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Gold’s Theorem and Cognitive Science*

Kent Johnson†‡

A variety of inaccurate claims about Gold’s Theorem have appeared in the cognitive
science literature. I begin by characterizing the logic of this theorem and its proof. I
then examine several claims about Gold’s Theorem, and I show why they are false.
Finally, I assess the significance of Gold’s Theorem for cognitive science.

1. Introduction. Over the years, negative evidence in language acquisition
has received a lot of attention. (Negative evidence is information regarding
what possible sentences are not sentences of the language to be learned.)
It is often thought that children lack negative evidence when they acquire
their native language (e.g., Marcus 1993), and that this fact supports a
rationalist view of the mind over an empiricist view. One argument from
‘No negative evidence’ to rationalism centers on the ‘Logical Problem of
Language Acquisition’ (LPLA). Briefly, LPLA goes like this. If a child
learning a given language doesn’t use negative evidence, then it is logically
possible that she would begin to acquire a language whose grammatical
sentences included all those of the target language, plus some more. E.g.,
if a child was learning English, she could begin to acquire a language that
included all the grammatical sentences of English, plus sentences of VSO
clausal order, like *Kicked Mary the boy and *Sang Susan. If the child
received no information that these extra sentences aren’t part of English,
then she would have no way of knowing that she was not learning English,
but a syntactically more expressive language instead. Thus, we would
predict that the child would end up acquiring the ‘larger’ language. How-
ever, this does not happen: children acquire their target language, and
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not languages whose sentences contain the sentences of the target language
as a proper subset. How children do this is the Logical Problem of Lan-
guage Acquisition. A common route from LPLA to rationalism goes as
follows. If there is no negative information, then there must be some other
mechanism that enables the child to learn her language instead of a more
expressive language. Such a mechanism would most plausibly be a cog-
nitive ability that somehow prevents the child from entering a situation
where negative evidence is needed. Any such cognitive ability would ap-
pear to be domain-specific to language and not learned. Thus, the ability
must be innate, so rationalists are right about language acquisition and
empiricism is false.

LPLA and its use in support of rationalism have received much atten-
tion (e.g., Cowie 1999 and citations therein). LPLA is often thought to
have a precise mathematical realization in a theorem from E. Mark Gold’s
seminal paper “Language Identification in the Limit” (Gold 1967). Al-
though views differ about what exactly ‘Gold’s Theorem’ shows, a great
many cognitive scientists treat it as an attempt to provide a kind of ev-
idence for rationalism: substantial innate knowledge or constraints are
needed to facilitate language acquisition. Such an attempt is bold: it would
be impressive to solve the millennia-old debate about rationalism vs. em-
piricism, and to do it with a simple theorem of mathematical logic would
be stunning. So it’s unsurprising that Gold’s Theorem has received much
criticism, especially from those with empiricist leanings. This criticism has
come from many perspectives, including neuroscientific discussions (Dea-
con 1997; Elman et al. 1996), child language acquisition (Hirsh-Pasek and
Golinkoff 1996; Cowie 1997), the nature of concepts (Prinz 2002), and
the debate about innate abilities and knowledge (Cowie 1999). Despite
it’s impressive impact in cognitive science, Gold’s Theorem is frequently
misinterpreted. All of the authors listed above, for instance, have made
false—and in some cases wildly inaccurate—claims about the theorem.
Indeed, even rationalists, who might welcome support from the theorem,
have made incorrect criticisms of the general assumptions that drive it
(Chomsky 1986). The widespread confusion about the theorem is espe-
cially surprising, since even those who have misunderstood it have claimed
that its proof “is quite easy to grasp intuitively” (Cowie 1999, 194).

The aim of the present paper is to clear up these misunderstandings of
Gold’s Theorem. I do this in three steps. First (Section 2), I describe the
logic behind Gold’s Theorem and its proof. Next (Section 3), I examine
several claims about Gold’s Theorem, and I show why they are false.
Finally, (Section 4), I assess the significance of Gold’s Theorem for cog-
nitive science. We’ll see that Gold’s Theorem and LPLA are logically very
distinct phenomena. While this comparison with LPLA brings out some
strengths of Gold’s Theorem, a significant weakness still remains.
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Before beginning, a word on the project is in order. Of all learnability
results, Gold’s Theorem is the most famous, and was the first one to
become well-known in cognitive science. As one psychologist put it, Gold’s
theorem had a ‘chilling effect’ on the psychological community when it
first became widely known there.1 The logic of Gold’s Theorem and its
proof are quite simple, which makes it an excellent subject of attention
for several reasons. First, it’s easy to see precisely what the theorem does
and does not say. Second, the theorem’s simplicity is a great source of
power. Gold’s Theorem avoids many objections that require assumptions
the theorem doesn’t make. Third, the various cognitive interpretations of
the theorem’s crucial elements are easy to see. In that sense, Gold’s The-
orem presents a useful case study in mathematical modeling for such areas
as linguistics, psycholinguistics, and even philosophy of language, which
often do not traffic in such things. By studying Gold’s Theorem, we can
get an idea of which considerations matter to other, more sophisticated
models of learning.

2. Gold’s 1967 paper proves a classification of various groups of lan-
guages in terms of their learnability. Most of this work is of interest only
from the standpoint of mathematical logic or theoretical computer science.
However, one part of the classification looks pertinent to cognitive science.
In this section, I characterize the general logic behind this result and its
proof.

