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Abstract. We prove that the Weak Reflection Principle does not imply that

every stationary set reflects to an internally approachable set. We show that

several variants of internal approachability, namely internally unbounded, in-
ternally stationary, and internally club, are not provably equivalent.

Let λ ≥ ω2 be a regular cardinal, and consider an elementary substructure
N ≺ H(λ) with size ℵ1. Then N is internally approachable if N is the union of
an increasing and continuous chain 〈ai : i < ω1〉 of countable sets such that for all
β < ω1, 〈ai : i < β〉 is in N .

The Weak Reflection Principle or WRP is the statement that for all regular
λ ≥ ω2, for every stationary set S ⊆ Pω1(H(λ)) there is a set N ⊆ H(λ) with
size ℵ1 which contains ℵ1 such that S ∩Pω1(N) is stationary in Pω1(N) (that is, S
reflects to N). This principle follows from Martin’s Maximum and captures some
of its strength; for example, WRP implies Chang’s Conjecture, the presaturation of
the non-stationary ideal on ω1, and the Singular Cardinal Hypothesis (see [3] and
[6]).

An apparent strengthening of WRP is the statement that for all regular λ ≥ ω2,
every stationary subset of Pω1(H(λ)) reflects to an internally approachable set
with size ℵ1. In practice it tends to be easier to draw strong consequences from
this principle than from WRP. Foreman and Todorčević [4] asked whether the two
reflection principles are equivalent. We answer this question in the negative.

Theorem 0.1. Suppose κ is supercompact. Then there is a forcing poset which
forces κ = ω2, WRP holds, and for all regular λ ≥ ω2 there is a stationary subset of
Pω1(H(λ)) which does not reflect to any internally approachable set with size ℵ1.

Foreman and Todorčević [4] described several variations of the notion of internal
approachability, and asked whether these properties are equivalent. Let N ≺ H(λ)
be a set with size ℵ1. Then N is internally club if N∩Pω1(N) contains a club subset
of Pω1(N). N is internally stationary if N ∩ Pω1(N) is stationary in Pω1(N). N
is internally unbounded if N ∩ Pω1(N) is cofinal in Pω1(N). We prove that these
properties are not equivalent.

Theorem 0.2. MM implies that for all regular λ ≥ ω2, there is a stationary set of
N in Pω2(H(λ)) which are internally unbounded but not internally stationary.

Theorem 0.3. PFA2 implies that for all regular λ ≥ ω2, there is a stationary set
of N in Pω2(H(λ)) which are internally stationary but not internally club.

I would like to thank James Cummings, Matt Foreman, and Assaf Sharon for
discussing the material in this paper with me. I note that Theorem 0.2 was proved
independently by Assaf Sharon with essentially the same argument.

This work was partially supported by FWF project number P16790-N04.
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1. Preliminaries

In this section we review the background material necessary for understanding
the paper. Some basic familiarity with iterated forcing, proper forcing, and super-
compact cardinals is required.

If κ is a regular uncountable cardinal and X is a set containing κ, Pκ(X) denotes
the set {a ⊆ X : |a| < κ}. A set C ⊆ Pκ(X) is club if C is closed under unions
of increasing sequences of length less than κ and C is cofinal in Pκ(X). A set
S ⊆ Pκ(X) is stationary if it has non-empty intersection with each club. If C is
a club then there is a function F : X<ω → Pκ(X) such that for all a in Pκ(X), if
F (x0, . . . , xn) ⊆ a for any x0, . . . , xn in a, then a is in C. In the case κ = ω1, if
C ⊆ Pω1(X) is club then there is H : X<ω → X such that every a in Pκ(X) which
is closed under H is in C.

For a regular cardinal λ, H(λ) denotes the collection of sets whose transitive
closure has size less than λ. The set H(λ) is determined in an absolute way by
the bounded subsets of λ. So if W is an outer model of V with the same bounded
subsets of λ, then H(λ)V = H(λ)W .

If N ≺ H(λ) for some regular λ ≥ ω2, κ + 1 ⊆ N , x ∈ N , and |x| ≤ κ,
then x ⊆ N . For by elementarity there is a surjection f : κ → x in N , hence
x = f“κ ⊆ N .

A sequence of sets 〈Ni : i < γ〉 is an internally approachable sequence if it is
increasing and continuous and 〈Nj : j ≤ i〉 ∈ Ni+1 for i < γ.

Suppose P is a forcing poset and µ is a cardinal. We say that P is < µ-closed
if any descending sequence of conditions in P with length less than µ has a lower
bound. We say P is < µ-distributive if any family of fewer than µ many dense open
subsets of P has dense open intersection. This is equivalent to the statement that
forcing with P does not add any new sets of ordinals with order type less than µ.

