EXTENDED GERGONNE SYLLOGISMS

Abstract

Syllogisms with or without negative terms are studied by using Gergonne's ideas. Soundness, completeness, and decidability results are given.

1. BACKGROUND AND MOTIVATION

Gergonne [2] relates the familiar A, E, I, and O sentences without negative terms to five basic sentences that express the "Gergonne relations." These relations are: exclusion, identity, overlap, proper containment, and proper inclusion. What makes these relations especially interesting is that for any pair of non-empty class terms exactly one of them holds.

Faris [1] develops a formal system that takes the Gergonne relations as basic. His system takes advantage of Łukasiewicz's [4], which attempts to formalize the Aristotelian syllogistic. The following paper results from two ideas: 1) If Gergonne had been interested in studying A, E, I, and O sentences with negative terms, the count of Gergonne relations would be seven rather than five; and 2) The most Aristotelian way to develop a syllogistic system based on the these seven relations is by following Smiley's [5] rather than Łukasiewicz's [4].

After developing the Aristotelian "full syllogistic" based on seven relations, we will discuss a subsystem that is adequate for representing AEIO-syllogisms with or without negative terms.

2. The SYstem

Sentences are defined by referring to:
terms: $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$
simple quantifiers: $=,=^{-}, \subset^{++}, \subset^{+-}, \subset^{-+}, \subset^{--}, \mathrm{Z}$
comma: ,
$\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{n}$ is a quantifier provided i) each $\mathrm{Q}_{i}(1 \leq i \leq n)$ is a simple quantifier, ii) Q_{i} precedes Q_{j} if $i<j$, where precedence among simple
quantifiers is indicated by the above ordering of simple quantifiers, and iii) at least one quantifier is not a Q_{i}. No expressions are quantifiers other than those generated by the above three conditions. So, for example, $=, \subset^{++}$is a quantifier but $\subset^{++},=$is not. $\mathrm{Q} a b$ is a sentence iff Q is a quantifier and a and b are distinct terms. So, for example, $=, \subset^{++} \mathrm{AB}$ and $=^{-}, \subset^{--}, \mathrm{ZAB}$ are sentences, but $=, \subset^{++} \mathrm{AA}$ is not. $\mathrm{Q} a b$ is a simple sentence iff $\mathrm{Q} a b$ is a sentence and Q is a simple quantifier. Read simple sentences as follows: $=a b$ as "The a are the $b, "={ }^{-} a b$ as "The a are the non- b, " $\subset^{++} a b$ as "The a are properly included in the $b, " \subset^{+-} a b$ as "The a are properly included in the non- b, " $\subset^{-+} a b$ as "The non- a are properly included in the $b, " \subset^{--} a b$ as "The non- a are properly included in the non- b," and Zab as "Some a are b, some a are non- b, some non- a are b, and some non- a are non- b." Read $\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{n} a b$ by putting "or" between sentences that correspond to $\mathrm{Q}_{i} a b$. So, read $=, \subset^{++} a b$ as "The a are the b, or the a are properly included in the b " (or "All a are b.") $=^{-}, \subset^{+-}, \subset^{-+}, \subset^{--}, \mathrm{Z} a b$ may be read as "Some a are not $b . "$

The deducibility relation (\vdash), relating sets of sentences to sentences, is defined recursively. Read " $\mathrm{X} \vdash y$ " as " y is deducible from X ." Set brackets are omitted in the statement of the following definition. "X, y " is short for " $\mathrm{X} \cup\{y\}$ " and " x, y " is short for " $\{x\} \cup\{y\}$." " a ", "b",... range over terms; and " $p ", " q ", \ldots$ range over " + ", and " $-" . p^{*}$ is " + " iff p is "-". $c d(\mathrm{P} a b)=\mathrm{Q} a b$ iff every quantifier that does not occur in P occurs in Q. Read " $c d$ " as "the contradictory of."
(B1) $\quad=a b \vdash=b a$
(B2) $\quad=^{-} a b \vdash={ }^{-} b a$
(B3) $\subset^{p q} a b \vdash \subset^{q^{*} p^{*}} b a$
(B4) $\mathrm{Z} a b \vdash \mathrm{Z} b a$
(B5) $\quad=a b, \mathrm{Q} b c \vdash \mathrm{Q} a c, \quad$ where Q is $=,=^{-}$, or $\subset^{p q}$
(B6) $\quad=^{-} a b,{ }^{-} b c \vdash=a c$
(B7) $=^{-} a b, \subset^{p q} b c \vdash \subset^{p^{*} q} a c$
(B8) $\subset^{p q} a b, \subset^{q r} b c \vdash \subset^{p r} a c$
(R1) If $\mathrm{X} \vdash y$ and $y, z \vdash w$ then $\mathrm{X}, z \vdash w$
(R2)
If $\mathrm{X}, y \vdash \mathrm{P} a b$ then $\mathrm{X}, \mathrm{Q} a b \vdash c d(y)$ if no quantifier in P is a quantifier in Q
(R3)
If $\mathrm{X}, \mathrm{P} a b \vdash y$ and $\mathrm{X}, \mathrm{Q} a b \vdash y$ then $\mathrm{X}, \mathrm{R} a b \vdash y$ if each quantifier in R is in P or Q
(L1) $\quad \mathrm{X} \vdash y$ iff $\mathrm{X} \vdash y$ in virtue of $\mathrm{B} 1-\mathrm{R} 3$.
So, for example, $=^{-} \mathrm{AB}, \subset^{++} \mathrm{BC} \vdash \subset^{-+} \mathrm{AC}$ (by B7) and $\subset^{-+} \mathrm{AC}$, $\subset^{+-} \mathrm{CD} \vdash \subset^{--} \mathrm{AD}$ (by B8). So $=^{-} \mathrm{AB}, \subset^{++} \mathrm{BC}, \subset^{+-} \mathrm{CD} \vdash \subset^{--} \mathrm{AD}$ (by R1). So $=^{-} \mathrm{AB}, \subset^{++} \mathrm{BC}, \subset^{+-}, \mathrm{ZAD} \vdash=,=^{-}, \subset^{++}, \subset^{-+}, \subset^{--}$, ZCD (by R2).

THEOREM 1. (D1) If $\mathrm{X}, y \vdash \mathrm{P} a b$ then $\mathrm{X}, y \vdash c d(\mathrm{Q} a b)$ if no simple quantifier occurs in both P and Q . (D2) If $\mathrm{X}, y \vdash c d(\mathrm{P} a b)$ and $\mathrm{X}, y \vdash$ $c d(\mathrm{Q} a b)$ then $\mathrm{X}, y \vdash c d(\mathrm{R} a b)$ if each quantifier in R is in P or Q . (D 3) If $\mathrm{X}, y \vdash z$ and $v, w \vdash y$ then $\mathrm{X}, v, w \vdash z$.

Proof. Begin each proof by assuming the antecedent. (D1) Then $\mathrm{X}, \mathrm{Q} a b \vdash c d(y)$ (by R2). Then $\mathrm{X}, y \vdash c d(\mathrm{Q} a b)$ (by R2). (D2) Then $\mathrm{X}, \mathrm{P} a b \vdash c d(y)$ and $\mathrm{X}, \mathrm{Q} a b \vdash c d(y)$ (by R2). Then $\mathrm{X}, \mathrm{R} a b \vdash c d(y)$ (by R3). Then X, $y \vdash c d(\mathrm{R} a b)$ (by R2). (D3) Then $\mathrm{X}, c d(z) \vdash c d(y)$ and $v, c d(y) \vdash c d(w)$ (by R2). Then $\mathbf{X}, v, c d(z) \vdash c d(w)$ (by R1). Then $\mathrm{X}, v, w \vdash z$ (by R2).

A model is a quadruple $\left\langle\mathrm{W}, \nu_{+}, \nu_{-}, \nu\right\rangle$, where i) W is a non-empty set, ii) ν_{+}and ν_{-}are functions that assign non-empty subsets of W to terms such that $\nu_{+}(a) \cup \nu_{-}(a)=\mathrm{W}$ and $\nu_{+}(a) \cap \nu_{-}(a)=\varnothing$, and iii) ν is a function that assigns t or f to sentences such that the following conditions are met:
(i) $\quad \nu(=a b)=t$ iff $\nu_{+}(a)=\nu_{+}(b)$
(ii) $\quad \nu\left(={ }^{-} a b\right)=t$ iff $\nu_{+}(a)=\nu_{-}(b)$

$$
\begin{equation*}
\nu\left(\subset^{p q} a b\right)=t \text { iff } \nu_{p}(a) \subset \nu_{q}(b) \tag{iii}
\end{equation*}
$$

(iv) $\quad \nu(\mathrm{Z} a b)=t$ iff $\nu_{p}(a) \cap \nu_{q}(b) \neq \varnothing$ for each p and q
(v) $\quad \nu\left(\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{n} a b\right)=t$ iff for some $i(1 \leq i \leq n) \nu\left(\mathrm{Q}_{i} a b\right)=t$
y is a semantic consequence of $\mathrm{X}(\mathrm{X} \vDash y)$ iff there is no model $\langle\mathrm{W}, \ldots, \nu\rangle$ such that ν assigns t to every member of X and ν assigns f to $y . \mathrm{X}$ is consistent iff there is a model $\langle\mathrm{W}, \ldots, \nu\rangle$ such that ν assigns t to every member of X . X is inconsistent iff X is not consistent.