In order to formally represent a cognitive phenomenon like language
learning, we must find mathematical surrogates for various elements of
the empirical world. As a bit of background, a language can be thought
of as merely the set of sentences that are grammatical in that language.
I’ll say more about this later, but for now we can follow Gold and fix
some finite alphabet S, and then create , the set of all the finite sequencesS*
of elements of S, and then define a language as any subset of . We alsoS*
need mathematically precise representations of (i) the learner’s environ-
ment, (ii) the nature of the learners, including the set of hypotheses that
the learner selects from, and (iii) a criterion of successful learning. (Par-
ticular representations of (i), (ii), and (iii) can be thought of as a model
of learning.) To prove Gold’s Theorem, the following definitions suffice.
We may consider the learner’s environment to be any infinite sequence

of sentences (i.e., elements) from the target language toAa , a , a , . . .S1 2 3

be learned, with the requirement that every sentence of the language
appears at least once in the sequence.2 The idea is that the sentences are

1. Stephen Jose Hanson, Cognitive Science Proseminar, Rutgers, 1998.

2. Gold didn’t consider environments containing sentences that are not from the target
language. But cf. e.g., Jain et al. 1999.
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temporally ordered, so that at time tn the learner receives datum an. Thus,
the learner’s guess as to the target language at time tn will be based on
no more information than , plus any other information thatAa , . . . , a S1 n

is built into the learner. (The notion of time needn’t be taken too literally
here, as measuring out equal units. Rather, time merely serves to order
the linguistic data. In the life of a child, there may be less than a second
between t89 and t90, but a whole naptime between t92 and t93.) We may
represent a learner as any function that takes finite initial sequences of
an environment as input, and yields as output a guess as to the target
language.3 A crucial feature of the learner concerns which guesses she can
make. If she is utterly unrestricted, then her possible hypotheses form the
class of every logically possible language. If she is restricted, her hypothesis
space will be smaller. If she is hardwired for just one language, then the
hypothesis space contains exactly one language. Given an environment
E and a language L, the learner learns L given E iff there is some time
tn such that at tn and all times afterward, the learner correctly guesses
that L is the target language present in the environment. (Gold himself
called this condition ‘identification in the limit’.) More generally, if a
learner learns L given any environment E (of sentences of L) whatsoever,
then she learns L. Given a collection C of languages, a learner learns C
iff she learns every language in C. Finally, if there exists a learner that
learns C, then C is learnable.

Given these definitions, the logic of Gold’s Theorem shows that there
are many logically possible classes of languages that no learner can learn.
To see this, let C be an infinite collection of languages, which contains
as a (possibly proper) subset the languages {L�, L1, L2, . . .}. Let us also
suppose that that Li is a proper subset of Li�1, yielding the sequence:

. . .L O L O L O . (∗)1 2 3

Finally, suppose that a sentence is contained in L� if and only if that
sentence is contained in another language Li.

4 Let’s say that any class of
languages that meets the conditions we have just imposed on C has the
Gold Property. (More carefully: a class C of languages has the Gold
Property iff C contains (i) a countable infinity of languages Li such that

, for all , and (ii) a further language L� such that for anyL O L i 1 0i i�1

, x is a sentence of Li only if x is a sentence of L�, and x is a sentencei 1 0

3. The learner could also be allowed to yield a ‘no guess’ output, indicating that the
environmental input so far has not been enough to make it try to guess the target
language. Such details don’t affect the proof, so I ignore them.

4. Notice that if a sentence is contained in Li, then it is contained in all the infinitely
many languages Li�n, for any number n.
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of L� only if x is a sentence of Lj, for some .) Using the definitionsj 1 0
given above, we now prove the following theorem:

(GT). Any class of languages with the Gold Property is unlearnable.

To prove (GT), let C be some class of languages with the Gold Property.
So C contains infinitely many languages structured as in (*), plus one
more language that contains exactly the sentences in the other languages.
If a learner could learn C, then for any language L in C, the learner could
be given only sentences from L (where these sentences appear in any order,
repeats allowed, and every sentence in L appears at least once), and at
some point in time, the learner would correctly guess that she was receiving
sentences from L, and she would never give up that guess no matter how
many more sentences from L she encountered. But this can’t happen. To
see why, pick your favorite learner f. That is, let f be any function from
finite sequences of sentences from a language in C to (names of) languages
in C. Given f, we now show that there must be some language L in C
and some environment E from L such that f does not learn L given E.
Which L and E do the job depends on the exact nature of f. The following
strategy for building an environment which will fool f shows that L and
E must exist. We start by giving f sentences from L1, and continue doing
so until it ‘converges’ onto a guess that L1 is the target language, and will
not change its guess as long as it receives only sentences from L1.

5 (Notice
that if f doesn’t converge onto a guess that L1 is the target language,
then we could keep extending this initial sequence of sentences from L1

into infinity, which would result in an environment for L1. Then we would
have our L and E.) Once f has converged onto a guess that L1 is the
target language, we then start adding sentences from L2 to this environ-
ment. Since L2 contains all the sentences in L1, plus some more, the initial
sentences we gave f to get it to converge to a guess of L1 are also contained
in L2. Now we give f sentences from L2 until it converges onto a guess
that L2 is the target language (which it must eventually do, unless it is
incapable of learning L2). In general, we get f to converge onto a guess
that Ln is the target language, and then we start giving it sentences from
Ln�1. Since Ln is always a proper subset of Ln�1, we are always building
a legitimate environment from Ln�1 (until we switch to Ln�2). Moreover,
since L� contains all (and only) the sentences from the entire sequence of
languages, at no point in this strategy will we give f sentences that are
not part of L�.

