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Abstract

In an wj—saturated nonstandard universe a cut is an initial segment of the
hyperintegers, which is closed under addition. Keisler and Leth in [KL] intro-
duced, for each given cut U, a corresponding U—-topology on the hyperintegers
by letting O be U—open if for any x € O there is a y greater than all the ele-
ments in U such that the interval [z —y,z+y] C O. Let U be a cut in a hyperfi-
nite time line H, which is a hyperfinite initial segment of the hyperintegers. The
U—monad topology of H is the quotient topology of the U—topological space
‘H modulo U. In this paper we answer a question of Keisler and Leth about
the U—monad topologies by showing that when H is k—saturated and has
cardinality &, (1) if the coinitiality of U; is uncountable, then the U;—monad
topology and the Us—monad topology are homeomorphic iff both U; and Us
have the same coinitiality; (2) H can produce exactly three different U —monad
topologies (up to homeomorphism) for those U’s with countable coinitiality.
As a corollary ‘H can produce exactly four different U —monad topologies if the
cardinality of H is w; .

Throughout this paper we work within w;—saturated nonstandard universes. We
let M be a nonstandard universe and *N be the set of all hyperintegers in M which
contains N, the set of all standard positive integers. Let H € *N — N; we call
H ={n € *N: x <H} a hyperfinite time line or a hyperline for short. We always let
H be the largest element of H. Let [a,b] = {x € H : a < x < b} be an interval in H.

Let us recall that a cut in H is an initial segment of H which is closed under
addition. A cut must be external. Let U be a cut in H. A subset O of H is called
U—open if for any z € O there is a y € H — U such that [z — y,xz +y] C O. All
U—open sets form a U—topology on H.

Let UbeacutinHandz € H. /U ={ye H :Vze U (y <x/z)}, which is
also a cut.

cf(U), the cofinality of U, = min{card(F) : F C U and F is cofinal in U}.

ci(U), the coinitiality of U, = min{card(F) : F C H — U and F is coinitial in
H—U}.

Let U be a cut in ‘H. For each x € ‘H we let U—monad(z), the U—monad of z,
={y€eH:|y—z| €U} Forasubset B of H U—monad(B)= {U—monad(zx) : z €

B}. By a U—monad we mean a U—monad(x) for some z € H.



Since the U—topology on H is not Hausdorff, it is sometimes convenient to consider
the quotient space of U—topological space H induced by the map x — U—monad(z).
This is called the U—monad topology of H in [KL]. We denote it by U—monad(#).

The question about U—monad topologies in [KL]:

For which U and V' are U—monad(H) and V —monad(#) homeomorphic?

In this paper we answer the question when H is k—saturated and has cardinality
k. For background in model theory see Chang and Keisler [CK], for background
in nonstandard universes see Stroyan and Bayod [SB|, and for hyperfinite sets see
[KKLM]. This paper was developed under the supervision of H. J. Keisler, to whom
the author is deeply grateful.

Throughout this paper we let card(A) mean external cardinality of A and *card(A)
mean internal cardinality of A if A is an internal set. When A is hyperfinite, *card(A)

is a hyperinteger.

Theorem 1 Let H be k—saturated (as an ordered set) and card(H) = k. Let U and
V' be two cuts in H. Then U—monad(H) is homeomorphic to V—monad(H) if and
only if one of the following is true:

(1) U= H/N and V = H/N.

(2) U # H/N and V' # H/N but there are x,y € H such that U = z/N and
V =y/N

(3) U # /N and V # y/N for any z,y € H but ci(U) = ci(V).

The proof of the theorem is contained in the next eleven lemmas.

For any A, B € U—monad(H) let A < B mean Ya € A Vb € B(a < b). Then
U—monad(H) is an ordered topological space with order topology. For convenience
we consider an ordermorphism instead of a homeomorphism between two monad
topological spaces.

From now on we always use “=2” to denote an ordermorphism between two linear

orders. And we always let ¢ = 1, 2.