THEOREM 2 (Soundness). If $\mathrm{X} \vdash y$ then $\mathrm{X} \vDash y$.

Proof. Straightforward. (For B1, note that for any model $\langle\mathrm{W}, \ldots, \nu\rangle$, if $\nu_{+}(a)=\nu_{+}(b)$ then $\nu_{+}(b)=\nu_{+}(a)$. For R2, suppose no quantifier in \mathbf{P} is a quantifier in \mathbf{Q}, and suppose that $\mathrm{X}, \mathrm{Q} a b \not \models c d(y)$. Then there is a model $\langle\mathrm{W}, \ldots, \nu\rangle$ in which ν assigns t to every member of X , $\nu(\mathrm{Q} a b)=t$, and $\nu(c d(y))=f$. Note that $\nu(c d(y))=f$ iff $\nu(y)=t$. And note that since no quantifier in P is a quantifier in $\mathrm{Q}, \nu(\mathrm{P} a b)=f$. So X, $y \not \models \mathrm{P} a b$.)

A chain is a set of sentences whose members can be arranged as a sequence $\left\langle\mathrm{Q}_{1}\left[a_{1} a_{2}\right], \mathrm{Q}_{2}\left[a_{2} a_{3}\right], \ldots, \mathrm{Q}_{n}\left[a_{n} a_{1}\right]\right\rangle$, where $\mathrm{Q}_{i}\left[a_{i} a_{j}\right]$ is either $\mathrm{Q}_{i} a_{i} a_{j}$ or $\mathrm{Q}_{i} a_{j} a_{i}$ and where $a_{i} \neq a_{j}$ if $i \neq j$. So, for example, $\{=\mathrm{AB}$, $\left.={ }^{-}, \subset^{++} \mathrm{CB}, \mathrm{ZCA}\right\}$ is a chain. A pair $\langle\mathrm{X}, y\rangle$ is a syllogism iff $\mathrm{X} \cup\{y\}$ is a chain. So $\left\langle\left\{=\mathrm{AB},=^{-}, \subset^{++} \mathrm{CB}\right\}, \mathrm{ZCA}\right\rangle$ is a syllogism.

A normal chain is a set of sentences whose members can be arranged as a sequence $\left\langle\mathrm{Q}_{1} a_{1} a_{2}, \mathrm{Q}_{2} a_{2} a_{3}, \ldots, \mathrm{Q}_{n} a_{n} a_{1}\right\rangle$, where $a_{i} \neq a_{j}$ if $i \neq$ j. A simple normal chain is a normal chain in which each quantifier is simple. So, for example, $\left\{=,=^{-} \mathrm{AB},=\mathrm{BA}\right\}$ is a normal chain. And $\{=\mathrm{AB},=\mathrm{BA}\}$ is a simple normal chain.

By definition, $e(=a b)$ is $=b a, e\left(=^{-} a b\right)$ is $=^{-} b a, e\left(\subset^{p q} a b\right)$ is $\subset^{q^{*} p^{*}} b a$, and $e(\mathrm{Z} a b)$ is $\mathrm{Z} b a$.
$\left\{\mathrm{Q}_{1} a b, \mathrm{Q}_{2} b c\right\}$ a-reduces to $\mathrm{Q}_{3} a c$ iff the triple $\left\langle\mathrm{Q}_{1} a b, \mathrm{Q}_{2} b c, \mathrm{Q}_{3} a c\right\rangle$ is recorded on the following Table of Reductions:
$\mathrm{Q}_{2} b c$

So, for example, $\{=\mathrm{AB},=\mathrm{BC}\}$ a-reduces to $=\mathrm{AC}$, and $\left\{\subset^{++} \mathrm{AB}\right.$, $\left.\subset^{+-} \mathrm{BC}\right\}$ a-reduces to $\subset^{+-} \mathrm{AC}$.

If X_{1} is a simple chain then a sequence of chains $\mathrm{X}_{1}, \ldots, \mathrm{X}_{m}\left(=\mathrm{Y}_{1}\right)$, \ldots, Y_{n} is a full reduction of X_{1} to Y_{n} iff: i) X_{m} is a normal chain and if $m>1$ then, for $1 \leq i<m$, if \mathbf{X}_{i} has form $\{\mathbf{Q} a b\} \cup Z$ then \mathbf{X}_{i+1} has form $\{e(\mathrm{Q} a b)\} \cup \mathrm{Z}$, and ii) there is no pair in Y_{n} that a-reduces to a sentence and if $n>1$ then, for $1 \leq i<n$, if Y_{i} has form $\left\{\mathrm{Q}_{1} a b, \mathrm{Q}_{2} b c\right\} \cup \mathrm{Z}$ then Y_{i+1} has form $\left\{\mathrm{Q}_{3} a c\right\} \cup \mathrm{Z}$. X fully reduces to Y iff there is a full reduction of X to Y .

THEOREM 3. Every simple chain fully reduces to a simple normal chain.
Proof. Assume X_{1} is a simple chain. We construct a sequence of chains that is a full reduction of X_{1} to Y_{n}. Step 1: If X_{1} is a simple
normal chain let $X_{1}=Y_{1}$ and go to Step 2. If X_{1} is not a simple normal chain find the alphabetically first pair of sentences in X_{1} of form $\langle\mathrm{Q} a b, \mathrm{Q} c b\rangle$ and replace $\mathbf{Q} c b$ with $e(\mathbf{Q} c b)$, forming \mathbf{X}_{2}. Repeat Step 1 (with " X_{j} " in place of " X_{1} "). Step 2: If no pair of sentences in Y_{1} areduces to a sentence, then X_{1} fully reduces to Y_{1}. If a pair of sentences in Y_{1} a-reduces to a sentence x find the alphabetically first pair that areduces to x and form Y_{2} by replacing this pair with x. Repeat Step 2 (with " Y_{j} " in place of " Y_{1} ").

So, for example, given the sequence $\langle\{=\mathrm{AB}\},\{=\mathrm{AB},=\mathrm{BA}\}\rangle$, $\{=\mathrm{AB}\}$ fully reduces to $\{=\mathrm{AB},=\mathrm{BA}\}$. And, given the sequence $\left\langle\left\{\mathrm{C}^{++} \mathrm{AB}, \subset^{--} \mathrm{CB}, \subset^{++} \mathrm{CA}\right\},\left\{\mathrm{C}^{++} \mathrm{AB}, \subset^{++} \mathrm{BC}, \subset^{++} \mathrm{CA}\right\},\left\{\mathrm{C}^{++} \mathrm{AC}\right.\right.$, $\left.\left.C^{++} \mathrm{CA}\right\}\right\rangle,\left\{\mathrm{C}^{++} \mathrm{AB}, \subset^{--} \mathrm{CB}, \subset^{++} \mathrm{CA}\right\}$ fully reduces to $\left\{\mathrm{C}^{++} \mathrm{AC}\right.$, $\left.\mathrm{C}^{++} \mathrm{CA}\right\}$. Some chains fully reduce to themselves. $\left\{\mathrm{C}^{++} \mathrm{AB}, \subset^{--} \mathrm{BC}\right.$, ZCA $\}$ is an example.
$\left\{\mathrm{P}_{1}\left[a_{1} a_{2}\right], \ldots, \mathrm{P}_{n}\left[a_{n} a_{1}\right]\right\}$ is a strand of $\left\{\mathrm{Q}_{1}\left[a_{1} a_{2}\right], \ldots, \mathrm{Q}_{n}\left[a_{n} a_{1}\right]\right\}$ iff each P_{i} is a simple quantifier in Q_{i} and a_{i} is the first term in $\mathrm{P}_{i}\left[a_{i} a_{i+1}\right]$ iff a_{i} is the first term in $\mathrm{Q}_{i}\left[a_{i} a_{i+1}\right]$, where $\mathrm{P}[a b]$ is $\mathrm{P} a b$ or $\mathrm{P} b a$. So, for example, $\left\{=\mathrm{AB},=^{-} \mathrm{AB}\right\}$ is a strand of $\left\{=, C^{++} \mathrm{AB},=^{-}, C^{++} \mathrm{AB}\right\}$.

