ordinal � < � such

that T 2M [G�][H]. Note that

M [G][H] = M [G�][H][G�r�]

and

M [G�][H] j= (2!1 < �);

and so there exists a branch B of T such that

B 2M [G][H]rM [G�][H]:

But in M [G�] P satis�es Axiom A and L�r� is !1{closed. By Lemma 8, T has no

new branches in M [G][H]rM [G�][H]. A contradiction. �

13



Theorem 10 In M let � be an inaccessible cardinal, let P = Lv(�; !1), and let G

be a P{generic �lter over M . In M [G] let Q = Fn(!1; 2), and let H be a Q{generic

�lter over M [G]. In M [G][H] let R = Fn(!3; 2; !1), and let F be an R{generic �lter

over M [G][H]. Then M [G][H][F ] is a model of CH and 2!1 = !3, in which there

exists a Jech{Kunen tree and there are no Kurepa trees.

Proof: Besides the proof of [Ji1, Theorem 2], we need only prove that there are no

Kurepa trees in M [G][H][F ]. Suppose that T is a Kurepa tree in M [G][H][F ]. Since

the cardinality of T is !1, then there exists a subset I � !3 of size !1 such that T 2

M [G][H][FI ] where FI = F \(Fn(I; 2; !1))
M [G][H]. Since Fn(!3rI; 2; !1) is !1{closed

in M [G][H][FI ], then T is still a Kurepa tree in M [G][H][FI ] because any !1{closed

forcing will not create new branches for an !1{tree with countable levels. Without

loss of generality we can assume that I = !1. Let R!1 = (Fn(!1; 2; !1))
M [G][H]. In

M [G] both Q and _R!1 have size !1, Q has c.c.c. and

1Q 
 ( _R!1 is !1{closed):

Then Q � _R!1 has size !1 and satis�es Axiom A in M [G]. Hence by Lemma 9, there

are no Kurepa trees in M [G][H][F!1 ]. This contradicts that T is a Kurepa tree in

M [G][H][F!1 ]. �

3 A question

We would like to end this paper by asking a question.

Let M [G] be a Silver's model. Can we �nd a forcing notion P of size !1 in M [G]

such that forcing with P will preserve !1 and produce a Kurepa tree?
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