If α is an ordinal, we say that P is α-strategically closed if Player II has a winning
strategy in the following game. Player I begins the game with a condition p0. After
Player I has played a condition pi where i < α, Player II responds with qi ≤ pi;
then Player I responds with pi+1 ≤ qi. At a limit stage δ < α, Player II attempts
to play a condition qδ which is a lower bound of {qi : i < δ}. Player II wins iff he
is able to play at all stages less than α.

For a cardinal µ, < µ-closed implies µ-strategically closed, and µ-strategically
closed implies < µ-distributive.

A forcing poset P is proper if for any set X which contains ω1, if S is a stationary
subset of Pω1(X) then P forces that S is stationary in Pω1(X). A forcing poset
P satisfies the countable covering property if P forces that whenever x ⊆ V is
countable, there is y in V which is countable in V such that x ⊆ y. Note that
any proper forcing poset satisfies the countable covering property, since if P adds
a countable set which cannot be covered by a countable set in the ground model,
then for some X in V , PVω1

(X) is not stationary in Pω1(X).

Lemma 1.1. Let κ ≥ ω1 be a regular cardinal and P a proper forcing poset. Then
for any stationary set T ⊆ κ ∩ cof(ω), P forces T is stationary.

Proof. Let S = {a ∈ Pω1(κ) : sup(a) ∈ T}. Since T is stationary in κ, S is
stationary in Pω1(κ). For if H : κ<ω → κ is a function then there is a club set of
α < κ closed under H. Choose such an α in T , fix x ⊆ α cofinal with order type
ω, and let a = clH(x). Then a is in S and closed under H. If G is generic for P, S
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remains stationary in Pω1(κ) in V [G]. Let C ⊆ κ be club in V [G]. Then there is a
in S closed under the map β 7→ min(C \ β). But then sup(a) ∈ C ∩ T . �

Any ω1-c.c. or countably closed forcing poset is proper. A countable support
iteration of proper forcing posets is proper.

If X is an uncountable set, Coll(ω1, X) is a forcing poset for collapsing the size
of X to be ℵ1. A condition p is a countable partial function p : ω1 → X, and the
ordering is by extension of functions. This poset is countably closed hence proper.
We write Add(ω) for the forcing to add a Cohen real. A condition is a finite partial
function p : ω → 2, and the ordering is by extension of functions. This poset has
size ℵ0, hence is ω1-c.c. and so proper.

The Proper Forcing Axiom or PFA is the statement that for any proper forcing
poset P and any family D of ℵ1 many dense subsets of P, there is a filter G on
P which intersects each dense set in D. Martin’s Maximum or MM is the same
statement with “proper forcing poset” replaced by “forcing poset which preserves
stationary subsets of ω1”.

We review several basic facts used to extend elementary embeddings after forcing.
Assume M ⊆ N are inner models, λ is a regular cardinal in N , and M<λ∩N ⊆M .

(1) If P is a forcing poset in M which is λ-c.c. in N and G is generic for P over
N , then M [G]<λ ∩N [G] ⊆M [G].

(2) If P is a forcing poset in M and G ∈ N is generic for P over M , then
M [G]<λ ∩N ⊆M [G].

Suppose j : M → N is an elementary embedding between inner models. Assume
P is a forcing poset, G is generic for P over M , and H is generic for j(P) over
N . Then j“G ⊆ H iff there is an extension of j to an elementary embedding
j : M [G]→ N [H] such that j(G) = H. The extended map satisfies j(ẋG) = j(ẋ)H .

2. Forcing Axioms

Suppose Γ is a class of forcing posets and α ≤ ω1 is a cardinal. Then MAα(Γ) is
the following forcing axiom. Suppose P is in Γ, D is a collection of ℵ1 many dense
subsets of P, and {Ȧi : i < α} is a collection of P-names for stationary subsets of ω1.
Then there is a filter G on P which intersects each dense set in D, and moreover for
each i < α, the interpretation ȦGi = {β < ω1 : ∃p ∈ G p  β ∈ Ȧi} is stationary
in ω1.

The forcing axiom MA1(Γ) is usually referred to as MA+(Γ) in the literature. In
general MAα(Γ) does not imply MAα+(Γ). For more information see [7].

If G is a filter on a poset P and N is a set, then G is N -generic if for any dense
set D ⊆ P in N , G ∩D ∩N is non-empty.

We will use the following result of Woodin [8].

Proposition 2.1. Assume MAα(Γ) holds for a class Γ of separative forcing posets.
Let P be in Γ and suppose {Ȧi : i < α} is a family of P-names for stationary subsets
of ω1. Let θ ≥ ω2 be regular such that P is in H(θ).

Then there is a stationary set of N in Pω2(H(θ)) for which there exists an N -
generic filter G on P such that each ȦGi is stationary in ω1.