A simple normal chain is a $c d$-pair iff it has one of the following forms:

$$
\begin{aligned}
& \left\{=a b,=^{-} b a\left(\text { or } \subset^{p q} b a \text { or } \mathrm{Z} b a\right)\right\},\left\{=^{-} a b, \subset^{p q} b a(\text { or } \mathrm{Z} b a)\right\}, \\
& \\
& \quad \text { or }\left\{\subset^{p q} a b, \subset^{q r} b a(\text { or } \mathrm{Z} b a)\right\} .
\end{aligned}
$$

THEOREM 4 (Syntactic decision procedure). If $\langle\mathrm{X}, y\rangle$ is a syllogism then $\mathrm{X} \vDash y$ iff every strand of $\mathrm{X} \cup\{c d(y)\}$ fully reduces to a cd-pair.

Proof. Assume $\langle\mathrm{X}, y\rangle$ is a syllogism. We use Lemmas 1-3, below. (If) Suppose every strand of $\mathrm{X}, c d(y)$ fully reduces to a cd-pair. Then by Lemmas 1 and $2, \mathrm{X}, c d(y)$ is inconsistent. Then $\mathrm{X} \vDash y$. (Only if) Suppose some strand of $\mathrm{X}, \operatorname{cd}(y)$ does not fully reduce to a cd-pair. Then, by Theorem 3, some strand of X, $c d(y)$ fully reduces to a simple normal chain that is not a cd-pair. Then, by Lemmas 1 and 3, X, $\operatorname{cd}(y)$ is consistent. Then $\mathrm{X} \not \not \models y$.

LEMMA 1. A chain is inconsistent iff each of its strands is inconsistent.
Proof. Note that a model satisfies $\left\{\mathrm{Q}_{1} a b\right\} \cup \mathrm{X}$ and $\left\{\mathrm{Q}_{2} a b\right\} \cup \mathrm{X}$ iff it satisfies $\left\{\mathrm{Q}_{3} a b\right\} \cup \mathrm{X}$, where the quantifiers in Q_{3} are the quantifiers in Q_{1} and Q_{2}.

LEMMA 2. If a simple chain X fully reduces to a cd-pair, then X is inconsistent.

Proof. Use the following three lemmas, whose proofs will be omitted since they are easily given.

LEMMA 2.1. Each cd-pair is inconsistent.
LEMMA 2.2. If a simple normal chain $\left\{\mathrm{Q}_{3} a c\right\} \cup \mathrm{X}$ is inconsistent and $\left\{\mathrm{Q}_{1} a b, \mathrm{Q}_{2} b c\right\}$ a-reduces to $\mathrm{Q}_{3} a c$, then $\left\{\mathrm{Q}_{1} a b, \mathrm{Q}_{2} b c\right\} \cup \mathrm{X}$ is inconsistent.

LEMMA 2.3. If a simple chain $\{\mathrm{Q} a b\} \cup \mathrm{X}$ is inconsistent, then $\{e(\mathrm{Q} a b)\} \cup \mathrm{X}$ is inconsistent.

LEMMA 3. If a simple chain X fully reduces to a simple normal chain that is not a cd-pair, then X is satisfied in an m-model, where $m \leq n+2$ and n is the number of terms in X .

Proof. Use the following three lemmas.
LEMMA 3.1. If a simple chain fully reduces to a simple normal chain X that is not a cd-pair, then X is satisfied in an m-model, where $m \leq n+2$ and n is the number of terms in X .

Proof. Assume the antecedent. We consider three cases determined by the number of occurrences of " Z " in X.

Case 1: "Z" does not occur in X. If either " $=$ " or " $=$ " " occurs in X then X has form $\{=a b,=b a\}$ or $\left\{=^{-} a b,=^{-} b a\right\}$. Use $\langle\{1,2\}, \ldots, \nu\rangle$, where, for each term $x, \nu_{+}(x)=\{1\}$. If neither " $=$ " or " $=$ " " occurs in X then X has form $\left\{\subset^{p_{1} p_{2}} a_{1} a_{2}, \ldots, \subset^{p_{2 i-1} p_{2 i}} a_{i} a_{i+1}, \ldots, \subset^{p_{2 n-1} p_{2 n}} a_{n} a_{1}\right\}$, where $p_{2 i}=p_{2 i+1}^{*}$, for $1 \leq i<n$, and $p_{2 n}=p_{1}^{*}$. We use induction on the number n of terms in X to show that X is satisfied in a 3model. Basis step: $n=2$. X has form $\left\{\subset^{p_{1} p_{2}} a_{1} a_{2}, \subset^{p_{2}^{*} p_{1}^{*}} a_{2} a_{1}\right\}$. Use $\langle\{1,2,3\}, \ldots, \nu\rangle$, where $\nu_{p_{1}}(a)=\{1\}$, and, for terms x other than a, $\nu_{q}(x)=\{1,2\}$. Induction step: $n>2$. By the induction hypothesis $\left\{\subset^{p_{1} p_{4}} a_{1} a_{3}, \ldots, \subset^{p_{2 i-1} p_{2 i}} a_{i} a_{i+1}, \ldots, \subset^{p_{2 n-1} p_{2 n}} a_{n} a_{1}\right\}$ is satisfied in a 3model $\langle W, \ldots, \nu\rangle$, where $p_{2 i}=p_{2 i+1}^{*}$, for $2 \leq i<n$, and $p_{2 n}=p_{1}^{*}$. Construct a model $\left\langle W, \ldots, \nu^{\prime}\right\rangle, \nu_{p_{2}}^{\prime}\left(a_{2}\right)=\nu_{p_{1}}\left(a_{1}\right) \cup \nu_{p_{4}^{*}}\left(a_{3}\right)$, and, for other terms $x, \nu_{+}^{\prime}(x)=\nu_{+}(x)$. Then $\nu^{\prime}\left(\subset^{p_{1} p_{2}} a_{1} a_{2}\right)=t . \nu_{p_{2}^{*}}^{\prime}\left(a_{2}\right)=$ $\nu_{p_{4}}\left(a_{3}\right)-\nu_{p_{1}}\left(a_{1}\right)$ and $p_{2}^{*}=p_{3}$. So $\nu^{\prime}\left(\subset^{p_{3} p_{4}} a_{2} a_{3}\right)=t$.

Case 2: "Z" occurs exactly once in X. Then X has at least three members and has form $\{\mathrm{Z} a b\} \cup\left\{\subset^{p q} b c, \ldots, \subset^{r s} d a\right\}$. We use induction on the number of terms in X to show that X is satisfied in a 4 -model. Basis step: $n=3$. X has form $\{\mathrm{Z} a b\} \cup\left\{\subset^{p q} b c, \subset^{q^{*} r} c a\right\}$. Construct a model $\langle\{1,2,3,4\}, \ldots, \nu\rangle$, where $\nu_{r}(a)=\{1,2\}, \nu_{p}(b)=\{1,3\}$, and, for other terms $x, \nu_{q}(x)=\{1,3,4\}$. Induction step: $n>3$. Follow the model construction in the induction step in Case 1.

Case 3: "Z" occurs at least twice in X. Then X has form $\{\mathrm{Z} a b, \ldots$, $Z c d, \ldots\}$. We use induction on the number n of terms in X. Basis step: $n=2$. X has form $\{\mathbf{Z} a b, \mathbf{Z} b a\}$. Use $\langle\{1,2,3,4\}, \ldots, \nu\rangle$, where $\nu_{+}(a)=\{1,2\}$ and, for other terms $x, \nu_{+}(x)=\{1,3\}$. Induction step: $n>2$. X has form $\{\mathrm{Z} a b, \mathrm{Q} b c, \ldots, \mathrm{Z} d e, \ldots\}$. By the induction hypothesis, $\{\mathbf{Z} a c, \ldots, \mathrm{Z} d e\}$ is satisfied in an m -model, where $m \leq n+2$ and n is the number of terms in X. Suppose Q is " $=$ ". Construct model $\left\langle\mathrm{W}, \ldots, \nu^{\prime}\right\rangle$, where $\nu_{+}^{\prime}(b)=\nu_{+}(c)$ and, for terms x other than $b, \nu_{+}^{\prime}(x)=\nu_{+}(x)$. Suppose Q is " $={ }^{-}$". Construct model $\left\langle\mathrm{W}, \ldots, \nu^{\prime}\right\rangle$, where $\nu_{+}^{\prime}(b)=\nu_{-}(c)$ and, for terms x other than $b, \nu_{+}^{\prime}(x)=\nu_{+}(x)$. Suppose Q is " Z ". Construct a model $\left\langle\mathrm{W}, \ldots, \nu^{\prime}\right\rangle$, where $\nu_{+}^{\prime}(b)=\left(\nu_{+}(a) \cap \nu_{+}(c)\right) \cup\left(\nu_{-}(a) \cap \nu_{-}(c)\right)$, and, for other terms $x, \nu_{+}^{\prime}(x)=\nu_{+}(x)$. Finally, suppose that \mathbf{Q} is " $\subset^{p q "}$. The strategy is to construct a model $\left\langle\mathrm{W}^{\prime}, \ldots, \nu^{\prime}\right\rangle$ such that X is satisfied in it, where $\mathrm{W}^{\prime}=\mathrm{W} \cup\{\mathrm{M}\}$, and $\nu_{+}^{\prime}(a) \cap \nu_{q}^{\prime}(c)$ has at least two members, including M. Then we construct a second model $\left\langle\mathrm{W}^{\prime}, \ldots, \nu^{\prime \prime}\right\rangle$, such that X is satisfied in it by letting $\nu_{p}^{\prime \prime}(b)=\nu_{q}^{\prime}(c)-\{\mathbf{M}\}$, and, for terms x other than $b, \nu_{+}^{\prime \prime}(x)=\nu_{+}^{\prime}(x)$. Then $\nu^{\prime \prime}(\mathrm{Z} a b)=t$ and $\nu^{\prime \prime}\left(\subset^{p q} b c\right)=t$.

We construct $\left\langle\mathrm{W}^{\prime}, \ldots, \nu^{\prime}\right\rangle$. If a and c are the only terms in X , let $\alpha=\nu_{+}(a) \cap \nu_{q}(c)$ (and, thus, α has at least one member). If terms d_{1}, \ldots, d_{n} occur in X, where these terms are other than " a " or " c ", pick $p_{1}-p_{n}$ such that α has at least one member, where $\alpha=\nu_{+}(a) \cap$ $\nu_{q}(c) \cap \nu_{p_{1}}\left(d_{1}\right) \cap \cdots \cap \nu_{p_{n}}\left(d_{n}\right)$. Let $\mathrm{W}^{\prime}=\mathrm{W} \cup\{\mathbf{M}\}$, where $\mathrm{M} \notin \mathrm{W}$. Let $\nu_{+}^{\prime}(x)=\nu_{+}(x) \cup\{\mathbf{M}\}$ if $\alpha \subseteq \nu_{+}(x)$; otherwise, let $\nu_{+}^{\prime}(x)=\nu_{+}(x)$. Then $\nu_{-}^{\prime}(x)=\nu_{-}(x) \cup\{\mathbf{M}\}$ if $\alpha \subseteq \nu_{-}(x)$; otherwise, $\nu_{-}^{\prime}(x)=\nu_{-}(x)$. Note that $\nu_{+}^{\prime}(a) \cap \nu_{q}^{\prime}(c)$ has at least two members and $\mathrm{M} \in \nu_{+}^{\prime}(a) \cap \nu_{q}^{\prime}(c)$. We show that X is satisfied in $\left\langle\mathrm{W}^{\prime}, \ldots, \nu^{\prime}\right\rangle$. Suppose $\nu(\mathrm{Q} d e)=t$. Suppose Q is " $=$ ". Then $\nu_{+}^{\prime}(d)=\nu_{+}(d) \cup\{\mathbf{M}\}$ and $\nu_{+}^{\prime}(e)=\nu_{+}(e) \cup\{\mathbf{M}\}$ or $\nu_{+}^{\prime}(d)=\nu_{+}(d)$ and $\nu_{+}^{\prime}(e)=\nu_{+}(e)$. Then $\nu^{\prime}(=d e)=t$. Suppose Q is " $={ }^{-}$". Then $\nu_{+}^{\prime}(d)=\nu_{+}(d) \cup\{\mathbf{M}\}$ and $\nu_{-}^{\prime}(e)=\nu_{-}(e)$ or $\nu_{+}^{\prime}(d)=$ $\nu_{+}(d)$ and $\nu_{-}^{\prime}(e)=\nu_{-}(e) \cup\{\mathbf{M}\}$. Then $\nu^{\prime}\left(=^{-} d e\right)=t$. Suppose \mathbf{Q} is " $\subset^{p q "}$. If $\alpha \subseteq \nu_{p}(d)$ then $\nu_{p}^{\prime}(d)=\nu_{p}(d) \cup\{\mathbf{M}\}$ and $\nu_{q}^{\prime}(e)=\nu_{q}(e) \cup\{\mathbf{M}\}$. If $\alpha \nsubseteq \nu_{p}(d)$ then $\nu_{p}^{\prime}(d)=\nu_{p}(d)$ and either $\nu_{q}^{\prime}(e)=\nu_{q}(e)$ or $\nu_{q}^{\prime}(e)=$ $\nu_{q}(e) \cup\{\mathbf{M}\}$. Then $\nu^{\prime}\left(\subset^{p q} d e\right)=t$. Finally, suppose Q is " Z ". Then, for any p and $q, \nu_{p}(d) \cap \nu_{q}(e) \subseteq \nu_{p}^{\prime}(d) \cap \nu_{q}^{\prime}(e)$. Then $\nu^{\prime}(\mathbf{Z} d e)=t$.
LEMMA 3.2. If a simple chain $\left\{\mathrm{Q}_{3} a c\right\} \cup \mathrm{X}$ is satisfied in an n-model $\langle\mathrm{W}, \ldots, \nu\rangle$, where n is the number of terms in $\left\{\mathrm{Q}_{3} a c\right\} \cup \mathrm{X}$, and if $\left\{\mathrm{Q}_{1} a b, \mathrm{Q}_{2} b c\right\}$ a-reduces to $\mathrm{Q}_{3} a c$, then $\left\{\mathrm{Q}_{1} a b, \mathrm{Q}_{2} b c\right\} \cup \mathrm{X}$ is satisfied in an m-model, where $m \leq n$ and n is the number of terms in $\left\{\mathrm{Q}_{1} a b, \mathrm{Q}_{2} b c\right\} \cup \mathrm{X}$.

Proof. Assume the antecedent. Suppose Q_{1} is " $=$ ". Construct $\langle\mathrm{W}, \ldots$, $\left.\nu^{\prime}\right\rangle$, where $\nu_{+}^{\prime}(b)=\nu_{+}(a)$, and, for terms x other than $b, \nu_{+}^{\prime}(x)=\nu_{+}(x)$. Suppose Q_{1} is " $={ }^{-}$". Construct $\left\langle\mathrm{W}, \ldots, \nu^{\prime}\right\rangle$, where $\nu_{+}^{\prime}(b)=v_{-}(a)$, and,
for terms x other than $b, \nu_{+}^{\prime}(x)=\nu_{+}(x)$. Use similar constructions if Q_{2} is " $=$ " or " $={ }^{-"}$. So, the only a-reduction left is this: $\left\{\subset^{p q} a b, \subset^{q r} b c\right\}$ a-reduces to $\subset^{p r} a c$. Construct a model $\left\langle\mathrm{W}^{\prime}, \ldots, \nu^{\prime}\right\rangle$ such that $\mathrm{W}^{\prime}=\mathrm{W} \cup$ $\{\mathrm{M}\}, \mathrm{M} \notin \mathrm{W}$, and $\nu_{p^{*}}^{\prime}(a) \cap \nu_{r}^{\prime}(c)$ has at least two members, including M . To do this follow the procedure in Case 3 of Lemma 3.1. Then construct a model $\left\langle\mathrm{W}^{\prime}, \ldots, \nu^{\prime \prime}\right\rangle$ such that $\nu^{\prime \prime}(b)=\nu_{p}^{\prime}(a) \cup\{M\}$ and, for other terms $x, \nu_{+}^{\prime \prime}(x)=\nu_{+}^{\prime}(x)$.

LEMMA 3.3. If a simple chain $\{\mathrm{Q} a b\} \cup \mathrm{X}$ is satisfied in an n-model, where n is the number of terms in $\{\mathrm{Q} a b\} \cup \mathbf{X}$, then $\{e(\mathrm{Q} a b)\} \cup \mathbf{X}$ is satisfied in an n-model, where n is the number of terms in $\{e(\mathrm{Q} a b)\} \cup \mathbf{X}$.

Proof. Straightforward.
THEOREM 5 (Semantic decision procedure). If $\langle\mathrm{X}, y\rangle$ is a syllogism then $\mathrm{X} \vDash y$ iff $\mathrm{X}, c d(y)$ is not satisfied in an m-model, where $m \leq n+2$ and n is the number of terms in X .

Proof. Assume $\langle\mathrm{X}, y\rangle$ is a syllogism. (Only if) Immediate. (If) Assume $\mathrm{X}, c d(y)$ is not satisfied in an m-model, where $m \leq n+2$ and n is the number of terms in \mathbf{X}. Then every strand of $\mathbf{X}, c d(y)$ is not satisfied in an m-model where $m \leq n+2$ and n is the number of terms in $\mathbf{X}, \operatorname{cd}(y)$. Then every strand of $\mathrm{X}, c d(y)$ fully reduces to a $c d$-pair (by Theorem 3 and Lemma 3 of Theorem 4). Then $X \vDash y$ (by Theorem 4).

Given Theorem 5, it is natural to ask whether, for any n, there is an n-termed syllogism that requires an $n+2$ model to show that it is invalid. The answer is Yes. If $n=2$, use $\left\langle\left\{\mathrm{Z} a_{1} a_{2}\right\}, c d\left(\mathrm{Z} a_{2} a_{1}\right)\right\rangle$. If $n>2$, use $\left\langle\left\{\mathrm{Z} a_{1} a_{2}, \subset^{++} a_{2} a_{3}, \ldots, \subset^{++} a_{n-1} a_{n}\right\}, c d\left(\mathrm{Z} a_{n} a_{1}\right)\right\rangle$. Consider a mod$\mathrm{el}\langle\mathrm{W}, \ldots, \nu\rangle$ in which $\left\{\mathrm{Z} a_{1} a_{2}, \subset^{++} a_{2} a_{3}, \ldots, \subset^{++} a_{n-1} a_{n}, \mathrm{Z} a_{n} a_{1}\right\}$ is satisfied. Note that $\nu_{+}\left(a_{1}\right)$ has at least two members, since $\nu\left(\mathrm{Z} a_{1} a_{2}\right)=t$. So $\nu_{+}\left(a_{n}\right)$ has at least n members. $\nu_{-}\left(a_{n}\right)$ has at least two members since $v\left(\mathrm{Z} a_{n} a_{1}\right)=t$.

THEOREM 6 (Completeness). If $\langle\mathrm{X}, y\rangle$ is a syllogism and $\mathrm{X} \vDash y$ then $\mathrm{X} \vdash y$.

Proof. Assume the antecedent. Then, by Theorem 4, every strand of $\mathrm{X}, c d(y)$ fully reduces to a cd-pair. So, by Lemmas $1-4$, below, $\mathrm{X} \vdash$ $c d(c d(y))$. That is $\mathbf{X} \vdash y$.

LEMMA 1. If $\{x, y\}$ is a cd-pair, then $x \vdash c d(y)$.
Proof. 1) $=a b \vdash=b a$ (by B1). So $=a b \vdash c d\left(=^{-} b a\right)\left(\right.$ and $c d\left(\subset^{p q} b a\right)$ and $c d(\mathrm{Z} b a)$) (by D1). 2) $=^{-} b a \vdash=^{-} a b$ (by B2). So $=^{-} b a \vdash c d(=a b)$ (by D1). And $=^{-} a b \vdash={ }^{-} b a$ (by B2). So $=^{-} a b \vdash c d\left(\subset^{p q} b a\right)$ (and
$c d(\mathrm{Z} b a)$) (by D1). 3) $\subset^{p q} b a \vdash \subset^{q^{*} p^{*}} a b$ (by B3). So $\subset^{p q} b a \vdash c d(=a b)$ (and $c d\left(=^{-} a b\right)$) (by D1). $\subset^{p q} a b \vdash \subset^{q^{*} p^{*}} b a$ (by B3). So $\subset^{p q} a b \vdash c d\left(\subset^{q r} b a\right)$ (and $c d(\mathrm{Z} b a)$) (by D1). $\subset^{q r} b a \vdash \subset^{r^{*} q^{*}} a b$ (by B3). So $\subset^{q r} b a \vdash c d\left(\subset^{p q} a b\right)$ (by D1). 4) Z $b a \vdash \mathrm{Z} a b$ (by B4). So Z $b a \vdash c d(=a b)$ (and $c d\left(=^{-} a b\right)$ and $\left.c d\left(\subset^{p q} a b\right)\right)($ by D1).

LEMMA 2. If $\mathrm{X}=\left\{\mathrm{Q}_{3} a c\right\} \cup \mathrm{Z}, \mathrm{Y}=\left\{\mathrm{Q}_{1} a b, \mathrm{Q}_{2} b c\right\} \cup \mathrm{Z},\left\{\mathrm{Q}_{1} a b, \mathrm{Q}_{2} b c\right\}$ a-reduces to $\mathrm{Q}_{3} a c$, and $\mathrm{X}-\{x\} \vdash c d(x)$, for every x such that $x \in \mathrm{X}$, then $\mathrm{Y}-\{y\} \vdash c d(y)$, for every y such that $y \in \mathrm{Y}$.

Proof. Assume the antecedent. Case 1: $y \in \mathrm{Z} .\left\{\mathrm{Q}_{3} a c\right\} \cup \mathrm{Z}-\{y\} \vdash$ $c d(y)$. We use

LEMMA 2.1. If $\left\{\mathrm{Q}_{1} a b, \mathrm{Q}_{2} b c\right\}$ a-reduces to $\mathrm{Q}_{3} a c$ then $\mathrm{Q}_{1} a b, \mathrm{Q}_{2} b c \vdash$ $\mathrm{Q}_{3} a c$.

Proof. Given B5-B8, we only need to show that: i) $={ }^{-} a b,=b c \vdash$ $={ }^{-} a c$; ii) $\subset^{p q} a b,=b c \vdash \subset^{p q} a c$; and iii) $\subset^{p q} a b,=^{-} b c \vdash \subset^{p q^{*}} a c$. For i), $=b c \vdash=c b$ (by B1) and $=^{-} a b \vdash={ }^{-} b a$ (by B2). $=c b,=^{-} b a \vdash={ }^{-} c a$ (by B5). So $=^{-} a b,=b c \vdash^{-} c a$ (by D3). $=^{-} c a \vdash==^{-} a c$ (by B2). So $={ }^{-} a b,=b c \vdash={ }^{-} a c$ (by R1). Use similar reasoning for ii) and iii).

So $\mathrm{Q}_{1} a b, \mathrm{Q}_{2} b c \vdash \mathrm{Q}_{3} a c$ (by Lemma 2.1). So $\left\{\mathrm{Q}_{1} a b, \mathrm{Q}_{2} b c\right\} \cup \mathrm{Z}-\{y\} \vdash$ $c d(y)$ (by D3).

Case 2: $y=\mathrm{Q}_{1} a b . \mathrm{Z} \vdash c d\left(\mathrm{Q}_{3} a c\right) . \mathrm{Q}_{2} b c, c d\left(\mathrm{Q}_{3} a c\right) \vdash c d\left(\mathrm{Q}_{1} a b\right)$ (by Lemma 2.1 and R2). So Z, $\mathrm{Q}_{2} b c \vdash c d\left(\mathrm{Q}_{1} a b\right)$ (by R1).

Case 3: $y=\mathrm{Q}_{2} b c$. Use reasoning similar to that for Case 2.
LEMMA 3. If $\mathrm{X}=\{\mathrm{Q} a b\} \cup \mathrm{Z}, \mathrm{Y}=\{e(\mathrm{Q} a b)\} \cup \mathrm{Z}$, and $\mathrm{X}-\{x\} \vdash c d(c)$, for every x such that $x \in \mathbf{X}$, then $\mathrm{Y}-\{y\} \vdash c d(y)$, for every y such that $y \in \mathrm{Y}$.

Proof. Assume the antecedent. Case 1: $y \in \mathbf{Z} .\{\mathrm{Q} a b\} \cup \mathrm{Z}-\{y\} \vdash$ $c d(y) . e(\mathrm{Q} a b) \vdash \mathrm{Q} a b$ (by B1-B4). So $\{e(\mathrm{Q} a b)\} \cup \mathrm{Z}-\{y\} \vdash c d(y)$ (by D3). Case 2: $y=e(\mathbf{Q} a b) . \mathrm{Z} \vdash c d(\mathbf{Q} a b) . c d(\mathbf{Q} a b) \vdash c d(e(\mathbf{Q} a b))$ (by B1-B4 and R2). So $\mathrm{Z} \vdash c d(e(\mathrm{Q} a b))$ (by R1).

LEMMA 4. If each strand $\mathrm{Y} \cup\{z\}$ of $\mathrm{X} \cup\{y\}$ is such that $\mathrm{Y} \vdash c d(z)$, then $\mathrm{X} \vdash c d(y)$.

