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Abstract: In this article I argue for an empiricist view on laws. Some laws are fundamental in the
sense that they are the result of inductive generalisations of observed regularities and at the same
time in their formulation contain a new theoretical predicate. The inductive generalisations simul-
taneously function as implicit definitions of these new predicates. Other laws are either explicit
definitions or consequences of other previously established laws. I discuss the laws of classical
mechanics, relativity theory and electromagnetism in detail. Laws are necessary, whereas acciden-
tal generalisations are not. But necessity here is not a modal concept, but rather interpreted as
short for the semantic predicate “... is necessarily true”. Thus no modal logic is needed. The neces-
sity attributed to law sentences is in turn interpreted as “necessary condition for the rest of the the-
ory”, which is true since fundamental laws are implicit definitions of theoretical predicates use in
the theory.
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1. Introduction

THE CONCEPT OF A LAW OF NATURE has been debated by philosophers for a long time
and many views have been proposed. I have discerned at least eleven different
positions in the debate: (i) laws are contingent relations between universals
(Dretske, 1977; Tooley, 1977; Armstrong, 1983), (ii) laws are axioms and theo-
rems in a complete theory about the world (Lewis, 1983, 1986), (iii) laws are
those universally generalised conditionals true in all possible worlds (McCall,
1984; Pargetter, 1984; Vallentyne, 1988), (iv) laws are relations between essential
properties (Bigelow et al., 1992; Bird, 2007), (v) there are no laws (van Fraassen,
1989; Mumford, 2004), (vi) laws are grounded in causal powers (Ellis, 1999),
(vii) laws are grounded in invariances based on dispositional properties
(Woodward, 1992), (viii) laws belong to non-maximal sets of counterfactually
stable propositions (Lange, 2009), (ix) laws are relatively a priori principles for
empirical knowledge (Friedman, 2001), (x) laws are primitives (Carroll, 1994;
Maudlin, 2007) and (xi) laws are metatheoretic propositions (Roberts, 2008). The
list is not complete.
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The debate has been characterized by Earman (2002, p. 1) in the follow-
ing way:

It is hard to imagine how there could be more disagreement about the fundamentals of the concept
of law of nature – or any other concept so basic to the philosophy of science – than currently
exists. A cursory survey of the recent literature reveals the following oppositions (among others):
there are no laws of nature vs. there are/must be laws; laws express relations between universals
vs. laws do not express such relations; laws are not/cannot be Humean supervenient vs. laws are/-
must be Humean supervenient; laws do not/cannot contain ceteris paribus clauses vs. laws do/must
contain ceteris paribus clauses.

One might shrug off this situation with the remark that in philosophy disagreement is par for the
course. But the correct characterisation of this situation seems to me to be “disarray” rather than
“disagreement”. Moreover, much of the philosophical discussion of laws seems disconnected from
the practice and substance of science; scientists overhearing typical philosophical debates about
laws would take away the impression of scholasticism – and they would be right!

Earman’s remark that the discussion about laws is disconnected from the sub-
stance and practice of science is indeed true and in my view one reason why it
has been so inconclusive. In this article I will try to avoid this mistake.
A fruitful approach is, I believe, to begin the discussion about laws with some

concrete examples from physics, examples that everyone interested in the debate
would accept as prime examples of scientific laws. My aim is then to discern the
reasons why everyone agrees that these examples are laws and what information
scientists themselves convey by thus calling them “laws”. For it is an astonishing
fact that there are many uncontroversial examples of laws, thus the extension of
the predicate “natural law” is not much in dispute. By contrast, the metaphysics
of laws is highly controversial among philosophers, hence also the meaning of
“natural law”.
I assume that the meaning of a general term determines its extension, but not

the other way round. Metaphysical disputes about laws are disputes about the
meaning of the term “natural law”. One aspect of this dispute is whether terms
occurring in laws, such as “mass”, “charge”, “force”, “current”, etc., refer to
quantitative properties and relations, or whether we should conceive of them as
general terms with extensions but lacking reference.
Many positions in the debate seem to be motivated by metaphysical convic-

tions about the existence of universals, such as properties, essences, relations or
irreducible dispositions. Led by these convictions many philosophers try to define
the concept of law in terms of the preferred metaphysical notion. This is not my
cup of tea. I share empiricists’ general scepticism concerning the explanatory
force of postulating such things as properties, essences, relations or dispositions,
and, moreover, I don’t think that that is the kind of reason scientists have for call-
ing certain sentences of theories they hold true for “laws”.
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All empiricists concur, I believe, with Hume’s criticism of the idea of hidden
powers being responsible for the lawful regularities in nature. But I cannot rest
content with Hume’s psychological explanation of why we tend to think there are
lawful necessities in nature. His observation that we are conditioned to expect the
continuation of an observed regularity is certainly correct, but that cannot be the
full explanation of our beliefs in laws (and our use of the associated notion of
physical necessity), because it is easy to conceive situations where we have this
expectation without referring to a law or principle being operative. My goal in
this article, then, is to discern the reasons why some true sentences in science are
called “laws” without postulating any metaphysics.
Van Fraassen (1989) took a harsher route by dismissing the concept of natural

law as unnecessary. Being a leading empiricist, he criticized the first three options
listed above (these were the main alternatives when he published his 1989 work)
as failing the goal of analysing the concept of law; and several newer ideas would
fall prey to more or less similar criticism. But, he claims, this failure is no reason
for concern, for we have no need for the concept of natural law. One can give a
fully satisfactory account of science without assuming that there is a specific cate-
gory of propositions, laws.
In the strong metaphysical sense of “law” according to which laws are nec-

essary de re propositions I agree with van Fraassen; we have no need for such
things. But the expressions “natural law”, “physical law”, “scientific law”,
etc., are commonly used, so one is prone to ask: “What is the point of making
a distinction between some sentences, called ‘laws’, and other true, general
sentences?” And what is this distinction based upon, if not a difference in
modality?
Van Fraassen has, of course, not convinced opponents of a more metaphysical

bent. Several philosophers – for example, Bird (2007) and Bigelow et al. (1992)
– hold that laws are grounded in relations between essential properties of things
and are therefore necessary. The empiricist’s natural reaction is to ask: how do we
know that? Observable phenomena cannot be used to distinguish the support for
“It is a law that P” from the support for “P”. By the same token, the empirical
support for a sentence of the type “a is F” and for “a is necessarily F” is the
same, so we have no empirical reason to make modal distinctions.
Metaphysicians accept that, of course, arguing that we need assumptions about

modal properties for explaining lawhood, not for making correct predictions.
Well, I will here explain our calling some sentences “laws” without using modali-
ties, so it is not needed. But of course, it all depends on what we require of an
explanation. Van Fraassen’s conclusion that the concept of law is not needed for
ascertaining empirical adequacy of a theory is correct. But scientists use the con-
cept, so they use it for some other purpose.
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Maudlin (2007) argues that we should view laws as primitives not analysable
in terms of necessitation, counterfactuals, dispositions, etc.; it is rather the other
way round. I agree that we should not try to analyse the concept of law in terms
of these metaphysical notions; no scientist has, to my knowledge, ever claimed
that a universally generalised conditional in a theory is a law because it fulfils the
criteria of any of these popular concepts in philosophical discourse. However, one
is immediately led to ask how we obtain knowledge about laws, qua laws, if they
are primitive? Maudlin (2007, p. 17) admits this difficulty: “To the epistemologi-
cal questions I must, with Armstrong, admit a degree of skepticism. There is no
guarantee that the observable phenomena will lead us correctly to infer the laws
of nature”.
One should observe that Maudlin talks about inferences from observable phe-

nomena, not from observed phenomena. Everyone knows that inductive general-
isations from observed phenomena to general statements about observable
phenomena is uncertain, no matter if we call the conclusion a “law” or not. So I
take Maudlin to be a bit sceptical about the inference from a generalisation of
observations to its being a law.
In this article I will suggest a solution to this problem, namely, that in some

cases of inductive generalisations we introduce a new predicate in order to formu-
late the regularity; thus the conclusion of the induction also functions as an
implicit definition of the new predicate. These generalisations are in an epistemo-
logical sense fundamental laws, which is one subcategory of laws that I will dis-
cern in this article. The two other subcategories are derived laws and laws being
explicit definitions of new quantities. But before arguing these points in some
detail, some preliminary reflections are necessary. In the next section I will dis-
cuss the extension of the predicate “law of nature”, in Section 3 I will show how
to bring equations to the standard logical form of laws and in Section 4 I will
consider some semantical issues. In Section 5 I will discuss in more detail induc-
tion and concept formation, in Sections 6 to 9 I will analyse some laws in, respec-
tively, classical mechanics, relativity theory, electromagnetism and quantum
mechanics. Finally, in Section 10 I will give my explanation of why we say that
laws are necessary. Postponing the discussion of physical necessity to the end of
the article is motivated by two considerations: (i) I treat physical necessity as a
semantic predicate, not a modal operator in the object language, and (ii) I explain
physical necessity in terms of laws, not the other way round.

