Renling Jin

Abstract

In an ω_1 -saturated nonstandard universe a cut is an initial segment of the hyperintegers, which is closed under addition. Keisler and Leth in [KL] introduced, for each given cut U, a corresponding U-topology on the hyperintegers by letting O be U-open if for any $x \in O$ there is a y greater than all the elements in U such that the interval $[x-y, x+y] \subseteq O$. Let U be a cut in a hyperfinite time line \mathcal{H} , which is a hyperfinite initial segment of the hyperintegers. The U-monad topology of \mathcal{H} is the quotient topology of the U-topological space \mathcal{H} modulo U. In this paper we answer a question of Keisler and Leth about the U-monad topologies by showing that when \mathcal{H} is κ -saturated and has cardinality κ , (1) if the coinitiality of U_1 is uncountable, then the U_1 -monad topology and the U_2 -monad topology are homeomorphic iff both U_1 and U_2 have the same coinitiality; (2) \mathcal{H} can produce exactly three different U-monad topologies if the cardinality. As a corollary \mathcal{H} can produce exactly four different U-monad topologies if the cardinality of \mathcal{H} is ω_1 .

Throughout this paper we work within ω_1 -saturated nonstandard universes. We let \mathcal{M} be a nonstandard universe and \mathbb{N} be the set of all hyperintegers in \mathcal{M} which contains \mathbb{N} , the set of all standard positive integers. Let $H \in \mathbb{N} - \mathbb{N}$; we call $\mathcal{H} = \{n \in \mathbb{N} : \mathbb{K} \leq \mathbb{H}\}$ a hyperfinite time line or a hyperline for short. We always let H be the largest element of \mathcal{H} . Let $[a, b] = \{x \in \mathcal{H} : a \leq x \leq b\}$ be an interval in \mathcal{H} .

Let us recall that a cut in \mathcal{H} is an initial segment of \mathcal{H} which is closed under addition. A cut must be external. Let U be a cut in \mathcal{H} . A subset O of \mathcal{H} is called U-open if for any $x \in O$ there is a $y \in \mathcal{H} - U$ such that $[x - y, x + y] \subseteq O$. All U-open sets form a U-topology on \mathcal{H} .

Let U be a cut in \mathcal{H} and $x \in \mathcal{H}$. $x/U = \{y \in \mathcal{H} : \forall z \in U \ (y \leq x/z)\}$, which is also a cut.

cf(U), the cofinality of U, = min{ $card(F) : F \subseteq U$ and F is cofinal in U}.

ci(U), the coinitiality of U, = min $\{card(F) : F \subseteq \mathcal{H} - U$ and F is coinitial in $\mathcal{H} - U$.

Let U be a cut in \mathcal{H} . For each $x \in \mathcal{H}$ we let U-monad(x), the U-monad of x, = $\{y \in \mathcal{H} : |y - x| \in U\}$. For a subset B of \mathcal{H} U-monad(B)= $\{U-\text{monad}(x) : x \in B\}$. By a U-monad we mean a U-monad(x) for some $x \in \mathcal{H}$. Since the U-topology on \mathcal{H} is not Hausdorff, it is sometimes convenient to consider the quotient space of U-topological space \mathcal{H} induced by the map $x \mapsto U$ -monad(x). This is called the U-monad topology of \mathcal{H} in [KL]. We denote it by U-monad (\mathcal{H}) .

The question about U-monad topologies in [KL]:

For which U and V are U-monad(\mathcal{H}) and V-monad(\mathcal{H}) homeomorphic?

In this paper we answer the question when \mathcal{H} is κ -saturated and has cardinality κ . For background in model theory see Chang and Keisler [CK], for background in nonstandard universes see Stroyan and Bayod [SB], and for hyperfinite sets see [KKLM]. This paper was developed under the supervision of H. J. Keisler, to whom the author is deeply grateful.

Throughout this paper we let card(A) mean external cardinality of A and *card(A) mean internal cardinality of A if A is an internal set. When A is hyperfinite, *card(A) is a hyperinteger.

Theorem 1 Let \mathcal{H} be κ -saturated (as an ordered set) and $card(\mathcal{H}) = \kappa$. Let U and V be two cuts in \mathcal{H} . Then U-monad(\mathcal{H}) is homeomorphic to V-monad(\mathcal{H}) if and only if one of the following is true:

(1) $U = H/\mathbb{N}$ and $V = H/\mathbb{N}$.