Proof. Note that every P in Γ preserves ω1.
We claim that for any function H : H(θ)<ω → H(θ) there is a P-name ġ : ω1 →

H(θ)V such that P forces M = ġ“ω1 is closed under H, M contains ω1, and Ġ
is M -generic. Let G be generic for P, and we construct g in V [G] by induction.
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Suppose g � (ω · α) is defined. For each dense set D ⊆ P in g“(ω · α), choose
pD in G ∩ D. Now extend g to have domain ω · (α + 1) by adding a bijection of
ω · (α+ 1) \ ω · α onto the H-closure of the set

g“(ω · α) ∪ α ∪ {pD : D ∈ g“(ω · α), D ⊆ P dense}.
This verifies the claim.

Let F : H(θ)<ω → Pω2(H(θ)) be given, and we find N as required which is closed
under F . Let H : H(θ)<ω → H(θ) be a Skolem function for the structure 〈H(θ),∈
, F 〉. Fix ġ for H as in the claim above. Let D be the collection of dense subsets
of P which are definable in the structure A = 〈H(θ),∈,P, ġ, H〉 using countable
ordinals as parameters. Apply MAα(Γ) and choose a filter G on P which intersects
each dense set in D and such that each ȦGi is stationary in ω1.

Now let h = ġG; in other words, h : ω1 → H(θ) and h(α) = x iff there is p in G
which forces ġ(α) = x. Let N = h“ω1. We claim that N is closed under F and G
is N -generic.

Suppose D ⊆ P is dense and is in N . Fix α such that D = h(α) and p in G
which forces ġ(α) = D. Then there is a dense set of conditions q which either force
ġ(α) is not dense in P, or there is β such that q forces h(β) = ġ(β) ∈ Ġ∩ ġ(α). This
dense set is definable in A using α as a parameter. So choose q ∈ G in this dense
set. Since p and q are compatible, there is β such that h(β) is in D ∩N . Since P
is separative and q forces h(β) ∈ Ġ, q ≤ h(β) and h(β) is in G. The proof that N
is closed under H and contains the countable ordinals is similar.

Since N is closed under H, N ≺ 〈H(θ),∈, F 〉. So for each x0, . . . , xn in N ,
F (x0, . . . , xn) ∈ N . But N contains ω1, so F (x0, . . . , xn) ⊆ N . �

Suppose P is a forcing poset which satisfies the countable covering property, and
ω2 ≤ λ < θ are regular cardinals with P ∈ H(θ). Assume P collapses H(λ)V to have
size ℵ1, and 〈ȧi : i < ω1〉 is a P-name for an increasing and continuous sequence of
countable sets with union H(λ)V . Fix N ≺ 〈H(θ),∈,P〉 with size ℵ1 which contains
the countable ordinals and has 〈ȧi : i < ω1〉 as an element.

Lemma 2.2. Suppose G is a filter on P which is N -generic. For each i let ai =
ȧGi = {x ∈ H(λ) : ∃p ∈ G p  x ∈ ȧi}. Then 〈ai : i < ω1〉 is an increasing and
continuous sequence of countable sets with union N ∩H(λ).

Proof. Let i < ω1. Since P satisfies the countable covering property and ȧi is in
N , there is a dense set in N of conditions which decide for some countable set
x ⊆ H(λ) that ȧi ⊆ x. So there is p in G∩N and a countable set x ∈ N such that
p forces ȧi ⊆ x. Clearly then ai ⊆ x. But x ⊆ N since x is countable. So each ai
is a countable subset of N ∩H(λ).

Clearly ai ⊆ aj for i < j. Consider a set z in N ∩H(λ). Let iz be a name for
the least index such that z is in ȧiz . Since P forces 〈ai : i < ω1〉 is continuous, iz is
forced to be a non-limit ordinal. Fix p in N ∩G and a non-limit ordinal i such that
p forces iz = i. Then z is in ai but not in aj for j < i. It follows that 〈ai : i < ω1〉
is an increasing and continuous sequence with union N ∩H(λ). �

3. Distinguishing Variants of Internal Approachability

Suppose N is a set with size ℵ1. Then N is internally stationary if N ∩ Pω1(N)
is stationary in Pω1(N). N is internally club if N ∩ Pω1(N) contains a club subset
of Pω1(N). This is equivalent to the existence of an increasing and continuous
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sequence 〈ai : i < ω1〉 of countable sets with union N such that ai ∈ ai+1 for all
i < ω1.

Lemma 3.1. Suppose N is a set with size ℵ1. Then the following are equivalent.
(1) N is internally stationary.
(2) There exists an increasing and continuous sequence 〈ai : i < ω1〉 of countable

sets with union N and a stationary set A ⊆ ω1 such that {ai : i ∈ A} ⊆ N .
(3) For every increasing and continuous sequence 〈ai : i < ω1〉 of countable sets

with union N , there exists a stationary set A ⊆ ω1 such that {ai : i ∈ A} ⊆ N .