2. The Extension of the Predicate “Law of Nature”

Quite often scientists do not use the word “law” when describing the core of sci-
entific theories; instead they talk about “equations”, “principles” or “postulates”,
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as in “Schrödinger’s equation”, “Pauli’s exclusion principle” or “Einstein’s postu-
lates”. However, it is pretty obvious that these labels refer to things philosophers
would call “laws of nature”. And many scientists use the word “law” as a generic
label for these things; Penrose, for example, has called his magnum opus The
Road to Reality. A Complete Guide to the Laws of the Universe (Penrose, 2005).
Henceforth, I will assume that the extension of the concept of law in physics

comprises a large number of equations, principles and postulates. Whether there
are laws in chemistry, biology and other natural sciences depends on the analysis
to be given for these fields and I leave that for another occasion. Hence, in this
article it is implicit that “laws” means “physical laws”.
Laws in physics do not contain any ceteris paribus-clauses, in contrast to so-

called “laws” in many other disciplines. The reason is obvious, if one accepts my
account of physical laws to be given in this article. Earman and Roberts (1999)
have the same view, based on other arguments.
The set of laws seems to be a rather heterogeneous collection, even if we con-

sider only physical laws, and I am unable to give a fully unified account of them.
But I will discern some types which together at least cover all the well-known
examples.

3. The Logical Form of Laws

A common but not undisputed view is that laws have the logical form 8x(Ax !
Bx), i.e., that they are universally generalised conditionals, UGCs, for short.
(Adherents to the theory that laws are relations between universals hold that such
relations provide the metaphysical grounds for calling a true UGC a “law”.) Some
simple laws are easily seen to fit this schema, such as “All pieces of metal expand
when heated”, or “All portions of gas expand in proportion to increase of temper-
ature when heated under constant pressure”. But these are of lesser interest; laws,
properly so called by scientists, are more precise. For example, the rather impre-
cise sentence about the expansion of metals under heating has been replaced by a
family of precise laws that for each metal states a coefficient for the increase in
length per unit length and unit increase in temperature.
Laws that relate quantities to each other in the form of equations are not obvi-

ously of the UGC form; some interpretative work is needed to show that. Con-
sider, for example, the law of gravitation:

f ¼Gmamb

r2ab
ð1Þ
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which gives the gravitational force f between two masses ma and mb at a distance
rab from each other. (G is the universal gravitational constant.) Bodies are attributed
mass, and force and distance are attributed to pairs of bodies. These quantita-
tive attributions can be expressed in the notation of predicate logic as:
The body a has mass ma : M(a, ma)
The body b has mass mb : M(b, mb)
The distance between a and b is rab : D(a, b, rab)
The gravitational force between a and b is f: F(a, b, f )
Equation (1) is valid for all pairs of bodies, so the implicit generalisation is to

all pairs of bodies. The letters symbolising mass, distance and force magnitudes,
i.e., ma, mb, rab and fab, are functions of the variables a and b. We quantify over
material objects.1 Now the complete law of gravitation can be expressed as:
Law of Gravitation:

8a8b½M a,mað Þ&M b,mbð Þ&D a,b,rabð Þ&F a,b, fabð Þ$
fab ¼

Gmamb

r2ab
% ð2Þ

This sentence is not exactly of the canonical form 8x(Ax ! Bx): it is a bicondi-
tional instead of a conditional, and it is a double generalisation, instead of a single
one. But these are minor points; to include this and similar cases, we could simply
say that laws are universally generalised conditionals or biconditionals.
However, it is well known that many true sentences have this form without

being laws. (“All prime ministers of Sweden are shorter than 2 m.”, is a case in
point, taking “are” non-temporarily.) So being a true, universally generalised con-
ditional or biconditional is at most a necessary condition for being a law; our
problem is to say what more is needed.
It is clear that we need a criterion for distinguishing between two classes of

true sentences of this form, laws and the rest, usually called accidental general-
isations. This was the central problem emerging in Goodman’s (1946) seminal
paper, where he discussed the problem of distinguishing between true and false
counterfactuals. He found that true counterfactuals were associated with laws,
whereas false ones were associated with accidental generalisations. But then,
what is the distinction between true UGCs being laws and those being acciden-
tal generalisations? Since Goodman was a staunch empiricist and nominalist he
tried, unsuccessfully, to solve the problem without drawing on modal notions.

1 So the application of the law of gravitation presupposes that we have identity criteria for bodies. The
law itself does not presuppose the existence of bodies; it would be vacuously true if there were no bodies.
But, of course, we would never be able to discover this law if there were no bodies.
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His conclusion was that no such distinction could be drawn and the reader is
tempted to conclude (though Goodman did not) that we need stronger resources
than first order predicate logic for this task. So the question is: what further
conditions than being a true UGC should a sentence fulfil to count as a law-
sentence?
A very common idea is that laws are, in some sense, necessary. This form of

necessity is often referred to as natural, physical or nomological necessity. In
Section 10 I will discuss the relation between the predicates “... is a natural law”
and “.... is necessary”. Many philosophers argue that a sentence is a law because
it is necessary, but in my view it is the other way round. That is to say, I will first
give an account of why some sentences in physical theories are labelled “laws”,
and then explain the predicate “physically necessary” using the predicate “natu-
ral law”.

4. Semantics and Ontology

Saying that we quantify over physical bodies, as in equation (2), when we express
a law in first order predicate logic entails a commitment to bodies as referents for
the variables. This is uncontroversial, but what about the existence of forces,
masses, electromagnetic fields, etc., i.e., all the quantities in physics? Do they
exist?
Clearly, we may consistently hold that, e.g., Newton’s second law, f = ma, is

true, while denying that there are any forces, masses or accelerations. Using the
predicates M(x, mx) for “mass of x is mx”, A(x, ax) for “acceleration of x is ax”
and F(x, fx) for “force on x is fx”, Newton’s second law is:

Newton II : 8x M x,mxð Þ&A x,axð Þ&F x, fxð Þ$ fx ¼mxax½ % ð3Þ

If this law is true, but not vacuously so, there exists at least one object being
the referent of the variable x and this referent can be attributed the three quantities
FORCE, MASS and ACCELERATION fulfilling the condition f = ma.
Prima facie, one might think that quantities are the referents of quantitative

predicates. But there is no need to reify. There must be a referent for the singular
term in a true sentence, but the predicate in a true sentence need not refer; it suf-
fices that the object talked about belongs to the extension of the predicate. So I
will adopt a nominalist stance about quantities and all general terms; they do not
refer to anything.
Since I do not invoke universals as referents to quantitative predicates in my

ontology, I can allow myself to use the word “quantity” as short for “quantitative
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predicate”. In order to avoid any use-mention confusion I use SMALL CAPITALS

when talking about quantities = quantitative predicates.2,3

The reader may observe that FORCE is a three-place predicate in Newton’s law
of gravitation (and in Coulomb’s law) whereas in Newton’s second law it is a
two-place predicate. Furthermore, in Newton’s second law it may take vectors4 as
arguments at the second argument place, whereas this is not so in the law of grav-
itation. This tension may be resolved by recognizing that expressions of the form
“the force between x and y is z” may be viewed as short for “The magnitude of
force on x is z ^ the magnitude of force on y is z ^ the forces are oppositely
directed” (assuming as usual that no other bodies are sufficiently close to these
two and that the bodies have no charge, as is the usual assumption when discuss-
ing the law of gravitation). The differences in syntax for “force between” and
“force on” do not lead to any incoherence; as usual, the context is sufficient to
determine what the label “f ” stands for in a particular case.
I guess that some readers, those who call themselves realists, now are inclined

to ask: “But do you really deny that there are masses, forces, electromagnetic
fields, energy, etc., in the real physical world? Don’t we have good reasons to say
that these things exist and that our discovery of them is the best explanation for
the success of physics?” This argument, which is of the form “inference to the
best explanation” is often rehearsed by realists as their core argument for scien-
tific realism.
My reply is: what one counts as the best explanation for the success of science,

in this case physics, depends very much on one’s metaphysical world view. What
to count as a scientific explanation is a highly controversial issue, and the ques-
tion about the best explanation is, if possible, even more controversial. Van
Fraassen, to mention the most well-known anti-realist, holds that the best expla-
nation for the success of science is that theories are empirically adequate; see van
Fraassen (1985).