(2) $U \neq H/\mathbb{N}$ and $V \neq H/\mathbb{N}$ but there are $x, y \in \mathcal{H}$ such that $U = x/\mathbb{N}$ and $V = y/\mathbb{N}$.

(3) $U \neq x/\mathbb{N}$ and $V \neq y/\mathbb{N}$ for any $x, y \in \mathcal{H}$ but ci(U) = ci(V).

The proof of the theorem is contained in the next eleven lemmas.

For any $A, B \in U-\text{monad}(\mathcal{H})$ let A < B mean $\forall a \in A \ \forall b \in B(a < b)$. Then $U-\text{monad}(\mathcal{H})$ is an ordered topological space with order topology. For convenience we consider an ordermorphism instead of a homeomorphism between two monad topological spaces.

From now on we always use " \cong " to denote an ordermorphism between two linear orders. And we always let i = 1, 2.

Lemma 1 (Hausdorff 1914) Let $L^{(i)}$ be two κ -saturated dense linearly ordered sets of power κ such that one of the following is true:

(1) $L^{(i)}$ both have two end points.

(2) $L^{(i)}$ both have no end points.

(3) $L^{(i)}$ both have only right end points. (4) $L^{(i)}$ both have only left end points. Then $L^{(1)} \cong L^{(2)}$.

Lemma 2 Let $L^{(i)}$ be two linearly ordered sets as in Lemma 1. Let $F^{(i)}$ be a convex segment of $L^{(i)}$ respectively such that $F^{(i)}$ both have left (right) end points and $cf(F^{(1)}) = cf(F^{(2)})$ ($ci(F^{(1)}) = ci(F^{(2)})$). Then $F^{(1)} \cong F^{(2)}$.

Proof: We can assume $cf(F^{(i)}) = \lambda < \kappa$ by lemma 1.

Let $\langle x_{\alpha}^{(i)} : \alpha < \lambda \rangle$ be two strictly increasing sequences in $F^{(i)}$ such that the sequences are cofinal in $F^{(i)}$ respectively. Let $F_{\alpha}^{(i)} = \{x \in F^{(i)} : x \leq^{(i)} x_{\alpha}^{(i)}\}.$

Now we build an ordermorphism I from $F^{(1)}$ to $F^{(2)}$.

We can assume that $x_0^{(i)}$ are not left end points. By Lemma 1 $F_0^{(1)} \cong F_0^{(2)}$. Let $I|F_0^{(1)}$ be just this ordermorphism.

Assume that we have $I|F_{\beta}^{(1)}:F_{\beta}^{(1)}\longrightarrow F_{\beta}^{(2)}$ for every $\beta < \alpha$.

Case 1: $\alpha = \beta + 1$.

Let $\tilde{F}_{\alpha}^{(i)} = (F_{\alpha}^{(i)} - F_{\beta}^{(i)}) \bigcup \{x_{\beta}^{(i)}\}$. Then there exists an $I' : \tilde{F}_{\alpha}^{(1)} \cong \tilde{F}_{\alpha}^{(2)}$ by the fact that $x_{\alpha}^{(i)} > x_{\beta}^{(i)}$ and by Lemma 1. Let $I|F_{\alpha}^{(1)} = I|F_{\beta}^{(1)} \bigcup I'$.

Case 2: α is a limit ordinal below λ .

Let $\tilde{F}_{\alpha}^{(i)} = F_{\alpha}^{(i)} - \bigcup_{\beta < \alpha} F_{\beta}^{(i)}$. Since $cf(\bigcup_{\beta < \alpha} F_{\beta}^{(i)}) = cf(\alpha) < \kappa$, $ci(\tilde{F}_{\alpha}^{(i)}) = \kappa$ by κ -saturation. Since both $\tilde{F}_{\alpha}^{(i)}$ have right end points $x_{\alpha}^{(i)}$, there exists an $I' : \tilde{F}_{\alpha}^{(1)} \cong \tilde{F}_{\alpha}^{(2)}$ by Lemma 1. Let $I|F_{\alpha}^{(1)} = (I|\bigcup_{\beta < \alpha} F_{\beta}^{(1)}) \cup I'$.