Proof. Use D2 and R3. (The proof is illustrated below.)
The proof of the above theorem provides a mechanical procedure for showing that $\mathrm{X} \vdash y$ given that $\mathrm{X} \vDash y$. We illustrate by showing that $=, \subset^{++} \mathrm{AB},=\mathrm{BC} \vdash c d\left(=^{-}, \subset^{+-} \mathrm{AC}\right)$. First, fully reduce the following strands as indicated: i) $\left\{=\mathrm{AB},=\mathrm{BC},={ }^{-} \mathrm{AC}\right\}$ to $\left\{=\mathrm{AB},=\mathrm{BC},={ }^{-} \mathrm{CA}\right\}$ to $\left\{=\mathrm{AC},=^{-} \mathrm{CA}\right\}$; ii) $\left\{=\mathrm{AB},=\mathrm{BC}, \subset^{+-} \mathrm{AC}\right\}$ to $\left\{=\mathrm{AB},=\mathrm{BC}, \subset^{+-} \mathrm{CA}\right\}$
to $\left\{=\mathrm{AC}, \subset^{+-} \mathrm{CA}\right\}$; iii) $\left\{\subset^{++} \mathrm{AB},=\mathrm{BC},=^{-} \mathrm{AC}\right\}$ to $\left\{\subset^{++} \mathrm{AB},=\mathrm{BC}\right.$, $\left.={ }^{-} \mathrm{CA}\right\}$ to $\left\{\subset^{++} \mathrm{AC},={ }^{-} \mathrm{CA}\right\}$; and iv) $\left\{\subset^{++} \mathrm{AB},=\mathrm{BC}, \subset^{+-} \mathrm{AC}\right\}$ to $\left\{\subset^{++} \mathrm{AB},=\mathrm{BC}, \subset^{+-} \mathrm{CA}\right\}$ to $\left\{\subset^{++} \mathrm{AC}, \subset^{+-} \mathrm{CA}\right\}$. By the proof of Lemma 1: $=\mathrm{AC} \vdash c d\left(={ }^{-} \mathrm{CA}\right) ;=\mathrm{AC} \vdash c d\left(\subset^{+-} \mathrm{CA}\right) ; \subset^{++} \mathrm{AC} \vdash c d\left(={ }^{-} \mathrm{CA}\right)$; and $\subset^{++} \mathrm{AC} \vdash c d\left(\subset^{+-} \mathrm{CA}\right)$. By the proof of Lemma 2: $=\mathrm{AB},=\mathrm{AC} \vdash$ $c d\left(={ }^{-} \mathrm{CA}\right) ;=\mathrm{AB},=\mathrm{AC} \vdash c d\left(\subset^{+-} \mathrm{CA}\right) ; \subset^{++} \mathrm{AB},=\mathrm{BC} \vdash c d\left(={ }^{-} \mathrm{CA}\right) ;$ and $\subset^{++} \mathrm{AB},=\mathrm{BC} \vdash c d\left(\subset^{+-} \mathrm{CA}\right)$. By the proof of Lemma 3: $=\mathrm{AB}$, $=\mathrm{AC} \vdash c d\left(=^{-} \mathrm{AC}\right) ;=\mathrm{AB},=\mathrm{AC} \vdash c d\left(\subset^{+-} \mathrm{AC}\right) ; \subset^{++} \mathrm{AB},=\mathrm{BC} \vdash$ $c d\left(=^{-} \mathrm{AC}\right)$; and $\subset^{++} \mathrm{AB},=\mathrm{BC} \vdash c d\left(\subset^{+-} \mathrm{AC}\right)$. By $\mathrm{D} 2,=\mathrm{AB},=\mathrm{AC} \vdash$ $c d\left(=^{-}, \subset^{+-} \mathrm{AC}\right)$ and $\subset^{++} \mathrm{AB},=\mathrm{BC} \vdash c d\left(=^{-}, \subset^{+-} \mathrm{AC}\right)$. By $\mathrm{R} 3,=$, $\subset^{++} \mathrm{AB},=\mathrm{AC} \vdash c d\left(=^{-}, \subset^{+-} \mathrm{AC}\right)$.

3. GERGONNE SYLLOGISMS

Faris [1] is motivated by an interest in providing a decision procedure for Gergonne syllogisms. Faris construes syllogisms as sentences, following Łukasiewicz's [4], rather than as inferences, as in Smiley's [5]. For us, a Gergonne syllogism is a syllogism consisting of Gergonne sentences, which are defined as follows, using Gergonne's symbols in [2]. The Gergonne-quantifiers are: $\mathbf{H}={ }_{\mathrm{df}}=^{-}, \subset^{+-} ; \mathbf{X}={ }_{\mathrm{df}} \subset^{-+}, \mathrm{Z} ; \mid={ }_{\mathrm{df}}=; \subset$ $={ }_{\mathrm{df}} \subset^{++}$, and $\supset=_{\mathrm{df}} \subset^{--}$. A Gergonne-sentence is any sentence of form $\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{m} a b$, where Q_{i} is a Gergonne-quantifier. So Theorem 4 above gives an alternative solution to the problem that motivated Faris' [1], since every Gergonne syllogism may be expressed in our system. Note, for example, that "H, ХAB" is expressed as " $=^{-}, \subset^{+-}, \subset^{-+}, \mathrm{ZAB}$ ".

4. System B

In this section we develop a subsystem B which expresses no sentences other than those that may be expressed by using sentences of form "All...
 are not $---"$, where the blanks are filled by expressions of form x or non-x (the "A, E, I, and O sentences, respectively, with or without negative terms.")

The B-quantifiers ("B" for "basic") are: $=, \subset^{++}\left(\mathrm{A}^{++}\right) ;=^{-}, \subset^{+-}$ $\left(\mathrm{A}^{+-}\right) ;=^{-}, \subset^{-+}\left(\mathrm{A}^{-+}\right) ;=, \subset^{--}\left(\mathrm{A}^{--}\right) ;=^{-}, \subset^{+-}, \subset^{-+}, \subset^{--}, \mathrm{Z}\left(\mathrm{O}^{++}\right) ;$ $=, \subset^{++}, \subset^{-+}, \subset^{--}, \mathrm{Z}\left(\mathrm{O}^{+-}\right) ;=, \subset^{++}, \subset^{+-}, \subset^{--}, \mathrm{Z}\left(\mathrm{O}^{-+}\right) ;$and $=^{-}$, $\subset^{++}, \subset^{+-}, \subset^{-+}, \mathrm{Z}\left(\mathrm{O}^{--}\right) . \mathrm{Q} a b$ is a B-sentence iff $\mathrm{Q} a b$ is a sentence and Q is a B -quantifier. So, for example, $\mathrm{A}^{++} \mathrm{AB}$ is a B -sentence. And a B-syllogism is a syllogism composed of B -sentences.

We define y is B-deducible from $\mathrm{X}\left(\mathrm{X} \vdash_{\mathrm{B}} y\right)$, where X, y is a set of B-sentences, and where $c t\left(\mathrm{~A}^{p q} a b\right)=\mathrm{A}^{p q^{*}} a b, c d\left(\mathrm{~A}^{p q} a b\right)=\mathrm{O}^{p q} a b$, and $c d\left(\mathrm{O}^{p q} a b\right)=\mathrm{A}^{p q} a b:$
(B_{1}) $\quad \mathrm{A}^{p q} a b \vdash_{\mathrm{B}} \mathrm{A}^{q^{*} p^{*}} b a$
(B_{2}) $\quad \mathrm{A}^{p q} a b, \mathrm{~A}^{q r} b c \vdash_{\mathrm{B}} \mathrm{A}^{p r} a c$
$\left(\mathrm{R}_{1}\right) \quad$ If $\mathrm{X} \vdash_{\mathrm{B}} y$ and $y, z \vdash_{\mathrm{B}} w$ then $\mathrm{X}, z \vdash_{\mathrm{B}} w$
$\left(\mathrm{R}_{2}\right) \quad$ If $\mathrm{X}, y \vdash_{\mathrm{B}} c t(z)$ or $c d(z)$ then $\mathrm{X}, z \vdash_{\mathrm{B}} c d(y)$
(L_{1}) If $\mathrm{X} \vdash y$, then $\mathrm{X} \vdash y$ in virtue of $\mathrm{B}_{1}-\mathrm{R}_{2}$.
THEOREM 7. ($\left.\mathrm{D}_{1}\right)$ If $\mathrm{X}, y \vdash_{\mathrm{B}} z$ and $u, v \vdash_{\mathrm{B}} y$ then $\mathrm{X}, u, v \vdash_{\mathrm{B}} z$.
Proof. Use the reasoning for the proof of Theorem 1.
THEOREM 8 (Soundness). If $\mathrm{X} \vdash_{\mathrm{B}} y$ then $\mathrm{X} \vDash y$.
Proof. Straightforward.
By definition, $e\left(\mathrm{~A}^{p q} a b\right)$ is $\mathrm{A}^{q^{*} p^{*}} b a$ and $e\left(\mathrm{O}^{p q} a b\right)$ is $\mathrm{O}^{q^{*} p^{*}} b a$. And, by definition, a set X of sentences b-reduces to a sentence y iff $\langle\mathrm{X}, y\rangle$ has form $\left\langle\left\{\mathbf{A}^{p q} a b, \mathrm{~A}^{q r} b c\right\}, \mathrm{A}^{p r} a c\right\rangle$.