Proof. Since N has size ℵ1, N can be written as the union of an increasing and
continuous sequence 〈ai : i < ω1〉 of countable sets. For any set S ⊆ Pω1(N), S is
stationary in Pω1(N) iff {i < ω1 : ai ∈ S} is stationary in ω1. If 〈bi : i < ω1〉 is
another increasing and continuous sequence of countable sets with union N , then
there is a club set C ⊆ ω1 such that ai = bi for i in C. The lemma follows easily
from these facts. �

Lemma 3.2. Suppose N is a set with size ℵ1. Then the following are equivalent.
(1) N fails to be internally club.
(2) There is an increasing and continuous sequence 〈ai : i < ω1〉 of countable

sets with union N and a stationary set B ⊆ ω1 such that {ai : i ∈ B} ∩N = ∅.
(3) For every increasing and continuous sequence 〈ai : i < ω1〉 of countable sets

with union N there is a stationary set B ⊆ ω1 such that {ai : i ∈ B} ∩N = ∅.

The proof is similar to the proof of Lemma 3.1. The next lemma follows imme-
diately.

Lemma 3.3. Suppose N is a set with size ℵ1. If P is a forcing poset which preserves
stationary subsets of ω1, then P preserves each of the following properties of N :

(1) N is internally stationary.
(2) N is not internally club.

We will use the following variant of a theorem of Abraham and Shelah [1].

Theorem 3.4. Suppose P is ω1-c.c. and adds a new real. Then for all regular
λ ≥ ω2, P forces Pω1(H(λ)V ) \ V is stationary in Pω1(H(λ)V ).

Proposition 3.5. Let ω2 ≤ λ ≤ θ be regular cardinals, and let P denote the forcing
poset Add(ω)∗Coll(ω1, H(θ)V ). Then P forces that H(λ)V is internally stationary
but not internally club.

Proof. Write N = H(λ). Let G ∗ H be generic for P. By Theorem 3.4, S =
Pω1(N) \ V is stationary in Pω1(N) in V [G]. Since Coll(ω1, N) is proper, S is
stationary in Pω1(N) in V [G ∗H]. Now work in V [G ∗H]. Since |N | = ω1, fix an
increasing and continuous chain 〈ai : i < ω1〉 of countable sets with union N . As
S is stationary in Pω1(N), there is B ⊆ ω1 stationary such that {ai : i ∈ B} ⊆ S.
But S is disjoint from V and hence disjoint from N , since N ⊆ V . So N is not
internally club by Lemma 3.2.

On the other hand, Pω1(N) ∩ V is stationary in Pω1(N) since P is proper. But
Pω1(N) ∩ V = Pω1(N) ∩N since N = H(λ)V . So N is internally stationary. �

Theorem 3.6. The forcing axiom PFA2 implies that for every regular λ ≥ ω2,
there is a stationary set of N in Pω2(H(λ)) such that N is internally stationary but
not internally club.
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Proof. Let P = Add(ω) ∗ Coll(ω1, H(λ)V ). By Proposition 3.5, Lemma 3.1, and
Lemma 3.2, there are P-names Ȧ, Ḃ, and 〈ȧi : i < ω1〉 such that P forces the
following statements:

(1) Ȧ and Ḃ are stationary subsets of ω1,
(2) 〈ȧi : i < ω1〉 is an increasing and continuous sequence of countable sets with

union H(λ)V ,
(3) {ȧi : i ∈ Ȧ} ⊆ H(λ)V ,
(4) {ȧi : i ∈ Ḃ} ∩H(λ)V = ∅.
Let F : H(λ)<ω → Pω2(H(λ)) be given. Fix θ � λ regular with P ∈ H(θ), and

let A denote the structure 〈H(θ),∈,P, Ȧ, Ḃ, F 〉. By Proposition 2.1 choose N ≺ A
with size ℵ1 containing the countable ordinals and a filter G on P which is N -generic
such that A = ȦG and B = ḂG are stationary subsets of ω1. Let ai = ȧGi for each
i < ω1. Since P is proper, it satisfies the countable covering property; so Lemma
2.2 implies that 〈ai : i < ω1〉 is an increasing and continuous sequence of countable
sets with union M = N ∩H(λ).

Since ω1 ⊆ M and N ≺ A, M is closed under F . By Lemmas 3.1 and 3.2 it
suffices to show that {ai : i ∈ A} ⊆M and {aj : j ∈ B}∩M = ∅. Let i be in A and
fix p in G which forces i ∈ Ȧ. Then p forces ȧi ∈ H(λ)V . By elementarity there is
a dense set in N of conditions which either force i is not in Ȧ or decide for some x
that ȧi = x. Since G is N -generic, there is q in G∩N and x in N such that q forces
x = ȧi. Then x is in H(λ) ∩N = M . Clearly x = ai. Hence {ai : i ∈ A} ⊆M .