Now $I = \bigcup_{\alpha < \lambda} I | F_{\alpha}^{(1)}$ is the ordermorphism from $F^{(1)}$ to $F^{(2)}$. \Box

From now on we always assume the hyperlines mentioned below are κ -saturated and have cardinality κ .

Lemma 3 Let U be a cut in \mathcal{H} such that $ci(U) = \kappa$. Then $U-monad(\mathcal{H})$ is κ -saturated (as an ordered set) and has two end points.

Proof: Easy. \Box

Lemma 4 Let $U^{(i)} \subseteq \mathcal{H}^{(i)}$ be two cuts such that $ci(U^{(1)}) = ci(U^{(2)}) = \kappa$. Then $U^{(1)} - monad(\mathcal{H}^{(1)}) \cong U^{(2)} - monad(\mathcal{H}^{(2)})$.

Proof: By Lemma 1 and Lemma 3. \Box

Lemma 5 $\mathcal{H}^{(1)} \cong \mathcal{H}^{(2)}$ for any two hyperlines $\mathcal{H}^{(i)}$.

Proof: Since $ci(\mathbb{N}) = \kappa$, then \mathbb{N} -monad $(\mathcal{H}^{(1)}) \cong \mathbb{N}$ -monad $(\mathcal{H}^{(2)})$ by Lemma 4. Since the left end points of \mathbb{N} -monad $(\mathcal{H}^{(i)})$ are the copy of \mathbb{N} , the right end points are the copy of the reverse of \mathbb{N} and every other point is just a copy of the integers Z, then we can easily find an ordermorphism from $\mathcal{H}^{(1)}$ to $\mathcal{H}^{(2)}$. \Box

Lemma 6 Let $U^{(i)} = H^{(i)}/\mathbb{N}$. Then $U^{(1)} - monad(\mathcal{H}^{(1)}) \cong [0,1] \cong U^{(2)} - monad(\mathcal{H}^{(2)})$, where [0,1] is the unit interval of the reals.

Proof: Easy. \Box

Lemma 7 If $U^{(i)} = x^{(i)} / \mathbb{N}$ for some $x^{(i)} \in \mathcal{H}^{(i)}$ and $U^{(i)} \neq H^{(i)} / \mathbb{N}$, then $U^{(1)} - monad(\mathcal{H}^{(1)}) \cong U^{(2)} - monad(\mathcal{H}^{(2)})$.

Proof: Let $G^{(i)} = \{a \in \mathcal{H}^{(i)} : ax^{(i)} \in \mathcal{H}^{(i)}\}$. Then both $G^{(i)}$ are hyperlines. Hence there exists an ordermorphism $J : G^{(1)} \cong G^{(2)}$ by Lemma 5.

For every $a \in G^{(i)}$ if $a \neq \max G^{(i)}$, let $K_a^{(i)} = [(a-1)x^{(i)} + 1, ax^{(i)}]$; if $a = \max G^{(i)}$, let $K_a^{(i)} = [(a-1)x^{(i)} + 1, H^{(i)}]$. Then for any $a \in G^{(i)} U^{(i)} - \operatorname{monad}(K_a^{(i)}) \cong [0, 1]$, the unit interval of the reals. So there exists a $j_a : U^{(1)} - \operatorname{monad}(K_a^{(1)}) \cong U^{(2)} - \operatorname{monad}(K_{J(a)}^{(2)})$.

Now $I = \bigcup_{a \in G^{(1)}} j_a$ is the ordermorphism from $U^{(1)} - \text{monad}(\mathcal{H}^{(1)})$ to $U^{(2)} - \text{monad}(\mathcal{H}^{(2)})$.

Lemma 8 Let $U^{(i)}$ be a cut in $\mathcal{H}^{(i)}$ respectively such that $U^{(i)} \neq x^{(i)} / \mathbb{N}$ for any $x^{(i)} \in \mathcal{H}^{(i)}$ and $ci(U^{(1)}) = ci(U^{(2)}) = \lambda$. Then $U^{(1)} - monad(\mathcal{H}^{(1)}) \cong U^{(2)} - monad(\mathcal{H}^{(2)})$.