If X_{1} is a chain of B -sentences then a sequence of chains $\mathrm{X}_{1}, \ldots, \mathrm{X}_{m}$ $\left(=\mathrm{Y}_{1}\right), \ldots, \mathrm{Y}_{n}$ is a full B-reduction of X_{1} to Y_{n} iff: i) X_{m} is a normal chain and if $m>1$, then, for $1 \leq i<m$, if \mathbf{X}_{i} has form $\{\mathrm{Q} a b\} \cup \mathrm{Y}$, then \mathbf{X}_{i+1} has form $\{e(\mathbf{Q} a b)\} \cup \mathbf{Y}$; and ii) there is no pair of sentences in Y_{n} that b-reduces to a sentence and if $n>1$ then, for $1 \leq i<n, \mathrm{Y}_{i}$ has form $\left\{\mathrm{A}^{p q} a b, \mathrm{~A}^{q r} b c\right\} \cup \mathrm{X}$ and Y_{i+1} has form $\left\{\mathrm{A}^{p r} a c\right\} \cup \mathrm{X}$. X fully B -reduces to Y iff there is a full B -reduction of X to Y .

THEOREM 9. Every chain of B-sentences fully B-reduces to a normal chain of B-sentences.

Proof. Imitate the proof of Theorem 3.
A normal chain of B-sentences is a cd-B-pair iff it has one of the following forms: $\left\{\mathrm{A}^{p q} a b, \mathrm{~A}^{q p^{*}} b a\right\}$ or $\left\{\mathrm{A}^{p q} a b, \mathrm{O}^{q^{*} p^{*}} b a\right\}$.
THEOREM 10 (Syntactic decision procedure). If $\langle\mathrm{X}, y\rangle$ is $a \mathrm{~B}$-syllogism then $\mathrm{X} \vDash y$ iff $\mathrm{X}, c d(y)$ fully B -reduces to a $c d$ - B -pair.

Proof. Assume $\langle\mathrm{X}, y\rangle$ is a B -syllogism. We use Lemmas 1 and 2, below. (If) Suppose X, $c d(y)$ fully B-reduces to a $c d$-B-pair. Then, by Lemma 1, $\mathbf{X}, c d(y)$ is consistent. Then $\mathbf{X} \not \vDash y$. (Only if) Suppose $\mathbf{X} \vDash y$. Then $\mathbf{X}, c d(y)$ is inconsistent. Then $\mathbf{X}, c d(y)$ fully B-reduces to a $c d$-Bpair (by Lemma 2 and Theorem 9).

LEMMA 1. If a chain X of B -sentences fully B -reduces to a cd-B-pair then X is inconsistent.

Proof. Imitate the proof of Lemma 2 of Theorem 4.
LEMMA 2. If a chain X of B -sentences fully B -reduces to a normal chain of B -sentences that is not a cd-B-pair, then X is satisfied in a 3-model.

LEMMA 2.1. If a chain of B -sentences fully B -reduces to a normal chain of B -sentences X that is not a cd-B-pair, then X is satisfied in a 3-model.

Proof. Assume the antecedent. We consider three cases determined by the number of occurrences of "O" in X.

Case 1: "O" does not occur in X. We use induction on the number n of terms in X . Basis step: $n=2$. Then X has form $\left\{\mathrm{A}^{p q} a b, \mathrm{~A}^{q p} b a\right\}$ or form $\left\{\mathrm{A}^{p q} a b, \mathrm{~A}^{q^{*} p^{*}} b a\right\}$. If $p=q$, use $\langle\{1,2,3\}, \ldots, \nu\rangle$, where $\nu_{+}(x)=\{1\}$. If $p \neq q$, use $\langle\{1,2,3\}, \ldots, \nu\rangle$, where $\nu_{+}(a)=\{1\}$, and, for terms x other than $a, \nu_{+}(x)=\{2,3\}$. Induction step: $n>2$. Then X has form $\left\{\mathrm{A}^{p_{1} p_{2}} a_{1} a_{2}, \ldots, \mathrm{~A}^{p_{2 i-1} p_{2 i}} a_{i} a_{i+1}, \ldots, \mathrm{~A}^{p_{2 n-1} p_{2 n}} a_{n} a_{1}\right\}$, where $p_{2 i}=$ $p_{2 i+1}^{*}$. By Case 1 of Lemma $3.1\left\{\subset^{p_{1} p_{2}} a_{1} a_{2}, \ldots, \subset^{p_{2 i-1} p_{2 i}} a_{i} a_{i+1}, \ldots\right.$, $\left.\subset^{p_{2 n-1} p_{2 n}} a_{n} a_{1}\right\}$, where $p_{2 i}=p_{2 i+1}^{*}$, for $1 \leq i<n$, and $p_{2 n}=p_{1}^{*}$, is satisfied in a 3-model. So X is satisfied in a 3-model.

Case 2: "O" occurs exactly once in X. Suppose there are exactly two terms in X . Then X has form $\mathrm{A}^{p q} a b, \mathrm{O}^{q^{*} p} b a$ (or $\mathrm{O}^{q p} a b$ or $\mathrm{O}^{q p^{*}} b a$). 3-models are easily constructed to show that X is consistent. Suppose there are more than two terms in X . We use induction on the number n of terms in X to show that X is satisfied in a 3-model. Basis step: $n=3$. Then X has form $\left\{\mathrm{O}^{p q} a b, \mathrm{~A}^{r s} b c, \mathrm{~A}^{s^{*} u} c a\right\}$. So there is a strand of X with one of the following forms: $\left\{\subset^{p q^{*}} a b, \subset^{r s} b c, \subset^{s^{*} u} c a\right\}$, $\left\{\subset^{p^{*} q} a b, \subset^{r s} b c, \subset^{s^{*} u} c a\right\}$, and $\left\{\subset^{p^{*} q^{*}} a b, \subset^{r s} b c, \subset^{s^{*} u} c a\right\}$. So, by Case 1 of Lemma 3.1 of Theorem 4, X is consistent if $p=u$ or $q=r$. Suppose $p \neq u$ and $q \neq r$. Then X has form $\left\{\mathrm{O}^{p q} a b, \mathrm{~A}^{q^{*} s} b c, \mathrm{~A}^{s^{*} p^{*}} c a\right\}$. If $p=q$, there is a strand of X with form $\left\{=^{-} a b,=b c,=^{-} c a\right\}$ or form $\left\{=^{-} a b,=^{-} b c,=c a\right\}$. If $p \neq q$, there is a strand of X with form $\{=a b,=b c,=c a\}$ or form $\left\{=a b,=^{-} b c,=^{-} c a\right\}$. Each of these four chains can easily be shown to be satisfied in a 3-model. Induction step: $n>$ 3. X has form $\mathrm{O}^{p q} a b, \mathrm{~A}^{r s} b c, \mathrm{~A}^{s^{*} u} c d, \ldots$. By the induction hypothesis, $\mathrm{O}^{p q} a b, \mathrm{~A}^{r^{*} u} b d, \ldots$ is satisfied in a 3 -model $\langle\mathrm{W}, \ldots, \nu\rangle$. Construct $\left\langle\mathrm{W}, \ldots, \nu^{\prime}\right\rangle$, where $\nu_{s}^{\prime}(c)=\nu_{r}(b)$, and, for terms x other than $c, \nu_{+}^{\prime}(x)=$ $\nu_{+}(x)$. Note that $\nu^{\prime}\left(\mathrm{A}^{r s} b c\right)=t$, since $\nu_{r}^{\prime}(b)=\nu_{s}^{\prime}(c)$, and $\nu^{\prime}\left(\mathrm{A}^{s^{*} u} c d\right)=t$, since $\nu_{s^{*}}^{\prime}(c)=\nu_{r^{*}}^{\prime}(b)$.

Case 3: "O" occurs at least twice in X. We use induction on the number of terms n in X. Basis step: $n=2$. X has form $\left\{\mathrm{O}^{p q} a b, \mathrm{O}^{r s} b a\right\}$. It is
easy to show that X is satisfied in a 3-model. Induction step: $n>2$. X has form $\left\{\mathrm{O}^{p q} a b, \mathrm{Q}^{r s} b c, \ldots, \mathrm{O}^{u v} d e, \ldots\right\}$. Suppose Q is " A " and $r=s$ or \mathbf{Q} is " O " and $r \neq s$. By the induction hypothesis, $\left\{\mathrm{O}^{p q} a c, \ldots, \mathrm{O}^{u v} d e, \ldots\right\}$ is satisfied in a 3-model $\langle\mathrm{W}, \ldots, \nu\rangle$. Construct 3 -model $\left\langle\mathrm{W}, \ldots, \nu^{\prime}\right\rangle$, where $\nu_{q}^{\prime}(b)=\nu_{q}(c)$, and, for terms x other than $c, \nu_{+}^{\prime}(x)=\nu_{+}(x)$. Suppose Q is " A " and $r \neq s$ or Q is " O " and $r=s$. By the induction hypothesis, $\left\{\mathrm{O}^{p q^{*}} a c, \ldots, \mathrm{O}^{u v} d e, \ldots\right\}$ is satisfied in a 3 -model $\langle\mathrm{W}, \ldots, \nu\rangle$. Construct 3 -model $\left\langle\mathrm{W}, \ldots, \nu^{\prime}\right\rangle$, where $\nu_{q}^{\prime}(b)=\nu_{q^{*}}(c)$, and, for terms x other than $c, \nu_{+}^{\prime}(x)=\nu_{+}(x)$.