Suppose j is in B and fix r in G which forces j ∈ Ḃ. For each y in N ∩H(λ)V =
M , there is a dense set in N of conditions which either force j is not in Ḃ or decide
for some z that z is in ȧj 4 y. By N -genericity, aj is not equal to y. So aj is not
in M . �

Let N be a set of size ℵ1. Then N is internally unbounded if N ∩ Pω1(N) is
cofinal in Pω1(N). We prove that internally unbounded does not imply internally
stationary, using the forcing poset Add(ω) ∗ P(Ṡ) described in [5].

Suppose λ ≥ ω2 is regular and T is a stationary subset of Pω1(H(λ)). Define
P(T ) as the poset consisting of countable increasing and continuous sequences 〈bi :
i ≤ γ〉 contained in T , ordered by extension of sequences. The poset P(T ) adds
an increasing and continuous chain with order type ω1 contained in T , collapsing
H(λ) to have size ω1.

For proofs of the next two propositions see [5].

Proposition 3.7. Let λ ≥ ω2 be regular and let T be a stationary subset of
Pω1(H(λ)). Then P(T ) is < ω1-distributive.

Proposition 3.8. Let λ ≥ ω2 be regular and let Ṡ be an Add(ω)-name for the set
Pω1(H(λ)V ) \ V . Then Add(ω) ∗ P(Ṡ) preserves stationary subsets of ω1.

Theorem 3.9. The forcing axiom MM implies that for all regular λ ≥ ω2, there is a
stationary set of N in Pω2(H(λ)) which are internally unbounded but not internally
stationary.

Proof. Let P = Add(ω) ∗ P(Ṡ), where Ṡ is an Add(ω)-name for Pω1(H(λ)V ) \ V .
Note that by Proposition 3.7, P satisfies the countable covering property (but it is
clearly not proper).

Let F : H(λ)<ω → Pω2(H(λ)) be given. Fix θ � λ regular such that P ∈ H(θ)
and let A = 〈H(θ),∈,P, F 〉. By Proposition 2.1 choose N ≺ A with size ℵ1
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containing the countable ordinals and a filter G on P which is N -generic. Let
M = N ∩H(λ). Note that since ω1 ⊆M , M is closed under F .

Fix in N a P-name 〈ȧi : i < ω1〉 for an increasing and continuous sequence
disjoint from V given by a generic for P(Ṡ). Let ai = ȧGi for i < ω1. By Lemma
2.2, 〈ai : i < ω1〉 is an increasing and continuous sequence with union M .

To show that M is not internally stationary it suffices to show that {ai : i <
ω1} ∩M = ∅. Fix i < ω1. Then P forces ȧi is not in H(λ)V . So for each y in M
there is a dense set in N of conditions which decide for some z that z is in ȧi 4 y.
By N -genericity it follows that ai is not in M .

It remains to prove that M is internally unbounded. Let x be in Pω1(M). Fix
j < ω1 with x ⊆ aj . By the countable covering property and N -genericity of G,
there is y in M countable and p in G which forces ȧj ⊆ y. Clearly then aj ⊆ y.
Hence x ⊆ y ∈M . �

4. Approachability and Forcing Posets

In this section we present some background material for the consistency result
of Section 5. We describe Shelah’s approachability ideal I[λ] and analyze some
forcing posets. We will use I[λ] as a tool for preserving the stationarity of certain
stationary sets after forcing.

Suppose λ is a regular uncountable cardinal. For a sequence ~a = 〈ai : i < λ〉
of bounded subsets of λ, let S(~a) denote the set of limit ordinals β < λ for which
there exists an unbounded set cβ ⊆ β with order type cf(β) such that each initial
segment of cβ is enumerated in the sequence 〈ai : i < β〉.

Define I[λ] as the collection of sets S such that there is ~a and a club C ⊆ λ with
S ∩ C ⊆ S(~a). Then I[λ] is a normal ideal on λ which extends the non-stationary
ideal.

Oftentimes I[λ] will contain a maximal stationary set. For example, if λ<λ = λ
and ~a enumerates all bounded subsets of λ, then S(~a) is stationary and for any set
A in I[λ] there is a club C such that A ∩ C ⊆ S(~a). Suppose there is a maximal
set S in I[λ]. Then I[λ] = NSλ � (λ \ S). In this case we refer to S as the set of
approachable ordinals.

Suppose λ is a Mahlo cardinal and A ⊆ λ is a stationary set of regular cardinals.
Define ~a = 〈ai : i < λ〉 by letting ai = i for i < λ. Then A ⊆ S(~a), as witnessed by
letting cα = α for α in A. Hence A is in I[λ].

See [2] for more information about I[λ].
Now we discuss some forcing posets we will use in Section 5.
Let κ > ω1 be a regular cardinal and suppose A ⊆ κ. We define a forcing poset

P(A) which adds a stationary subset of κ ∩ cof(ω) which does not reflect at any
ordinal in A. A condition p in P(A) is a bounded subset of κ∩ cof(ω) such that for
all α in A, p ∩ α is not stationary in α. The ordering is by end-extension.