Proof: Assume $\lambda < \kappa$ (the case $\lambda = \kappa$ has been solved in Lemma 4).

Let $\langle x_{\alpha}^{(i)} : \alpha < \lambda \rangle$ be a strictly decreasing sequence in $\mathcal{H}^{(i)}$ respectively such that it is coinitial in $\mathcal{H}^{(i)} - U^{(i)}$, $x_0^{(i)} = H^{(i)}$ and $x_{\alpha}^{(i)}/x_{\alpha+1}^{(i)} > n$ for any $\alpha < \lambda$ and any $n \in \mathbb{N}$.

For convenience we need a notion of trees. (See [To] for the basic notation.)

Let T be any tree of height λ . For any $\alpha < \lambda$ T_{α} is the α -th level of T. $T|\alpha = \bigcup_{\beta < \alpha} T_{\beta}$. For any $t \in T$, $T(t) = \{s \in T : s \leq_T t \text{ or } t \leq_T s\}$. B is a branch of T iff B is a maximal linearly ordered subset of T and $\mathcal{B}(T) = \{B : B \text{ is a branch of } T\}$. Now we construct two partition trees $T^{(i)}$ of $\mathcal{H}^{(i)}$ of height λ such that: (1) $\forall t \in T^{(i)}$ (t is a convex segment of $\mathcal{H}^{(i)}$). (2) $\forall s, t \in T^{(i)}_{\alpha}$ ($s \neq t \rightarrow s \cap t = \emptyset$). (3) $\forall t \in T^{(i)}_{\alpha} \forall \beta$ ($\alpha < \beta < \lambda \rightarrow t = \bigcup \{s : s \in T^{(i)}_{\beta} \cap T^{(i)}(t)\}$). (4) if $\alpha = \beta + 1$, then $\forall t \in T^{(i)}_{\alpha}$ (t = [a, b] such that $x^{(i)}_{\alpha} \leq b - a + 1 \leq 2x^{(i)}_{\alpha}$). Let $s, t \in T^{(i)}_{\alpha}$. We define $s \prec t$ iff $\forall x \in s \forall y \in t$ (x < y). (5) there exists a tree isomorphism J from $T^{(1)}$ to $T^{(2)}$ such that

$$\forall \alpha \; \forall s, t \in T_{\alpha}^{(1)} \; (s \prec t \leftrightarrow J(s) \prec J(t)).$$

If we have these two trees and an isomorphism J which satisfies (5), then for any branch $B \in \mathcal{B}(T^{(i)})$, $\bigcap B$ can only intersect one $U^{(i)}$ -monad because any two points in $\bigcap B$ have distance inside $U^{(i)}$ by (4). With the help of the isomorphism J we can build an ordermorphism between $U^{(i)}$ -monad($\mathcal{H}^{(i)}$) since J satisfies (5).

Let $T_0^{(i)} = \{\mathcal{H}^{(i)}\}$ and $J(\mathcal{H}^{(1)}) = \mathcal{H}^{(2)}$.

Assume we have $T^{(i)}|\alpha$ and $J|\alpha$, a tree isomorphism from $T^{(1)}|\alpha$ to $T^{(2)}|\alpha$ which satisfies (5).

Case 1: α is a limit ordinal below λ .

Let $T_{\alpha}^{(i)} = \{ \bigcap B : B \in \mathcal{B}(T^{(i)}|\alpha) \}$. By κ -saturation $\bigcap B \neq \emptyset$ for any $B \in \mathcal{B}(T^{(i)}|\alpha)$. Let $\bigcap B \in T_{\alpha}^{(1)}$, where $B = \{t_{\beta} : t_{\beta} \in T_{\beta}^{(1)} \text{ and } \beta < \alpha\}$. We let $J(\bigcap B) = \bigcap_{\beta < \alpha} J(t_{\beta})$. Then $J|\alpha + 1$ is a tree isomorphism from $T^{(1)}|\alpha + 1$ to $T^{(2)}|\alpha + 1$ which satisfies (5).

Case 2: $\alpha = \beta + 1$ and $\beta = \beta' + 1$.

