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Humans have long been characterized as poor probabilistic reasoners when presented

with explicit numerical information. Bayesian word problems provide a well-known

example of this, where even highly educated and cognitively skilled individuals fail to

adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate

Bayesian inferences relative to normalized formats (e.g., probabilities, percentages),

both by clarifying logical set-subset relations and by simplifying numerical calculations.

Nevertheless, between-study performance on “transparent” Bayesian problems varies

widely, and generally remains rather unimpressive. We suggest there has been an

over-focus on this representational facilitator (i.e., transparent problem structures) at

the expense of the specific logical and numerical processing requirements and the

corresponding individual abilities and skills necessary for providing Bayesian-like output

given specific verbal and numerical input. We further suggest that understanding this

task-individual pair could benefit from considerations from the literature on mathematical

cognition, which emphasizes text comprehension and problem solving, along with

contributions of online executive working memory, metacognitive regulation, and relevant

stored knowledge and skills. We conclude by offering avenues for future research aimed

at identifying the stages in problem solving at which correct vs. incorrect reasoners

depart, and how individual differences might influence this time point.

Keywords: Bayesian reasoning, mathematical problem solving, text comprehension, set-subset reasoning,

numeracy, individual differences

Introduction

Over the past decades, there has been a growing appreciation for the probabilistic operations
of human cognition. The union of highly sophisticated modeling techniques and theoretical
perspectives, sometimes referred to as the “Bayesian Revolution,” is posed to bridge many
traditional problems of human inductive learning and reasoning (Wolpert and Ghahramani,
2005; Chater and Oaksford, 2008; Tenenbaum et al., 2011). Despite this promising avenue,
probabilistic models have acknowledged limits. One of themost prominent of these is the persistent
difficulties that even highly educated adults have reasoning in a Bayesian-like manner with explicit
statistical information (Kahneman and Tversky, 1972; Gigerenzer and Hoffrage, 1995; Barbey and
Sloman, 2007), including individuals with advanced education (Casscells et al., 1978; Cosmides
and Tooby, 1996), higher cognitive capacity (Lesage et al., 2013; Sirota et al., 2014a), and higher
numeracy skills (e.g., Chapman and Liu, 2009; Hill and Brase, 2012; Johnson and Tubau, 2013;
Ayal and Beyth-Marom, 2014; McNair and Feeney, 2015). Rather than contradicting Bayesian
models of reasoning, however, less than optimal inferences over explicit verbal and numerical
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information result in large part from the relatively recent cultural
developments of these symbolic systems, far too little time for
evolution to have automated this explicit reasoning capacity.

In the present review, we focus on Bayesian word problems,
or the textbook-problem paradigm (Bar-Hillel, 1983), where
a binary hypothesis and observation (e.g., the presence of
a disease, the results of a test) are verbally categorized and
numerically quantified within a hypothetical scenario. We use
the term “Bayesian word problems” to refer to tasks in which
these explicitly summarized statistics are provided as potential
input for a Bayesian inference in order to derive a posterior
probability (these correspond to “statistical inference” tasks in
Mandel, 2014a). Specifically, the base rate information (e.g.,
the probability of having a disease) has to be integrated with
the likelihood of a certain observation (e.g., the validity of a
diagnostic test, reflected in a hit rate, and false-positive rate)
to arrive at precisely quantified Bayesian response (e.g., the
probability of having the disease conditioned on a positive test).
Hence, these problems reflect situations of focusing (rather than
updating per se), where an initial state of knowledge is refined,
or re-focused, in an otherwise stable universe of possibilities
(Dubois and Prade, 1992, 1997; Baratgin and Politzer, 2006,
2010). Given this static coherence criterion of these word
problems, the normative view of additive probability theory holds
(Kolmogorov, 1950), and so Bayes’ rule is the most appropriate
normative standard for assessing performance (see Baratgin,
2002; Baratgin and Politzer, 2006, 2010)1.

Some have argued that Bayesian word problems may in fact
have little to do with “Bayesian reasoning” in the sense that
they do not necessarily require updating a previous belief (see
Koehler, 1996; Evans et al., 2000; Girotto and Gonzalez, 2001,
2007; Mandel, 2014a; Girotto and Pighin, 2015). This sentiment
reflects a gradual shift from using these tasks to understand how
well (or poorly) humans update the probability of a hypothesis in
light of new evidence, or how experienced physicians diagnose
disease given a specific indicator (Casscells et al., 1978; Eddy,
1982), to the task features and individual differences associated
with reasoning outcomes, which are often found to depart from
the Bayesian ideal (Barbey and Sloman, 2007; Navarrete and
Santamaría, 2011; Mandel, 2014a). We take this descriptive-
normative gap to be our general question: Why do people tend
to deviate, often systematically, from the normative standard
prescribed by Bayes’ rule?

Fortunately not all is lost, and a variety of factors are
increasingly understood which can be manipulated to facilitate
Bayesian responses from floor to near ceiling performance. In
what follows, we first aim to clarify some frequently confused
terms, isolate key factors influencing performance, and point
out some limitations of typically contrasted theoretical views.
We then highlight some mutually informative parallels between
research and theory on Bayesian inference tasks, and the

1In this review we do not address the distinction between logical and subjective

Bayesianism, nor do we refer to situations involving a dynamic cohesion criterion

or the conditioning principle (see Baratgin and Politzer, 2006) in which other

normative standards may apply (for discussion on the normative issue see

Gigerenzer, 1991; Koehler, 1996; Vranas, 2000; Baratgin and Politzer, 2006, 2010;

Douven and Schupbach, 2015).

literature on mathematical problem solving and education.
Finally, we discuss how these separate, but complimentary, views
on reasoning and mathematical cognition can provide some
general processing considerations and new methodologies
relevant for understanding why human performance
falls short of Bayesian ideals, and how this gap might
be reduced.

Natural Frequencies: from Base-rate
Neglect to Nested-sets Respect

In the present section we explore the Bayesian reasoning task,
using a variant of the classic medical diagnosis problem (Casscells
et al., 1978; Eddy, 1982) as a general point of reference.
We center on the natural frequency effect—a facilitator of
both representation and computation—and the debate which
has surrounded it for nearly two decades. We highlight the
general consensus on the benefits of making nested-set structures
transparent, before turning to other processing requirements
needed for transforming presented words and numbers into a
posterior Bayesian response in the following section.

Poor Reasoning and Base-rate Neglect

“In his evaluation of evidence, man is apparently not a
conservative Bayesian: he is not Bayesian at all.”

Kahneman and Tversky (1972 p. 450)

Although Bayesian norms have been around since the 18th
century (Bayes, 1764), it was not until 200 years later
that psychological research adopted these standard as the
benchmark against which to measure human reasoning ability.
As exemplified in the quote above, early results were not too
promising. In the heyday of the heuristics-and-biases paradigm,
one ofmedicine’s most coveted journals, theNew England Journal
of Medicine, published a study where a group of medically trained
physicians were given the following problem (Casscells et al.,
1978):

If a test to detect a disease whose prevalence is 1/1,000 [BR]
has a false positive rate of 5% [FPR], what is the chance that a
person found to have a positive result actually has the disease,
assuming that you know nothing about the person’s symptoms or
signs?___%2.

This medical diagnosis problem asks for the probability (chance)
that a person actually has the disease (the hypothesis) given
a positive test result (the data), a task of which physicians
should be reasonable adept. The results, however, were not very
encouraging, with only 18% of the physicians answering with
the Bayesian response of 2%. Forty-five percent of them, on
the other hand, answered “95%,” which appeared to completely
ignore the base rate presented in the problem—the fact that
only 1 in 1000 people actually have the disease. Similar results

2Information in [brackets] was not present in original text, but is included in

examples in this review to ease cross-problem comparisons. [BR] = base rate,

[FPR]= false-positive rate. Implicit in this example is the hit rate [HR]= 1.
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were reported a few years later by Eddy (1982). Evidence was
accordingly interpreted to show that humans tend to neglect
crucial information (such as base rates), while instead focusing
on the similarity of target data to prototypical members of a
parent category (for reviews see Kahneman et al., 1982; Koehler,
1996). This was part of a larger explanatory framework which
emphasized limited cognitive processing capacity, where mental
shortcuts, or heuristics, are employed to alleviate the burden of
cognitively demanding tasks, including those that may be more
optimally answered with formal calculations (e.g., Kahneman,
2003). However, “base-rate neglect” as a general explanation
has been critiqued on theoretical and methodological grounds
(Koehler, 1996), which is further supported by the observation
that typical errors in Bayesian word problems tend to be a
function of the question format, with base-rate-only responses
often reported (e.g., Gigerenzer and Hoffrage, 1995; Mellers
and McGraw, 1999; Evans et al., 2000; Girotto and Gonzalez,
2001).

The Natural Frequency Effect: Evolution and
Computation
At a time when pessimism dominated the landscape of the
cognitive psychology of reasoning, Gigerenzer and Hoffrage
(1995) and Cosmides and Tooby (1996) offered hope for the
human as statistician, along with a strong theoretical agenda (see
also Brase et al., 1998). Consider this frequency alternative to
the Casscells et al. (1978) medical diagnosis problem presented
above:

1 out of every 1000 [BR] Americans has disease X. A test has been
developed to detect when a person has disease X. Every time the
test is given to a person who has the disease, the test comes out
positive [HR=1]. But sometimes the test also comes out positive
when it is given to a personwho is completely healthy. Specifically,
out of every 1000 people who are perfectly healthy, 50 of them test
positive [FPR] for the disease.
Imagine that we have assembled a random sample of 1000
Americans. They were selected by a lottery. Those who conducted
the lottery had no information about the health status of any
of these people. Given the information above, on average, how

many people who test positive for the disease will actually have
the disease? __ out of __.

Performance on this problem was found to elicit a correct
response rate of 72% by Cosmides and Tooby (1996, study 2),
remarkably higher than the 18% reported by Casscells et al. with
the formally analogous information shown above. In a similar
vein, Gigerenzer and Hoffrage (1995, 1999) reported success
rates near 50% across a variety of problems presenting natural
frequencies, compared to 16% with their probability versions.
Examples of similar problems presenting natural frequencies and
normalized data are shown in Figure 1.

The initial explanations offered for these effects can be
divided in two strands: Evolution and computation. According
to Cosmides and Tooby, evolution endowed the human mind
with a specialized, automatically-operating frequency module
for making inferences over countable sets of objects and
events, but which is ineffective for computing single-event
probabilities. By tapping into this module naïve reasoners can
solve frequency problems, while they fail on probability problems
because this module cannot be utilized. Relatedly, Gigerenzer
andHoffrage suggested that reasoning performance depended on
the mesh between the presented problem data (the structure of
the task environment) and phylogenetically endowed cognitive
algorithms for naturally sampled information (Kleiter, 1994;
Figure 2B), which leads to a similar suggestion that explicit
numerical reasoning would utilize the same cognitive processes
used for reasoning based on information experienced over time,
provided the external input matched the internal algorithm.
Unlike Cosmides and Tooby (1996) and Gigerenzer andHoffrage
(1995) did not specifically argue that the mind is unable to deal
with probabilities of single events, and in fact their computational
account predicted quite the opposite (see their study 2 and
“prediction 4”).