2 A quantitative predicate is a general term with well-defined rules for application (given in the SI-sys-
tem); it is not merely a word or string of words. Therefore I need something else than quotation marks
when indicating that I talk about such predicates.
3 If we simply define the property of having mass as belonging to the set of objects satisfying the pred-
icate “mass of ... is ... kg”, and similarly for other quantities, there is of course neither any problem, nor
any gain, in accepting that quantitative predicates refer to properties and relations. The real ontological
dispute is between those who hold that properties and relations are something else than mere sets of
objects and those who deny that.
4 These vectors are mathematical objects, which I accept in my ontology; but there is no need to
assume that a vector in the mathematical sense represents, or corresponds to, a physical universal. More-
over, numbers, and all mathematical objects constructed from numbers, are most naturally viewed as
individuals, not universals.
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In general, I see no added explanatory value in assuming that quantitative pred-
icates refer to physical universals. Predictive power is the prime epistemic
demand upon scientific theories, and explanatory force is to a great extent context
sensitive. Two persons agreeing about a certain theory’s testability and predictive
power may nevertheless disagree vastly about its explanatory value, due to their
background assumptions and world views. A particularly illustrating case is quan-
tum mechanics, where all agree on its astonishingly accurate predictive power,
whereas there are still, 90 years after its formulation, profound disagreements
about its interpretation. The different interpretations are clearly based on different
metaphysical presuppositions. The conclusion to be drawn is that explanatory
power cannot be used as an argument for realism about physical properties and
relations; it begs the question.
Perhaps the most severe problem for those who believe that quantitative predi-

cates refer to properties is to provide identity criteria for such properties. The
problem is that quantitative predicates can be transformed to each other via natu-
ral constants. For example, if they hold, as I guess they would do, that length and
time are different properties, they have a problem with the common convention of
putting the velocity of light equal to unity without dimension! Doing so enables
us to measure distances as times, i.e., to hold the quantities LENGTH and TIME are
coextensional predicates (and we are accustomed to talking about lengths in time
units in astrophysics). One cannot at the same time accept that putting c = 1 with-
out dimension is a mere convention and still distinguish TIME and LENGTH as refer-
ring to different properties.
Henry Kyburg (1997) discussed the ontological status of quantities and arrived

at the position that quantities are functions whose ranges are magnitudes. One
may think that Kyburg assumes that magnitudes are properties of physical
objects, state of affairs or events. If so, I beg to disagree; Carnap’s view, that
values of quantities are real numbers, is all we need.

5. Induction, Concept Formation and Discovery of Fundamental Laws

Our belief in laws of nature is grounded on observations of results of systematic
experiments. In most cases the connections between a particular law and observa-
tions are indirect, being transmitted by long chains of derivations, assumptions
about measurement instruments, etc. For example, one cannot directly observe
electric fields and electric charges and observe whether values of these quantities
instantiate or conflict with Maxwell’s first equation. No hypothesis, or law, can be
tested in isolation; in testing we always assume a certain amount of background
information, which could contain mistaken assumptions. This conclusion has
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often been called the Duhem–Quine thesis, albeit the exact formulation of this
thesis is a matter of debate.
Sometimes we observe a regularity in a series of experiments and sometimes

this regularity is still observed when the experiment series is prolonged, in which
case we make an inductive inference to the general conclusion. The formulation
of such a generality is sometimes accompanied by the introduction of a new quan-
tity, a quantitative predicate so far not thought of. In such cases the inductive gen-
eralisation is a candidate for being a scientific law. These two steps are
fundamental in the development of a new theory and, as we will see in the case
of classical mechanics and electromagnetism, to be discussed in Sections 6 and
8, this is how fundamental laws are established.
There is an amount of circularity in the application of a physical theory to con-

crete situations. Consider, for example, electromagnetism; in order to determine
whether a system is sufficiently isolated we need to know whether there are any
measurable electromagnetic fields from external sources affecting the system in
question, and that we cannot know unless we have determined a way of measur-
ing these fields. In principle no system is ever completely isolated of course; the
rest of the world is not an infinite distance away and hence the probability of
interaction is not exactly zero. So the question of isolation is a practical question:
is the system being observed sufficiently well isolated so that possible interac-
tions with the rest of the world only affect the system’s state within the margins
of error? But this is precisely the reason why one cannot, other than analytically,
separate discoveries of laws and the introduction of precise quantities in theory
development. If we fail to isolate the system sufficiently, we will sooner or later
hit upon a case where unknown factors interfere and disturb the predicted out-
comes, thus producing a counter instance.
Neither in practice, nor in the conceptual analysis, can we proceed by first

defining a set of new quantities and then performing experiments to see how they
relate to each other. Observing, experimenting and developing quantitative con-
cepts are inseparably intertwined, as will be clearly shown in Sections 6 to 9. This
is why fundamental laws at the same time are implicit definitions of new predi-
cates and have empirical content.

5.1 Laws, physical theories and observations: top-down or bottom-up?
My conception of physical theories might be described as “bottom-up”: theory
construction starts with descriptions of observed regularities. By contrast, the
common view is that a physical theory is a mathematical structure built upon
some abstract principles, whose laws are declared to be fundamental in the logical
sense. By starting from “above”, the concepts occurring in fundamental laws are
not yet given any physical interpretation; they have merely mathematical relations
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to each other. The physical interpretations are only given when part of this struc-
ture, the empirical “edges”, are compared with observations, or, as in the seman-
tic view of theories, a part of the structure is thought of as a mapping of observed
phenomena.
In this top-down view one faces the task of explaining how mathematical equa-

tions and functions relate to observations. According to classical empiricism, it is
provided by “coordination principles” (Reichenbach, 1920). In the words of
Friedman (2001, p. 76): “They serve as general rules for setting up a coordination
or correspondence between the abstract mathematical representations ... and con-
crete empirical phenomena to which these representations are intended to apply”.
Somewhat similar views are expressed by many philosophers of physics, van
Fraassen (1980) being one clear example.
The problem with this statement is the word “phenomena”. In order to set up a

correspondence between general statements in a theory (“abstract mathematical
representations”) and something else, you must describe that something else, “the
phenomena”, in some way. One cannot establish any correspondence between a
mathematical structure and something which is not yet organized as the content
of a perception. In other words, the correspondence is a correspondence between
a mathematical structure and a part of the contents of our observations,
i.e., descriptions of observations. The question is what predicates to use in such
descriptions? If these are purely empirical predicates whose application rules are
fully independent of any theory, we may truly ask how there could be a corre-
spondence between “phenomena” thus described and theoretical statements con-
structed independently of any description of empirical “phenomena”.
Think, for example, of electromagnetic theory: it describes the dynamics of

charged particles in electric and magnetic fields; it relates electric and magnetic
fields and the motion of charged particles to each other. But we cannot directly
observe electric fields, magnetic fields, or charges. What we observe are physical
bodies in space and time. (Observing the value of a meter of some kind is obvi-
ously an observation of a body at a certain place.) In order to establish a correla-
tion between descriptions in terms of moving bodies and electromagnetic
predictions we need to sort out those bodies that are sensitive to electric and/or
magnetic fields and compare their motions with theory. But in doing so, we use
the electromagnetic concepts. For example, we attribute charge to some bodies
and different charges to different bodies with the same mechanical properties. So
it is no longer any theory-independent individuation of things to which electro-
magnetic properties are attributed in the empirical realm. Descriptions of “phe-
nomena”, in the sense intended by Friedman and others, depends on the theory.
I cannot see how it is possible to sort out those motions of observable bodies

that are related to electric and magnetic interactions without using
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electromagnetic concepts, or some others with the same extensions. So the corre-
spondence does not have the character of a correspondence between items in two
conceptually independent realms.
It is of course easy to set up a correspondence between two domains containing

different types of entities, if the individuation of things in one domain is deter-
mined by the individuation of things in the other domain, as in the “correspon-
dence” between facts (in German: “Tatsache”) and sentences (in German:
“Sätze”) in Wittgenstein’s Tractatus. No empirical investigations are needed, or
indeed possible, to check this correspondence; it is in a profound sense trivial.
(Wittgenstein claimed that it could be shown, albeit not talked about; but I doubt
the intelligibility of this statement.) Certainly, the relation between theory and
empirical evidence is not of this kind. So how should we understand the corre-
spondence between mathematical structures and empirical phenomena from the
viewpoint of Friedman, Reichenbach and others using this concept?
In fact, I do not see how one could give a substantial content to the notion of

correspondence in the sense intended by Reichenbach and his followers. Hence I
do not think the notions of correspondence or coordinating principles are useful
for understanding the relation between theory and empirical evidence; either the
correspondence is completely trivial or else it is impossible.
A similar critique may be directed against van Fraassen’s notion of isomor-

phism between “the empirical substructure” of a model of a theory and “appear-
ances”, the latter being characterized as follows: “[T]he structures that can be
described in experiential and measurement reports we can call appearances” (van
Fraassen, 1980, p. 64). The problem with this conception is that experimental and
measurement reports are almost never void of theoretical predicates, such as
“mass” or “electric field”, and these are defined within a system of equations.
Hence most appearances cannot be described without employing theoretical con-
cepts. How can we describe structures of appearances without using theoretical
concepts? So the isomorphism between an empirical substructure and appear-
ances cannot be conceived as an independent empirical check on the model, or as
a relation between theory and evidence.
Van Fraassen’s conception of scientific theories is one version of the general

idea that a theory is a set of models, and my critique of van Fraassen’s conception
of the relation between model and theory applies generally. Models must be
described in order to be explicitly related in any way to a theory, and descriptions
of models require theoretical predicates.
Reflections similar to these might have been the reason why Kuhn (1970) drew

the conclusion that there are no theory-independent observations whatsoever. This
general conclusion is false; there is a meagre basis for theory-independent observa-
tions, in physics exemplified by positions and motions of nearby visible bodies.
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But Kuhn had a point; sometimes we introduce new theoretical concepts when gen-
eralising our observations, the result being what I have called “fundamental laws”.5

Summarising this section, my view is that observation reports ordinarily so
called in many cases utilise theoretical predicates. But it is possible to discern a
subset which do not utilise any such theoretical terms. This subset is the ultimate
empirical basis for theory construction. Some fundamental theoretical concepts
are constructed during the process of inductive generalisations from such obser-
vation reports, and using these we can continue and explicitly define new useful
quantities and thus construct an empirical theory.
I will now show that classical mechanics, relativity theory and classical electro-

magnetism fit my account of laws and how they are based on observations.

6. Laws and Fundamental Quantities in Classical Mechanics

6.1 The discovery of momentum conservation and the introduction of MASS and
FORCE

Classical mechanics consists of kinematics and dynamics. Kinematics describe
the motion of physical bodies, usually called “particles” in the theoretical exposi-
tion, since their inner structure is not considered, while dynamics is the theory
about interactions between particles.
Classical mechanics is from an epistemological point of view the fundamental

physical discipline; motions of bodies are clearly the most directly observed
events. But it is also basic from a conceptual perspective because all physical
quantities ultimately are defined in terms of TIME, DISTANCE and MASS. This fact is
easily recognised when looking at the definitions of the SI units.

TIME and DISTANCE are the two fundamental quantities in kinematics; these two
are used when describing particles’ positions, velocities and accelerations. These
quantities are operationally defined in terms of how to use meter sticks and clocks
in measurements.6

5 In the postscript to the second edition of The Structure of Scientific Revolutions, Kuhn used the con-
cept of disciplinary matrix instead of the concept of paradigm. The first component of the disciplinary
matrix is the set of symbolic generalisations, and it seems pretty clear that by this term he refers to what
we usually call scientific laws. But why did he not use the term “law”? One reason was, I think, that
using the term “law” one is inclined to miss his point that the terms in a theory get their meaning implic-
itly (just as I argued above), by being used in the theory, not by any explicit definition.
6 This view has often been criticized with the argument that changes of operational definitions would
change the meaning of quantitative predicates, which is taken to be unacceptable. My reply is: so much
the worse for the concept of meaning. When the definition of the meter unit was changed from being
based on the meter prototype to a certain distance travelled by light in vacuum, the extension of the pred-
icate “one metre” underwent a slight change, since its precision increased. But since I have no need for
referents of quantities, there is no conceptual problem here. Why bother about meaning?
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In performing such measurements we take for granted that those physical
objects utilised as measurement devices are invariant when being moved from
one place or time to another. We take for granted that meter sticks do not change
length and that clocks tick with the same speed when moved from one place to
another. These are not purely empirical assumptions; if we have determined con-
crete procedures by which to compare time intervals and distances,
i.e., instructions about time and distance measurements, we have stated how to
apply the truth conditions, for example for the statement that two objects at differ-
ent places or at different times have the same length.
But then, how is it possible to replace, e.g., a time unit with a better one? Why

did we replace the definition of one second as 1/86,400 of the diurnal day with a
number of oscillations in a certain kind of electromagnetic radiation? Well, one
reason was that according to our theory of gravitation, the diurnal day varies
slightly, whereas quantum theory tells us that nothing affects the frequency of
electromagnetic radiation. This topic is discussed at considerable length in van
Fraassen (2008, p. 130 ff ).
Determining fundamental units, i.e., determining how to apply fundamental

units (such as metre and second) in practical measurements, is decided by IUPAP
(the International Union of Pure and Applied Physics), and these decisions may
change; for example, in the 1960s it was decided to change the metre definition
from an ostensive one (“One metre is the length of the meter prototype in
Sevres”) to one based on the distance travelled by light in a vacuum during a very
short period of time. But this change did not affect the lengths attributed to
objects (within a very small margin of uncertainty) and since this is what counts,
and not the intension of the expression “length”, we may conclude that theory-
ladenness of this predicate is innocent.
It may be observed that “fundamental” here means “fundamental relative to the the-

ory at hand”. It is no claim about fundamentality in an absolute or metaphysical sense.
The reason why we need two fundamental quantities in kinematics is that, so

long as we do not consider relativity theory, we need two kinds of measuring
instruments (meter sticks and clocks) to measure and observe kinematic quanti-
ties.7 One also needs some geometry and arithmetic in doing mechanics, but
these disciplines belong to mathematics; no measuring instruments are needed.

7 When we proceed to relativity theory, we can, since the velocity of light is a universal constant,
reduce the number of fundamental quantities to only one, namely, TIME, since distances can be expressed
in terms of times for light travel. So considering physics in its entirety we may say that only one quantity
is fundamental. But we have arrived at this conclusion using classical theories as starting points
(i.e., classical mechanics and electromagnetism) and these theories presuppose two fundamental quanti-
ties, TIME and LENGTH. One might say, following Wittgenstein, that once we have climbed the ladder we
may throw it away!
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How, then, do we proceed to dynamics? The actual history is illuminating. By
using only kinematical quantities Descartes failed to construct an empirically ade-
quate theory about interactions between bodies. But some years later John Wallis
took the first step in advancing a successful dynamics, according to Rothman
(1989, p. 85). In a report to the Royal Society in 1668 Wallis described his mea-
surements of collisions of pendulums. Huygens and Wren performed similar
experiments. All three found that there is a constant proportion between the
velocity changes of two colliding bodies:

Δv1
Δv2

¼ constant ð4Þ

which can be written:

k1Δv1 ¼ −k2Δv2 ð5Þ

The minus sign is introduced so as to have both k1 and k2 positive.
By testing with different bodies, they found that the constants really are con-

stants following the bodies, i.e., they are permanent attributes of the bodies.
These constant attributes are their masses, and we may choose a mass prototype
giving us the unit. So we have:

m1Δv1 ¼ −m2Δv2 ð6Þ

This is the law of momentum conservation, a law that from an epistemological
point of view must be said to be fundamental in physics.8

The very first line of Newton’s Principia is the definition “The quantity of mat-
ter is the measure of the same, arising from its density and bulk conjointly”
(Newton et al., 1687/1999).9 This quantity he then calls “mass”. But how can we
measure density without using the quantity mass? In fact, Newton relied on the
findings of Wallis, Huygens and Wren, as is clear from the Scholium following
corollary VI in the first section of the first book of Principia. Wallis, Wren and

8 Konopinski’s (1969) account of classical mechanics begins similarly by considering collisions; he
states that “The Principle that the total momentum of any isolated system is conserved forms part of the
basic framework on which all physical theory has been constructed” (p. 35).
9 Mach (1960, p. 241) criticized this definition and rightly observed that mass must be defined using
observations of interactions between bodies: “Definition 1 is, as has already been set forth, a pseudo-def-
inition. The concept of mass is not made clearer by describing mass as the product of the volume into
density as density itself denotes simply the mass of unit volume. The true definition of mass can be
deduced only from the dynamical relations of bodies”.
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Huygens had introduced the concept of quantity of matter without using the
word “mass”.
If we now divide both sides of equation (6) with the collision time, we get

(neglecting the difference between differentials and derivatives since this is of no
relevance for the present argument):

m1a1 ¼ −m2a2 ð7Þ

Let us further introduce the term “force”, labelled “f ”, as shorthand for the
product of mass and acceleration. This gives us Newton’s second and third laws:

N2 : f ¼ma ð8Þ

N3 : f1 ¼ − f2 ð9Þ

Thus we have got Newton’s second and third laws based on an observed regu-
larity, namely, momentum conservation during collisions between bodies.
Forces are often thought to be causes of accelerations; when a body changes

its velocity, we say it has been affected by a force. This force is the momentum
change of another body, perhaps a remote one, in which case the momentum
exchange is transmitted by a field. Thus the claim that force is defined as dp/dt is
compatible with the common conception that forces are causes; it is the momen-
tum change of another body that is the cause of an observed body’s momentum
change. However, if we want to use causal idiom, we must say that cause and
effect occur simultaneously. Furthermore, the notion that forces are causes is
hardly compatible with my stance that quantitative predicates do not refer to any-
thing, since causes are normally presupposed to be a kind of entity.

6.2 Types of laws in classical mechanics
I have so far discerned three different types of laws in classical mechanics:

• Fundamental laws are those UGCs which at the same time express generalisa-
tions about observations and function as implicit definitions of new quantities.
(I will generalise and give a more precise definition of a fundamental law in
Section 9.)

• Explicit definitions of new quantities, i.e., quantitative predicates.
• Derived laws, which logically follow from fundamental laws and explicit defi-
nitions of new quantities.

Let us now look at the law of gravitation to see whether it fits into one of these
categories:
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f ¼G
m1m2

r2
ð10Þ

The force can be replaced by its definiens, ma, so we have (identify-
ing m = m1)

a¼G
m2

r2
ð11Þ

Thus we can derive the acceleration of a body,10 given knowledge about the
mass of the other gravitating body and its distance. Now we can check the law of
gravitation by measuring the body’s acceleration and we may find that prediction
and observation always coincide. So the law of gravitation seems to be a purely
empirical law. But isn’t this remarkable? How could it be that the quantities MASS,
ACCELERATION, FORCE and DISTANCE, defined independently of the law of gravita-
tion, without exception also satisfy this extra condition? Collisions between bod-
ies and gravitational interactions seem to be quite different kinds of events; it
appears to be a cosmic coincidence, a brute fact that cannot be further explained.
But surely there must be an explanation.
The first step, as is well known, is to realize that we are talking about two dif-

ferent mass concepts, INERTIAL MASS and GRAVITATIONAL MASS; INERTIAL MASS is
defined using the regularity observed in collisions, GRAVITATIONAL MASS is defined
using the regularity observed when bodies interact at distances. But this does not
really remove our bewilderment, for now one asks instead: how could it be that
the gravitational and inertial masses of all bodies are proportional? Newton saw
it, but had no explanation.
It was Einstein who solved the problem within the general theory of relativity.

The solution is simply that gravitational and inertial mass are the same quantity,
since gravitation and inertia at bottom are not different kinds of phenomena. This
is the basic idea in general relativity.
This step, by the way, strongly supports my view, presented in Section 4,

that quantities should be understood as quantitative predicates, not as physical
universals. It is not only superfluous to assume that quantitative predicates
refer to universals; it also raises obstacles for our understanding of relativity
theory. If we accept GTR and assume that quantitative predicates refer to uni-
versals, we must either say that the two predicates GRAVITATIONAL MASS and
INERTIAL MASS refer to the same universal, or that they refer to two different
universals with the same extension. Both alternatives give us more problems

10 I have here presumed that we talk about a body only involved in gravitational interaction.
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than they solve. The very point of a quantitative predicate is that its identity is
determined purely extensionally and that removes any need to postulate a ref-
erent for it.
Einstein’s crucial step was to generalise the relativity principle used in the spe-

cial theory of relativity. Special relativity is restricted to inertial, i.e., non-
accelerated systems. In the general theory of relativity this restriction is removed;
all coordinate systems, whether accelerated or not, are equally legitimate and the
laws should have the same form in all of them. This has the consequence that the
distinction between gravitation and inertia disappears. (Einstein’s argument was
that we cannot by local observations decide whether the force on a body is gravi-
tational attraction from another body, or inertia due to the system being
accelerated.)
Returning to classical mechanics considered per se and disregarding relativity

theory, we may conclude that INERTIAL MASS is determined by the law of momen-
tum conservation, that GRAVITATIONAL MASS is determined by the law of gravitation
and FORCE is explicitly defined as ma. Thus the law of gravitation satisfies the def-
inition of a fundamental law (an empirical regularity and simultaneously an
implicit definition of a new concept).
In classical mechanics we now have two fundamental laws, momentum con-

servation and the law of gravitation and two fundamental quantities defined by
these laws. Together with TIME, DISTANCE and functions of these, we have a com-
plete set of fundamental quantities in classical mechanics. All other quantities,
such as FORCE, ENERGY, WORK, POWER, ANGULAR MOMENTUM, etc., can be explicitly
defined in terms of the kinematic concepts + INERTIAL MASS + GRAVITA-

TIONAL MASS.
There are several different theory formulations of classical mechanics, but they

all rely on the kinematical quantities + MASS, although one might not think so at
first glance. The fundamental notions in for example Hamilton’s and Lagrange’s
versions of classical mechanics are generalised coordinates and their correspond-
ing momenta, which are treated as independent variables. But when applying the
theory to observable phenomena, one identifies MOMENTUM as mv, where v is mea-
sured in the chosen generalised coordinate. And just as in my account, FORCE is
introduced as a derivative notion, this time as the derivative of a potential func-
tion. So the empirical foundations in any version of classical mechanics are
descriptions of observed regularities in which MASS is used. This is the reason
why I concur with Gauss, who famously held that TIME, DISTANCE and MASS are
the fundamental quantities in physics.
Being an empiricist, I believe it crucial to state the empirical basis consisting

of theory-independent observations for any empirical theory we may consider. In
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physics (and I would claim also in the rest of natural science) this basis consists
of observations of bodies at particular places at particular times.11

In biology and chemistry we may be interested in how things smell or taste, or
what colour they have, but still, the things observed are bodies at particular
places. So I do not see any alternative to taking the kinematical concepts of clas-
sical mechanics, i.e., time, distance and the time derivatives of distance, as pre-
theoretical and given in advance, whereas mass (inertial and gravitational) is
introduced with our formulation of the laws of momentum conservation and grav-
itation respectively.
The number of fundamental quantities implicitly defined and the number of

fundamental laws must be the same. All other useful quantities, such as FORCE,
KINETIC ENERGY, POWER, etc., can then be introduced as explicit definitions in terms
of previously defined quantities.
It is impossible to state the law of momentum conservation without using the

concept of INERTIAL MASS and this is the crucial point. Equation (6), interpreted as
short for an UGC (“For every pair of colliding bodies …”), is at the same time
an inductive generalisation from a set of observations and a contextual, i.e,
implicit, definition of the quantity INERTIAL MASS. By a similar reasoning we may
conclude that equation (10) at the same time is an implicit definition of GRAVITA-

TIONAL MASS and an inductive generalisation of observations.12

In the very construction of quantitative concepts in classical mechanics we use
fundamental laws of nature as definitions, or better, discovering new laws and
constructing new quantitative concepts go hand in hand; these are closely related
processes. The traditional view that one first has to define one’s concepts and then
apply them in describing one’s observations is incorrect. This is, by the way, one
good reason to dismiss the analytic/synthetic distinction as a fundamental premiss
in epistemology.
Newton’s second law is an explicit definition of the quantitative predicate

FORCE; it does not express any generalisation of observations and “force” can
always be replaced by “mass times acceleration”. No one has ever directly
observed a force and compared it to the product of mass times acceleration.