Let $t^{(i)} \in T_{\beta}^{(i)}$, $t^{(i)} = [a^{(i)}, b^{(i)}]$ such that $J(t^{(1)}) = t^{(2)}$. Let $G^{(i)} = \{x \in \mathcal{H}^{(i)} : a^{(i)} + xx_{\alpha}^{(i)} \leq b^{(i)}\}$. Then there exists a $j : G^{(1)} \cong G^{(2)}$ by the fact that $G^{(i)}$ are hyperlines and by Lemma 5. For every $a \in G^{(i)}$, if $a \neq \max G^{(i)}$, let $K_a^{(i)} = [a^{(i)} + (a-1)x_{\alpha}^{(i)} + 1, a^{(i)} + ax_{\alpha}^{(i)}]$; if $a = \max G^{(i)}$, let $K_a^{(i)} = [a^{(i)} + (a-1)x_{\alpha}^{(i)} + 1, b^{(i)}]$. Let $T_{\alpha}^{(i)} \cap T^{(i)}(t^{(i)}) = \{K_a^{(i)} : a \in G^{(i)}\}$ and $J(K_a^{(1)}) = K_{j(a)}^{(2)}$ for any $a \in G^{(1)}$.

Case 3: $\alpha = \beta + 1$ and β is a limit ordinal.

Let $t^{(i)} \in T_{\beta}^{(i)}$ such that $t^{(i)} = \bigcap \{ t_{\gamma}^{(i)} : t_{\gamma}^{(i)} = [a_{\gamma}^{(i)}, b_{\gamma}^{(i)}] \in T_{\gamma}^{(i)}, \gamma$ is a successor ordinal and $\gamma < \beta \}$ and $J(t^{(1)}) = t^{(2)}$. Then one of the followings has to be true:

(1) both $t^{(i)}$ have no end points.

(2) both $t^{(i)}$ have left end points (if and only if $\langle a_{\gamma+1}^{(i)} : \gamma < \beta \rangle$ is eventually constant.)

(3) both $t^{(i)}$ have right end points (if and only if $\langle b_{\gamma+1}^{(i)} : \gamma < \beta \rangle$ is eventually constant.)

Let us assume that $t^{(i)}$ both have no end points. (the proofs of the other two cases are just half of the proof of this case.)

By κ -saturation $cf(t^{(i)}) = ci(t^{(i)}) = \kappa$.

Pick an $a_0^{(i)} \in t^{(i)}$. Let $G_L^{(i)} = \{a \in \mathcal{H}^{(i)} : a_0^{(i)} - ax_{\alpha}^{(i)} \in t^{(i)}\}$ and $G_R^{(i)} = \{a \in \mathcal{H}^{(i)} : a_0^{(i)} + ax_{\alpha}^{(i)} \in t^{(i)}\}$. Then $cf(G_L^{(i)}) = cf(G_R^{(i)}) = \kappa$ because if $a_{\gamma}^{(i)} \neq a_{\gamma+1}^{(i)}$, then $a_{\gamma+1}^{(i)} - a_{\gamma}^{(i)} \ge x_{\gamma+1}^{(i)}$ and if $b_{\gamma}^{(i)} \neq b_{\gamma+1}^{(i)}$, then $b_{\gamma}^{(i)} - b_{\gamma+1}^{(i)} \ge x_{\gamma+1}^{(i)}$.

By Lemma 1 and the proof of Lemma 5 there exist $j_L: G_L^{(1)} \cong G_L^{(2)}$ and $j_R: G_R^{(1)} \cong G_R^{(2)}$.

For any $a \in G_L^{(i)}$ let $K_{L,a}^{(i)} = [a_0^{(i)} - ax_\alpha^{(i)} + 1, a_0^{(i)} - (a-1)x_\alpha^{(i)}]$. For any $a \in G_R^{(i)}$ let $K_{R,a}^{(i)} = [a_0^{(i)} + (a-1)x_\alpha^{(i)} + 1, a_0^{(i)} + ax_\alpha^{(i)}]$. Now let $T_\alpha^{(i)} \cap T^{(i)}(t^{(i)}) = \{K_{L,a}^{(i)} : a \in G_L^{(i)}\} \cup \{K_{R,a}^{(i)} : a \in G_R^{(i)}\}$ and let $J(K_{L,a}^{(1)}) = K_{L,j_L(a)}^{(2)}$ and $J(K_{R,a}^{(1)}) = K_{R,j_R(a)}^{(2)}$.