The more pertinent claim of Gigerenzer and Hoffrage (1995),
however, was their computational analysis, which focused on
the difference between the information provided in the problem
and its proximity to the Bayesian solution. With normalized
information (e.g., percentages; see Table 1), the following

FIGURE 1 | Examples of the medical diagnosis problem, presented with normalized numerical information (left) and with natural frequencies (right). If

not otherwise indicated, other tables, figures, and examples in the text refer to the numerical information in this figure.
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FIGURE 2 | Representations of the Bayesian tasks presented in Figure 1 as (A) integrated nested sets, and (B) frequency tree, where (H) the

hypothesis = infected (inf); and (D), the data = positive test (pos).

computation is necessary to arrive at a Bayesian response, where
H is the hypothesis (having the disease) and D is the data (testing
positive):

p(H|D) =
p (H&D)

p(D)
=

p(H)p(D|H)

p(H)p(D|H)+ p(¬H)p(D|¬H)

=
(0.1)(0.6)

(0.1)(0.6)+ (0.9)(0.2)
= “25%”

With natural frequencies, on the other hand, all numerical
information is absolutely quantified to a single reference class
(namely, the superordinate set of the problem; “100 people”
in Figure 1; see also Figure 2B), where categories are naturally
classified into the joint occurrences found in a bivariate 2 ×

2 table [e.g., (H&D), (¬H&D)]. In this case, the conditional
distribution does not depend on the between-group (infected, not
infected) base rates, but only on the within-group frequencies (hit
rate, false-positive rate). Accordingly, base rates can be ignored,
numbers are on the same scale and can be directly compared
and (additively) integrated, and the required computations are
reduced to a simpler form of Bayes rule:

p(H|D) =
p (H&D)

p(D)
=

p(H&D)

p(H&D)+ p(¬H&D)

=
6

6+ 18
= “6 out of 24”

Thinking in Sets: Comprehension and
Manipulation of Nested-set Structures
While the computational simplification afforded by natural
frequencies was clear, critiques of the evolutionary view came
quickly. Over the ensuing decade, a number of studies appeared
which argued that the “frequency advantage” was better described
as a “structural advantage” (Macchi, 1995; Macchi and Mosconi,
1998; Johnson-Laird et al., 1999; Lewis and Keren, 1999; Mellers
and McGraw, 1999; Evans et al., 2000; Girotto and Gonzalez,
2001, 2002; Sloman et al., 2003; Yamagishi, 2003; Fox and
Levav, 2004). More specifically, these studies suggested that
the benefit of natural frequencies was not in the numerical
format per se (frequencies vs. percentages), nor the number

of events being reasoned about (sets of individuals vs. single-
event probabilities), but rather in the clarification of the
abstract nested-set relationships inherent in the problem data,
which helps reasoners to form appropriate models of relevant
information. The nested-set structure of these problems is
illustrated in Figure 2, where it can be seen that the relations
between categories—people infected (H) and not infected (¬H)
testing positive (D) for a disease—can be represented spatially as
a hierarchical series of nested sets.

Clearly, the quantitative relationships amongst subsets are
more transparently afforded with natural frequencies compared
to normalized percentages. This general view emphasizing
representational facilitation has come to be known as the nested-
sets hypothesis, originally proposed by Tversky and Kahneman
(1983), and which has since been variously expressed by a
number of authors. For example, Mellers and McGraw (1999)
concluded that natural frequencies are “advantageous because
they help people visualize nested sets, or subsets relative to larger
sets” (p. 419). Girotto and Gonzalez (2001) attributed successful
reasoning to problem presentations which “activate intuitive
principles based on subset relations” (p. 247). For Evans (2008),
“what facilitates Bayesian reasoning is a problem structure
which cues explicit mental models of nested-set relations”
(p. 267). And as stated by Barbey and Sloman (2007, p. 252):
“the mind embodies a domain general capacity to perform
elementary set operations and that these operations can be
induced by cues to the set structure of the problem.” Although
these suggestions are not without limitations (discussed below),
proponents of the nested-sets hypothesis helped identify a key
strategy that reasoners (naïve to Bayes rule) can use to arrive
at a Bayesian response: Thinking in sets. That is, in the absence
of formal knowledge of how to optimally combine conditional
probabilities, reasoners can still solve these tasks by considering
the problem as overlapping sets of data, namely, as a focal subset
of infected people out of the reference set of people who test
positive: (H&D)/(D).

Contemporary discussions explaining Bayesian facilitations
continue to be framed in terms of a nested-sets (or domain
general) contra an ecological rationality (or frequency/format-
specific) debate (e.g., Navarrete and Santamaría, 2011; Hill and
Brase, 2012; Lesage et al., 2013; Brase, 2014; Sirota et al., 2014a,b,
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2015a,b; Brase and Hill, 2015). We assume that theorists on both
sides of the divide are more interested in finding out how to
improve Bayesian reasoning and why these facilitations work,
rather than simply promoting a preferred position. We also
believe that, in general, these perspectives may in some regards
be more complimentary than adversarial. Accordingly, we think
that it is important to acknowledge what these views have in
common, where the relevant differences between these views lie,
and whether either view can fully account for empirical data.

To begin, it should by now be well understood that natural
frequencies do not simply refer to the use of frequency formats,
but essentially refer to problem structure as well (Gigerenzer
and Hoffrage, 1999, 2007; Hoffrage et al., 2002; for concurrence
see Barbey and Sloman, 2007, response R3). Both the natural
frequency and nested-sets views agree that frequencies that do
not conform to a natural sampling, or partitive, structure are
not much better than percentage formats (Evans et al., 2000;
Girotto and Gonzalez, 2001; Sloman et al., 2003). Where these
two views primarily diverge is in how comfortable they are
making precise predictions based on evolutionary claims. For the
moment we suggest putting the evolutionary claims aside, and
instead focusing on two points of commonality. First, natural
frequencies (or problems presenting a “partitive” or “nested-
set” structure, or conforming to the “subset principle”; see Brase
and Hill, 2015) are widely agreed to be the most general and
robust facilitator of Bayesian-like performance. Second, natural
frequencies facilitate both representation and computation.

We suggest that in order to advance the discussion, we
need to move away from the standard “natural frequency
vs. nested-sets” debate and instead consider the processing
requirements, and corresponding difficulties, given a particular
problem presentation (see also McNair, 2015; Vallée-Tourangeau
et al., 2015b). In the following section we note key performance
variables and often confused issues, and review available evidence
looking separately at problems presenting and requesting
normalized vs. natural frequency information.

The Bayesian Problem: from Words and
Numbers to Meaningful Structures

Table 1 presents some commonly used terms that are often used
in different ways and which frequently lead to confusion. Below
we briefly highlight the most frequently confused factors (see also
Barton et al., 2007).

First, numerical format and the number of events are fully
orthogonal dimensions. Normalized formats (e.g., percentages,
decimals) can express single-event probabilities (e.g., “10%
chance of infection”) or proportions of a set (e.g., “10% of
people are infected”), and whole numbers can be used to express
frequencies (e.g., 10 of 100 people) or single events (10 of 100
chances). This applies both to the information presented in the
text and requested in the question.

Second, the “sampling structure” (also referred to as
“information structure” or “menu”) refers to the specific
categorical-numerical information used to express the hit rate
and false-positive rate, and is also orthogonal to the above two
distinctions (numerical format, number of events). Typically, this

refers to the presentation of the conjunctive/joint events [(H&D)
and (¬H&D)] vs. the conditional/normalized data [(D|H) and
(D|¬H), along with the base rates (H) and (¬H)]. Any of
these categories can be quantified with either frequencies or
normalized formats.

Finally, throughout this review we use the term “natural
frequencies” to refer to problems which (1) present whole
numbers (2) in a natural sampling (or partitive) structure
(specifically, one which directly presents H&D and ¬H&D), and
(3) request responses as an integer pair. We acknowledge that on
some accounts natural frequencies may refer only to the initial
problem data independent of the question format. However, as
we review, the primary benefits of natural frequencies hold only
when the question also requests a pair of integers (Ayal and
Beyth-Marom, 2014), and therefore for ease of exposition we use
natural frequencies only when all three conditions are present
(unless otherwise stated). In contrast, we refer to “normalized”
problems as those which do not meet these three criteria (see
Table 1).

Why do natural frequencies facilitate Bayesian-like responses?
In order to answer this question, we have to understand what was
so hard in the first place. That is, a facilitation must always be
made relative to some initial point, and it is therefore important
first to understand why normalized versions are so difficult. We
will then be in a better position to understand the facilitating
effects of natural frequencies, and more generally why even
clearly presented problems can still be so difficult for many
reasoners. In the remainder of this section we therefore review
factors that have been shown to facilitate, or impair, Bayesian-
like reasoning with problems presenting normalized information
or natural frequencies separately.

Reasoning with Normalized Formats
Reasoning with normalized formats is notoriously difficult.
However, observing that more “transparent” problems facilitate
performance does not necessarily imply that normalized versions
are hard simply because the presented data is more difficult to
represent. As reviewed below, the difficulty of these problems
cannot be reduced to a single (representational or computational)
factor. Although some improvements have been observed with
visual diagrams and verbal manipulations to the text and
question, as well as for individuals with higher cognitive and
numerical ability, all of these are limited in their effectiveness.

Visual Representations
Some evidence suggests that visual aids may boost performance
with normalized data, which presumably help reasoners to
appreciate nested-set relations (for recent reviews see Garcia-
Retamero and Cokely, 2013; Garcia-Retamero and Hoffrage,
2013). For example, Sedlmeier and Gigerenzer (2001) showed
that training individuals to use frequency trees could have
substantial and lasting effects on complex Bayesian reasoning
scenarios. Mandel (2015) more recently showed that similar
instructions on information structuring improve the accuracy
and coherence of probability judgments of intelligence analysts.
Recent work by Garcia-Retamero and Hoffrage (2013) also
showed substantial benefits of visual aids with probability
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TABLE 1 | Key dimensions along which a Bayesian word problem may vary.

Dimension Description and variables

Numerical format The format of the presented numerical information: Whole number integer pairs (e.g., 10 of 100) vs. Normalized (e.g., 10%, 0.1). Formats can

be mixed within a single problem.

Question format The format of the requested response, typically: Integer pair (e.g., “__ out of __”) vs. Normalized (e.g., “__%”).

Number of events Single-event (e.g., probability, chance) vs. Set of events (e.g., individuals, chances). Can apply to both the presented data (“information type”)

or to the information requested (“task domain”). Often confused with numerical format, but these are orthogonal issues.

Sampling structure The particular categorical-numerical information used to express the hit rate and false-positive rate, typically: Natural (H&D, ¬H&D; also

partitive, transparent, conjunctive, joint) vs. Normalized (D|H and D|¬H; also non-partitive, relative frequencies, conditional).

Natural frequencies A problem format which presents whole numbers in a natural sampling structure (e.g., H&D, ¬H&D), and requests responses as an integer pair.

Normalized problems A problem which presents normalized numerical formats (percentages, decimals), a normalized sampling structure (i.e., with conditional or

non-conjunctive information), and/or which requests information in a normalized format (a ratio as a single value, not integer pair).

Context Scenario of the problem. For example, medical (infection, test); cab (accident, color).

Irrelevant info Descriptive information that is not relevant for solving the task. Numbers that are not needed for computing the normative response.

Mental steps The number of steps required to compute the response, given the specific numbers presented in the problem. For example, in Figure 1, the

number “24” (total positive tests, D) is needed but not presented, and must be calculated from (6+ 18) = 1 numerical step.

Compatibility Correspondence between the presented and requested data, including numerical and question formats, also sample sizes.

information. Yamagishi (2003) found that both a roulette-wheel
diagram and a frequency tree led to large improvements with
information presented as simple fractions (e.g., 1/4, 1/3, 1/2)
in the gemstone problem. Sloman et al. (2003) also showed
that a Euler circle diagram marginally facilitated performance
on a probability version of the medical diagnosis problem.
However, in a counterintuitive Bayesian task, the Monty Hall
dilemma, Tubau (2008) found no facilitation of a diagrammatic
representation of the problem. Overall, while visual diagrams
may help with normalized data under some conditions, this
facilitation is typically very modest, although instruction or
training in information re-representationmay be an effective way
to improve reasoning in some populations.

Verbal Formulation and Irrelevant Information
There is evidence that reasoning with normalized data can
be improved by manipulating the verbal structure of the
problem, independent of the numbers provided (Macchi, 1995;
Sloman et al., 2003; Krynski and Tenenbaum, 2007; Hattori
and Nishida, 2009; Johnson and Tubau, 2013; Sirota et al.,
2014a). For example, Macchi (1995) showed how questions
which were slightly reformulated to focus on individuating (vs.
base-rate) information increased (or reduced) the number of
base-rate neglect responses. Sloman et al. (2003, exp. 1) found
differences between three numerically identical versions of the
medical diagnosis problem, but which varied in the particular
wording (or “transparency of nested-set relations”) used to
transmit the problem data (see also Sirota et al., 2014a, exp.
2). They additionally reported that irrelevant numbers impaired
performance, but only with normalized versions (exp. 4B).
Johnson and Tubau (2013) also found that simplifying the verbal
complexity improved Bayesian outcomes with probabilities, but
this was restricted to higher numerate reasoners3.