Clearly P(A) is countably closed and hence proper, and has size κ<κ. So by the
next lemma, if κ<κ = κ then P(A) preserves all cardinals and cofinalities.

Lemma 4.1. The forcing poset P(A) is κ-strategically closed.

Proof. We describe a strategy for Player II. When Player I plays a condition pi,
Player II responds with qi = pi ∪ {sup(pi) + ω + ω}. Also define γi = sup(pi) + ω.
If ξ < κ is a limit ordinal, let x =

⋃
{qi : i < ξ}, and define qξ = x ∪ {sup(x) + ω}.

Define γξ = sup(x). It is easy to prove by induction that for each limit ordinal
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ξ < κ,
⋃
{qi : i < ξ} is disjoint from {γi : i < ξ}, and the latter is a club subset

of sup(
⋃
{qi : i < ξ}) = γξ. Also qξ does not reflect at any ordinal in A which is

below γξ, since by the induction hypothesis qi is a condition for i < ξ. So qξ is a
condition, and the game continues. �

Let Ṡ be a name for
⋃
Ġ.

Lemma 4.2. The poset P(A) forces that Ṡ is stationary.

Proof. Suppose p forces Ċ ⊆ κ is club. Define by induction a descending sequence
〈pn : n < ω〉. Let p0 = p. Given pn, let pn+1 ≤ pn be a condition such that
for some αn, max(pn+1) > αn and pn+1 forces that αn = min(Ċ \max(pn)). Let
x =

⋃
{pn : n < ω} and let q = x∪{sup(x)}. Since cf(sup(x)) = ω, q is a condition.

Also sup(x) =
⋃
{αn : n < ω}, so q forces sup(x) ∈ Ċ ∩ Ṡ. �

Proposition 4.3. If B ⊆ κ is a stationary set in I[κ], then P(A) preserves the
stationarity of B. In particular, P(A) preserves the stationarity of any stationary
set of regular cardinals in κ.

Proof. Suppose p forces Ċ ⊆ κ is a club. Fix θ � κ and let A denote the structure

〈H(θ),∈, <θ,P(A), p, Ċ, 〈ai : i < κ〉〉,

where <θ is a well-ordering of H(θ) and 〈ai : i < κ〉 witnesses that B is in I[κ].
Since B is stationary, there is N ≺ A such that N ∩ κ = β is in B. Note that

for all i < β, ai is in N . Let x ⊆ β be cofinal with order type cf(β) such that every
initial segment of x appears in 〈ai : i < β〉.

Define by induction a sequence 〈pi, qi : i < cf(β)〉 which is a run in the game in
which Player II uses his winning strategy, and each initial segment of the sequence
is definable in A from an initial segment of x. Let p0 = p, and let q0 be Player
II’s response. Suppose 〈pj , qj : j < i〉 is defined. If i is limit then let pi = qi be
Player II’s play according to his strategy. If i is a successor ordinal, let pi be the
<θ-least refinement of qi−1 such that pi \ qi−1 has non-empty intersection with x

and pi forces that Ċ ∩ (max(pi) \ max(qi−1)) is non-empty. Let qi be Player II’s
response.

Since only an initial segment of x is needed at each stage in defining the sequence
of conditions, each initial segment of the sequence is in N . Let z =

⋃
{qi : i <

cf(β)}. Since each qi is in N , z ⊆ β. On the other hand, z ∩ x has size cf(β); since
o.t.(x) = cf(β) this implies z ∩ x is unbounded in β. Let r be a lower bound of
the sequence of conditions. Then r forces sup(z) is a limit point of Ċ, so r forces
β ∈ Ċ ∩B. �

Now we consider a forcing poset for adding a club subset to a given stationary
set. Suppose T ⊆ ω2 ∩ cof(ω1) is stationary. Define a forcing poset PT which
attempts to add a club subset to T ∪ cof(ω) as follows. A condition is a closed
bounded subset of T ∪ cof(ω), and the ordering is by end-extension.

Note that PT is countably closed and hence proper. If 2ω1 = ω2 then PT has size
ω2.

Proposition 4.4. Suppose A is a stationary subset of T which is in I[ω2]. Then
PT is < ω2-distributive and preserves the stationarity of A.
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For example, if 2ω1 = ω2, S is the maximal set in I[ω2], and S ∩ T is stationary,
then PT preserves all cardinals and preserves stationary subsets of S ∩T . If T does
not contain a stationary set which is in I[ω2], it is possible that PT will collapse
ω2; this was proved in [5].