LEMMA 2.2. If $\left\{\mathrm{A}^{p r} a c\right\} \cup \mathrm{Y}$ is satisfied in a 3-model and if term b does not occur in a member of Y , then $\left\{\mathrm{A}^{p q} a b, \mathrm{~A}^{q r} b c\right\} \cup \mathrm{Y}$ is satisfied in a 3-model.

Proof. Assume that $\left\{\mathrm{A}^{p r} a c\right\} \cup \mathrm{Y}$ is satisfied in a 3-model $\langle\mathrm{W}, \ldots, \nu\rangle$. Construct $\left\langle\mathrm{W}, \ldots, \nu^{\prime}\right\rangle$, where $\nu_{p}^{\prime}(b)=\nu_{q}(a)$, and, for terms x other than b, $\nu_{+}^{\prime}(x)=\nu_{+}(x)$.

LEMMA 2.3. If $\{\mathrm{Q} a b\} \cup \mathrm{Y}$ is satisfied in a 3-model, then $\{e(\mathrm{Q} a b)\} \cup \mathrm{Y}$ is satisfied in a 3-model.

Proof. Straightforward.
THEOREM 11 (Semantic decision procedure). If $\langle\mathrm{X}, y\rangle$ is a B -syllogism then $\mathrm{X} \vDash y$ iff $\mathrm{X}, c d(y)$ is not satisfied in a 3-model.

Proof. Assume $\langle\mathrm{X}, y\rangle$ is a B-syllogism. (Only if) Immediate. (If) Suppose $\mathrm{X}, \operatorname{cd}(y)$ is not satisfied in a 3 -model. Then, by Theorem 9 and Lemma 2 of Theorem $10, \mathrm{X}, c d(y)$ fully B-reduces to a $c d$-B-pair. So, by Theorem 10, $\mathrm{X} \vDash y$.

Theorem 11 extends the result in Johnson's [3]. There it is shown, in effect, that any invalid syllogism constructed by using B-sentences other than those of form $\mathrm{A}^{-+} a b$ or $\mathrm{O}^{-+} a b$ is satisfied in a 3-model. There are invalid B -syllogisms that require a domain with at least three members to show their invalidity. This is an example: $\left\langle\left\{\mathrm{A}^{+-} \mathrm{AB}, \mathrm{A}^{+-} \mathrm{BC}\right\}, \mathrm{O}^{+-} \mathrm{AC}\right\rangle$.

THEOREM 12 (Completeness). If $\langle\mathrm{X}, y\rangle$ is a B -syllogism and $\mathrm{X} \vDash y$ then $\mathrm{X} \vdash_{\mathrm{B}} y$.

Proof. Assume the antecedent. Then, by Theorem 10, $\mathrm{X} \cup\{c d(y)\}$ fully B-reduces to a $c d$-B-pair. Use the following three lemmas.

LEMMA 1. If $\{x, y\}$ is a $c d$-B-pair, then $x \vdash_{\mathrm{B}} c d(y)$ and $y \vdash_{\mathrm{B}} c d(x)$.
Proof. (1) $\mathrm{A}^{q p^{*}} b a \vdash_{\mathrm{B}} \mathrm{A}^{p q^{*}} a b$, that is, $c t\left(\mathrm{~A}^{p q} a b\right)$ (by $\left.\mathrm{B}_{1}\right)$. So $\mathrm{A}^{p q} a b \vdash_{\mathrm{B}}$ $c d\left(\mathbf{A}^{q p^{*}} b a\right)\left(\right.$ by $\left.\mathbf{R}_{2}\right)$. So $\mathbf{A}^{q p^{*}} b a \vdash_{\mathrm{B}} c d\left(\mathrm{~A}^{p q} a b\right)\left(\right.$ by $\left.\mathrm{R}_{2}\right)$. (2) $\mathrm{A}^{p q} a b \vdash_{\mathrm{B}}$
$\mathrm{A}^{q^{*} p^{*}} b a$, that is, $c d\left(\mathbf{O}^{q^{*} p^{*}} b a\right)$ (by $\left.\mathbf{B}_{1}\right)$. So $\mathrm{O}^{q^{*} p^{*}} b a \vdash_{\mathrm{B}} c d\left(\mathrm{~A}^{p q} a b\right)$ (by R_{2}).

LEMMA 2. If $\mathrm{X}=\left\{\mathrm{A}^{p r} a c\right\} \cup \mathrm{Z}, \mathrm{Y}=\left\{\mathrm{A}^{p q} a b, \mathrm{~A}^{q r} b c\right\} \cup \mathrm{Z}$, and $\mathrm{X}-$ $\{x\} \vdash_{\mathrm{B}} c d(x)$, for each sentence x in \mathbf{X}, then $\mathrm{Y}-\{y\} \vdash_{\mathrm{B}} c d(y)$, for each sentence y in Y .

Proof. Imitate the proof of Lemma 2 of Theorem 6.

LEMMA 3. If $\mathrm{X}=\{\mathbf{Q} a b\} \cup \mathbf{Z}, \mathrm{Y}=\{e(\mathbf{Q} a b)\} \cup \mathbf{Z}$, and $\mathrm{X}-\{x\} \vdash_{\mathrm{B}} c d(x)$, for each sentence x in X , then $\mathrm{Y}-\{y\} \vdash_{\mathrm{B}} c d(y)$, for each sentence y in Y .

Proof. Imitate the proof of Lemma 3 of Theorem 6.

5. CONCLUSION

Our interest has been in extending the Aristotelian syllogistic. But, in conclusion, we mention Smiley's classic result in [5] about the Aristotelian syllogistic, which follows from the results obtained above. First, delete sentences of form $\mathrm{A}^{-+} a b$ and $\mathrm{O}^{-+} a b$ from system B . Let $\mathrm{A} a-b=\varnothing$ if $a=b$; otherwise, let $\mathrm{A} a-b$ be a set of sentences that can be arranged as follows: $\left\langle\mathrm{A}^{++} a_{1} a_{2}\left(\right.\right.$ or $\left.\mathrm{A}^{--} a_{2} a_{1}\right), \ldots, \mathrm{A}^{++} a_{n} a_{n+1}$ (or $\left.\mathrm{A}^{--} a_{n+1} a_{n}\right\rangle$, where $a_{1}=a$ and $a_{n+1}=b$. Then, by Theorem 10, a chain of sentences in this subsystem is inconsistent iff it has one of the following forms: i) $\mathrm{A} a-b, \mathrm{O}^{++} a b\left(\mathrm{O}^{--} a b\right)$; ii) $\mathrm{A} a-b, \mathrm{~A}^{+-} b c, \mathrm{~A} c-a$; or iii) $\mathrm{A} a-b, \mathrm{~A}^{+-} b c, \mathrm{~A} d-c, \mathrm{O}^{+-} d a$ (or $\mathrm{O}^{+-} a d$). Next, delete sentences of form $\mathrm{A}^{--} a b$ and $\mathrm{O}^{--} a b$ from this system. The resulting system can express all of the Aristotelian syllogisms. So, as Smiley [5] says, an Aristotelian syllogism $\langle\mathrm{X}, y\rangle$ is valid iff $\mathrm{X}, c d(y)$ has one of the following forms: i^{\prime}) $\mathrm{A} a-b, \mathrm{O}^{++} a b$, ii), or iii). (Smiley uses $\mathrm{A}, \mathrm{E}, \mathrm{I}$, and O instead of our $\mathrm{A}^{++}, \mathrm{A}^{+-}, \mathrm{O}^{+-}, \mathrm{O}^{++}$, respectively.) So, for example, " $\mathrm{A}^{++} \mathrm{BC}, \mathrm{A}^{++} \mathrm{BA}$; so $\mathrm{O}^{+-} \mathrm{AC}$ " (Darapti) is valid since " $\mathrm{A}^{++} \mathrm{BC}$, $A^{++} B A, A^{+-} A C "$ has form ii).

REFERENCES

1. Faris, J.A., "The Gergonne relations", The Journal of Symbolic Logic, Vol. 20 (1955), pp. 207-231.
2. Gergonne, J.D., "Essai de dialectique rationnelle", Annales de Mathématique, Vol. 7 (1816-17), pp. 189-228.
3. Johnson, F., "Three-membered domains for Aristotle's syllogistic", Studia Logica, Vol. 50 (1991), pp. 181-187.
4. Łukasiewicz, J., Aristotle's Syllogistic, 2nd ed., Clarendon Press, Oxford, 1957.
5. Smiley, T.J., "What is a syllogism?", Journal of Philosophical Logic, Vol. 2 (1973), pp. 136-154.

Department of Philosophy, Colorado State University, Fort Collins, Colorado 80523, U.S.A.