3Numeracy is generally defined as the ability to work with basic numerical

concepts, including the comprehension and manipulation of simple statistical and

Krynski and Tenenbaum (2007) also showed that
manipulating verbal content, independent of the numbers, can
boost performance. They suggested that reasoners supplement
the statistical data presented in the problem with prior world
knowledge (of causal relations), and therefore Bayesian reasoning
could be enhanced by presenting false-positive rates in terms of
alternative causes. Simply providing a cause for the false-positive
rate (e.g., “the presence of a benign cyst” in the medical diagnosis
context) boosted performance from approximately 25 to 45%,
some of the highest performance reported with normalized
data in the absence of visual cues. It should be noted, however,
that McNair and Feeney (2015; see also 2014) were unable to
fully replicate this effect, though they did find evidence that
higher numerate reasoners significantly benefitted from a clearer
causal structure with normalized information. The participants
in Krynski and Tenenbaum’s study consisted of undergraduate
and graduate students at MIT, who are presumably a more
mathematically sophisticated group, which may help to account
for the consistent main effect of causal structure in their studies
(cf. Brase et al., 2006). This suggests that providing “alternative
causes” helped draw attention to the often neglected false-
positive data (Evans et al., 2000), which could then be taken
advantage of by individuals possessing the requisite numerical
skills.

Computation
Normalized versions typically require multiple steps using
fraction arithmetic. Despite claims in the reasoning literature that
the fraction arithmetic (multiplying and dividing percentages)

probabilistic information (for reviews see Reyna and Brainerd, 2008; Lipkus and

Peters, 2009; Reyna et al., 2009; Peters, 2012). One of the most common measures

used in reasoning and decision making studies is the 11-item Lipkus et al. (2001)

numeracy scale, which assesses the ability to compare the relative magnitude of

ratios, to convert between statistical formats, and to perform simple calculations

using frequency ratios and percentages. Other measures of numeracy can be found

in, for example, Cokely et al. (2012) and Peters et al. (2007).
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required in these tasks in relatively easy (e.g., Johnson-Laird et al.,
1999; Sloman et al., 2003), there is indeed substantial evidence
that many people lack the requisite conceptual and/or procedural
knowledge to correctly carry out these computations (Paulos,
1988; Schoenfeld, 1992; Mayer, 1998; Ni and Zhou, 2005; Reyna
and Brainerd, 2007, 2008; Siegler et al., 2011, 2013). Indirect
evidence for the difficulty performing multiplicative integrations
on normalized problem data is also suggested in Juslin et al.
(2011), where it was proposed that reasoners default to less
demanding linear additive integrations in the absence of requisite
knowledge, cognitive resources, or motivation (see also Juslin,
2015).

An informative result was provided in Ayal and Beyth-Marom
(2014). Participants were provided probability information in
a percentage format, but the problems were manipulated so
that p(H|D) could be computed via a single whole-number
subtraction (1 − p(¬H|D) = 100 − 92% = 8%). Responses were
requested either as a percentage (“compatible”) or as frequencies
(“incompatible”). In the compatible condition, nearly 80% of
higher numerate and around 60% of lower numerate reasoners
correctly computed p(H|D); in the incompatible condition,
around 70% or of higher numerate and around 34% of lower
numerate individuals responded correctly. On the one hand,
this expectedly demonstrates that higher numerate individuals
are more able to translate between numerical formats. More
importantly, however, the high proportion of correct responses,
even by reasoners with lower numeracy, demonstrates that
the participants in these studies are not inherently unable to
understand set relations presented as standardized probabilities.
It also shows that the typical computational demands (steps
and/or type) with normalized formats may in fact impede
Bayesian-like responding (cf. Juslin et al., 2011). It should also be
noted, however, that this condition does not require reasoners to
understand embedded sets of information (i.e., to simultaneously
consider and integrate base rates and diagnostic information);
rather, they are simply required to represent the complement
of a whole. This implies that the representational difficulty on
standard Bayesian problems is not specific to the structure of
the data itself, but rather to the relation between the presented
and requested information (see also Section Common Processing
Demands: Quantitative Backward Reasoning).

Number of Events
Existing research suggests that presenting or requesting single-
event probabilities vs. a proportion of a sample (or relative
frequencies) with percentages may have little impact on Bayesian
responding with normalized data, all else held constant. For
example, Gigerenzer and Hoffrage (1995, study 2) found no
differences when presenting the data as either relative frequencies
with percentages (as in Figure 1) vs. single-event probabilities
when the question requested a probability. Likewise, Evans et al.
(2000, study 2) found no differences with questions requesting
a single-event probability vs. a proportion of a sample from
data presented as relative frequencies with percentages. While
this may be taken as evidence that Bayesian reasoning with
percentage information is independent of the number of events
referred to, this does not necessarily imply that single-event

probabilities are as easily understood as relative frequencies
expressed as percentages (e.g., Brase, 2008, 2014; Sirota et al.,
2015a; see discussion of “Chances” below in Section Reasoning
with Natural Frequencies). Recent re-analyses of data from
Gigerenzer and Hoffrage (1995) show that problems focusing on
individuals (compared to samples, or “numbers”) indeed lead to
fewer Bayesian responses (Hafenbrädl and Hoffrage, 2015).

Individual Differences
The general finding from individual differences research is that
higher cognitive ability, disposition toward analytical thinking,
and numeracy level can lead to improved reasoning under
some conditions, but to a limited extent (Table 2). Sirota et al.
(2014a) found that general intelligence (Raven et al., 1977),
as well as preference for rational thinking (REI; Pacini and
Epstein, 1999), uniquely predicted performance with single-
event probabilities. Results of McNair and Feeney (2015) also
suggested a significant association between Raven’s matrices and
performance on normalized Bayesian versions, but an absence
of association between the latter and REI. Of note, two studies
have reported a lack of association between normalized Bayesian
problems and the cognitive reflection test (CRT; Frederick,
2005), a measure of the tendency to suppress initial intuitions
and engage in more demanding analytical processing (Lesage
et al., 2013; Sirota et al., 2014a). Together, these results suggest
that providing the posterior Bayesian ratio with normalized
information will necessarily depend on high levels of cognitive
ability and numeracy. Without these basic requisites, reflective
thinking or disposition toward analytical thinking are likely
to be of little help (De Neys and Bonnefon, 2013). It is also
important to note that even the performance of “higher” ability
individuals typically remains quite low. Nevertheless, few studies
have directly investigated these factors and results have been
mixed, therefore more research is needed to clarify when (and
in what combination) individual differences measures are likely
to be relevant (proposals of the relative dependencies of these
factors can be found in Stanovich, 2009; Klaczynski, 2014; see also
Thompson, 2009).

Reasoning with Natural Frequencies
Providing information as natural frequencies (or naturally
partitioned sets of chances) is widely hailed as the most effective
and robust facilitator of Bayesian-like reasoning. Nevertheless,
between-study performance varies widely, and success even with
natural frequencies generally remains rather unimpressive (see
Newell and Hayes, 2007; Girotto and Pighin, 2015; McNair,
2015). Why do so many individuals still fail to solve these
problems even when the structures of these tasks are made
“transparent?”

Computation
In their standard form, natural frequencies typically require only
a single addition of two whole numbers to construct the needed
reference set (D), and the selection of the joint occurrence (H&D)
directly provided in the text, to answer the Bayesian question
“(H&D) out of (D).” Clearly, the whole-number arithmetical
demands of the task are manageable by the undergraduate
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TABLE 2 | Summary of significant individual differences effects reported in Bayesian word problems presenting normalized information or natural

frequencies.

Numeracy/education IQ-raven CRT I Thinking disposition

NORMALIZED VERSIONS*

Chapman and Liu, 2009 No

Siegrist and Keller, 2011 Yes/No a

Hill and Brase, 2012 No

Garcia-Retamero and Hoffrage, 2013 Yes

Johnson and Tubau, 2013 Yes/No a

Lesage et al., 2013 No

Sirota et al., 2014a Yes No Yes/No b

Ayal and Beyth-Marom, 2014 Yes c

McNair and Feeney, 2015 Yes/No d Yes No e

NATURAL FREQUENCIES

Brase et al., 2006 Yes

Chapman and Liu, 2009 Yes

Sirota and Juanchich, 2011 Yes Yes

Siegrist and Keller, 2011 Yes/No f

Hill and Brase, 2012 Yes

Garcia-Retamero and Hoffrage, 2013 Yes

Johnson and Tubau, 2013 Yes/No g

Lesage et al., 2013 Yes

Sirota et al., 2014a Yes Yes Yes/No b

Note that variation exists between the specific context and numbers used across studies, as well as specific measures and criteria used to determine low vs. high performers (see text

for additional details, and original articles for full problems and explanations).

*It is important to note that YES with normalized versions does not imply “good” reasoning, with most higher ability participants typically below 30% correct response.
I CRT, Cognitive Reflection Test (Frederick, 2005).
a YES with simple versions; NO with complex versions (floor effect).
b YES with REI (rational-experiential inventory; rational thinking); NO with CAOMTS (actively open-minded thinking).
c Information was normalized, but problems manipulated to require only simple single-step arithmetic.
d Higher numerate benefited more from causal manipulation used in Krynski and Tenenbaum (2007).
e NO with REI.
f YES in study 1; NO in study 2 (though clear trend).
g YES with complex text; NO with short, simple text.

students tested in most studies, as well as by children (Zhu and
Gigerenzer, 2006). At the same time, there is also evidence that
many people either lack the cognitive clarity or are unwilling
to invest the needed cognitive effort into even the simplest
whole number arithmetic (addition, subtraction). For example,
confirming their “mental steps hypothesis,” Ayal and Beyth-
Marom (2014) showed that performance drops sharply when
more than a single numerical operation is required, even if
these operations are little more than a series of simple additions.
Related findings were observed in the “defective nested sets”
study reported in Girotto and Gonzalez (2001, study 5) which
presented a partitive structure [but with (¬H&¬D) instead of
(¬H&D)], but which required an additional subtraction to solve.
Together, these findings demonstrate that natural frequency
facilitations are not simply about the clarity of the presented
data, but are also about how easily the specifically presented
components allow reasoners to generate the Bayesian solution
(see also Barbey and Sloman, 2007).

Verbal Formulation and Irrelevant Information
As with normalized versions, manipulating the verbal context of
a problem to align with existing world knowledge can improve

performance. For example, Siegrist and Keller (2011, study 4;
see also Sirota et al., 2014a, study 2; Chapman and Liu, 2009)
showed that a less educated group from the general population
was more than twice (13 vs. 26%) as likely to solve a “social”
problem (people lie, have red nose) vs. a “medical” problem
(have cancer, test positive). They suggested this group may
focus on specific task information in a real-world context, and
might have assumed they did not know enough about cancer
or medical tests to solve the problem. There is also evidence
that performance, especially by lower numerate reasoners, is
impaired by the presence of unnecessarily descriptive words in
the text (Johnson and Tubau, 2013). Other verbal manipulations,
such as clarifying the meaning of “false positive,” have also been
suggested to improve performance (Cosmides and Tooby, 1996;
Sloman et al., 2003; see also Fox and Levav, 2004). Sloman et al.
(2003) found that irrelevant numbers in the problem did not
impair performance with transparent frequency problems, and
suggested that a frequency format “makes it easier for people to
distinguish relevant from irrelevant ratios” (p. 304). However, a
very frequently reported error with natural frequencies is that
reasoners use the superordinate value of the problem or the new
reference class presented in the question as the denominator

Frontiers in Psychology | www.frontiersin.org 8 July 2015 | Volume 6 | Article 938

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Johnson and Tubau Comprehension and computation in Bayes

in their response (e.g., “100” in Figure 1; see Gigerenzer and
Hoffrage, 1995;Macchi andMosconi, 1998;Mellers andMcGraw,
1999; Evans et al., 2000; Girotto and Gonzalez, 2001; Brase
et al., 2006; Zhu and Gigerenzer, 2006), suggesting that irrelevant
numbers may indeed bias responses on simple natural frequency
problems.

Visual Representations
Sloman et al. (2003) also found that Euler circles did not
further enhance performance with their frequency problem, and
suggested that visuals only facilitate if nested-set relations are not
already clear (see also Cosmides and Tooby, 1996). In contrast,
Yamagishi (2003) found improvements on a natural frequency
gemstone problem with a roulette-wheel diagram. Brase (2009)
did not find a benefit of a Venn diagram with chance versions
in a natural frequency structure, however an icon display did
provide an additional benefit beyond the frequency format (see
also Brase, 2014). Complementary results by Garcia-Retamero
and Hoffrage (2013) also showed benefits of visual aids above
and beyond the use of natural frequencies. Garcia-Retamero
et al. (2015) further showed that visual aids are particularly
beneficial to lower numerate reasoners, and may also improve
their metacognitive judgment calibration. Contrasting with the
above, Sirota et al. (2014b) failed to find a benefit with several
types of visuals. In brief, while some facilitation with visual aids
has been reported with natural frequencies, current evidence is
conflicting and suggests that other factors are likely interacting
with the effectiveness of these aids.