11 Bridgman (1960, p. 58) once expressed an almost similar opinion: “What we observe are material
bodies with or without charges (including eventually in this category electrons), their positions, motions,
and the forces to which they are subject”. I disagree on two points; (i) we never observe forces, we only
observe moving bodies, and (ii) electrons are not bodies.
12 My view that some laws are implicit definitions has some affinities with Herbert Simon’s (1970)
view on axioms of physical theories: “In the former case, new definable terms are likely to enter the sys-
tem embedded in statements of physical law. These statements will partake of the nature both of defini-
tions and of laws” (pp. 22–23).
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The critical reader might point to calculations in statics where we attribute sev-
eral forces to an element in, e.g., a building. Nothing moves, so there are no
accelerations; still, we analyse the stability of the building by calculating forces at
different points. Doesn’t this indicate that in physics we assume forces?
No. Consider an element in a construction. Since it is not moving, the vector sum
of all forces upon this element is zero. We can replace each force fi with its defin-
iens miai and the total acceleration is of course zero. Talking about forces is con-
venient but logically superfluous.
As argued earlier, we have no reason to assume that quantitative predicates

refer to universals, in this case that the predicate FORCE refers to a force; we only
need to assume the existence of those things talked about, i.e., that the singular
terms refer. We may paraphrase a sentence attributing a force to an object as in
the second paragraph of Section 4.
A similar conclusion can also be drawn about other predicates, such as colour

words. We benefit greatly from our colour discrimination ability and our use of
colour predicates, but that does not entail that we have reason to believe in the
existence of referents of colour words in predicate position. Why not? Because
postulating referents for predicates has no additional testable consequences
beyond those of the sentences in which the colour words are used; no empirical
evidence could be had for such assumptions.
In ordinary discourse we talk as if colours exist. But if so, how many colours

are there in reality? It is a well-known fact that different cultures divide the spec-
trum differently, so identity criteria for colours are relative to culture, and there
are no arguments for holding any one way of differentiating colours is the correct
one; we make colour distinctions when we need them. The sensible conclusion is
that there are no colours in the real world.
Newton’s third law is a consequence of momentum conservation and the defini-

tion of force. There are lots of such relations between quantities derivable from
the definitions, some of which are called “laws”. So if we want to keep close to
the established use of the word “physical law”, we should say that some laws are
consequences of other laws.
I will now extend the discussion to fundamental laws in two other theories: the

special theory of relativity and classical electromagnetism.

7. Laws in the Special Theory of Relativity

The special theory of relativity is built on two fundamental postulates, the relativ-
ity principle and the constancy of the speed of light.
The relativity principle says that experiment results should be the same in all

inertial systems, or, in Einstein’s words:
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Special principle of relativity: If a system of coordinates K is chosen so that, in relation to it, phys-
ical laws hold good in their simplest form, the same laws hold good in relation to any other system
of coordinates K0moving in uniform translation relatively to K (Lorentz, 1952, Part A, § 1).

How do we know this is true? The basic reason is derived from an objectivity
demand on physical descriptions, namely, that the physical content of the descrip-
tion of the state of a physical system should be independent of the observers’ per-
spective. Thus if two observers move with a constant velocity relative to each
other, they should give similar descriptions of a physical system they both
observe. So we know the relativity principle is true because we hold it true;
apparent violations are explained as mistaken observations of, e.g., uniformity of
motion of the observer.
Galileo apparently was the first to formulate a relativity principle and Newton

followed suit. However, Newton did not view it as a fundamental principle for
objective descriptions; he claims to have derived it as a corollary (Corollary V) in
Principia. But that derivation is a non sequitur, as shown by Harvey Brown
(2005, ch. 3). I think it fair to say that Einstein was the first to conceive it as a
fundamental epistemological principle, a requirement of observer independence.
The relativity principle does not fit into any of the three categories of laws so

far identified, and that is perhaps a reason why it is not called a law. It is a condi-
tion for objective descriptions of nature.
The constancy of the speed of light is generally stated as a basic postulate of

special relativity. However, it is in fact no fundamental law; it follows from the
relativity principle, Newton’s laws and Maxwell’s equations, as shown by Feyn-
man et al. (1964, ch. 18, p. 5) and Dunstan (2008). Dunstan (2008, p. 1865)
concludes:

Special relativity derives directly from the principle of relativity and from Newton’s laws of
motion. The parameter values of a = 1 or k = 0 were compatible with all experimental information
available in Newton’s day. However, Maxwell’s equations permit a more accurate determination,
from Faraday’s and Ampère’s experimental work and Maxwell’s own introduction of the displace-
ment current. Discussions of the Michelson and Morley experiment and of theories of the ether
are quite unnecessary. The behaviour and the mechanism of the propagation of light are not at the
foundations of special relativity.

The parameter a is the transformation formula 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϵ0μ0v2

p
and k = −ϵ0μ0,

i.e., k = −c−2. The constancy of the speed of light is thus a derived law.
It is rather well known, too, that Einstein was not primarily motivated by the

negative outcome of Michelson–Morley’s attempt to measure the ether-wind
when he stated that the velocity of light is constant and an upper limit for all
velocities. His fundamental inspiration was the thought experiment of an observer
travelling with the same speed as an electromagnetic wave front. He realised that

© 2019 Stiftelsen Theoria

21LAWS, QUANTITIES AND PHYSICAL NECESSITY



the observer would see the front as a stationary electromagnetic field and that
contradicts Maxwell’s equations. Hence, the assumption of an observer travelling
at the speed of light must be wrong. So Dunstan’s proof is a mere spelling out of
an older insight.
It is interesting to note that we begin with two kinematical quantities in classi-

cal mechanics, TIME and DISTANCE, which require two distinct kinds of measure-
ment devices, and then, based on this theory + electromagnetism, we have
constructed a more general theory, the special theory of relativity, which entails
that we can reduce the number of fundamental kinematical quantities to one and
we no longer need any meter sticks, only clocks!13

8. Laws of Electromagnetism

The conceptual structure of electromagnetism is more convoluted than that of
mechanics. The first thing we have to notice is that although the words “electric-
ity” and “magnetism” were used long before we had any theory about these phe-
nomena, the more precise quantitative concepts were not fully developed until the
publication of Maxwell (1873) and his introduction of DISPLACEMENT CURRENT.
The second thing to notice is that one cannot find any single law in electromag-

netism that individually introduces a new quantity; it is only jointly that a set of
laws implicitly defines the electromagnetic quantities.
There is general agreement that the fundamental laws are Maxwell’s equations

and Lorentz’s law (see, e.g., Feynman et al., 1964, ch. 18), so these laws together
should function as joint implicit definitions of the fundamental quantities in elec-
tromagnetism. And indeed they do.
The effects of electromagnetic interactions are observable as changes of the

motions of bodies.14 So in the electromagnetic theory we need a law that con-
nects electromagnetic quantities to mechanical quantities attributed to bodies,
such as mass and velocity, which is done by Lorentz’s law:

F¼ q E+ v×Bð Þ ð12Þ

where F stands for the force on a body, q for its charge, v for its velocity, E for
the electric field and B the magnetic field. (Boldface letters stand for vector

13 The connected question about the number of fundamental dimensional constants is a topic of
debate; see Duff et al. (2002).
14 There is no other option, as observed by, e.g., Born (1924, p. 189): “Electromagnetic forces are
never observable except in connection with bodies”.
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quantities.) Then we need laws that implicitly define CHARGE, ELECTRIC FIELD and
MAGNETIC FIELD. That is done by Maxwell’s equations:

▽&E¼ ρ
ϵ

ð13Þ

▽&B¼ 0 ð14Þ

▽×E¼ ∂B
∂t

ð15Þ

▽×B¼ 4πk
c2

J+
1
c2
∂E
∂t

ð16Þ

There are no independent definitions of the electromagnetic quantities, so these
laws must also function as implicit definitions of these quantities. This means that
the number of independent laws must equal the number of fundamental electro-
magnetic quantities. In order to see this clearly, we cannot count the number of
equations in the form given above, since several quantities are vectorial quantities
and each component of such a quantity is independent of the other. Furthermore,
these equations are invariant under Lorentz transformations, so for the present
purpose it is more convenient to express Maxwell’s equations in Lorentz invariant
form with the help of the tensor.

F μ,ν ¼

0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

0

BB@

1

CCA

its dual Fμ,ν and the fourcurrent J = (ρ, Jx, Jy, Jz) as the two equations:

J β ¼ ∂F β,α

∂xα
ð17Þ

0¼ ∂αFβ,γ + ∂γFα,β + ∂βFγ,α ð18Þ

where the inhomogeneous equation expresses equations (13) and (16) and the
homogeneous one expresses (14) and (15). Now, (17) and (18) are in fact each
four independent equations, and since Lorentz’s law consist of three independent
equations, we have in total 11 equations. That equals the number of quantities we
need to determine: three components of the electric field, three of the magnetic
field, four components of the four-current and finally total charge. In other words,
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Maxwell’s equations + Lorentz’s law together completely determine the quantities
ELECTRIC FIELD, MAGNETIC FIELD, TOTAL CHARGE and FOUR-CURRENT, given only the
directly observable properties of a system. Hence, we may say that Maxwell’s
equations + Lorentz’s law together constitute implicit definitions of the fundamen-
tal electromagnetic quantities; they are the fundamental laws of electromagnetism.
Other electromagnetic quantities are explicitly defined in terms of the fundamen-
tal quantities and all other laws of electromagnetism are derivable from the funda-
mental ones + explicit definitions.