Lemma 1 (Hausdorff 1914) Let L) be two k—saturated dense linearly ordered
sets of power k such that one of the following is true:

(1) LD both have two end points.

(2) LY both have no end points.



(8) LY both have only right end points.
(4) LW both have only left end points.
Then L) =2 2,

Lemma 2 Let LW be two linearly ordered sets as in Lemma 1. Let F® be a con-
ver segment of L respectively such that F®) both have left (right) end points and
cf(FW) = cf(F®) (ci(FM) = ci(F®)). Then FM = F?),

Proof: ~ We can assume cf(F®) = \ < x by lemma 1.

Let (z® : a < A) be two strictly increasing sequences in F(®) such that the
sequences are cofinal in F® respectively. Let F() = {z € F() . 2 <O 5O},

Now we build an ordermorphism I from F®) to F®),

We can assume that x(()i) are not left end points. By Lemma 1 FU(I) = FO(Q). Let
I|F0(1) be just this ordermorphism.

Assume that we have I|Fﬁ(1) : Fél) — Fﬁ(Z) for every (8 < a.

Case 1: a=/[+1.
Let F% = (F() — Féz)) U{x(ﬁi)}. Then there exists an I’ : F() 2 F(2) by the fact
that 20 > 2 and by Lemma 1. Let I|F() = I|F§"UT".

Case 2: « is a limit ordinal below .
o) () _ () : (i)Y _ ()Y
Let FyY) = FV — Ugeo F5' - Since cf (Ug<a F') = cf (a) < K, ci(FV) = Kk by

>~

k—saturation. Since both Fo(f) have right end points z{!), there exists an I’ : FO(f)
F® by Lemma 1. Let I|E) = (I|Ugeq F5))UT'.
Now I = U<y I|F,V is the ordermorphism from F() to F(?). O

From now on we always assume the hyperlines mentioned below are k—saturated

and have cardinality «.

Lemma 3 Let U be a cut in H such that ci(U) = k. Then U—monad(H) is k—saturated

(as an ordered set) and has two end points.
Proof: Easy. O

Lemma 4 Let U9 C H® be two cuts such that ci(UY) = ci(U®) = k. Then
UW—monad(HV) =2 UP —monad(H® ).

Proof: By Lemma 1 and Lemma 3. 0O



Lemma 5 HY 2 HO for any two hyperlines H®

Proof:  Since ci(N) = x, then N—monad(H#") = N-monad(H?) by Lemma 4.
Since the left end points of N—monad(H®) are the copy of N, the right end points
are the copy of the reverse of N and every other point is just a copy of the integers

Z, then we can easily find an ordermorphism from H® to . O

Lemma 6 Let U = H®O/N. Then UM —monad(H™M ) =2 [0,1] = U® —monad(H? ),

where [0, 1] is the unit interval of the reals.
Proof: Easy. O

Lemma 7 IfU® = 2@ /N for some z® € H® and UD £ HO N, then UY —monad(HV) =
U® —monad(H®).

Proof:  Let G = {a € H : € H®}. Then both G are hyperlines. Hence
there exists an ordermorphlsm J: G 2 G® by Lemma 5.

For every a € GY if a # maxG®, let K = [(a — 1)2® + 1,a2®]; if a
max G, let K = [(a—1)z® +1, H®]. Then for any a € G) U® —monad(K (")
[0,1], the unit interval of the reals. So there exists a j, : U —monad(KV)
U(Q)—monad(ng()a)) :

Now I = U,cq) Ja is the ordermorphism from U® —monad(H ") to U® —monad (H?).
O
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Lemma 8 Let UY be a cut in H respectively such that U # 2% /N for any 2 €
HE and ci(UW) = ci(UP) = . Then UV —monad(HM) =2 U —monad(H?).

Proof:  Assume A < k (the case A = k has been solved in Lemma 4).

Let (xfj) : oo < A) be a strictly decreasing sequence in H® respectively such that
it is coinitial in H® — U®, 2l = HO and :cg>/x£j)+1 > n for any a < A and any
n € N.

For convenience we need a notion of trees. (See [To] for the basic notation.)

Let T be any tree of height \. For any o < A T, is the a—th level of T.
Tl = UpcoqTp. Forany t € T, T(t) ={s €T :s <ptort <ps} Bisa branch of
T iff B is a maximal linearly ordered subset of 7" and B(T') = {B : B is a branch of
T}.



Now we construct two partition trees 7" of H® of height A such that:

(1) vt € T® (t is a convex segment of H®).

(2) Vs, t € T (s #t — st =0).

B)VEeTOVB (a<f<A—t=U{s:se T NTO)}).

(4) if « = B+ 1, then V¢ € T (t = [a,b] such that ) <b—a+1 < 220).
Let s,t € T{V). We define s < tiff Vo € sVy € t (z < y)

(5) there exists a tree isomorphism J from T(M to T such that

VaVs,t € TV (s <t «» J(s) < J(t)).

If we have these two trees and an isomorphism J which satisfies (5), then for any
branch B € B(T¥), N B can only intersect one U® —monad because any two points
in N B have distance inside U® by (4). With the help of the isomorphism J we can

build an ordermorphism between U®) —monad(H®) since J satisties (5).

Let TV = {H®} and J(HD) = H®.
Assume we have T(|a and J|a, a tree isomorphism from T™M|a to T |« which
satisfies (5).

Case 1:  « is a limit ordinal below A.

Let TV = {NB : B € B(T®|a)}. By k—saturation B # ) for any B €
B(TW|a). Let NB € TV, where B = {t5: t5 € Tﬁ(l) and § < a}. We let J(NB) =
Ng<a 7 (t3). Then J|a+ 1 is a tree isomorphism from T™W|a 4+ 1 to T™|a 4 1 which
satisfies (5).

Case 2: a=0F+1and =0 +1.

Let t(i) ET(i) t® = [a®,b®] such that J(tV) = tZ). Let G® :{xE’H")
a® + zz® < b}, Then there exists a j : G =2 G by the fact that G are

hyperlines and by Lemma 5. For every a € G® 75 max GO, let K = [a® +
(a—1)2® + 1,09 4 az?]; if a = max GO, let K ) = [aC ( 1) O +1 b(i)]

Let TONT® (D) = { K aEG(i)}andJ( é): foranyaGG

Case 3: a=3+1and 5 is a limit ordinal.

Let t0) € Tﬁ() such that t® = ﬂ{t = [al,60)] € TO, ~ is a successor
ordinal and v < 8} and J(tM) = ¢, Then one of the followings has to be true:

(1) both ¢® have no end points.



(2) both t® have left end points (if and only if ( 7+1 .y < [) is eventually
constant.)

(3) both %) have right end points (if and only if (b(w)rl v < [) is eventually
constant.)

Let us assume that ¢ both have no end points. (the proofs of the other two cases
are just half of the proof of this case.)

By k—saturation cf(t%)) = ci(t?) = k.

Pick an a(()i) e t0). Let GY = {a e HD : al’ —az € tO} and GV = {a €
HD ;o) + ar® € 9}, Then cf( ) =cf(G (i)) = k because if a{) # a7+1, then
o’y —al) > Igg and if b9 # b then b — b1 > 21

By Lemma 1 and the proof of Lemma 5 there exist j, : G(Ll) = G(LZ) and jg :
G =

For any a € G(Li) let Kg)a = [a(()i) —azl) + 1,a) — (a — 1)z¥]. For any a € G
let K5 = [al’ + (a — 1)z +1,a§) + az)]. Now let TO NTO 0y = {K)

GYYU{K, a € G} and let J(KY) = KPP} and J(KG)) = K3 .
We have now finished construction of two trees T@ and a J satisfying (1)—(5).

For any z() ¢ UW monad(’Hl) let BO = {#0 : ¢ e TV o < A} €
B(TM) such that z(! )ﬂ( (D) # (. Then let I( M) = 2?2 ¢ U® —monad(H?)
NN{T(E) -t € })75@

If there are two B, CM) € B(TW) such that z() N (N BW) # (/)andi: (1) ﬂ(ﬂC’ D) #£

M, then BM and O are adjacent branches. That means if B = {¢() . () ¢
Té),a < )‘}70 = {S&I) : S(al) € Tc(zl)ao‘ < )‘} and ta—l—l = [aa+17 a+1]75a+1 =

[Cat1,dat1] such that oy < A (ta, < Sap), then (bogr a0 < A) and (coq1 @ < A
are both eventually constant and ¢,y 1 = boy1 + 1 for @ > «ag . Since J satisfies (5),
{J(t1) : o < A} and {J(s()) : @ < A} are also adjacent branches in B(T?)). Hence
Nacr J(t1) and N,y J(s(V) both can only intersect the same U?—monad. That
implies I is a one to one map. Obviously [ is onto

I is an ordermorphism from U™ —monad(H™M) to U® —monad(H?) because .J

is a tree isomorphism and satisfies property (5). O

Lemma 9 IfU = H/N C H and V # H'/N C H', then U—monad(H) is not
homeomorphic to V—monad(H').

Proof:  U-—monad(#) 2 [0, 1], the unit interval of the reals. But V—monad(H’)

is not separable. O



Lemma 10 LetU C H andV C H' be two cuts. If ci(U) # ci(V'), then U—monad(H)

is not homeomorphic to V—monad(H').

Proof: Every # € U—monad(H) has character x(z) = ¢i(U) and every y €
V —monad(#') has character x(y) = ci(V). O

Lemma 11 IfU CH and V CH' are two cuts such that U = x/N for some x € H
and ci(V) = w but V # y/N for any y € H', then U—monad(H) is not homeomorphic
to V—monad(H').

Proof:  U—monad(#) is locally separable but V' —monad(#') is not. O

Proof of Theorem 1:
=7 By Lemma 9, Lemma 10 and Lemma 11.
“—=" By Lemma 6, Lemma 7 and Lemma 8. O

Corollary 1 If card(H) = wiy, then H can produce exactly four different monad
topologies. They are N—monad(H), H/N—monad(H), x/N—monad(H) for some x €
H/N —N and U—monad(H) for some cut U in H such that ci(U) = w but U # x/N
for any x € H.

In order to show that the assumptions of k—saturation and cardinality x about

the hyperlines in this section are necessary in some sense we give two examples

Example 1:  In [M, Theorem 8] A. W. Miller built an w;—saturated nonstandard
universe under continuum hypothesis in which there exists a hyperinteger A such that
card([1, h]) = wy but if y is another hyperinteger such that y > A" for every n € N,
then card([1,y]) = ws .

Let H be any hyperinteger such that H > h" for every n € N. Let U = N and
V = AN, then ci(U) = ci(V) = wy.

But the left end point of U—monad(#) has a neighborhood of cardinality w; and
V —monad(#) is locally wy .

So U—monad(H) is not homeomorphic to V —monad(#).

Example 2:  In [Ca, Chapter 4] M. Canjar constructs low-saturated w—ultrapowers

of N within the model obtained by adding x many random reals into a model of GCH.
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(In that model 2¥ = k > w;.) In his low-saturated ultrapower *N, U, the union of all
the skies below the top one, is k—saturated but for any H in the top sky there exists
a cut W with both cofinality and coinitiality w; such that U C W C [1, H] = H.
Let V' be a cut in H such that ¢i(V) = ci(U),V C U and V # U. Then
V —monad () has a closed k—saturated initial segment. But every segment of U—monad(H)
is not k—saturated.

So U—monad(H) is not ordermorphic or anti-ordermorphic to V' —monad(#).
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