Chances
Although initial reports implied that naturally sampled chances
were as easily represented as naturally sampled frequencies
(Girotto and Gonzalez, 2001), more recent studies show that this
might not be the case (Brase, 2008, 2014; Sirota et al., 2015a). This
would be in line with more general literature on the difficulties
that people have learning and understanding probabilities (e.g.,
Garfield and Ahlgren, 1988; Gigerenzer et al., 2005; Morsanyi
et al., 2009; Morsanyi and Szücs, 2015). It would also imply
that the lack of difference between probability and proportion
formulations with normalized data (see “Number of Events”
above in Section Reasoning with Normalized Formats) is not
because these formats are equally well (or poorly) understood,
but rather that the difference is being masked by another more
fundamental difficulty with normalized information (carrying
out fraction arithmetic; understanding or identifying the
requested relations). Interestingly, participants who interpret
naturally sampled “chances” as frequencies outperform those
individuals who interpret them as single-event probabilities
(Brase, 2008, 2014). Also of interest, more recent evidence
suggests the relevant “interpretation” may be at the problem level
(in terms of set relations) rather than at the format level (in terms
of frequencies) (Sirota et al., 2015a).

Individual Differences
It has been argued that the wide variability reported with natural
frequency problems can be attributed to individual differences
in ability or motivation (Brase et al., 2006; Barbey and Sloman,

2007). In line with this suggestion (and summarized in Table 2),
better performance with natural frequencies has been observed
by individuals higher in cognitive reflection (Sirota and Juanchich,
2011; Lesage et al., 2013; Sirota et al., 2014a; measured with
the CRT); fluid intelligence (Sirota et al., 2014a; measured with
Raven’s matrices); preference for rational thinking (Sirota et al.,
2014a; measured with the REI), education level (Brase et al.,
2006; Siegrist and Keller, 2011; though see Hoffrage et al., 2015),
and numeracy (Chapman and Liu, 2009; Sirota and Juanchich,
2011; Hill and Brase, 2012; Garcia-Retamero and Hoffrage, 2013;
Johnson and Tubau, 2013; Garcia-Retamero et al., 2015; McNair
and Feeney, 2015). These higher ability individuals often perform
quite well, although the success of even these more capable
individuals varies widely across studies.

While some of the between-study variation with natural
frequencies can be captured by these individual differences
factors, the strong relations observed with “higher ability”
reasoners also raises some questions. Why are general
intelligence, cognitive reflection, and numeracy so consistently
relevant on such an arithmetically simple task, especially one
in which the “structural transparency” of the task is such a
well-toted facilitator? Indeed, due to the base-rate preservation,
there is no need for a fully fleshed out representation of the
entire problem structure, and attention need only be allocated
to two pieces of information, (H&D) and (¬H&D). Together,
performance on these “simple” problems implies that, beyond
simple text processing and whole-number arithmetic, there may
be a particular logical difficulty inherent in these problems that
is often overlooked.

Common Processing Demands: Quantitative
Backward Reasoning
Early studies of Bayesian inference with the medical diagnosis
task were specifically directed at understanding how individuals
(e.g., physicians) diagnosis disease given a prior distribution
and an imperfect predictor (a test result) (Casscells et al.,
1978; Eddy, 1982). More recently, logical and set operations
have been identified as a useful strategy for performing these
Bayesian inferences (e.g., Sloman et al., 2003), however, we
believe that the particular nature of the required set operations
has been underemphasized in recent studies. More specifically,
we suggest that a particularly difficult stage of Bayesian problem
solving is performing a backward (diagnostic) inference (van
den Broek, 1990; Oberauer and Wilhelm, 2000; Lagnado et al.,
2005; Fernbach et al., 2011; Sloman and Lagnado, 2015)—in the
medical diagnosis problem, working backward from a positive
test result (effect) to the likelihood of being infected (cause), when
information is provided in the forward cause→ effect direction.
For example, querying the model in Figure 2B in the direction
opposite fromwhich it was formed (i.e., infected→ test positive),
implies a change in the specific role (focal subset or reference
class) of previously associated categories (or a change of focus;
Dubois and Prade, 1997; Baratgin and Politzer, 2010), or a change
in the direction of the causal link (test positive→ infected).

This process can be facilitated with questions which guide
reasoners through the search and selection process, for example,
with integer pair question formats which prompt the reasoner
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for two separate numbers rather than a single percentage, and
perhaps even more so if the reference class is prompted prior
to the focal subset (Girotto and Gonzalez, 2001). It is interesting
to note that with natural frequencies this symmetrical confusion
is reduced for the first term of the integer pair (“6 out of
24”): “Among infected, 6 test positive” to “Among positive, 6 are
infected,” though the more challenging asymmetrical inference
still remains for the reference class. This is consistent with the
suggestion that one of the biggest challenges may be getting
reasoners focused on the correct reference set of positive testers
(Evans et al., 2000; Girotto and Gonzalez, 2001). While this
particular logical difficulty (backward reasoning or quantification
of backward relations) has not been directly demonstrated in
Bayesian word problems, similar explanations have been used
to successfully account for performance in other reasoning
tasks (Evans, 1993; Barrouillet et al., 2000; Oberauer and
Wilhelm, 2000; Oberauer et al., 2005; Oberauer, 2006;Waldmann
et al., 2006; Sloman and Lagnado, 2015), suggesting it may
also be a key stumbling block in Bayesian reasoning. This
explanation might also help to explain why reasoning can be
improved with manipulations which encourage the experience
of a scenario from multiple perspectives, such as “interactivity”
in other Bayesian tasks (Vallée-Tourangeau et al., 2015a) and the
“perspective effect” in the Monty Hall dilemma (for review see
Tubau et al., 2015), which would help to facilitate the backward
inference. This suggestion is also in line with results of the
“short menu” natural frequencies reported in Gigerenzer and
Hoffrage (1995), which directly presented both (H&D) and (D)
in the problem, thereby eliminating all arithmetic, but which led
to a negligible benefit compared with “standard menu” natural
frequencies which require (H&D)+ (¬H&D) to compute (D).

Summary
Taken as a whole, evidence reviewed above is consistent with
the claim that normative responding is generally improved by
facilitating comprehension of both presented and requested
information (e.g., presenting what is needed, removing what
is irrelevant, using questions which guide the reasoner) and,
relatedly, minimizing the number of explicit cognitive (logical
and numerical) operations required to move from problem to
solution. Likewise, increasing the cognitive capacity, relevant
skills, or effort of the reasoner, will generally lead to more
Bayesian responses. Individuals who are more drawn toward
quantitative, analytical thinking are more likely to solve these
problems. This summary is consistent with a general nested-sets
hypothesis, which states that any manipulation which facilitates
the representation of relevant set information will generally
enhance performance (Barbey and Sloman, 2007). At the same
time, simply representing the relevant qualitative relations
amongst nested sets will not get you a Bayesian response. These
relations must also be accurately quantified, along with the
correctly identified backward (posterior) inference.

More generally, understanding why these facilitations work
as they do requires consideration of the processes in which
reasoners are engaged. Ultimately, a reasoner needs to provide
the requested ratio in the requested form, but arriving at
this point requires the successful completion of a series of

intermediate subtasks. We believe that a better understanding of
successful, or failed, Bayesian problem solving can be obtained
by considering: (1) How a nested-set “structure” comes to be
represented by a reasoner (whether transparently presented
in the problem or not); (2) What additional computational
requirements are required once the structure of the problem is
made “transparent” (or transparently represented by a reasoner);
and (3) Who is more likely to be driven toward and successfully
operate over this quantified, abstract level of reasoning. In the
next section we outline one suggestion of how to conceptualize
these processing requirements.

Bayesian Problem Solving, from
Comprehension to Solution

Solving a Bayesian word problem is a process, from the
presented words and numbers, through the representations and
computations invoked to transform presented information into
requested ratios. As we outline below, we suggest that this
process can be productively understood, at least in part, from
the perspective of mathematical problem solving (for reviews
see Kintsch and Greeno, 1985; Schoenfeld, 1985; LeBlanc and
Weber-Russell, 1996; Mayer, 2003). On this view, the task is
conceived as two interrelated processes: Text comprehension and
problem solving. More specifically, successful reasoning depends
essentially on comprehending the presented and requested
information, and more importantly the relation between the
two (i.e., the space between what is provided and requested).
This comprehension then drives any logical or numerical
computations necessary in order to reduce this space, ending
with a final numerical response. A basic framework for
understanding this process is outlined in Figure 3.

Two basic assumptions of this framework are (1) while the
input may be the same, the (levels of) representations that
reasoners operate over differ, and (2) specific individual skills or
capacities and specific problem formulations can trade spaces.
That is, the probability of successfully solving the problem will
depend on the complexity of the provided information, as well
as the number and complexity of the steps required to close
this gap. Crucially, this process, and its relative difficulty, also
depends on the abilities, tendencies, and skills of the problem
solver (Schoenfeld, 1985, 1992; Cornoldi, 1997; Mayer, 1998,
2003; Swanson and Sachse-Lee, 2001; Passolungh and Pazzaglia,
2004). Succinctly, what is difficult for one person may not be
difficult for another. In the remainder of this section, we more
fully explicate this task-individual interaction as it unfolds during
the reasoning process, from comprehension and computation to
solution.

Comprehension of Presented and Requested
Information
Solving a written Bayesian inference problem begins with text
comprehension. Working memory serves as a buffer where
recently read propositions and information activated in long-
term memory are integrated into the internal model under
construction (e.g., Just and Carpenter, 1992; Carpenter et al.,
1995; Ericsson and Kintsch, 1995; Daneman and Merikle, 1996;
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FIGURE 3 | Framework for understanding Bayesian word problem

solving. The task (left) is conceived as the presented data and the requested

question. A text comprehension process gives rise to an initial internal model

of the data (including inferences not directly in the text; see Table 3). The

comprehension of the question “(H|D)” initiates a goal-oriented search

(though internal representation and problem text) for the requested relations,

along with logical and numerical computations aimed at deriving information

not directly available in the text. The processing of the task also activates

metacognitive dispositions as well as potentially relevant stored knowledge

and skills, both of which can influence both what information is processed

and how that information is processed. A continuously updated working

memory also provides reciprocal feedback to metacognition and calls for

additional stored knowledge if needed. The final response given will depend

on a complex interaction of the task formulation, metacognition, available

knowledge and skills, and the efficiency of an executive working memory. For

example, metacognition can influence the effort invested into the task, while

stored knowledge can influence the relative effort required for a given

individual.

Cain et al., 2001, 2004; Tronsky and Royer, 2003). Many
inferences are automatically generated as a reader processes the
symbolic words and numbers in the text (Table 3), resulting in
an internal representation of the problem which may contain
specific propositions included in the text itself, along with
possible semantic, episodic, spatial, causal, categorical, and
quantitative inferences, any of which can serve as the basis for
upstream reasoning (e.g., Nesher and Teubal, 1975; van Dijk and
Kintsch, 1983; Kintsch and Greeno, 1985; Murray et al., 1993;
Graesser et al., 1994; LeBlanc and Weber-Russell, 1996; Vinner,
1997; Reyna et al., 2003; Reyna and Brainerd, 2008; Thompson,
2013). These levels of representations are activated to varying
degrees, and may be either implicit or explicit (or not present
at all) within a reasoner’s model of the problem (cf. Johnson-
Laird, 1983). As we return to below, given the multiple levels of
information that can be represented, one challenge is getting a
limited attention focused on the most relevant information for
problem solving.

It is with the reading of the question that the relevance
of any initially represented problem information becomes
apparent. The formulation of the question therefore plays
a crucial role in Bayesian problem solving (Schwartz et al.,
1991; Macchi, 1995; Girotto and Gonzalez, 2001). In general,
the question provides two specific prompts: (a) verbal cues

corresponding to the required categorical relations, or ratio,
to be provided, and (b) the format in which the quantified
response should be provided. For example, a typical natural
frequency question prompts the reasoner to find two whole
numbers “__ out of __” corresponding to “among infected, how
many positive”; while a standard probability question demands a
single percentage “__%” corresponding to “infected if positive”).
This question comprehension triggers a goal-oriented search
(through memory representations and the problem text) for the
specific relations requested, along with more directed inferences
and arithmetical computations targeted at deriving information
not directly provided in the text (see Section Logical and
Numerical Computations).