9. Fundamental Laws that Do Not Introduce New Quantities

There are quite a number of basic principles which generally are said to be funda-
mental laws, but which do not establish relations between quantities. One exam-
ple is, as we just saw, the relativity principle. Three other examples are:

Conservation of charge: 8x, if x is a closed system and q(x) is the total charge in
x, then ∂q/∂t = 0.
Pauli’s exclusion principle: 8x8y8z, if x is a quantum system, y and z are fer-
mions belonging to that system and y 6¼ z, and if S(y) is the ordered quadruple of
quantum numbers of y and T(z) is the ordered quadruple of quantum numbers for
z, then S(y) 6¼ T(z).
Quantization of interaction: 8x, if x is a quantum system, x emits or absorbs
energy E only in discrete portions E = hν.

For each of these I will now explain why we are prone to say that they are laws.
Charge conservation is one of the conservation laws, which all have the same

form, i.e., expressing the conservation of a quantity in a closed system. The inter-
esting thing with these laws is that we have no independent criterion for what to
count as a closed system. In other words, if an experiment indicates that
e.g., charge or energy is not conserved in a system, one has two options: either to
reject the assumption that the observed system is closed, or to accept that conser-
vation of the quantity is violated. A well-known example of this is the first experiments
(around 1932) in which weak interactions (as they were later called) were studied. Neu-
trinos are produced in such interactions and they carry energy. But neutrinos were not
known or observed; they very rarely interact. So the experiments seemed to violate
energy conservation. This was also suggested by Bohr, but Pauli disagreed and instead
held that the system was not closed; he suggested that a so far unknown particle had
been produced and carried away the missing energy. A theory was developed and
20 years later new experiments confirmed the existence of neutrinos.
The conservation laws jointly define what we mean by a closed system, pro-

vided that the quantities involved are independently defined. But they do not
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satisfy the definition of a fundamental law given above, because closed system is
not a quantitative concept. However, conservation laws are in an important
respect similar to fundamental laws, as defined above, in that they are generalisa-
tions of observations and implicitly and partly define the theoretical concept
closed system; each conservation law contributes to the determination of the iden-
tity criteria for things satisfying the predicate “closed system”.
Conservation laws are viewed as so certain that it is inconceivable that any

physicist would have doubts. The reason is that using Noether’s theorem they can
all be derived from symmetry requirements. Noether’s theorem says roughly that
if a system is symmetric under a continuous parameter transformation, the conju-
gate quantity to that parameter is conserved. A little more precisely: to every dif-
ferentiable symmetry generated by local actions, there corresponds a conserved
current. In the derivation of Noether’s theorem one uses the Lagrangian, so the
theorem does not apply to systems that cannot be modelled by a Lagrange func-
tion. This corresponds to systems not being closed, i.e., dissipative systems;
hence conservation applies only in closed systems.
Thus, time translation symmetry entails energy conservation, spatial translation

symmetry entails momentum conservation, rotation symmetry entails angular
momentum conservation and gauge invariance entails charge conservation.
(Gauge invariance is invariance under phase transformations of the electromag-
netic vector potential.)
The symmetry requirements are thus the basis for the conservation laws. These

symmetry requirements may in turn be understood as being part of objectivity
requirements on descriptions of physical systems. For example, the requirement
that the Lagrangian for a system be invariant under the transformation t ! t + Δt
is an objectivity requirement: the objective features of the system described by
the Lagrangian do not depend on the choice of when to start the clock, i.e., when
to put t = 0, which means that transforming a description given by one observer
to another who has started his clock earlier (or later) should leave the description
invariant. So the requirement of invariance under time translations is an objectiv-
ity demand. Similar considerations apply for spatial translations, rotations and
phase transitions in electromagnetism.
Symmetry under certain parameter transformations is a necessary condition for

objective descriptions of the physical world. The relativity principle is, as we saw,
another such condition for objective description.
Pauli’s exclusion principle and quantization of interaction are two of the basic

principles of quantum mechanics. They both describe properties of quantum sys-
tems. What, then, are the identity criteria for a quantum system?
Just as with closed systems, we have no independent criteria for the identity of

quantum systems, so these two principles contribute to establishing identity
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criteria for quantum systems and for their representation in the formalism. For
example, if an observation report purports to indicate violation of Pauli’s exclu-
sion principle, the scientific community again has two options, either to give up
Pauli’s exclusion principle, or to dismiss the assumption that the system was
closed. All scientists would say that the condition of being closed was not ful-
filled. In other words, if two or more fermions are found to have the same quan-
tum numbers, they must belong to different quantum systems, which means that
one may not construct a tensor product of their wave functions. For if we were to
construct such a tensor product, we would treat the two systems as now being
one system which interacts with the environment as a unit, and such a unit cannot
contain two fermions with the same set of quantum numbers.
We may remember that in the quantum world one cannot identify quantum sys-

tems by spatiotemporal criteria, because of their wavelike behaviour during prop-
agation. Individuation and identity among quantum systems are given by our
theory, by the way we manipulate wave functions.
Two quantum systems prepared to be in the initial states |Ψi and |Φi respec-

tively, which do not belong to the same ray,15 are thus distinguished as different
systems and Pauli’s exclusion principle applies within each system separately. So
a fermion being part of the system |Ψi can have exactly the same set of quantum
numbers as a fermion in |Φi. But if the two systems interact and the total state is
the tensor product |Ψi|Φi, no two fermions can be in the same state in this joint
system. So Pauli’s exclusion principle contributes to determining criteria for iden-
tity and individuation of quantum systems. This means that the new combined
system must be treated as a unit when it interacts with other systems by exchang-
ing energy, momentum or other conserved quantities.
That a closed system is attributed definite quantum numbers is a consequence

of the fundamental quantum principle, discovered by Planck, that exchange of
energy only occurs in discrete portions; in other words, interactions between
quantum systems are quantized.
Thus Pauli’s exclusion principle and quantization of interaction are in a general

sense fundamental laws, albeit they do not fit my definition of fundamental quan-
titative laws because they do not express relations between quantities. However,
there are profound similarities.
Fundamental quantitative laws have two features; they are generalisations of

observations and they implicitly define a theoretical quantity. The first feature is
also present in the conservation laws, Pauli’s exclusion principle and quantization
of interaction, which are all supported by observations (though in a more indirect

15 Rays are sets of wave functions and two wave functions |Ψi and |Φi belong to the same ray if |Ψi =
c|Φi for any complex number c.
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way). The other feature is not exactly the same but it has a close analogue; a defi-
nition of a quantity must contain information about how to determine values of
that quantity, whereas definitions of the concepts closed system and quantum sys-
tem, respectively, require information about identity and individuation among sys-
tems satisfying these descriptions, since we quantify over them.16

One might ask: why not require the same of quantities? The answer is that we
need no quantitative properties in the ontology. As already argued, there are no
good reasons to say that quantitative predicates refer to properties; it suffices that
they have extensions.
We may now generalise and make more precise the informal characterization

of a fundamental law given earlier by generalising from quantities to theoretical
predicates in general:

Definition of Fundamental law: A physical law is a fundamental law if and only if (i) it belongs to
the set of implicit definitions of theoretical predicates used in a physical theory, (ii) it is supported
by observations, and (iii) it is part of a theory which enables us to make testable predictions.

Another use of the expression “fundamental law” is to be found among adher-
ents to the syntactic view of theories, such as Carnap and Gardner (1995) and
Hempel (1970). In this tradition the intended meaning of “fundamental law” is
“logically fundamental”. It is well known that one and the same theory can be
given different formulations with different laws being the fundamental ones in
this logical sense; the best example is perhaps classical mechanics which can be
given a Newtonian, Lagrangian, Hamiltonian or a d’Alembertian formulation,
each with different axioms. So “fundamental” in this logical sense must be rela-
tivized to theory formulation.
By contrast, my conception of fundamental law is not relative to theory formu-

lation. Those true universally generalised conditionals which satisfy the condi-
tions in the definition given above are fundamental in an epistemic and semantic
sense.