We have now finished construction of two trees $T^{(i)}$ and a J satisfying (1)—(5).

For any $\bar{x}^{(1)} \in U^{(1)} - \text{monad}(\mathcal{H}^{(1)})$ let $B^{(1)} = \{t_{\alpha}^{(1)} : t_{\alpha}^{(1)} \in T_{\alpha}^{(1)}, \alpha < \lambda\} \in \mathcal{B}(T^{(1)})$ such that $\bar{x}^{(1)} \cap (\cap B^{(1)}) \neq \emptyset$. Then let $I(\bar{x}^{(1)}) = \bar{x}^{(2)} \in U^{(2)} - \text{monad}(\mathcal{H}^{2)})$ if $\bar{x}^{(2)} \cap (\cap \{J(t_{\alpha}^{(1)}) : t_{\alpha}^{(1)} \in B^{(1)}\}) \neq \emptyset$.

If there are two $B^{(1)}, C^{(1)} \in \mathcal{B}(T^{(1)})$ such that $\bar{x}^{(1)} \cap (\cap B^{(1)}) \neq \emptyset$ and $\bar{x}^{(1)} \cap (\cap C^{(1)}) \neq \emptyset$, then $B^{(1)}$ and $C^{(1)}$ are adjacent branches. That means if $B^{(1)} = \{t_{\alpha}^{(1)} : t_{\alpha}^{(1)} \in T_{\alpha}^{(1)}, \alpha < \lambda\}$, $C^{(1)} = \{s_{\alpha}^{(1)} : s_{\alpha}^{(1)} \in T_{\alpha}^{(1)}, \alpha < \lambda\}$ and $t_{\alpha+1}^{(1)} = [a_{\alpha+1}, b_{\alpha+1}], s_{\alpha+1}^{(1)} = [c_{\alpha+1}, d_{\alpha+1}]$ such that $\exists \alpha_0 < \lambda \ (t_{\alpha_0} \prec s_{\alpha_0})$, then $\langle b_{\alpha+1} : \alpha < \lambda \rangle$ and $\langle c_{\alpha+1} : \alpha < \lambda \rangle$ are both eventually constant and $c_{\alpha+1} = b_{\alpha+1} + 1$ for $\alpha \ge \alpha_0$. Since J satisfies (5), $\{J(t_{\alpha}^{(1)}) : \alpha < \lambda\}$ and $\{J(s_{\alpha}^{(1)}) : \alpha < \lambda\}$ are also adjacent branches in $\mathcal{B}(T^{(2)})$. Hence $\bigcap_{\alpha < \lambda} J(t_{\alpha}^{(1)})$ and $\bigcap_{\alpha < \lambda} J(s_{\alpha}^{(1)})$ both can only intersect the same $U^{(2)}$ -monad. That implies I is a one to one map. Obviously I is onto

I is an ordermorphism from $U^{(1)}$ -monad $(\mathcal{H}^{(1)})$ to $U^{(2)}$ -monad $(\mathcal{H}^{(2)})$ because J is a tree isomorphism and satisfies property (5). \Box

Lemma 9 If $U = H/\mathbb{N} \subseteq \mathcal{H}$ and $V \neq H'/\mathbb{N} \subseteq \mathcal{H}'$, then $U-monad(\mathcal{H})$ is not homeomorphic to $V-monad(\mathcal{H}')$.

Proof: $U-\text{monad}(\mathcal{H}) \cong [0,1]$, the unit interval of the reals. But $V-\text{monad}(\mathcal{H}')$ is not separable. \Box

Lemma 10 Let $U \subseteq \mathcal{H}$ and $V \subseteq \mathcal{H}'$ be two cuts. If $ci(U) \neq ci(V)$, then U-monad (\mathcal{H}) is not homeomorphic to V-monad (\mathcal{H}') .

Proof: Every $x \in U$ -monad(\mathcal{H}) has character $\chi(x) = ci(U)$ and every $y \in V$ -monad(\mathcal{H}') has character $\chi(y) = ci(V)$. \Box

Lemma 11 If $U \subseteq \mathcal{H}$ and $V \subseteq \mathcal{H}'$ are two cuts such that $U = x/\mathbb{N}$ for some $x \in \mathcal{H}$ and $ci(V) = \omega$ but $V \neq y/\mathbb{N}$ for any $y \in \mathcal{H}'$, then $U-monad(\mathcal{H})$ is not homeomorphic to $V-monad(\mathcal{H}')$.