Regardless of the problem format, we expect that with
relatively little effort most literate reasoners comprehend the
basic situation (some people take a test for a disease), form simple
categorical-numerical associations (inf[10%]; inf-pos[60%]), and
make some simple forward inferences (Table 3). Ultimately,
however, providing a precise Bayesian response requires accurate
representation and quantification of appropriate set-subset
relations (i.e., H&D, D), irrespective of the problem content.
Comprehension of the categorical subset structure can be
facilitated by presenting natural frequencies, highlighting causal
structure, removing irrelevant information, providing visual
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TABLE 3 | Examples of inferences and levels of encoding generated while reading a Bayesian word problem.

Hypothetical knowledge and inferences

Normalized Natural frequencies

Prior knowledge or beliefs →

Infections cause positive tests.

Medical tests are usually accurate.

A positive test should indicate infection.

…

Forward categorical →

Some people are infected.

Some of the infected test positive.

Some of the infected do not test positive.

Some of the not infected also test positive.

…

Backward categorical →

Some of the positives are infected.

Some of the positives are not infected.

A positive test does not necessarily mean infected.

…

Non-integrated categorical-numerical association →

Infected [10%]

Infected-Positive [60%]

Not infected [90%]

Not infected-Positive [20%]

…

Total [100]

Infected [10]

Infected-Positive [6]

Not infected [90]

Not infected-Positive [18]

…

Forward quantitative →

60% of 10% = 6% are both inf and pos

20% of 90% = 18% are not-inf and pos

6% + 18% = 24% of people are pos

…

6 people are both inf and pos

18 people are both not-inf and pos

6+ 18 = 24 people are pos

…

Backward quantitative →

Of 24% pos, 6% are infected

Of 24% pos, 18% are not infected

If pos, chances of inf are 25% (6/24%)

…

Of 24 positive, 6 are infected

Of 24 positive, 18 are not infected

If pos, chances of inf are 6 of 24

…

Inferences may be spontaneously generated during text comprehension, or prompted as a result of the question, and may be either implicit or explicit (or not present at all) within a

reasoner’s model of the problem. A variety of biased responses are possible based on erroneous or irrelevant prior knowledge or beliefs, non-integrated representations, or attention to

inappropriate levels of information. Inf, infected; Pos, positive test.

diagrams, asking questions which direct attention toward
relevant information, etc. Accurate comprehension of the
quantified values (strength) of these relations is facilitated
when numerical information is presented with a natural
sampling structure. In the case of relative frequencies (or
non-partitive probability information), on the other hand,
correct qualitative representation of the subset structure may
coincide with incorrect or incomplete quantification of these
relations. For example, in Figure 1 it is feasible that reasoners
understand the 60% hit rate to be a subset of the 10% infected,
but the precise comprehension of this value requires more
demanding, rule-based transformations (although some higher
numerate reasoners may rather automatically perform “simple”
computations such as 60 of 10%= 6%).

Individuals with more cognitive capacity will tend to more
deeply processes the text (defined by the number of accurate and
successfully integrated inferences; for reviews see van Dijk and
Kintsch, 1983; Graesser et al., 1994), and likewise end up with a
more thorough representation of the available information (both
its content and structure) and the task goal as comprehended
from the question. Accordingly, higher cognitive capacity or
higher cognitive reflection will facilitate comprehension of

a Bayesian task, at least to some extent (see Table 2). We
also suggest that the processing of the task gives rise to a
metacognitive assessment reflecting motivation and confidence
that the problem can be solved (“can I do this?,” “do I want to
do this?”), which will help to guide subsequent problem solving
behavior (e.g., Schoenfeld, 1992; Cornoldi, 1997; Mayer, 1998;
Thompson, 2009; also Garcia-Retamero et al., 2015).

At the same time, information from long-term memory
is being integrated into working memory—including prior
knowledge of causal relationships (Krynski and Tenenbaum,
2007), situational familiarity (Siegrist and Keller, 2011), or other
primed categories (Kahneman et al., 1982)—which leads to
different levels at which a problem can be represented (Table 3),
only some of which are relevant for solving the problem.
Therefore, getting focused on the relevant set relations and
their numerical values, while inhibiting ultimately irrelevant
contextual details and prior beliefs (e.g., about the validity of
medical tests), is crucial. The ability to do so should accordingly
depend in part on executive functions and working memory
(see Barrett et al., 2004; Evans and Stanovich, 2013). It is
further known that engaging a Bayesian problem also triggers
stored knowledge associated with problem solving strategies
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and mathematical concepts and procedures, which act to bias
attention to different levels of information within the task, for
example, by leading the problem solver to analyze the text in a
way which may differ from how they read stories or other news
(e.g., Newell and Simon, 1972; Nesher and Teubal, 1975; Kintsch
and Greeno, 1985; Anderson, 1993; Ericsson and Kintsch, 1995;
Geary, 2006). In this vein, higher cognitive reflection and
numeracy may also serve to bias attention toward relevant
numerical information and away from irrelevant descriptive
information, or more generally to relevant abstract formal
relations amongst problem data rather than literal problem
features (Spilich et al., 1979; Chi et al., 1981; Hegarty et al., 1995;
Vinner, 1997; Peters et al., 2007; Dieckmann et al., 2009; Johnson
and Tubau, 2013). This can help account for the consistent
relationship between numeracy and Bayesian reasoning with
natural frequencies, including interactions with non-numerical
factors (Table 2).

Logical and Numerical Computations
Information which is needed but not directly provided must be
derived. The transformations needed to produce this information
can be numerical or logical. In standard Bayesian inference tasks,
numerical computations typically include whole number and/or
fraction arithmetic.Whole number arithmetic is a skill that tested
populations (university undergraduates; medical professionals)
can be assumed to possess. At the same time, it has been
shown that, even with natural frequencies, performance drops
quickly when more than a single whole number addition or
subtraction is required (e.g., Girotto and Gonzalez, 2001; Ayal
and Beyth-Marom, 2014). Curiously, if normalized data allows
the posterior relation (H|D) to be derived with a single whole
number subtraction, performance is actually quite high, even
for less numerate reasoners (Ayal and Beyth-Marom, 2014).
However, it is not clear if this latter finding is due to the reduced
computational demands, or from the easier representation of
how to derive the standard posterior relation (e.g., by eliminating
the need to perform the backward inference). While it is
often assumed that fraction arithmetic (e.g., multiplying two
percentages) is a skill possessed by tested populations, this may
not be the case (Paulos, 1988; Butterworth, 2007; Reyna and
Brainerd, 2007, 2008), as some evidence suggests (e.g., Juslin
et al., 2011; Ayal and Beyth-Marom, 2014). In brief, current
evidence indicates that a single whole number addition adds
minimal burden to the task; more than a single operation
regardless of type greatly reduces performance; and it is not clear
to what extent typically tested reasoners possess the procedural
skills for carrying out single multiplicative integrations.

Required computations can also be logical. As previously
identified, one crucial step for solving the posterior Bayesian
question which may be particularly difficult is the backward
inference (test positive→ infection), from the initially forward
relations (infection→ test positive and no-infection→ test
positive), or otherwise identifying the newly required reference
class and focal subset (more likely prompted by the two-term
integer pair question). The specific difficulties deriving and
quantifying a diagnostic inference from predictive relations is
well-known from causal reasoning tasks (e.g., van den Broek,

1990; Lagnado et al., 2005; Fernbach et al., 2011; Sloman and
Lagnado, 2015). The asymmetry between the quantification of
the relations presented and those requested requires reasoners
to inhibit the precise quantifiers attached to the original
relations and update the precise quantifier corresponding to the
newly required relations (e.g., corresponding to the strength
of the test positive→ infection relation). As mentioned, natural
frequencies may alleviate part of this asymmetrical confusion
(for the first term of the ratio, (H&D); i.e., “positive among
infected”= “infected among positive”), but the more challenging
identification of the reference class still remains. The ability to
identify and quantify this new relation should accordingly be
moderated by executive functions and skill in mathematical and
logical reasoning.

Arriving at a Final Response
As outlined above, the final response provided by a reasoner
reflects the confluence of a comprehension and problem solving
process engaged by an individual with a particular set of
skills and dispositions (Figure 3). The accuracy of this response
will therefore depend on the level of problem comprehension
and, relatedly, on the individual skills available to inspect and
appropriately transform a dynamically updated internal model.
A small set of rather systematic errors often account for a large
proportion of erroneous responses, the most widely reported
in either format being the direct selection of the hit rate,
or the “inverse fallacy” (see Kahneman and Tversky, 1972;
Koehler, 1996; Villejoubert and Mandel, 2002; Mandel, 2014a).
Nevertheless, it is still not clear whether this results from
errors understanding logical categorical relations (e.g., Wolfe,
1995; Villejoubert and Mandel, 2002) vs. superficial problem
solving strategies (e.g., matching; see Evans, 1998; Stupple et al.,
2013). That is, a variety of sources of failures—from erroneous
comprehension of the particular relations requested to difficulties
inhibiting irrelevant, previously primed information—could
account for common errors, and it is not necessarily the case that
the underlying cause is the same for all reasoners. The proposed
framework might help to improve understanding of the causes of
observed failures.

One of the main thrusts of the nested-sets hypothesis is that
if the formulation of the problem triggers awareness of the
set structural relations amongst the presented categories, then
general cognitive resources can employ elementary set operations
to mimic a Bayesian response. Musing on this possibility, Sloman
et al. (2003, p. 307) suggested:

“A question that might be more pertinent is whether our
manipulations changed the task that participants assigned
themselves. In particular, manipulations that facilitate
performance may operate by replacing a non-extensional
task interpretation, like evidence strength, with an extensional
one (Hertwig and Gigerenzer, 1999). Note that such a construal
of the effects we have shown just reframes the questions that our
studies address: under what conditions are people’s judgments
extensional. . . ”

In this sense, natural frequencies (or other nested-sets
facilitations) might shift reasoners into a more analytical
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mode of thinking due to the stronger match between presented
information and the available reasoning tools of the participants,
a mode we have suggested might be more automatically adopted
by individuals with higher mathematical or cognitive skills.
Considered from a problem solving perspective, one factor
separating successful from unsuccessful reasoners may be
the way they formulate and answer three crucial, interrelated
questions: “What information do I have available?” (means),
“What information do I need to provide?” (ends), and “What steps
do I need to take to close this gap?” (solution plan). The relative
difficulty answering these questions will of course depend on the
complexity of the provided information along with the number
and complexity of the required steps, and also on the individual
capacities and skills of the reasoner.

More specifically, the present review suggests at least
three crucial sources of difficulty for arriving at a correct
Bayesian response: (1) accurately quantifying the relevant
forward categorical relations of the problem, (2) accurately
performing the needed backward inference, including
identifying and quantifying the relevant reference class,
and (3) formulating and executing and multi-step plan required
for transforming presented data into the requested ratio. Each
of these requirements are facilitated with natural frequencies,
and become increasingly difficult with normalized data. As
previously commented, performance in the latter case remains
low even for participants higher in cognitive capacity or higher
in numeracy, suggesting that success on these problems depends
on specific skills not adequately acquired, or not spontaneously
employed, by most of the participants in reviewed studies.

Hence, looked at from another direction, if the objective is
to narrow the gap between human performance and Bayesian
prescriptions when reasoning from explicit statistics, part of
the remedy is to get participants to think more mathematically
(see also Zukier and Pepitone, 1984; Schwartz et al., 1991).
People are not born able to deal with abstract symbolic words
and numbers. Both reading and math ability develop over time
with education and practice. Even with extensive education,
many individuals still fail to attain the relevant conceptual and
procedural knowledge for dealing with ratios (Paulos, 1988;
Brase, 2002; Ni and Zhou, 2005; Butterworth, 2007; Reyna and
Brainerd, 2007, 2008; Siegler et al., 2011, 2013), a difficulty which
is exacerbated when these number concepts are embedded in
textual scenarios (e.g., Kirsch et al., 2002). Ultimately, therefore,
deficits in explicit statistical reasoning may need to be addressed
at the level of mathematics education. This remedy is not
as immediate as simply reformulating a problem with natural
frequencies, but in the long-term this may be a necessary way to
obtain the levels of performance with which we can be satisfied.