10. Lawhood and Necessity

Consider the well-rehearsed contrast between:
# 1 All spheres of gold are less than 1 km in diameter.
and:
# 2 All spheres of U235 are less than 1 km in diameter.

16 This is an application of Quine’s “no entity without identity”. Using the expressions “for all x” and
“there is an x” in a meaningful way requires an identity criterion for entities in the domain.
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We believe that #1 and #2 are both true. (If someone were to discover a coun-
ter instance to #1, a huge heap of gold somewhere in universe, one could simply
use a bigger diameter.) Knowing that U235 is a radioactive isotope for which the
critical mass is 52 kg (a sphere with a diameter of 17 cm), we are prone to say
that #2 is a law, whereas #1 is not. It is also natural to say that #1 is contingently
true, whereas #2 must be true, i.e., it is necessary. In fact, we are prone to say
about all laws that they are necessary. Why?
The specific kind of necessity attributed to laws is often called “physical neces-

sity” (or “nomological necessity”). Should we now say that a certain sentence
p is (or expresses) a law because it is necessary, or should we say that since p is a
law it is necessary? Those positions in the debate about laws that postulate uni-
versals or relations between universals as the metaphysical basis for lawhood nat-
urally would say that p is a law because it is necessary. I am not tempted to go in
that direction. The previous discussion is, I think, a plausible explanation of why
at least some important laws are classified as such without talking about neces-
sity. So I prefer to explain physical necessity in terms of lawhood.
We have three cases to consider: fundamental laws, derived laws and explicit

definitions of new theoretical predicates.

10.1 Fundamental laws
Why do we say that fundamental laws are necessary? What is the intended
meaning of “necessary” in this context?
If we use a quantitative predicate such as ELECTRIC FIELD in a theory, we need a
definition of that predicate and, as shown above, Maxwell’s equations function
jointly as implicit definitions of this and other electromagnetic quantities. Thus,
these equations are necessary conditions for the coherent use of ELECTRIC FIELD in
our calculations. Often we abbreviate; instead of saying that Maxwell’s equations
are necessary conditions for theoretical descriptions of electromagnetic phenom-
ena, we simply say that they are necessary. Since the sentence “p is a necessary
condition for q” has the form of a material conditional, we do not intend any
modal distinction at the level of object language when we express this conditional
with the short version “p is necessary”.
Then, since “necessary” here is not intended as marking a modal distinction,

the logical form of “p is necessary” is not that of □p, but rather “⌜p⌝ is neces-
sary”, i.e., the statement that a law L is necessary may be understood as that it is
a necessarily true part of the theory. Since the law sentence said to be necessary,
i.e., necessarily true, is talked about, not used, we must put the law sentence in
quotation marks. Thus we do not enter quantified modal logic at all.
Saying that laws are necessary in the sense given above does not entail that

they are absolutely certain, or that violations are inconceivable. Electromagnetism
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might one day be replaced by a better theory, but such a replacement means
changing the electromagnetic laws, hence changing the extension of the quantita-
tive predicates CHARGE, CURRENT, MAGNETIC FIELD, etc., if these words would still
be used in the new theory.

10.2 Derived laws
If a sentence q is derivable from another sentence p it follows that we have estab-
lished the material conditional p ! q. Hence, ⌜q⌝ is a necessary condition for
⌜p⌝, which we in ordinary parlance may ascertain by the expression “q is neces-
sary”, thus as before suppressing p as unnecessary to mention in the context at
hand (and, as is usual in ordinary parlance, disregarding the use-mention
distinction).
Not mentioning a condition is common in natural language in cases where the

speaker and listener assume mutual awareness about it. For example, if I say to my
visitor, “Now you must hurry”, we both understand the use of “must” as indicating
a tacit condition, such as “if you want to catch the train”, which we both want
to be fulfilled. This is also similar to our use of “must” in mathematics and
logic; we may say, for example, “if 3x + 32= 83, then x must be 17”. The truth
of the sentence “x = 17” is a necessary condition for the truth of
“3x + 32 = 83”. Hence, since a derived law is a necessary condition for the
truth of the fundamental laws from which it is derived, we say about derived
laws that they are necessary.

10.3 Explicit definitions of new theoretical predicates
Explicit definitions are usually not called “necessary”, but it is entirely correct to
say that a definition of a technical term is a necessary condition for the meaning-
ful use of that term in discourse. Hence we may reasonably say that having a defi-
nition of a quantity (or any other theoretical concept) is a necessary condition for
the use of it in that theory. For example, we may say that Newton’s second law is
a necessary condition for the use of the quantity FORCE in calculations and predic-
tions in mechanics. Accepting classical mechanics means accepting f = ma as
giving the extension of FORCE. Again, the sense of “necessary” intended here is
simply “necessary condition”, i.e., the consequent in a material conditional with
tacit antecedent. And as before, the word “necessary” is here a semantic predi-
cate, not a sentence operator.
A true accidental generalisation, such as #1, is not necessary in this sense; in

#1 we use predicates which are defined independently of that sentence, and nei-
ther is it a consequence of such definitions. So my explanation of our saying that
laws are necessary suffices for distinguishing between #1 and #2.
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In short, all the laws that constitute a particular theory, fundamental laws,
explicit definitions and all their logical consequences, are necessary conditions
for our acceptance and use of the concepts in that theory.17 No modal distinctions
in the object language are assumed by using the word “necessary” in this sense.
My view is thus that we have means to discern some true UGCs as laws and it

is their status as laws that motivates our calling them necessary. Not all the logi-
cal consequences of a set of laws are UGCs; we may also derive singular condi-
tional statements from a set of laws and it is entirely reasonable to say that such
statements are also physically necessary. So we arrive at the following definition:

Physical Necessity: ⌜p⌝ is physically necessary if ⌜p⌝ is a law, or a logical consequence of a set
of laws.

Both the expressions “is a law” and “is physically necessary” are thus used as
predicates taking sentences as arguments, not as sentence operators. This is not
common; usually “necessary” is taken as a sentence operator. But if we do that
and apply it to quantified sentences, we enter quantified modal logic. In this realm
we arrive, via the Converse Barcan Formula and Distribution of necessity, at what
Quine (1976) called “Aristotelian essentialism”, i.e., a distinction between essen-
tial and contingent properties. Being an empiricist, this is too much metaphysics
for my taste. Any such metaphysical commitments are avoided if we conceive
“necessary” as a semantic predicate, a modifier of “true”.
Van Fraassen (1977) argued that physical necessity, which he conceived as a

sentence operator, is a species of verbal necessity. This is a possible stance so
long as one does not apply “necessity” to sentences containing quantifiers, and
van Fraassen did not discuss that. But this is somewhat astonishing since law sen-
tences are UGCs. It seems to me that he succeeds in arriving at his conclusion
only by avoiding quantified modal logic.
Henry Kyburg (1990), like myself, argues that necessity should be construed

as a semantic predicate; but I disagree with him about the status of laws and
quantities, as already mentioned in Section 4.

11. Summary

In this article I have not been able to cover all physical laws, but I do think that I
have given good reasons for the thesis that most physical laws fit into one of the
three types of laws here described: (i) fundamental laws, which are

17 This was arguably a core idea in Kuhn’s (1970) talk about paradigms. But he would have won much
clarity had he talked about extensions of predicates instead of paradigms, metaphysical assumptions, etc.
But if so, the book might have been less famous.
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generalisations of observations and at the same time implicit definitions of either
quantitative predicates used in reporting generalised observations, or identity cri-
teria for systems being quantified over; (ii) laws that are explicit definitions of
quantities; and (iii) laws that are derivable from other laws.
The expressions “... is a law” and “... is physically necessary” are best viewed

as predicates in metalanguage, not operators in the object language. Saying that
laws are necessary may be interpreted as talk about law sentences; we thereby
distinguish a subclass of true sentences. One may consistently say about laws that
they are necessary, i.e., necessarily true, in this sense, since they establish rules
for use of general terms in the theory, without granting the existence of any meta-
physical categories such as essences, dispositions or relations between universals.
Theoretical predicates in physics ultimately get their meaning, i.e., their rules

of application, from observations, and theory construction in physics must ulti-
mately be built upon directly observable things, i.e., bodies, attributed measurable
quantities.
This account of laws is Humean in spirit. But in contrast to Hume, who held

that necessity just is a projection of our expectations, I hold that attributing physi-
cal necessity and lawhood to some sentences in scientific theories is motivated by
conceptual and epistemological arguments.
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