Proof: U-monad(\mathcal{H}) is locally separable but V-monad(\mathcal{H}') is not. \Box

Proof of Theorem 1:

- " \Longrightarrow " By Lemma 9, Lemma 10 and Lemma 11.
- " \Leftarrow " By Lemma 6, Lemma 7 and Lemma 8.

Corollary 1 If $card(\mathcal{H}) = \omega_1$, then \mathcal{H} can produce exactly four different monad topologies. They are \mathbb{N} -monad(\mathcal{H}), H/\mathbb{N} -monad(\mathcal{H}), x/\mathbb{N} -monad(\mathcal{H}) for some $x \in$ $H/\mathbb{N} - \mathbb{N}$ and U-monad(\mathcal{H}) for some cut U in \mathcal{H} such that $ci(U) = \omega$ but $U \neq x/\mathbb{N}$ for any $x \in \mathcal{H}$.

In order to show that the assumptions of κ -saturation and cardinality κ about the hyperlines in this section are necessary in some sense we give two examples

Example 1: In [M, Theorem 8] A. W. Miller built an ω_1 -saturated nonstandard universe under continuum hypothesis in which there exists a hyperinteger h such that $card([1, h]) = \omega_1$ but if y is another hyperinteger such that $y > h^n$ for every $n \in \mathbb{N}$, then $card([1, y]) = \omega_2$.

Let H be any hyperinteger such that $H > h^n$ for every $n \in \mathbb{N}$. Let $U = \mathbb{N}$ and $V = h^{\mathbb{N}}$, then $ci(U) = ci(V) = \omega_1$.

But the left end point of U-monad(\mathcal{H}) has a neighborhood of cardinality ω_1 and V-monad(\mathcal{H}) is locally ω_2 .

So U-monad(\mathcal{H}) is not homeomorphic to V-monad(\mathcal{H}).

Example 2: In [Ca, Chapter 4] M. Canjar constructs low-saturated ω -ultrapowers of \mathbb{N} within the model obtained by adding κ many random reals into a model of *GCH*.

(In that model $2^{\omega} = \kappa > \omega_1$.) In his low-saturated ultrapower *N, U, the union of all the skies below the top one, is κ -saturated but for any H in the top sky there exists a cut W with both cofinality and coinitiality ω_1 such that $U \subseteq W \subseteq [1, H] = \mathcal{H}$.

Let V be a cut in \mathcal{H} such that $ci(V) = ci(U), V \subseteq U$ and $V \neq U$. Then $V-\text{monad}(\mathcal{H})$ has a closed κ -saturated initial segment. But every segment of $U-\text{monad}(\mathcal{H})$ is not κ -saturated.

So U-monad(\mathcal{H}) is not ordermorphic or anti-ordermorphic to V-monad(\mathcal{H}).

References

- [Ca] Canjar M., "Countable ultraproducts without CH", Annals of Pure and Applied Logic, 37(1988), 1—79.
- [CK] Chang C. C. and Keisler H. J., Model Theory, North-Holland, 1973. (Third edition, 1990.)
- [KKLM] Keisler H. J., Kunen K., Leth S. and Miller A. W., "Descriptive set theory over hyperfinite sets", The Journal of Symbolic Logic, Vol. 54, No. 4 (1989), 1167—1180.
- [KL] Keisler H. J. and Leth S., "Meager sets on the hyperfinite time line", The Journal of Symbolic Logic, Vol. 56, No. 1 (1991), 71—102.
- [M] Miller A. W., "Set theoretic properties of Loeb measure", The Journal of Symbolic Logic, Vol. 55, No. 3 (1990), 1022—1036.
- [SB] Stroyan K. D. and Bayod J. M., Foundation of Infinitesimal Stochastic Analysis, North-Holland, 1986.
- [To] Todorčević S., "Trees and linearly ordered sets", pp. 235—293 in Handbook of Set Theoretic Topology, ed. by K. Kunen and J. E. Vaughan, North-Holland 1984.

Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA.