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4 Quantum logic as motivated by quantum computing

J. Michael Dunn∗, Tobias J. Hagge†, Lawrence S. Moss†‡ and Zhenghan Wang†§

1 Introduction

Our understanding of Nature comes in layers, so should the development of logic. Classic
logic is an indispensable part of our knowledge, and its interactions with computer science
have recently dramatically changed our life. A new layer of logic has been developing ever
since the discovery of quantum mechanics. G. D. Birkhoff and von Neumann introduced
quantum logic in a seminal paper in 1936 [BV]. But the definition of quantum logic varies
among authors (see [CG]). How to capture the logic structure inherent in quantum me-
chanics is very interesting and challenging. Given the close connection between classical
logic and theoretical computer science as exemplified by the coincidence of computable
functions through Turing machines, recursive function theory, and λ-calculus, we are
interested in how to gain some insights about quantum logic from quantum computing.
In this note we make some observations about quantum logic as motivated by quantum
computing (see [NC]) and hope more people will explore this connection.

The quantum logic as envisioned by Birkhoff and von Neumann is based on the lattice
of closed subspaces of a Hilbert space, usually an infinite dimensional one. The quantum
logic of a fixed Hilbert space H in this note is the variety of all the true equations with
finitely many variables using the connectives meet, join and negation. Quantum com-
puting is theoretically based on quantum systems with finite dimensional Hilbert spaces,
especially the states space of a qubit C2. (Actually the qubit is merely a convenience.
If C2 is replaced by any other Cn, n ≥ 3, then the same quantum computing theory will
be obtained.) The n-qubit states space is C

2n

. It is interesting to understand where the
power of quantum computers could come from. One possible source is the exponential
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growth of the dimensions of the n-qubit states space. Another possibility is the entangle-
ment of quantum states in C2n

when n ≥ 2. Therefore, we ask for a logical framework to
capture the above two sides of quantum computing. Those questions are only concerned
with the static part of quantum computing. To include the quantum gates into a logical
framework, we will need a temporal logic. Hence as a first approximation we ask whether
or not the quantum logics of Cn for all n’s are the same, and what are their relations
with the quantum logic of infinite dimensional Hilbert spaces. The quantum logic of C

reduces to exactly the classical Boolean logic. Since the distribution law does not hold
in the quantum logic of C2, therefore, quantum logic of C2 is different from that of C,
hence different from classical propositional logic. In this note we show that the quantum
logic of C2n

is always different from that of C2n+1

for any n ≥ 0. We also observe that
quantum logic is not a finite-valued logic, and QL(Cn) is decidable for any n. In the end,
we discuss some open problems.

2 QL(C2n

) 6= QL(C2n+1
)

Given a Hilbert space H, let Lc(H) be the lattice of all closed subspaces of H with set
inclusion as the partial order relation ≤, and for any two subspaces p, q ∈ Lc(H), the
meet p ∧ q is the set intersection, and the join p ∨ q is the closure of the span of p ∪ q.
The closure is necessary in the definition of join when H is infinitely dimensional. In
this case, the span of two subspaces is not necessarily closed. For any closed subspace
p, its negation p̄ is the orthogonal complement. With the above defined connectives
∧,∨, ¯ on Lc(H), Lc(H) becomes an orthomodular lattice. The maximum and minimum
of Lc(H) are H and {0}, respectively. We will denote them by 1 and 0. Recall that an
orthomodular lattice is not necessarily distributive. It is an ortholattice satisfying the
following orthomodular law:

p ∧ [p̄ ∨ (p ∧ q)] = p ∧ q. (1)

The orthomodular law would follow from the distribution law if it holds, so the ortho-
modular law is a weakening of the distribution law. To see the failure of the distribution
law p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r) when dim(H) ≥ 2, choose q and r to be two distinct
lines, and p to be a different line in the plane spanned by q, r. Then (p ∨ q) ∧ (p ∨ r) is
the plane spanned by q, r, while p ∨ (q ∧ r) is just p. Note also that when dim(H) = 1,
then Lc(H) is just {0, 1}.

A term T (p, q, · · · , r) is any formula with finitely many variables p, q, · · · , r using
connectives ∧,∨, .̄ An equation T1(p, q, · · · , r) = T2(p, q, · · · , r) in Lc(H) is true if the
values of the two terms T1 and T2 always agree when the variables p, q, · · · , r range over
all Lc(H).

Definition Given a Hilbert space H, the quantum logic QL(H) is the variety of all true
equations in Lc(H).
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In the remaining part of this section, H will be always finitely dimensional. So it will
be Cn for some n, hence every subspace is closed.

Theorem 1 1) QL(C2) 6= QL(C4).
2) For any i ≥ 0, there exists an equation β ∈ QL(C2k

) for any k ≤ i, and β is not
in any QL(C2l

) if l > i.

We start with some lemmas.

Lemma 2 1) The negation ¯ is classical, i.e.
a) ¯̄p = p.

b) p ∧ q = p̄ ∨ q̄.

c) p ∨ q = p̄ ∧ q̄.

d) p ∧ p̄ = 0.

2) Two subspaces p = q if and only if (p∨ q)∧ (p̄∨ q̄) = 0, or equivalently if and only
if (p̄ ∧ q̄) ∨ (p ∧ q) = 1.

Proof: The proof of 1) is left to the readers.
To prove 2), denote by d(s) the dimension of a subspace s. If p = q, it is a straight-

forward check. For the other direction, suppose (p ∨ q) ∧ (p̄ ∨ q̄) = 0. Note that
1 = (p∨q)∨(p ∨ q) ⊆ (p∨q)∨(p ∧ q) = (p∨q)∨(p̄∨ q̄). It follows that 1 = (p∨q)∨(p̄∨ q̄).
Computing the dimension of (p∨q)∨(p̄∨q̄) using the formula d(s∨t) = d(s)+d(t)−d(s∧t),
we obtain

n = d(p ∨ q) + d(p̄ ∨ q̄) − 0 = d(p) + d(q) − d(p ∧ q) + n − d(p ∧ q).

Hence d(p) + d(q) = 2d(p ∧ q). It follows that d(p ∧ q) = d(p) = d(q). Since p ∧ q is a
subspace of p, and q, we have p ∧ q = p = q.

To prove Theorem 1, we will employ the failure of the distribution law using Lemma
2 (2). Given three variables p, q, r, we define the distributivity test formula α(p, q, r) as
follows: let a = p ∨ (q ∧ r) and b = (p ∨ q) ∧ (p ∨ r), and then define

α(p, q, r) = (a ∨ b) ∧ (ā ∨ b̄).

Note that a ≤ b, it follows that α(p, q, r) = b ∧ ā = [(p ∨ q) ∧ (p ∨ r)] ∧ [p̄ ∧ (q̄ ∨ r̄)] ⊆ p̄.

The distribution law holds if and only if α is always 0. Therefore, if α does not vanish for
some choice of p, q, r in a Hilbert space, then the distribution law fails for the quantum
logic of this Hilbert space.

Lemma 3 Given any three subspaces p, q, r of Cn, we have dim(α(p, q, r)) ≤ n
2
.
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Proof: We know that α(p, q, r) is a subset of p̄. So if dim(p) > n
2
, the lemma holds. Now

suppose dim(p) ≤ n
2
. Since a ⊆ b, so a is perpendicular to b̄. Hence ᾱ = a ∨ b̄ = a ⊕ b̄.

Writing out ᾱ, we have ᾱ = [p̄∧ q̄)∨ (p̄∧ r̄)]⊕ [p∨ (q∧ r)]. Let d(s) denote the dimension
of any subspace s. A direct computation of the dimension of α(p, q, r) results in the
following formulas:

d(ᾱ) = d(p) + d(q ∧ r) − d(p ∧ q ∧ r) + d(p̄ ∧ q̄) + d(p̄ ∧ r̄) − d(p̄ ∧ q̄ ∧ r̄)

= d(p) + d(q ∧ r) − d(p ∧ q ∧ r) + d(p ∨ q ∨ r) + n − d(p ∨ q) − d(p ∨ r)

= d(q ∧ r) − d(p ∧ q ∧ r) + d(p ∨ q ∨ r) + n − d(p) − d(q) + d(p ∧ q) − d(r) + d(p ∧ r)

= n − d(p) + d(p ∨ q ∨ r) − d(q) − d(r) + d(q ∧ r) + d(p ∧ q) + d(p ∧ r) − d(p ∧ q ∧ r)

= [n − d(p)] + [d(p ∨ q ∨ r) − d(q ∨ r)] + [d(p ∧ q) + d(p ∧ r) − d(p ∧ q ∧ r)].

The second and third brackets are non-negative numbers. Since d(p) ≤ n
2
, so n−d(p) ≥ n

2
.

Hence d(ᾱ) ≥ n
2
, and the lemma follows.

Lemma 4 For C2, α(p, q, r) is not 0 if and only if p, q, r are three distinct lines. Fur-
thermore, α(p, q, r) is either 0 or p̄.

Proof: Since q and r are symmetric, so we need to check only the following cases:
p = 0, 1, q = 0, 1, p = q, q = r, and p, q, r are three distinct lines. Verifications are left
as exercises. When α(p, q, r) is not 0, then it is a one-dimensional subspace of p̄. Since
p̄ is also one-dimensional, so α(p, q, r) equals p̄ in this case.

Lemma 5 Given two Hilbert spaces V ⊂ W , then QL(V ) ⊇ QL(W ).

Proof: Suppose an equation T1 = T2 of k variables does not hold for subspaces p1, · · · , pk

of V . Then this equation will not hold for the subspaces pi⊕ V̄ , i = 1, · · · , k of W , where
V̄ is the orthogonal complement of V in W . This completes the proof.

Proof of Theorem 1:

(1): By Lemma 5, it suffices to find a true equation in QL(C2), but not in QL(C4).
Let β(p, q, r, s) = α(α(p, q, r), α(p, q, r)∧ p̄, s). We claim β is always 0 in C

2, but fails for
a certain choice of p, q, r, s in C4. First we verify that β = 0 in C2. By Lemma 4, α(p, q, r)
is either 0 or p̄. So is α(p, q, r) ∧ p̄. It follows from Lemma 4 that β = 0 since either
at least one of α(p, q, r), α(p, q, r) ∧ p̄ is 0 or they are both p̄. To show β is not always
0 in C4, let {ei, i = 1, 2, 3, 4} be an orthonormal basis of C4 and p = span of {e1, e2},
q = p̄, r = span of {e1, e2 + e3}, and s = span of {e1, e3 + e4}. Direct computation shows
β(p, q, r, s) = span of {e4}, which falsifies β = 0 in C4.

(2) This general argument will give a different proof for part (1). First we explain the
restriction of a formula to a new variable. Suppose T is a formula for variables in Lc(C

n),
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then the restriction of T to a new term α, denoted by T |α, is the following formula: first
using the De Morgan law, we assume that all negations ¯ are applied to single variables,
next we replace each variable p and p̄ by p ∧ α and p̄ ∧ α, respectively. Inductively, we
define

αm(pm, qm, rm) = α|αm−1(pm, qm, rm),

and α1(p1, q1, r1) = α(p1, q1, r1), α
m−1 = αm−1(pm−1, qm−1, rm−1). Lemma 3 implies that

dim(αm(pm, qm, rm)) ≤
dim(αm−1(pm−1, qm−1, rm−1))

2
≤ · · · ≤

n

2m

if dim(H) = n. In QL(C2i

), dim(αi+1) ≤ 2i

2i+1 < 1, so αi+1 = 0 which gives a true

equation in C
2i

. By Lemma 5, this equation is also true for any k ≤ i. To show it is
not true for C2k+1

, we notice that if p, q, r are different subspaces of dimension n
2

and
each pair has trivial intersection in Cn, then dimα(p, q, r) = n

2
if n is even. By choosing

subspaces in C
2k+1

this way, we have dim(αi+1) = 2i+1

2i+1 = 1. Now (2) follows from Lemma
5.

3 Decidability of QL(Cn)

The modest observation here is that the first-order theory of each lattice L(Cn) may be
reduced to the first-order theory of the reals. Hence, by Tarski’s Theorem [T], we have
the decidability of the first-order theory of each L(Cn). Moreover, we have a stronger
result: the decidability is uniform in n.

Theorem 6 There is an effective procedure which, given a natural number n and a sen-
tence ϕ in the first-order language of complemented lattices, gives a sentence ϕ∗ in the
first-order theory of R such that the following are equivalent:

1. L(Cn) |= ϕ.

2. R |= ϕ∗.

Corollary 7 The first-order theories of the lattices L(Cn) are decidable (uniformly).

We sketch a proof of this result. The general result would be messy to write out
in full, and so we content ourselves with a significantly complicated example and some
general remarks.

Suppose the we want to know whether or not

L(Cn) |= (∀x, y, z) (x ∧ y) ∨ z = y ∧ (z̄ ∨ x). (2)
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The first thing to do is to add new variables a, b, c, d, e, f for the subterms on both sides,
and then write the following:

L(Cn) |= (∀x, y, z) (∀a, b, c, d, e, f)
[(a = x ∧ y) ∧ (b = ā) ∧ (c = b ∨ z)
∧(d = z̄) ∧ (e = d ∨ x) ∧ (f = y ∧ e)] → (c = f)

(3)

The point of this is that the atomic formulas in (3) are very simple. In essence, we have
taken the complex terms of (2) and “flattened” them out. This move has nothing to do
with the subject at hand, and it is available (and useful) in other contexts. In any case,
the reader should observe that (2) and (3) are equivalent.

At this point, we recall that the subspaces of Cn are the kernels of n × n complex
matrices. Our main move in this note is to replace a quantifier (∀x) over subspaces of
Cn with quantification over n2 variables (∀x11, . . . , xnn) over C.

In what follows, we shall use the notation x̂ for the (n2)-tuple of variables x11, . . . , xnn.
Further, we shall use the notation ~v to denote an n-tuple v1, . . . , vn of variables. We write
â~v = ~0, for example, to mean the following:

(a11v1 + · · ·+ a1nvn = 0) ∧ · · · ∧ (an1v1 + · · · + annvn = 0)

Now we can render (3) as an assertion about C alone.

C |= (∀x̂, ŷ, ẑ, â, b̂, ĉ, d̂, ê, f̂)

[(∀~v)(â~v = ~0 ↔ (x̂~v = ~0 ∧ ŷ~v = ~0))

∧(∀~v)(b̂~v = ~0 ↔ (∀~w)(â ~w = ~0 → ~v · ~w = 0))

∧(∀~v)(ĉ~v = ~0 ↔ (∃~w1, . . . , ~wn, r1, . . . , rn)∧
i(b̂ ~wi = ~0 ∨ ẑ ~wi = ~0) ∧

∧n

j=1
(vj =

∑
i riw

i
j))

∧(∀~v)(d̂~v = ~0 ↔ (∀~w)(ẑ ~w = ~0 → ~v · ~w = 0))

∧(∀~v)(ê~v = ~0 ↔ (∃~w1, . . . , ~wn, r1, . . . , rn)∧
i(d̂ ~wi = ~0 ∨ x̂ ~wi = ~0) ∧

∧n

j=1
(vj =

∑
i riw

i
j))

∧(∀~v)(f̂~v = ~0 ↔ (ŷ~v = ~0 ∧ ê~v = ~0))]

→ (∀~v)(ĉ~v = ~0 ↔ f̂~v = ~0)

(4)

As one can see, the clauses of (3) have been replaced by the more complicated clauses of
(4). We explain how this works in the hardest case, the one for the lattice join. One of
the clauses of (3) is c = b ∨ z. Recall that this has to do with subspaces of Cn, and we
want to change this to quantification over (n × n)-tuples over C. One should think of ĉ

as the matrix C = (cij). To say that c = b ∨ z is the same as saying that every ~v such
that C~v = ~0 is in the span of

{~w : B~v = ~0 or Z~v = ~0}. (5)

However, the fact that we are working in Cn implies that if S is any set of vectors
containing the zero vector, then the span of S of vectors is the same thing as the set of
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linear combinations of sets of exactly n vectors from S. Getting back to our previous
point, to say that c = b ∨ z is the same as saying that every ~v such that C~v = ~0 is a
linear combination of n vectors from the set in (5). And this is

(∀~v)(ĉ~v = ~0 ↔ (∃~w1, . . . , ~wn, r1, . . . , rn)
n∧

i=1

(b̂ ~wi = ~0 ∨ ẑ ~wi = ~0) ∧
n∧

j=1

(vj =
∑

i

riw
i
j)).

This is exactly the clause which we put into (4) on behalf of c = b ∨ z in (3).
The other steps in going from (3) to (4) are for the lattice meet and for orthogonal

complements, and they are easier.
Now (4) is a sentence about C. But first-order sentences about the arithmetic prop-

erties of C are reducible to first-order sentence about R. Taking all of these observations
together, this gives a method of going from the sentence ϕ in (2) to a sentence ϕ∗ in the
theory of R; ϕ and ϕ∗ have the property stated in Theorem 6.

Incidentally, our sentence in (2) is a universal sentence. We chose this because the
sentences of greatest interest about the lattice L(Cn) are those universal sentences. But
our method also would work if ϕ in (2) had existential quantifiers, or negation. The
details are quite similar to what we have already done, and so we omit them here.

4 Open problems

The state space of n-qubits is the n-th tensor power (C2)
⊗n

of C2. Quantum computing
suggests the relevance of QL((C2)⊗n) for all n. We have the following inclusions of
quantum logics:

QL(C) ⊃ QL(C2) ⊃ QL(C4) ⊃ · · · ⊃ QL(C2n

) ⊃ QL(C2n+1

) ⊃ · · · ⊃ QL(C∞).

We know that the quantum logics of n-qubit spaces are pair-wise distinct. It is also
known that the intersection of all QL(C2n

) is not QL(C∞) as it contains the following
true equation, which is one way to define the modular law (see [G]):

(p ∧ r) ∨ (q ∧ r) = ((p ∧ r) ∨ q) ∧ r. (6)

It is known that the modular law holds in QL(H) iff H is finitely dimensional (see
[R]), but the orthomodular law (1) does hold in any Hilbert space. So we have

∞⋂

i=0

QL(C2i

) ⊃ QL(C∞).

Some open questions:

1. Is QL(C∞) decidable?

2. How to characterize the difference between
⋂∞

i=0
QL(C2i

) and QL(C∞)?
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3. Are QL(Cn) and QL(Cm) always different for n 6= m?

It is interesting to characterize the quantum logics of finite dimensional Hilbert spaces.
Modular lattices are a first approximation. But there are significant missing ingredients
in the modular lattice formulation of QL(Cn). It has been shown in [H] that the word
problem for modular lattices is not decidable. On the other hand, QL(Cn) is always
decidable. Another interesting point is the following observation. A finite set of closed
subspaces in C

n is called a universal test set if the truth of any equation is determined
by the evaluations of the subspaces in this set. It turns out there are no finite universal
test sets for QL(Cm), m ≥ 2. To see this, consider the distributivity testing formula
α(p, q, r). For simplicity, we will only give the details for m = 2. In order for the
distributivity testing formula α(p, q, r) to fail, p, q, r must be three distinct lines. In order
for α(α(α(α(p, q, r), p, s), q, s), r, s) to fail, p, q, r, s must be distinct lines. Continuing in
this manner, we can build a complicated formula γ, the failure of which means that the k

subspaces p, q, · · · are distinct lines. Since k is arbitrary, no finite set of lines will falsify
every invalid formula. This argument works for any C

m, m ≥ 2.
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