Future Directions

The way to proceed toward a better understanding of
probabilistic reasoning potentials and pitfalls depends on the
specific question of interest. A variety of questions and paradigms
have been addressed in this special issue on Bayesian reasoning
(“Improving Bayesian Reasoning: What Works and Why?”),
ranging from alternative probabilistic standards (Douven and

Schupbach, 2015) to important real world issues (Navarrete et al.,
2014). While many of these have focused on Bayesian word
problems, other paradigms have also been discussed including
“uncertain deduction” (Cruz et al., 2015; Evans et al., 2015),
the Monty Hall Dilemma (Tubau et al., 2015), and the Sleeping
Beauty problem (Mandel, 2014b) (for brief overviews seeMandel,
2014a; Girotto and Pighin, 2015; Juslin, 2015; McNair, 2015;
Vallée-Tourangeau et al., 2015b). With respect to Bayesian word
problems, many authors have expressed similar views regarding
the problem-solving nature of these tasks (e.g., McNair, 2015;
Sirota et al., 2015c; Vallée-Tourangeau et al., 2015b), which echo
many themes presented in this review. In what follows, we offer
suggestions on ways to progress in this later, problem-solving
paradigm, but which may also be applicable to other paradigms
as well.

Moving forward, we believe there is a need to shift perspective
from the facilitators of Bayesian reasoning to more process-
oriented measures aimed at uncovering the strategies evoked
by successful and unsuccessful reasoners, and the stages in the
problem solving process at which these differences emerge (for
one proposal see De Neys and Bonnefon, 2013). To this general
end, we suggest that tools from the mathematical problem
solving approach might be productively applied to research on
Bayesian reasoning. For example, the “moving window” (Just
et al., 1982; see also De Neys and Glumicic, 2008) and online
recognition paradigms (Thevenot et al., 2004; Thevenot and
Oakhill, 2006) can be used to assess comprehension at different
stages of problem solving, as well as when calculations are
made throughout the reasoning process. These methods, which
control or limit access to specific pieces of information, can be
applied to help determine the relative difficulty of representing
vs. quantifying relevant structural relations, both forward and
backward.

Other process methods such as eye-tracking and recall tests
are also frequently used to measure how attention is allocated
during the problem solving process, which can be used to gauge
the weight a reasoner assigns to different pieces of information in
the text (Mayer, 1982; Hegarty et al., 1992, 1995; Verschaffel et al.,
1992; for overviews see Mayer et al., 1992; LeBlanc and Weber-
Russell, 1996; also De Neys, 2012). The use of protocol and
error analyses have also proven effective in studies of mathematic
problem solving and other areas of decision making and
reasoning (e.g., Kuipers and Kassirer, 1984; Chi, 1997; Arocha
et al., 2005; De Neys and Glumicic, 2008; Kingsdorf and Krawec,
2014), but apart from some notable exceptions (e.g., Gigerenzer
and Hoffrage, 1995; Zhu and Gigerenzer, 2006) have thus far
played only a limited role in Bayesian reasoning research. These
methods can offer substantial insight into the level of information
and cognitive processes that successful vs. unsuccessful reasoners
engage (see also McNair, 2015). These tools can also be adapted
to address questions about how participants are interpreting the
tasks given to them, and the extent to which they are attempting
to produce precisely computed responses vs. numerical estimates
based on future uncertainties.

Finally, we suggest that these approaches be adopted alongside
a strong commitment to individual differences (e.g., Stanovich
et al., 2011; Del Missier et al., 2012; De Neys and Bonnefon,
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2013; Klaczynski, 2014). More specifically, processing measures
should look not only to establish where in the reasoning process
correct and incorrect solvers depart, but also as a function of
specific individual differences in ability, disposition, and requisite
skills. Methods frommathematical problem solving could help to
confirm or clarify existing proposals for the relevance and relative
influence of these individual differences (De Neys and Bonnefon,
2013; Klaczynski, 2014).

Conclusion

Successive waves of Bayesian reasoning research have gradually
revealed that non-Bayesian responses in statistical and
probabilistic word problems arise not out of biased heuristics
guiding belief revision, but rather out of failed analytical
processing operating over specific task structures. Even the
simplest Bayesian word problems are not solved automatically,
but rather involve deliberate analytical processing of the verbal
and numerical structure of the task, and the subsequent logical
and numerical transformations of presented data into requested
relations. The formulation of the task can influence the specific
types and number of inferences required to solve the problem.
Hence, reducing the distance between problem and solution
(mental steps) and, independently, making clear what is relevant
for problem solving will generally facilitate performance. At
the same time, individual differences will moderate the effect
of these computational demands, as the effort required is
relative to the availability of cognitive resources and relevant
stored knowledge. That is, reducing processing demands and/or
increasing processing resources are two complimentary means
to the same end—a Bayesian response.

We have argued that a better understanding of this task-
individual pair can be gained by shifting attention to the
processing requirements needed to compute the Bayesian
response, and the processing strategies which may be adopted by
different reasoners. The proposed account, borrowed from the
mathematical problem solving literature, suggests that this begins
with text comprehension, an inferential and integrative process
which draws on cognitive capacity and previous knowledge
and skills. This gives rise to an initial problem representation,
along with metacognitive assessments, which serves as the

basis for the subsequent question comprehension and problem-
solving behavior. We have also identified two crucial factors
in this process which are likely to cause particular difficulty
for many reasoners: (1) accurately quantifying the relevant
structural relations amongst hierarchically embedded subset
categories, and (2) quantifying the backward inferencemandated
by the asymmetrical direction of presented (infection→test
positive) and requested (test positive→infection) information.
Accordingly, interventions targeting these factors are likely to
have the greatest success (i.e., natural frequencies, familiar causal
relationships, guided questions), and task-relevant individual
skills and abilities (numeracy, logical capacity, disposition toward
analytical thinking) are likely to interact with the effectiveness of
these interventions.

Given the multiple representations that Bayesian problems
afford—spatially as nested sets, numerically as proportions,

formally in Bayes theorem—they offer a natural link to theories
of reasoning with proportional information. Accordingly, we
have suggested that understanding why individuals succeed
or fail on these problems can be partially anchored in the
field of mathematical cognition, which has long emphasized
the difficulties in learning and using ratio information, along
with the importance of metacognition and executive working
memory for successfully integrating different set-subset relations
and for dealing with numerical information in varying contexts
and formats. We believe that this complimentary perspective,
and the tools it employs, can help guide a more process-
oriented approach aimed at more precisely understanding where
reasoning with explicit categorical and numerical information
goes astray, and how the individual reasoner can be redirected
to align with Bayesian norms.

Acknowledgments

The authors would like to thank Ulrich Hoffrage and Jean
Baratgin for their very helpful and constructive comments on
previous drafts of this paper. This work was supported by grants
from the Generalitat de Catalunya (FI-DGR 2011) awarded
to the first author, the Spanish Ministry of Economics and
Competitiveness (PSI2012-35703) and (PSI2013-41568-P), and
2014 SGR-79 from the Catalan Government.

References

Anderson, J. R. (1993). Problem solving and learning. Am. Psychol. 48, 35–44. doi:

10.1037/0003-066X.48.1.35

Arocha, J. F., Wang, D., and Patel, V. L. (2005). Identifying reasoning strategies

in medical decision making: a methodological guide. J. Biomed. Inform. 38,

154–171. doi: 10.1016/j.jbi.2005.02.001

Ayal, S., and Beyth-Marom, R. (2014). The effects of mental steps and compatibility

on Bayesian reasoning. Judgm. Decis. Mak. 9, 226–242.

Baratgin, J. (2002). Is the human mind definitely not bayesian ? A review of the

various arguments. Curr. Psychol. Cogn. 21, 653–682.

Baratgin, J., and Politzer, G. (2006). Is themind Bayesian? The case for agnosticism.

Mind Soc. 5, 1–38. doi: 10.1007/s11299-006-0007-1

Baratgin, J., and Politzer, G. (2010). Updating : a psychologically basic

situation of probability revision. Think. Reason. 16, 253–287. doi:

10.1080/13546783.2010.519564

Barbey, A. K., and Sloman, S. A. (2007). Base-rate respect: from ecological

rationality to dual processes. Behav. Brain Sci. 30, 241–297. doi:

10.1017/S0140525X07001653

Bar-Hillel, M. (1983). “The base-rate fallacy controversy,” in Decision

Making Under Uncertainty, ed R. W. Scholz (Amsterdam: Elsevier),

39–61.

Barrett, L. F., Tugade, M. M., and Engle, R. W. (2004). Individual

differences in working memory capacity and dual-process theories

of the mind. Psychol. Bull. 130, 553–573. doi: 10.1037/0033-2909.130.

4.553

Barrouillet, P., Grosset, N., and Lecas, J. F. (2000). Conditional reasoning bymental

models: chronometric and developmental evidence.Cognition 75, 237–266. doi:

10.1016/S0010-0277(00)00066-4

Barton, A., Mousavi, S., and Stevens, J. R. (2007). A statistical taxonomy and

another “chance” for natural frequencies. Behav. Brain Sci. 30, 255–256. doi:

10.1017/s0140525x07001665

Frontiers in Psychology | www.frontiersin.org 15 July 2015 | Volume 6 | Article 938

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Johnson and Tubau Comprehension and computation in Bayes

Bayes, T. (1764). An essay toward solving a problem in the doctrine of chances.

Philos. Trans. R. Soc. Lond. 53, 370–418. doi: 10.1093/biomet/45.3-4.296

Brase, G. L. (2002). “Bugs” built into the system: how privileged representations

influence mathematical reasoning across lifespan. Learn. Individ. Dif. 12,

391–409. doi: 10.1016/S1041-6080(02)00048-1

Brase, G. L. (2008). Frequency interpretation of ambiguous statistical information

facilitates Bayesian reasoning. Psychon. Bull. Rev. 15, 284–289. doi:

10.3758/PBR.15.2.284

Brase, G. L. (2009). Pictorial representations and numerical representations in

Bayesian reasoning. Appl. Cogn. Psychol. 23, 369–381. doi: 10.1002/acp.1460

Brase, G. L. (2014). The power of representation and interpretation:

doubling statistical reasoning performance with icons and frequentist

interpretations of ambiguous numbers. J. Cogn. Psychol. 26, 81–97. doi:

10.1080/20445911.2013.861840

Brase, G. L., Cosmides, L., and Tooby, J. (1998). Individuals, counting, and

statistical inference: the role of frequency and whole-object representations in

judgment under uncertainty. J. Exp. Psychol. Gen. 127, 3–21. doi: 10.1037/0096-

3445.127.1.3

Brase, G. L., Fiddick, L., and Harries, C. (2006). Participant recruitment methods

and statistical reasoning performance. Q. J. Exp. Psychol. 59, 965–976. doi:

10.1080/02724980543000132

Brase, G. L., and Hill, W. T. (2015). Good fences make for good neighbors but bad

science: a review of what improves Bayesian reasoning and why. Front. Psychol.

6:340. doi: 10.3389/fpsyg.2015.00340

Butterworth, B. (2007). Why frequencies are natural. Behav. Brain Sci. 30, 259. doi:

10.1017/S0140525X07001707

Cain, K., Oakhill, J. V., Barnes, M. A., and Bryant, P. (2001). Comprehension skill,

inference-making ability, and their relation to knowledge. Mem. Cognit. 29,

850–859. doi: 10.3758/BF03196414

Cain, K., Oakhill, J. V., and Bryant, P. (2004). Children’s reading comprehension

ability: concurrent prediction by working memory, verbal ability, and

component skills. J. Educ. Psychol. 96, 31–42. doi: 10.1037/0022-0663.96.1.31

Carpenter, P. A., Miyake, A., and Just, M. A. (1995). Language comprehension:

sentence and discourse processing. Annu. Rev. Psychol. 46, 91–120. doi:

10.1146/annurev.ps.46.020195.000515

Casscells, W., Schoenberger, A., and Graboys, T. (1978). Interpretation by

physicians of clinical laboratory results. N. Eng. J. Med. 299, 999–1000. doi:

10.1056/NEJM197811022991808

Chapman, G. B., and Liu, J. J. (2009). Numeracy, frequency, and Bayesian

reasoning. Judgm. Decis. Mak. 4, 34–40.

Chater, N., and Oaksford, M. (2008). The Probabilistic Mind: Prospects for Bayesian

Cognitive Science. New York, NY: Oxford University Press.

Chi, M. T. H. (1997). Quantifying qualitative analyses of verbal data: a practical

guide. J. Learn. Sci. 6, 271–315. doi: 10.1207/s15327809jls0603_1

Chi, M. T. H., Feltovich, P. J., and Glaser, R. (1981). Categorization and

representation of physics problems by experts and novices. Cogn. Sci. 5,

121–152. doi: 10.1207/s15516709cog0502_2

Cokely, E. T., Galesic, M., Schulz, E., Ghazal, S., and Garcia-Retamero, R. (2012).

Measuring risk literacy: the Berlin numeracy test. Judgm. Decis. Mak. 7, 25–47.