Now f faces an insuperable dilemma. On the one hand, if f changes

5. ‘Peeking inside f’s head’ isn’t crucial here: we only need to demonstrate that a
language and an environment exist. Thus, talk of knowing when f converges is only
a metaphorical way of characterizing which environment will fool f.
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its guess infinitely many times (e.g., from L1 to L2, to L3, etc.) then by
definition, it does not learn the target language. But if f changes its mind
only finitely often, then at some point it will have fixed on a particular
guess that some language L is correct. But L either is or is not L�. If it
is L�, then f is guessing that it is receiving sentences from the biggest
language, even though it has only encountered sentences that belong to
a smaller language. Whenever f starts guessing that L� is the correct
language, we were at that time trying to get f to guess that some other
language Ln was the correct one. Since f won’t converge to Ln, our strategy
says to keep feeding f sentences from Ln forever, thus creating an envi-
ronment for Ln. So f fails to learn Ln in this environment. On the other
hand, suppose that f converges to the language Ln, for some . Butn 1 0
assuming f has so far followed the only successful strategy available to
it, once it begins to converge to Ln, our strategy was to begin supplying
f with sentences from Ln�1, and to do this until f converges to Ln�1. Since,
by hypothesis, f never does this, we end up creating an environment for
Ln�1 in which f never successfully learns Ln�1. So in all cases, there is
some language L and environment E such that f does not learn L given
E. This completes the proof of (GT).

Gold’s Theorem is found in Theorem I.8 of Gold 1967. (GT)’s proof
characterizes the general logic behind Theorem I.8’s proof. However, The-
orem I.8 contains some technical details that are not relevant here, and
are not included in (GT). For thoroughness, I have included an appendix
containing a more detailed discussion of Gold’s central results. The details
in question are due to Theorem I.8’s role in classifying learnable classes
of languages. Nothing major hinges on the differences between (GT) and
Theorem I.8. (Indeed, Gold 1967, 461 characterizes Theorem I.8 along
the lines of (GT).) So I’ll use the term ‘Gold’s Theorem’ to refer to the
general logical fact given in both (GT) and Theorem I.8, distinguishing
the latter two only when relevant.

Gold’s Theorem (and the results in Gold 1967, 1965 more generally)
spawned a sizeable industry in computer science and mathematical logic
in Formal Learning Theory. Some of this research follows Gold in stud-
ying learnability from a very abstract perspective (e.g., Feldman 1972;
Valiant 1984; Osherson et al. 1986; Jain et al. 1999; Kelly 1996), while
other research studies language acquisition in particular, using empirically
motivated constraints (e.g., Wexler and Culicover 1980; Gibson and Wex-
ler 1994; Niyogi and Berwick 1996; Bertolo 2001; Nowak, Komarova,
and Niyogi 2001). In the next section, I examine some of the attention
Gold’s Theorem has received from the cognitive science community.

3. Despite its simplicity, Gold’s Theorem has been frequently misun-
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derstood. A particularly striking example comes from Deacon (1997), who
writes:

[Gold] provided a logical proof which concluded that, without explicit
error correction, the rules of a logical system with the structural
complexity of a natural language grammar could not be inductively
discovered, even in theory. What makes them unlearnable, according
to this argument, is not just their complexity but the fact that the
rules are not directly mapped to the surface forms of sentences. The
result is that sentences exhibit hierarchic syntactic structures, in which
layers of transformations become buried and implicit in the final
product, and in which structural relationships between different levels
can often produce word-sequence relationships that violate relation-
ships that are appropriate within levels. From the point of view of
someone trying to analyze sentence structure (such as a linguist or
a young language learner), this has the effect of geometrically mul-
tiplying the possible hypothetical rules that must be tested before
discovering the ‘correct’ ones for the language (Deacon 1997, 127–
128).

There are many problems with Deacon’s criticism. For one thing, it mis-
locates the difficulty for learning within individual languages, and not in
the relation between various possible languages. Deacon suggests that
Gold’s Theorem depends on the ‘complexity’ of the various languages.
But as we’ve seen, the internal structure of the languages is irrelevant. To
prove (GT), no constraints whatsoever were placed on the nature of the
individual languages. Individual languages may be arbitrarily complex;
all that matters for (GT) is how the various languages in the class are
related to one another. In particular, it is crucial to (GT) that the class
of possible languages have the Gold Property (cf. (*)), but it’s irrelevant
whether or not a particular language’s sentences ‘exhibit hierarchic syn-
tactic structures’. (For similar reasons, it’s incorrect that ‘the space of
possible grammars is too massive to select from without information about
which grammars are wrong’ (Prinz 2002, 210). After all, an infinite class
of languages no two of which share a single sentence in common is trivially
learnable.)

The distinction between complexity within languages and complexity
between languages is important. The idea that complexity within a lan-
guage could be relevant to learnability suggests that a single language
could be unlearnable. Such an idea is not only suggested by Deacon, it
is explicit in Elman et al. 1996. They write “Interestingly, sentences with
relative clauses possess exactly the sort of structural features which may
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make (according to Gold 1967) a language unlearnable” (343).6 Several
things are incorrect about an individual language being unlearnable in
Gold’s sense. First, the notion is not defined: learnability only applies to
classes of languages. Second, any class containing exactly one language
would be trivially learnable, because there exists a constant function that
always guesses that language. If the notion of learnability were extended
in the natural way to apply to individual languages in non-singleton classes
of languages, a similar argument would also show that all such languages
are learnable in Gold’s sense. (E.g., we might say that L is learnable in
the class C iff there is a learner which, given any environment from L,
learns L. But every such L is learnable: for each L, there is a constant
learner who always guesses L.)

Other researchers have mistaken Gold’s Theorem to be about particular
learners, not collections of learners. Hirsh-Pasek and Golinkoff (1996),
for instance, downplay the significance of Gold’s work by claiming that
“Gold’s learner was an unbiased learner” (Hirsh-Pasek and Golinkoff
1996, 2, 5). Similarly, Cowie writes that “children are not Gold-style learn-
ers: they do not test every logically possible grammar against the data,”
and that Gold requires the learners to have an unbounded memory ca-
pacity and an ability to “test every logically possible grammar against the
data” (1999, 195; cf. also 1997, 30). But (GT) proves that every learner
fails to learn the specified class of languages, regardless of memory abil-
ities. Many of these learners operate in ways that can be accurately de-
scribed as employing biases, strategies, or memory limitations. Although
most of these biases, etc. are pointless, some of them are psychologically
interesting, such as: ‘assume the language is generated according to rules

, unless there is a strong amount of counterevidence’, andR , . . . , R1 n

‘hypothesize the less restrictive language L instead of L′ if no sentence
that is in L′ but not L occurs within 1,000 sentences after hypothesizing
L′’. The proof of (GT) shows that regardless of what biases, strategies,
or memory limitations children might have, they do not aid in learning
certain classes of languages. So unless we know that the class of natural
languages lacks the Gold Property, it’s incorrect to say that

general-purpose constraints such as ‘Prefer more general hypotheses,’
or ‘Make a tentative universal generalization that all Fs are Gs if
you’ve encountered n instances of Fs that are Gs,’ would do the trick
to ensure the learnability of natural languages. (Cowie 1999, 195)

Regardless of how ‘Prefer more general hypotheses’ is spelled out formally,

6. Elman et al. go on to report the difficulty the first author had with training a
connectionist system to process simplified sentences with relative clauses.
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any learner that employs it falls within the scope of Gold’s Theorem.7

The fact that the theorem applies to all learners, including those with
built-in biases, etc., is an important one, and I return to it below in Section
4.

There is a possible reason why Hirsch-Pasek and Golinkoff and Cowie
have misinterpreted Gold’s results. At various points, Gold employs a
particular learning strategy called “identification by enumeration” (458–
462). A learner embodying this strategy is able to somehow enumerate
the guesses it can hypothesize (i.e., it can figure out what the nth language
is, for any n). At each point in time, the learner guesses the first language
in this enumeration that is consistent with the data so far. Identification
by enumeration is used in several theorems to establish the learnability
of a certain classes of languages. But these results are all positive: they
simply show that there exists a learner that learns the language class in
question. Gold never explores whether an algorithm that behaves like a
child could learn the same language classes. Given that Gold used iden-
tification by enumeration to show the learnability of certain classes of
grammars, it is trivially false that this learner will ‘test every logically
possible grammar against the data’. All the classes Gold considered were
infinite, so for a learner to test every language in any such class would
guarantee that the learner does not learn that class of languages. Thus,
it may be that Hirsch-Pasek and Golinkoff and Cowie have misunderstood
Gold’s Theorem to apply only to a particular learner that was used in
various results other than Gold’s Theorem. (Evidence that this is the case
for Cowie comes from her (incorrect) description of the proof of Gold’s
Theorem in Cowie 1999, 194 fn. 19, and her remarks about ‘Gold-style
learners’ and their constraints on 195.)

A third type of misinterpretation of Gold’s Theorem concerns the re-
strictions on the environments that learners experience. Hirsh-Pasek and
Golinkoff claim that

Gold’s learner received syntactic information in isolation from other
forms of input (e.g., input from the environmental context, prosody,
or social interaction). That is, Gold’s learner heard a series of sentence
strings and had to induce the units and rules of language as if in a
vacuum. (Hirsh-Pasek and Golinkoff 1996, 2)

Such an interpretation is certainly natural: Gold’s paper focuses on de-
termining which strings are part of a language, and this seems almost by
definition to be about only the syntax of the language. Indeed, Gold

7. Thus, we can take a slightly stronger position than Matthews 2001, 225, who locates
the problem with the unclarity of such a constraint. The real problem is that every
precise implementation of the constraint fails to produce a successful learner.
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himself thought that the languages he was investigating were “too simple
to do anything with” (Gold 1967, 448). But whether we interpret Gold’s
Theorem as being about only syntax depends on what we take to be the
nature of the elements of the language. Gold’s only constraint here is that
all the elements of a language be finite sequences drawn from some fixed
finite set, and as we saw in §1, even that restriction is not needed to prove
(GT). (GT) remains valid even if every language is countably infinite in
size, and each element contains an infinitude of information (e.g., each
sentence could be an infinite string, or something even more complex).
In any case, even if languages are sets of strings of elements from a fixed
finite alphabet, this is scarcely a restriction to syntax alone: the fixed finite
alphabet could contain the few hundred phonemes that are present in
natural languages, plus elements to mark out syntactic structure, along
with elements that enable us to describe any relevant semantic and prag-
matic features. Thus, a ‘sentence’ could be e.g., an ordered sequence

, where describes theAa , . . . , a , a , . . . , a , . . . , a S Aa , . . . , a S11 1n 21 2m jk 11 1n

syntax of the sentence, describes its meaning, and the otherAa , . . . , a S21 2m

elements describe the relevant features of the ‘environmental context, pros-
ody, or social interaction’. Indeed, sentences may be regarded as finely
individuated sentence ‘tokens’, with a description of their potential con-
texts contained within. (That is, one might regard a sentence as containing
not only phonological and syntactic information, but also information
about appropriate contexts of use, typical age of acquisition of the various
constructions, relative difficulty of processing, etc.) In short, Gold’s notion
of a ‘sentence’ hardly restricts what information sentences may contain.
Since unlearnability results like (GT) quantify universally over learners,
they hold even for very sophisticated learners, including those that make
very subtle use of each sentence. For instance, the theorem applies to
those learners that recognize that if is a sentence,Aa, . . . , a , . . . , a Sm n

where am is some bit of ‘environmental context’, then so is ′Aa , . . . , a ,1 m

, for any environmental context that differs from am in some′. . . , a S an m

specified fashion. So despite Gold’s own remarks, Gold’s Theorem applies
to highly complex and informative languages, and individual sentences
can carry at least as much information as is presented by individual
tokenings of natural language sentences in contexts.

The final possible misinterpretation I will mention comes from a crit-
icism by Chomsky of some related work developed from Gold’s paper.
Osherson, Stob, and Weinstein (1984) used Gold’s model of learning as
a basis to prove a number of results in Formal Learning Theory. However,
Chomsky warns, “one must be cautious in relating their results to our
concerns here. [Osherson et al.] are considering E-language, not I-lan-
guage, and are restricting attention to weak rather than strong generative
capacity of grammars” (Chomsky 1986, 149–150, fn. 89). A couple def-
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initional points will make Chomsky’s charges clear. For present purposes,
an E-language can be considered to be the set of sentences that are gram-
matical in a ‘public’ language, whereas an I-language is a state of a
speaker’s mind or brain in virtue of which she speaks the language she
does (cf. Chomsky 1986, 19–23). The strong generative capacity of a
grammar can be thought of as the set of structural descriptions of sen-
tences as they are generated by a grammar, whereas the grammar’s weak
generative capacity concerns only the sentences without any structural
description. (To see the difference, let grammar G1 be defined by the rule

, and let G2 be defined by the rule . Both grammars haveX r Xaa X r aXa
the same weak generative capacity: they both produce the set of even
numbered n-tuples of a’s. However, their strong generative capacity is
different: to produce aaaa, G1 first applies the rule to M, which puts two
a’s to the left, and then applies the rule to that string, which puts two
more a’s to the left, yielding [[aa]aa]. But G2 first applies its rule to M,
which puts an a on either side, and then applies the rule again, yielding
[a[aa]a].) Thus, Chomsky’s two charges against learning models like Osh-
erson et al.’s—and by extension Gold’s—are that they are only about sets
of sentences, not minds, and that they ignore the constituent structure of
sentences. Both charges are serious. If either one is right, the psychological
interest of Gold’s Theorem is severely compromised. I take each charge
in turn. (I focus on the case for Gold, although my arguments apply to
Osherson et al. too.)

Pace Chomsky, learning models such as Gold’s can certainly be inter-
preted as being about the mind. The fundamental mathematical relation
learners enter into is only that of using an initial finite segment of the
environment to arrive at a guess as to the target language:

f(As , . . . , s S) p X. (∗∗)1 n

There is nothing in Gold’s Theorem (or in his learning model more gen-
erally) that forces any particular interpretation of (**). For instance, al-
though the learner is represented as a mathematical function f, the the-
orem obviously doesn’t assume that learners are nothing more than
mathematical functions. Rather, it only assumes that the relevant structure
of a learner’s behavior can be so represented. Similarly, although lan-
guages are represented as sets of sentences, there is no need to say that
they really are (just) sets of sentences. They could be states of the mind
associated with those sets. Equation (**) simply describes the result of
applying f to a sequence. A natural psychological interpretation of (**)
is that when a learner whose learning strategy is correctly modeled by f

experiences the environment represented by , (ceteris paribus,As , . . . , s S1 n

of course) her brain will be configured so as to instantiate language X.
Interpreting Gold’s model this way makes it clearly about I-languages.
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(Gold’s discussion of the abstract model of identification (Gold 1967,
456–458) provides a useful clarification of the required connection between
the information from the environment and the correct answer.)

The formal requirements Gold imposes on languages are also minimal
enough that the theorem can be interpreted as being about strong gen-
erative capacity. In the first place, a result about unlearnability quantifies
over all learners, including those whose guesses process sentences in terms
of constituent structure. Clearly, a class C of languages is learnable when
the languages are individuated by their strong generative capacity only if
C is learnable when they are individuated by their weak generative ca-
pacity. The first task requires a learner to correctly determine the language
that both agrees with the unstructured strings contained in the environ-
ment, and which agrees with the structure that those strings have. The
second task only demands that the learner determine a language that
satisfies the first of these requirements. But Gold’s Theorem shows that
if C has the Gold Property, and the languages in C are individuated by
their weak generative capacity, then C is unlearnable. And if C is un-
learnable, and , then is unlearnable. Hence, is unlearnableC P C* C* C*
if for each language in C, there are several languages in individuatedC*
by their strong generative capacity. Through its quantification over all
learners, Gold’s Theorem eliminates the possibility that strong generative
capacity could be of help here. But in the second place, Gold’s Theorem
can also be interpreted as being ‘directly’ about languages individuated
by their strong generative capacity. The sentences a learner receives can
contain their constituent structure or derivational history, just as they can
contain other information. Not all learners will use this information, but
some will. But by including such structural information in the sentences,
there is a very real difference between e.g., the grammars G1 and G2. G1

generates sentences like [[aa]aa], and G2 generates [a[aa]a]; neither gram-
mar generates aaaa. Thus, a learner that converged to G1 instead of G2

when given sentences from G2 would simply be wrong.
In this section, we’ve seen several misinterpretations of Gold’s Theo-

rem.8 Many of these errors have been made multiple times. There are,
however, several useful discussions of the psychological interpretive scope
of Gold’s Theorem; e.g., Matthews 1984 and Demopoulos 1989. I suspect
that if these two papers had been read more carefully, the errors discussed
above would have been avoided. Although Gold’s Theorem is immune
to many objections, there still remains the question of whether it suc-
cessfully provides a challenge to empiricism. That is the topic of the next
section.

8. And there are more; e.g. Howe 1993, 27 makes multiple incorrect claims about
Gold’s Theorem.
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4. Although Gold’s Theorem is frequently misinterpreted, it’s nonethe-
less significant that such a wide range of authors—including linguists,
philosophers, psychologists and neuroscientists—have taken the time to
address the theorem. As with LPLA, much of the interest in Gold’s The-
orem is fueled by some deep beliefs about the nature of the mind, in
particular rationalism vs. empiricism. Not every author explains how
Gold’s Theorem is supposed to support rationalism (although cf. De-
mopoulos 1989), but the following seems to capture the main line of
argument. According to standard empiricist views, children learn language
by a more or less straightforward inductive process. The child is placed
in the company of speakers of the language (e.g., English), and gradually,
the child ‘catches on’. The empiricist holds that the process of ‘catching
on’ is driven only by some very general learning abilities in the child. In
particular, there is no reason to suppose that the cognitive mechanisms
responsible for language acquisition are somehow particular to the do-
main of language acquisition. Instead, these learning mechanisms are the
same kind that enable us to learn that e.g., dogs like meat. If this is right,
then there should be no substantial limitations on the possible languages
that the child might hypothesize as correct. But now Gold’s Theorem
seems to raise a problem. If there are no substantial limitations on the
child’s possible hypotheses, then this class of hypotheses will have the
Gold Property. So by Gold’s Theorem, this class of languages should be
unlearnable. But this result is unacceptable—we do learn our languages!
So there must be constraints on which languages the child can hypothesize.
So the child approaches the task of language learning with specific in-
formation about natural languages, where this information realizes the
needed constraints. This information is not part of our general learning
apparatus. Furthermore, because it is needed early on in the child’s life,
and appears to be very complicated, it is unlikely to have been learned.
So the information must be innate. So rationalism about language ac-
quisition is on the right track and empiricism is false.

The argument just given has the following form:

1. If there are no constraints on language acquisition, then either chil-
dren have access to negative data or natural languages are
unlearnable.9

2. If they exist, the constraints in question must be innate.
3. Children don’t have access to negative data.

9. Strictly speaking, the results of Gold 1967 allow for a third possibility: the envi-
ronment is Primitive Recursive and the learner’s hypothesis is an effective enumeration
of the language. However, there doesn’t appear to be any interesting psychological
interpretation of this fact.
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4. Natural languages are learnable.
5. *There are innate constraints on language acquisition.

One common form of empiricist response to this argument involves chal-
lenging (3) (e.g., Prinz 2002; Cowie 1999, 1997). Although it is common
to hold that children do not use negative evidence in language acquisition
(e.g. Marcus 1993), Prinz and Cowie argue that ‘indirect’ negative evidence
is available to the learner. E.g., Prinz argues that simply failing to en-
counter a certain (type of) sentence could be sufficient to avoid the learning
problem Gold’s Theorem presents. Prinz writes:

Suppose that children, like some recurrent connectionist networks,
make predictions about what sentences or words they will hear while
listening to adults. A failed prediction could be used as evidence that
the rule underlying the prediction was wrong. If learners make pre-
dictions of this kind, they have a rich source of negative data without
ever being corrected or responsive to correction. (Prinz 2002, 210)

But Gold’s Theorem establishes that all learners fail to learn classes of
languages with the Gold Property, including learners who use indirect
negative evidence in the way Prinz suggests. Similar remarks apply to
other biases, such as Cowie’s ‘Prefer simpler hypotheses’, etc. quoted
above. So attempts to defeat the argument in (1)–(5) by appealing to
indirect negative evidence fail.

The previous discussion also establishes an important difference be-
tween Gold’s Theorem and LPLA. LPLA can be avoided if learners utilize
indirect negative evidence along the lines Prinz and Cowie suggest. If a
learner hypothesizes a rich language, but does not encounter any sentences
of a certain type, she may alter her hypothesis to a simpler language.
However, indirect negative evidence is irrelevant to Gold’s Theorem. To
learn a class of languages with the Gold Property, a learner needs more
than indirect negative evidence, such as explicit negative data. A datum
of this form can be represented as a pair As, 0S, where s is an element of

that is not part of the target language. (Positive data— , where′S* As , 1S
is part of the target language—is also needed.) Since explicit negative′s

data could also solve LPLA, LPLA is in this respect logically weaker
than Gold’s Theorem.

In addition to attacking (3), several empiricists have also challenged
(2), the claim that the constraints in question must be innate (e.g.; Prinz
2002; Cowie 1999; cf. Matthews 2001 for critical discussion). The notion
of innateness is nowhere modeled in Gold’s Theorem, and Gold’s results
are silent about whether any such constraints must be innate or not. Since
innateness is not part of Gold’s Theorem, I won’t address this issue.

Despite all the mistaken criticisms of Gold’s Theorem, a serious prob-
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lem remains for the theorem in terms of its psychological utility. The
problem concerns the notion of learnability in (1) and (4). So far, we’ve
used the term “learnability” as Gold used it, so that a class of languages
C is learnable iff there exists a function f such that for any environment
E for any language L in C, f permanently converges onto the hypothesis
of L as the target language after some finite time.10 But there is another
option. We could also take learnability to have a psychologically more
natural meaning, perhaps along the lines of: a class C of natural languages
is learnable iff given almost any normal human child and almost any
normal linguistic environment for any language L in C, the child will
acquire L (or something sufficiently similar to L) as a native language
between the ages of one and five years. (This isn’t a theory or conceptual
analysis of learnability in psycholinguistics; it’s only a ballpark charac-
terization of how the term is used there.). I’ll use acquirable for the latter
psychological notion, and identifiable (in the limit) for Gold’s notion.
Acquirability and identifiability are two very different criteria of learn-
ability, even when children are identified with learning functions and nat-
ural languages are identified with sets of sentences. In fact, a primary
source of (undue) concern with Gold’s Theorem is due to conflating iden-
tifiability with acquirability.