Proof. Let 〈Di : i < ω1〉 be a sequence of dense open subsets of PT . Suppose p
forces Ċ ⊆ ω2 is club. We find r ≤ p which is in

⋂
{Di : i < ω1} and an ordinal β

such that r forces β ∈ Ċ ∩A.
Fix θ � ω2 and let A denote the structure

〈H(θ),∈, <θ, T,PT , p, Ċ, 〈Di : i < ω1〉, 〈ai : i < ω2〉〉,

where <θ is a well-ordering of H(θ) and 〈ai : i < ω2〉 witnesses that A is in I[ω2].
Since A is stationary, there is N ≺ A with size ℵ1 such that N ∩ ω2 = β is in

A. Note that {ai : i < β} and {Di : i < ω1} are both subsets of N . Fix x ⊆ β
unbounded with order type cf(β) such that every initial segment of x is enumerated
in 〈ai : i < β〉.

Define by induction a descending sequence 〈pi : i < ω1〉 of conditions in PT
whose initial segments are definable in A from initial segments of x. Let p0 = p.
Suppose 〈pi : i < δ〉 is defined where δ < ω1 is limit. Let y =

⋃
{pi : i < ω1}. Then

sup(y) has cofinality ω, so pδ = y ∪ {sup(y)} is in PT . Now assume pi is defined
for a fixed i. Let pi+1 be the <θ-least refinement of pi in Di such that pi+1 \ pi
has non-empty intersection with x and pi+1 forces max(pi+1) \max(pi) contains an
element of Ċ.

This completes the definition. Each initial segment of the sequence is in N
because it is definable in A from an initial segment of x. Let z =

⋃
{pi : i < ω1}.

Then z ⊆ β. Since z ∩ x has size ℵ1, sup(z) = β. Therefore r = z ∪ {β} is a
condition since β is in T . Also r is in

⋂
{Di : i < ω1} and r forces β ∈ Ċ ∩A. �

We finish this section by proving two technical results we will need in the next
section.

Proposition 4.5. Suppose that κ is a Mahlo cardinal and A ⊆ κ is a stationary
set of strongly inaccessible cardinals. Let 〈Pi, Q̇j : i ≤ κ, j < κ〉 be a countable
support iteration of proper forcing posets. Assume that for each β in A the following
statements hold:

(1) for all γ < β, |Pγ | < β,
(2) Pβ forces β = ω2 and 2ω ≤ ω2,
(3) Q̇β is a name for Coll(ω1, ω2).

Then Pκ forces that κ = ω2, A ⊆ ω2 ∩ cof(ω1), and A is in I[ω2].

Proof. Let Gκ be generic for Pκ. Clearly κ = ω2 in V [Gκ] by (2) and the fact that
Pκ is κ-c.c. Also A ⊆ ω2 ∩ cof(ω1) because Pκ is proper and hence can only change
the cofinality of ordinals in A to ω1.

In V [Gκ] construct a sequence 〈ai : i < ω2〉 by induction on ordinals in A∪lim(A)
such that for each β in A, 〈ai : i < β〉 enumerates [β]ω ∩V [Gβ ]. Suppose α < β are
successive ordinals in A and 〈ai : i < α〉 is defined. Since Pβ forces 2ω ≤ ω2 = β,
[β]ω ∩V [Gβ ] has size |β| = ω1 in V [Gκ]. So we can extend the sequence to 〈ai : i <
β〉 as required.

If β is a limit point of A, then 〈ai : i < β〉 is given by induction since the defined
sequences are end-extensions of one another. If β is not in A then there are no
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requirements on this sequence. Suppose β is in A and let x be in [β]ω ∩ V [Gβ ].
Since β = ω2 in V [Gβ ], there is α < β such that sup(x) < α. As β is strongly
inaccessible in V , there is γ in A with α < γ < β such that x is in V [Gγ ] ∩ [γ]ω.
Then by induction x is in the sequence 〈ai : i < γ〉. So 〈ai : i < β〉 enumerates
[β]ω ∩ V [Gβ ].

For each α in A fix cα in V [Gα+1] which is cofinal in α with order type ω1. Since
Coll(ω1, ω2) = Qα is countably closed, every initial segment of cα is in V [Gα], and
hence is enumerated in 〈ai : i < α〉. So A ⊆ S(~a) and A is in I[ω2]. �

Proposition 4.6. Suppose N is a set with size ℵ1.
(1) N is internally stationary iff its transitive collapse is internally stationary.
(2) N is internally club iff its transitive collapse is internally club.

Proof. (1) Suppose N is internally stationary, and let π : N →M be its transitive
collapse. Fix an increasing and continuous sequence 〈Ni : i < ω1〉 of countable
sets with union N and a stationary set A ⊆ ω1 such that {Ni : i ∈ A} ⊆ N .
For each i < ω1 let Mi = π“Ni. Then M is the union of the increasing and
continuous sequence {Mi : i < ω1} of countable sets. If i is in A, then Ni ∈ N
so Mi = π“Ni = π(Ni) ∈ M by the definition of the transitive collapse map. The
converse and (2) are similar. �

5. Internal Approachability and Reflection

Now we are ready to prove the following theorem.