Cornoldi, D. L. C. (1997). Mathematics and metacognition: what is the nature of

the relationship?Math. Cogn. 3, 121–139. doi: 10.1080/135467997387443

Cosmides, L., and Tooby, J. (1996). Are humans good intuitive statisticians

after all?: rethinking some conclusions of the literature on judgment under

uncertainty. Cognition 58, 1–73. doi: 10.1016/0010-0277(95)00664-8

Cruz, N., Baratgin, J., Oaksford, M., and Over, D. E. (2015). Bayesian reasoning

with ifs and ands and ors. Front. Psychol. 6:192. doi: 10.3389/fpsyg.2015.

00192

Daneman, M., and Merikle, P. M. (1996). Working memory and language

comprehension: a meta-analysis. Psychon. Bull. Rev. 3, 422–433. doi:

10.3758/BF03214546

DelMissier, F., Mantyla, T., and Bruine de Bruin,W. (2012). Executive functions in

decision making: an individual differences approach. Think. Reason. 16, 69–97.

doi: 10.1080/13546781003630117

De Neys, W. (2012). Bias and conflict : a case for logical intuitions. Perspect.

Psychol. Sci. 7, 28. doi: 10.1177/1745691611429354

De Neys, W., and Bonnefon, J. F. (2013). The whys and whens of

individual differences in thinking biases. Trends Cogn. Sci. 17, 172–178. doi:

10.1016/j.tics.2013.02.001

De Neys,W., and Glumicic, T. (2008). Conflict monitoring in dual process theories

of thinking. Cognition 106, 1248–1299. doi: 10.1016/j.cognition.2007.06.002

Dieckmann, N., Slovic, P., and Peters, E. M. (2009). The use of narrative evidence

and explicit likelihood by decision makers varying in numeracy. Risk Anal. 29,

1473–1488. doi: 10.1111/j.1539-6924.2009.01279.x

Douven, I., and Schupbach, J. N. (2015). Probabilistic alternatives to Bayesianism:

the case of explanationism. Front. Psychol. 6:459. doi: 10.3389/fpsyg.2015.00459

Dubois, D., and Prade, H. (1992). Evidence, knowledge, and belief functions. Int. J.

Approximate Reason. 6, 295–319. doi: 10.1016/0888-613X(92)90027-W

Dubois, D., and Prade, H. (1997). “Focusing vs. belief revision: a fundamental

distinction when dealing with generic knowledge,” in Qualitative and

Quantitative Practical Reasoning of Lecture Notes in Computer Science Vol.

1244, eds D. Gabbay, R. Kruse, A. Nonnengart, and H. Ohlbach (Berlin;

Heidelberg: Springer), 96–107.

Eddy, D. M. (1982). “Probabilistic reasoning in clinical medicine: problems and

opportunities,” in Judgment under Uncertainty: Heuristics and Biases, eds D.

Kahneman, P. Slovic, and A. Tversky (Cambridge: Cambridge University

Press), 249–267. doi: 10.1017/CBO9780511809477.019

Ericsson, K. A., and Kintsch,W. (1995). Long-termworkingmemory. Psychol. Rev.

102, 211–245. doi: 10.1037/0033-295X.102.2.211

Evans, J. S. (1993). The mental model theory of conditional reasoning: critical

appraisal and revision. Cognition 48, 1–20. doi: 10.1016/0010-0277(93)90056-2

Evans, J. S. (1998). Matching bias in conditional reasoning: do we understand it

after 25 years? Think. Reason. 4, 45–82. doi: 10.1080/135467898394247

Evans, J. S. (2008). Dual-processing accounts of reasoning, judgment,

and social cognition. Annu. Rev. Psychol. 59, 255–278. doi:

10.1146/annurev.psych.59.103006.093629

Evans, J. S., Handley, S. J., Perham, N., Over, D. E., and Thompson, V. A. (2000).

Frequency versus probability formats in statistical word problems. Cognition

77, 197–213. doi: 10.1016/S0010-0277(00)00098-6

Evans, J. S., and Stanovich, K. E. (2013). Dual process theories of

cognition: advancing the debate. Perspect. Psychol. Sci. 8, 223–241. doi:

10.1177/1745691612460685

Evans, J. S., Thompson, V. A., and Over, D. E. (2015). Uncertain deduction and

conditional reasoning. Front. Psychol. 6:398. doi: 10.3389/fpsyg.2015.00398

Fernbach, P. M., Darlow, A., and Sloman, S. A. (2011). Asymmetries in

predictive and diagnostic reasoning. J. Exp. Psychol. Gen. 140, 168–185. doi:

10.1037/a0022100

Fox, C. R., and Levav, J. (2004). Partition–edit–count: naive extensional reasoning

in judgment of conditional probability. J. Exp. Psychol. Gen. 133, 626–642. doi:

10.1037/0096-3445.133.4.626

Frederick, S. (2005). Cognitive reflection and decision making. J. Econ. Perspect.

19, 25–42. doi: 10.1257/089533005775196732

Garcia-Retamero, R., and Cokely, E. T. (2013). Communicating health risks with

visual aids.Curr. Dir. Psychol. Sci. 22, 392–399. doi: 10.1177/0963721413491570

Garcia-Retamero, R., Cokely, E. T., and Hoffrage, U. (2015). Visual aids improve

diagnostic inferences and metacognitive judgment calibration. Front. Psychol.

6:932. doi: 10.3389/fpsyg.2015.00932

Garcia-Retamero, R., and Hoffrage, U. (2013). Visual representation of statistical

information improves diagnostic inferences in doctors and their patients. Soc.

Sci. Med. 83, 27–33. doi: 10.1016/j.socscimed.2013.01.034

Garfield, J., and Ahlgren, A. (1988). Difficulties in learning basic concepts in

probability and statistics: implications for research. J. Res. Math. Educ. 19,

44–63. doi: 10.2307/749110

Geary, D. C. (2006). “Development of mathematical understanding,” in Cognition,

Perception, and Language, Vol. 2, eds D. Kuhl and R. S. Siegler (New York, NY:

John Wiley and Sons), 777–810.

Gigerenzer, G. (1991). How to make cognitive illusions disappear: beyond

“heuristics and biases” in European Review of Social Psychology, Vol. 2,

eds W. Stroebe and M. Hewstone (Chichester: Willey and Sons Ltd.),

83–115.

Gigerenzer, G., Hertwig, R., van den Broek, E., Fasolo, B., and Katsikopoulos, K. V.

(2005). “A 30% Chance of Rain Tomorrow”: how does the public understand

probabilistic weather forecasts? Risk Anal. 25, 623–629. doi: 10.1111/j.1539-

6924.2005.00608.x

Gigerenzer, G., and Hoffrage, U. (1995). How to improve Bayesian reasoning

without instruction: frequency formats. Psychol. Rev. 102, 684–704. doi:

10.1037/0033-295X.102.4.684

Frontiers in Psychology | www.frontiersin.org 16 July 2015 | Volume 6 | Article 938

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Johnson and Tubau Comprehension and computation in Bayes

Gigerenzer, G., and Hoffrage, U. (1999). Overcoming difficulties in

Bayesian reasoning: a reply to Lewis and Keren (1999) and Mellers and

McGraw (1999). Psychol. Rev. 106, 425–430. doi: 10.1037/0033-295X.106.

2.425

Gigerenzer, G., and Hoffrage, U. (2007). The role of representation in Bayesian

reasoning: correcting common misconceptions. Behav. Brain Sci. 30, 264–267.

doi: 10.1017/S0140525X07001756

Girotto, V., andGonzalez,M. (2001). Solving probabilistic and statistical problems:

a matter of information structure and question form. Cognition 78, 247–276.

doi: 10.1016/S0010-0277(00)00133-5

Girotto, V., and Gonzalez, M. (2002). Chances and frequencies in probabilistic

reasoning: rejoinder to Hoffrage, Gigerenzer, Krauss, andMartignon.Cognition

84, 353–359. doi: 10.1016/S0010-0277(02)00051-3

Girotto, V., and Gonzalez, M. (2007). How to elicit sound probabilistic

reasoning: beyond word problems. Behav. Brain Sci. 30, 268. doi:

10.1017/S0140525X07001768

Girotto, V., and Pighin, S. (2015). Basic understanding of posterior probability.

Front. Psychol. 6:680. doi: 10.3389/fpsyg.2015.00680

Graesser, A. C., Singer,M., and Trabasso, T. (1994). Constructing inferences during

narrative text comprehension. Psychol. Rev. 101, 371–395. doi: 10.1037/0033-

295X.101.3.371

Hafenbrädl, S., and Hoffrage, U. (2015). Towards an ecological analysis of Bayesian

inferences: how task characteristics influence responses. Front. Psychol. 6:939.

doi: 10.3389/fpsyg.2015.00939

Hattori, M., and Nishida, Y. (2009). Why does the base rate appear to be

ignored? The equiprobability hypothesis. Psychon. Bull. Rev. 16, 1065–1070.

doi: 10.3758/PBR.16.6.1065

Hegarty, M., Mayer, R. E., and Green, C. E. (1992). Comprehension of arithmetic

word problems: evidence from students’ eye fixations. J. Educ. Psychol. 84,

76–84. doi: 10.1037/0022-0663.84.1.76

Hegarty, M., Mayer, R. E., and Monk, C. A. (1995). Comprehension of arithmetic

word problems: a comparison of successful and unsuccessful problem solvers.

J. Educ. Psychol. 87, 18–32. doi: 10.1037/0022-0663.87.1.18

Hertwig, R., and Gigerenzer, G. (1999). The “conjunction fallacy” revisited: how

intelligent inferences look like reasoning errors. J. Behav. Decis. Mak. 12,

275–305.

Hill, W. T., and Brase, G. L. (2012). When and for whom do frequencies facilitate

performance ? On the role of numerical literacy. Q. J. Exp. Psychol. 65,

2343–2368. doi: 10.1080/17470218.2012.687004

Hoffrage, U., Gigerenzer, G., Krauss, S., and Martignon, L. (2002). Representation

facilitates reasoning: what natural frequencies are and what they are not.

Cognition 84, 343–352. doi: 10.1016/S0010-0277(02)00050-1

Hoffrage, U., Hafenbrädl, S., and Bouquet, C. (2015). Natural frequencies

facilitate diagnostic inferences of managers. Front. Psychol. 6:642. doi:

10.3389/fpsyg.2015.00642

Johnson, E. D., and Tubau, E. (2013). Words, numbers, and numeracy:

diminishing individual differences in Bayesian reasoning. Learn. Ind. Diff. 28,

34–40. doi: 10.1016/j.lindif.2013.09.004

Johnson-Laird, P. N. (1983). Mental Models. Cambridge: Cambridge University

Press.

Johnson-Laird, P. N., Legrenzi, P., Girotto, V., Legrenzi, M. S., and Caverni, J.

P. (1999). Naive probability: a mental model theory of extensional reasoning.

Psychol. Rev. 106, 62–88. doi: 10.1037/0033-295X.106.1.62

Juslin, P. (2015). Controlled information integration and Bayesian inference.

Front. Psychol. 6:70. doi: 10.3389/fpsyg.2015.00070

Juslin, P., Nilsson, H., Winman, A., and Lindskog, M. (2011). Reducing cognitive

biases in probabilistic reasoning by the use of logarithm formats. Cognition 120,

248–267. doi: 10.1016/j.cognition.2011.05.004

Just, M. A., and Carpenter, P. A. (1992). A capacity theory of comprehension:

individual differences in working memory. Psychol. Rev. 99, 122–149. doi:

10.1037/0033-295X.99.1.122

Just, M. A., Carpenter, P. A., andWooley, J. D. (1982). Paradigms and processes in

reading comprehension. J. Exp. Psychol. Gen. 111, 228–238. doi: 10.1037/0096-

3445.111.2.228

Kahneman, D. (2003). A perspective on judgment and choice: mapping bounded

rationality. Am. Psychol. 58, 697–720. doi: 10.1037/0003-066X.58.9.697

Kahneman, D., Slovic, P., and Tversky, A. (1982). Judgment Under Uncertainty:

Heuristics and Biases. New York and Cambridge: Cambridge University Press.

Kahneman, D., and Tversky, A. (1972). Subjective probability: a

judgment of representativeness. Cogn. Psychol. 3, 430–454. doi:

10.1016/0010-0285(72)90016-3

Kingsdorf, S., and Krawec, J. (2014). Error analysis of mathematical word problem

solving across students with and without learning disabilities. Learn. Disabil.