A major difference between identifiability and acquirability is in the
placement of two restricted quantifiers. Given a target language L in a
class C, identifiability requires that for every environment, the learner
converges to L after some finite amount of time. That time can vary wildly
from environment to environment. Indeed, there needn’t be a finite upper
bound on the time to convergence. It’s easy to construct a learnable class
of languages such that for every successful learner there is an infinite
sequence E1, E2, . . . of environments for L such that the learner first
guesses language L on environment Ei no earlier than time ti. On the other
hand, acquirability entails that there exists some time after which, given
any normal environment, a normal child learner will have converged to
the correct environment. That is, children always acquire their language
within a certain amount of time. Morgan has estimated that a child ac-
quires her language after encountering about 4,280,000 sentences (Morgan
1989, 352). In general, if the relevant notion of learning includes some
finite upper bound n on the time to convergence, then very few classes of
languages will be identifiable in the limit. To see this, let C be a class
containing two languages L and L′ that contain some elements in common.
Now construct a text such that the first n sentences are contained in both
L and L′. If the learner has converged to L, then complete the text by

10. I assume here that each language has exactly one name, as Gold did not.
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continuing on with elements of L′; otherwise continue on with elements
of L. In either case, the learner fails to identify the target language by
the nth sentence. Thus, as a model of human language acquisition, iden-
tifiability is very crude, and so is not a “plausible idealization of the
learning situation” (Demopoulos 1989, 79) unless the class of acceptable
environments is severely restricted.11 In addition to its psychological cru-
dity, identifiability is hard to compare with acquirability. While identifi-
ability quantifies existentially over all learners, acquirability quantifies
(almost) universally over only normal children. So with other things held
constant, it is much easier for a class to be identifiable than acquirable.
But on the other hand, identifiability quantifies universally over all en-
vironments, however odd or repetitive, whereas acquirability quantifies
(almost) universally only over the normal environments. Thus, acquira-
bility deals with fewer environments than identifiability does, so there is
less opportunity for a collection of problematic texts to show up and
render a class unacquirable. Moreover, acquirability allows the learner to
converge not onto L itself, but onto a sufficiently similar language L′. In
these respects, it is easier for a class to be acquirable than identifiable
(contra the assertions of Pullum and Scholz (2003, 130)). So neither ac-
quirability nor identifiability entails the other.

We can now see the dilemma for interpreting (1)–(5): should learnability
be interpreted as identifiability or aquirability? If we use acquirability,
then (4) looks true, but no argument whatsoever has been offered for (1).
(1) is suggested by Gold’s Theorem, but Gold’s Theorem is about iden-
tifiability, which we’ve seen is strikingly different from acquirability. If we
interpret (1) and (4) in terms of identifiability, then it’s unclear why (4)
should be true. Just because a class C of (natural) languages is acquirable
by children doesn’t mean that there couldn’t exist a collection of logically
possible but highly abnormal environments that would fool all learning
functions. Clearly there are logically possible environments that no child
could successfully use. In general, the relation of Gold’s Theorem to
normal child language acquisition is analogous to the relation between
Gödel’s first incompleteness theorem and the production of calculators.
Gödel’s theorem show that no accurate calculator can compute every
arithmetic truth. But actual calculators don’t experience difficulties from
this fact, since the unprovable statements are far enough away from nor-
mal operations that they don’t appear in real life situations. Similarly,
child language acquisition may be restricted by Gold’s Theorem, but this

11. Although identifiability is not psychologically natural, it is logically natural. Just
as a Turing machine computes a function by using any finite amounts of time and
space to arrive at the answer, so too a learner learns by using any finite amount of
time to settle into a steady state.
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restriction only applies to cases that don’t occur in any normal environ-
ment, and thus have no practical significance.

In sum, Gold’s Theorem appears interesting to cognitive science when
identifiability and acquirability are confused. When we distinguish these
notions, we undermine the argument that Gold’s Theorem is supposed
to support. Early on, we observed three crucial components of a model
of learning: (i) the learner’s environment, (ii) the nature of the learner,
including the set of hypotheses that the learner selects from, and (iii) a
criterion of successful learning. Gold’s decisions for (i) and (iii) are too
liberal to be psychologically interesting. Since these aspects of the model
are vitiated, we cannot use it to draw conclusions about the necessity of
negative data in language acquisition, (contra Prinz 2002, 210; Pinker
1989, 10; Nowak et al. 2001, 114; cf. Gold 1967, 453–454). Nor can we
draw the weaker conclusion that “the space of human languages would
have to have some very special properties if they were to be learned only
from positive instances of the language” (Williams 1987, ix). In fact, as
long as the notion of identifiability in the limit from any environment has
no obvious psychological interpretation, there is little of psychological
interest to be concluded from Gold’s Theorem.

5. Despite its simplicity, many authors have taken Gold’s Theorem to
threaten some fundamental views about the mind, and they have re-
sponded with various criticisms. However, many of these attacks are mis-
guided, for largely formal reasons. But a look at the details shows that
Gold’s Theorem is still of questionable direct relevance to cognitive sci-
ence. However, the theorem is still of considerable historical importance.
It helped make the psychological community aware of the possibilities
for mathematically modeling psychologically relevant aspects of learning.
Moreover, it showed that these models can, at least in principle, establish
psychologically interesting limitations on possible hypotheses about cog-
nitive activities like language acquisition. In this sense, then, Gold’s The-
orem provides a useful cautionary tale about the difficulties of precisely
articulating a theory of learning—empiricist or otherwise. Thus, despite
its limitations, Gold’s Theorem belongs on a short list of great results in
mathematical modeling in cognitive science.

Appendix

In this appendix, I characterize the main result of Gold 1967. The inter-
ested reader will benefit from a basic grasp of the fundamental aspects
of recursion theory (e.g., Shoenfield 1993).

Gold 1967 determined precise boundaries for various learning models.
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Gold’s yardstick for measuring which models could learn which classes
of languages was the following sequence of mathematically natural classes
of languages, which are ordered by the subset relation:

(A1) Gold’s classes of languages: Finite O Superfinite O Regular O

Context-free O Context-sensitive O Primitive Recursive O Recur-
sive O Recursively Enumerable.