Res. Pract. 29, 66–74. doi: 10.1111/ldrp.12029

Kintsch, W., and Greeno, J. G. (1985). Understanding and solving word arithmetic

problems. Psychol. Rev. 92, 109–129. doi: 10.1037/0033-295X.92.1.109

Kirsch, I. S., Jungeblut, A., Jenkins, L., and Kolstad, A. (2002). Adult literacy

in America: A first look at the findings of the National Adult Literacy Survey

(NCES). Washington, DC: U.S. Department of Education, National Center for

Education Statistics.

Klaczynski, P. A. (2014). Heuristics and biases: interactions among numeracy,

ability, and reflectiveness predict normative responding. Front. Psychol. 5:665.

doi: 10.3389/fpsyg.2014.00665

Kleiter, G. D. (1994). “Natural sampling: Rationality without base rates,” in

Contributions to mathematical psychology, psychometrics, and methodology, eds

G. H. Fischer and D. Laming (New York, NY: Springer), 375–388.

Koehler, J. J. (1996). The base rate fallacy reconsidered: descriptive,

normative, and methodological challenges. Behav. Brain Sci. 19, 1–53.

doi: 10.1017/S0140525X00041157

Kolmogorov, A. N. (1950). Foundations of the Theory of Probability. Oxford:

Chelsea Publishing Co.

Krynski, T. R., and Tenenbaum, J. B. (2007). The role of causality in judgment

under uncertainty. J. Exp. Psychol. Gen. 136, 430–450. doi: 10.1037/0096-

3445.136.3.430

Kuipers, B., and Kassirer, J. P. (1984). Causal reasoning in medicine: an analysis of

a protocol. Cogn. Sci. 8, 363–385. doi: 10.1207/s15516709cog0804_3

Lagnado, D. A., Waldmann, M. R., Hagmayer, Y., and Sloman, S. A. (2005).

“Beyond covariation: cues to causal structure,” in Causal Learning: Psychology,

Philosophy and Computation, eds A. Gopnik and L. Schultz (Oxford: Oxford

University Press), 154–172.

LeBlanc, M. D., and Weber-Russell, S. (1996). Text integration and mathematical

connections: a computer model of arithmetic word problem solving. Cogn. Sci.

20, 357–407. doi: 10.1207/s15516709cog2003_2

Lesage, E., Navarrete, G., and De Neys, W. (2013). Evolutionary modules and

Bayesian facilitation: the role of general cognitive resources. Think. Reason. 19,

27–53. doi: 10.1080/13546783.2012.713177

Lewis, C., and Keren, G. (1999). On the difficulties underlying Bayesian reasoning:

comment on Gigerenzer and Hoffrage. Psychol. Rev. 106, 411–416. doi:

10.1037/0033-295X.106.2.411

Lipkus, I. M., and Peters, E. (2009). Understanding the role of numeracy in health:

proposed theoretical framework and practical insights. Health Educ. Behav. 36,

1065–1081. doi: 10.1177/1090198109341533

Lipkus, I. M., Samsa, G., and Rimer, B. K. (2001). General performance on a

numeracy scale among highly educated samples.Med. Decis. Making 21, 37–44.

doi: 10.1177/0272989X0102100105

Macchi, L. (1995). Pragmatic aspects of the base-rate fallacy. Q. J. Exp. Psychol.

48A, 188–207. doi: 10.1080/14640749508401384

Macchi, L., and Mosconi, G. (1998). Computational features vs. frequentist

phrasing in the base-rate fallacy. Swiss J. Psychol. 57, 79–85.

Mandel, D. R. (2014a). The psychology of Bayesian reasoning. Front. Psychol.

5:1144. doi: 10.3389/fpsyg.2014.01144

Mandel, D. R. (2014b). Visual representation of rational belief revision:

another look at the Sleeping Beauty problem. Front. Psychol. 5:1232. doi:

10.3389/fpsyg.2014.01232

Mandel, D. R. (2015). Instruction in information structuring improves

Bayesian judgment in intelligence analysts. Front. Psychol. 6:387. doi:

10.3389/fpsyg.2015.00387

Mayer, R. E. (1982). Memory for algebra story problems. J. Exp. Psychol. 74,

199–216. doi: 10.1037/0022-0663.74.2.199

Mayer, R. E. (1998). Cognitive, metacognitive, andmotivational aspects of problem

solving. Instr. Sci. 26, 49–63. doi: 10.1023/A:1003088013286

Mayer, R. E. (2003). “Mathematical problem solving,” in Mathematical Cognition:

A Volume in Current Perspectives on Cognition, Learning, and Instruction, ed J.

M. Royer (Greenwich, CT: Information Age Publishing), 69–92.

Mayer, R. E., Lewis, A. B., and Hegarty, M. (1992). “Mathematical

misunderstandings: qualitative reasoning about quantitative problems,”

Frontiers in Psychology | www.frontiersin.org 17 July 2015 | Volume 6 | Article 938

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Johnson and Tubau Comprehension and computation in Bayes

in The Nature and Origins of Mathematical Skills, ed J. I. D. Campbell

(Amsterdam: Elsevier Science Publishers), 137–154.

McNair, S., and Feeney, A. (2014). Does information about causal structure

improve statistical reasoning? Q. J. Exp. Psychol. 67, 625–645. doi:

10.1080/17470218.2013.821709

McNair, S., and Feeney, A. (2015). Whose statistical reasoning is facilitated

by a causal structure intervention? Psychon. Bull. Rev. 22, 258–264. doi:

10.3758/s13423-014-0645-y

McNair, S. J. (2015). Beyond the status-quo: research on Bayesian reasoning

must develop in both theory and method. Front. Psychol. 6:97. doi:

10.3389/fpsyg.2015.00097

Mellers, B. A., and McGraw, A. P. (1999). How to improve Bayesian reasoning:

comment on Gigerenzer and Hoffrage (1995). Psychol. Rev. 106, 417–424. doi:

10.1037/0033-295X.106.2.417

Morsanyi, K., Primi, C., Chiesi, F., and Handley, S. (2009). The

effects and side-effects of statistics education: psychology students’

(mis-)conceptions of probability. Contemp. Educ. Psychol. 34, 210–220.

doi: 10.1016/j.cedpsych.2009.05.001

Morsanyi, K. and Szücs, D. (2015). “Intuition in mathematical and probabilistic

reasoning,” in The Oxford Handbook of Numerical Cognition, eds R. Cohen

Kadosh and A. Dowker (Oxford: Oxford University Press), 1–18. doi: 10.1093/

oxfordhb/9780199642342.013.016

Murray, J. D., Klin, C. M., and Myers, J. L. (1993). Forward inferences in narrative

text. J. Mem. Lang. 32, 464–473. doi: 10.1006/jmla.1993.1025

Navarrete, G., Correia, R., and Froimovitch, D. (2014). Communicating risk in

prenatal screening: the consequences of Bayesian misapprehension. Front.

Psychol. 5:1272. doi: 10.3389/fpsyg.2014.01272

Navarrete, G., and Santamaría, C. (2011). Ecological rationality and

evolution: the mind really works that way? Front. Psychol. 2:251. doi:

10.3389/fpsyg.2011.00251

Nesher, P., and Teubal, E. (1975). Verbal cues as an interfering factor in verbal

problem solving. Educ. Stud. Math. 6, 41–51. doi: 10.1007/BF00590023

Newell, A., and Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs,

NJ: Prentice-Hall.

Newell, B., and Hayes, B. (2007). Naturally nested, but why dual process? Behav.

Brain Sci. 30, 276–277. doi: 10.1017/S0140525X07001847

Ni, Y., and Zhou, Y. D. (2005). Teaching and learning fraction and rational

numbers: the origins and implications of whole number bias. Educ. Psychol.

40, 27–52. doi: 10.1207/s15326985ep4001_3

Oberauer, K. (2006). Reasoning with conditionals: a test of formal models of four

theories. Cogn. Psychol. 53, 238–283. doi: 10.1016/j.cogpsych.2006.04.001

Oberauer, K., Hornig, R., Weidenfeld, A., and Wilhelm, O. (2005).

Effects of directionality in deductive reasoning: II. Premise integration

and conclusion evaluation. Q. J. Exp. Psychol. 58A, 1225–1247. doi:

10.1080/02724980443000566

Oberauer, K., and Wilhelm, O. (2000). Effects of directionality in deductive

reasoning: I. The comprehension of single relational premises. J. Exp. Psychol.

Learn. Mem. Cogn. 26, 1702–1712. doi: 10.1037/0278-7393.26.6.1702

Pacini, R., and Epstein, S. (1999). The relation of rational and experiential

information processing styles to personality, basic beliefs, and the ratio-

bias phenomenon. J. Pers. Soc. Psychol. 76, 972–987. doi: 10.1037/0022-

3514.76.6.972

Passolungh, M. C., and Pazzaglia, F. (2004). Individual differences in memory

updating in relation to arithmetic problem solving. Learn. Individ. Differ. 14,

219–230. doi: 10.1016/j.lindif.2004.03.001

Paulos, J. A. (1988). Innumeracy: Mathematical Illiteracy and Its Consequences.

New York, NY: Vintage Books.

Peters, E. (2012). Beyond comprehension : the role of numeracy in judgments and

decisions. Curr. Dir. Psychol. Sci. 21, 31–35. doi: 10.1177/0963721411429960

Peters, E., Dieckmann, N., Dixon, A., Hibbard, J. H., and Mertz, C. K. (2007). Less

is more in presenting quality information to consumers. Med. Care Res. Rev.

64, 169–190. doi: 10.1177/10775587070640020301

Sedlmeier, P., and Gigerenzer, G. (2001).Teaching Bayesian reasoning in less

than two hours. J. Exp. Psychol. Gen. 130, 380–400. doi: 10.1037/0096-3445.

130.3.380

Raven, J. C., Court, J. H., and Raven, J. (1977). Manual for Advanced Progressive

Matrices (Sets I and IT). London: H. K. Lewis and Co.

Reyna, V. F., and Brainerd, C. J. (2007). The importance of mathematics in

health and human judgment: numeracy, risk communication, and medical

decision making. Learn. Individ. Differ. 17, 147–159. doi: 10.1016/j.lindif.2007.

03.010

Reyna, V. F., and Brainerd, C. J. (2008). Numeracy, ratio bias, and denominator

neglect in judgments of risk and probability. Learn. Individ. Differ. 18, 89–107.

doi: 10.1016/j.lindif.2007.03.011

Reyna, V. F., Lloyd, F. J., and Brainerd, C. J. (2003). “Memory, development,

and rationality: an integrative theory of judgment and decision-making,” in

Emerging Perspectives on Judgment and Decision Research, eds S. Schneider and

J. Shanteau (New York, NY: Cambridge University Press), 201–245.

Reyna, V. F., Nelson, W. L., Han, P. K., and Dieckmann, N. F. (2009).

How numeracy influences risk comprehension and medical decision making.

Psychol. Bull. 135, 943–973. doi: 10.1037/a0017327

Schoenfeld, A. (1985). Mathematical Problem Solving. New York, NY: Academic

Press.

Schoenfeld, A. H. (1992). “Learning to think mathematically: problem solving,

metacognition, and sense-making in mathematics,” in Handbook for Research

on Mathematics Teaching and Learning, ed D. Grouws (New York, NY:

MacMillan), 334–370.

Schwartz, N., Strack, E., Hilton, D., and Naderer, G. (1991). Base rates,

representativeness, and the logic of conversation: the contextual relevance of

“irrelevant” information. Soc. Cogn. 9, 67–84. doi: 10.1521/soco.1991.9.1.67

Siegler, R. S., Fazio, L. K., Bailey, D. H., and Zhou, X. (2013). Fractions: the new

frontier for theories of numerical development. Trends Cogn. Sci. 17, 13–19.

doi: 10.1016/j.tics.2012.11.004

Siegler, R. S., Thompson, C. A., and Schneider, M. (2011). An integrated theory

of whole number and fractions development. Cogn. Psychol. 62, 273–296. doi:

10.1016/j.cogpsych.2011.03.001

Siegrist, M., and Keller, C. (2011). Natural frequencies and Bayesian reasoning: the

impact of formal education and problem context. J. Risk Res. 14, 1039–1055.

doi: 10.1080/13669877.2011.571786

Sirota, M., and Juanchich, M. (2011). Role of numeracy and cognitive reflection in

Bayesian reasoning with natural frequencies. Stud. Psychol. 53, 151–161.

Sirota, M., Juanchich, M., and Hagmayer, Y. (2014a). Ecological rationality

or nested sets? Individual differences in cognitive processing predict

Bayesian reasoning. Psychon. Bull. Rev. 21, 198–204. doi: 10.3758/s13423-013-

0464-6
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