This sequence begins with the class of all finite languages (i.e., finite
subsets of , as explained above). Next is a ‘superfinite’ class of lan-S*
guages, which contains all finite languages plus one infinite language. Then
come the classes of regular, context-free, and context sensitive languages.
These classes can be identified by the type of rules they allow. Regular
languages can be characterized using only rules of the forms andA r b

, where lower-case letters are terminal expressions and uppercaseA r aB
letters are nonterminal expressions; context-free languages need only rules
of the form , where Greek letters stand for either terminal or non-A r g

terminal expressions; context-sensitive languages need only rules of the
form . The class of natural languages is not contained in theaAb r agb

regular languages, and is sometimes thought to be context-free (although
Higginbotham (1984) disproves this). Finally, we have the Primitive Re-
cursive, Recursive, and Recursively Enumerable languages. These three
classes of languages contain all computable languages. In fact, the class
of Recursively Enumerable languages contains languages that are so com-
plex that the best computer program possible can only list the sentences
that are in the language, remaining silent about some of those that are
not. The subset relations in (A1) are useful because of:

(A2) If , then if is learnable, so is C. Similarly, if C is not′ ′C P C C
learnable, neither is .′C

Ceteris paribus, by shrinking the hypothesis space of possible lan-
guages from which the target language could be drawn, the learner is
more likely to hone in on the target. But by increasing the hypothesis
space, the learner is more likely to miss the target.

Given the typology of language-classes in (A1), Gold explored which
classes could be identified in the limit under various circumstances. Gold’s
general model of learning differed from the model used in the present
paper in two ways. First, the learners were required to be computable
functions, instead of just any old function whatsoever. Moreover, Gold
considered two sorts of learners. The first sort make their guesses about
the target language by producing a Turing Machine that computes the
characteristic function of the language (a characteristic function for a
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language L is a function x such that for any sentence s, ifx(s) p 1 s �
, and if ). In Gold’s terminology, such a learner uses theL x(s) p 0 s � L

tester naming relation. The second sort of learner hypothesizes about the
target language by producing Turing Machines which, when started, write
out a list of all the sentences in the language; these learners use the
generator naming relation. Due to a well-known result in recursion theory,
generators can be constructed from testers. Thus,

(A3) If a learner learns a class of languages with the tester naming
relation, then there is a learner who learns it with the generator
naming relation.

Gold also considered six different types of learning environments. If
a learner only received sentences from the target language, then the en-
vironment was called a text. (Texts were also constrained to present each
sentence of the target language at least once.) Gold considered three ways
of presenting a text. The text might be arbitrary, and thus be any sequence
of sentences from the target language, where each sentence occurs at least
once. Or the text might be Recursive, and thus meet the additional con-
dition that the text be produced by some Recursive function. Finally, the
text might be Primitive Recursive, and thus meet the even more stringent
condition that it be produced by a Primitive Recursive function. This fact
is useful when coupled with:

(A4) A learner learns a language using a class E of environments
only if it learns it using any subset of E.

The remaining three types of environment are informants, which sup-
ply the learner with negative information. At each point in time the in-
formant gives the learner an element of along with the informationS*
whether or not that element is in the target language. Gold considered
three different types of informant. Interestingly, they all turn out to be
equivalent in the sense that a class of languages is learnable using one
form of informant iff it’s learnable using another sort of informant. Since
they are equivalent, we may think of an informant as providing the learner
at each point in time with any sentence at all, along with the information
whether it is part of the target language (with the proviso that each sen-
tence in the target language be provided at least once).

The central result of Gold 1967 can be given as follows:

(A5) Learning with informant: Using any form of informant and
either form of learner (i.e. ones that guess with testers or generators),
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the class of Primitive Recursive languages is identifiable in the limit,
but the class of Recursive languages is not.

(A6) Learning with text: Using any form of text and either form of
learner except the combination of Primitive Recursive text and the
generator naming relation, the class of finite languages is identifiable
in the limit, but the superfinite class of languages is not.

(A7) An anomaly: Using Primitive Recursive text and the generator
naming relation, the class of Recursively Enumerable languages is
identifiable in the limit.

This classification is organized into a handful of theorems. (GT) has
its counterpart in the second clause of (A6). This was proved as Theorem
I.8:

(A8) Theorem I.8. Using information presentation by Recursive text
and the generator-naming relation, any class of languages which con-
tains all finite languages and at least one infinite language L is not
identifiable in the limit. (Gold 1967, 470)

Gold’s proof of (A8) is somewhat more complicated than the one
given above, because he uses some ideas developed in earlier theorems.
By (A4), (A8) establishes non-learnability for any class of texts that con-
tains the Recursive ones. (The proof of (GT) does likewise, if the learner
is a Recursively Enumerable function.) Moreover, by (A3), a learner will
also fail to learn a superfinite class of languages if it tries to produce a
tester instead of a generator for the language. Finally, by (A2), it follows
that only the class of finite languages is learnable using Recursive or
arbitrary text. (The learnability of the class of finite languages is secured
by the following algorithm: at each time, guess that the target language
is the smallest language consistent with all the sentences encountered so
far. Since a text must present each sentence from the target language at
least once, there will be some finite time at which all the target language’s
sentences will have been presented, and at that time, the learner will
correctly guess the target language, and will continue to do so forever
more.12) It is worth noting, however, that the logic of Gold’s Theorem is
purely combinatorial: as (GT) shows, there is nothing special about the
class of languages being mostly finite or about the names of the languages

12. Cf. Osherson et al. 1986 and Jain et al. 1999 for more study of this issue.
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being Turing Machines. Any sort of names for the language will do, and
the class of languages need only have the Gold Property.

The basic strategy for proving Gold’s Theorem is again used in Theorem
I.9, which shows that a learner receiving Primitive Recursive text and
using the tester naming relation cannot learn a superfinite class of lan-
guages. However, the proof is complicated by a clever strategy for gen-
erating a Primitive Recursive text that will fool the given learner.

Finally, Angluin proved the following characterization of learnability:

(A9) A class C of Recursively Enumerable languages is identifiable
using arbitrary text iff every language L in C has a finite subset T
such that for all , if then (Angluin 1980, 121–′ ′ ′L � C T P L LGL
122).
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