Theorem 5.1. Assume κ is a supercompact cardinal. Then there is a forcing poset
which forces that κ = ω2 and for all regular λ ≥ ω2:

(1) for every family {Ui : i < ω1} of stationary subsets of Pω1(H(λ)), there is
an internally stationary set M with size ℵ1 such that each Ui reflects to M ,

(2) there is a stationary set S∗ ⊆ Pω1(H(λ)) such that S∗ does not reflect to any
internally approachable set N with size ℵ1.

Let V denote the ground model, and assume that in V the GCH holds and κ is
supercompact. Let B denote the set of measurable cardinals less than κ and let A
be the set of non-measurable strongly inaccessible cardinals less than κ. Note that
for all α in B ∪ {κ}, A ∩ α is stationary in α.

First we define an Easton support iteration

〈PSi , Q̇S
i : i ≤ κ〉

by recursion. Afterwards we will define another iteration in a generic extension by
PSκ ∗ Q̇S

κ . Suppose PSα is defined for some α ≤ κ. If α is not strongly inaccessible
then let Q̇S

α denote the trivial forcing. Suppose α is strongly inaccessible. Then let
Q̇S
α be a name for the forcing poset P(α \ B) from Section 4. In other words, Q̇S

α

is a name for the α-strategically closed forcing poset for adding a stationary set
Sα ⊆ α∩ cof(ω) such that whenever β < α and Sα ∩ β is stationary in β, then β is
in B.

This completes the definition. Standard arguments show that PSκ preserves all
cardinals, cofinalities, the function α 7→ 2α, and for any Mahlo cardinal α ≤ κ, Pα
is α-c.c.

Let G∗GS be generic for PSκ ∗QS
κ over V . Write S =

⋃
GS , which is a stationary

subset of κ ∩ cof(ω) such that for all β < κ, if S ∩ β is stationary in β then β is in
B. Write W = V [G ∗GS ].
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Lemma 5.2. In W , κ is a supercompact cardinal.

Proof. Consider a regular cardinal λ > κ in W . In V fix an elementary embedding
j : V → M induced by a normal ultrafilter on Pκ(λ). Then crit(j) = κ, j(κ) > λ,
and M is closed under λ-sequences. Also λ+ < j(κ), and |j(κ)| ≤ κ|Pκ(λ)| =
κλ = λ+, so |j(κ)| = λ+. Similarly, |j(κ+)| = λ+. Note that κ ∈ j(B) since κ is
measurable in M .

Write j(PSκ) = PSκ ∗ Q̇S
κ ∗PStail. The model M [G∗GS ] is closed under λ-sequences

in W . So in W , PStail is λ+-strategically closed. There are |j(κ)| = λ+ many
maximal antichains of PStail in M [G ∗GS ]. So we can construct in W a filter K on
PStail which is generic over M [G ∗GS ]. Since j“G = G ⊆ G ∗GS ∗K, j extends to
j : V [G]→M [G ∗GS ∗K].

We claim that S is a condition in j(QS
κ). This is true since κ is in j(B), so it

does not matter that S is stationary in κ. The model M ′ = M [G∗GS ∗K] is closed
under λ sequences. So j(QS

κ) is λ+-strategically closed and has λ+ many maximal
antichains in M ′. Construct a filter h on j(QS

κ) which contains S and is generic
over M ′. Then M ′[h] is closed under λ-sequences. Since j“GS = GS ⊆ h, we can
extend j to j : W →M ′[h], which witnesses that κ is λ-supercompact in W . �

Lemma 5.3. In W , if j : W → N is an elementary embedding induced by a normal
ultrafilter on Pκ(λ) for some λ ≥ κ, then κ is in j(B).

Proof. In N , j(S) ∩ j(κ) = S is stationary in κ. By elementarity, any ordinal to
which j(S) reflects is in j(B). �

Lemma 5.4. In W , for all β in B ∪ {κ}, A ∩ β is stationary in β.

Proof. Write PSκ = PSβ ∗ Q̇S
β ∗ PStail. In V , A ∩ β is stationary in β, and it remains

stationary after forcing with the β-c.c. poset PSβ . Since A ∩ β consists of regular
cardinals, by Proposition 4.3, A∩ β remains stationary after forcing with QS

β . The
poset PStail does not add subsets to β, so A ∩ β is stationary in β in W . �

This completes our analysis of the model W .
In W fix a Laver function l : κ→ VWκ . So for every x and every λ ≥ κ, there is

an elementary embedding j : W →M with critical point κ such that j(κ) > λ, M
is closed under λ-sequences, and j(l)(κ) = x.

In W we define by recursion a countable support iteration

〈Pi, Q̇j : i ≤ κ, j < κ〉

of proper forcing posets. Suppose Pα is defined. Let Q̇α be a name for Coll(ω1, ω2),
unless each of the following conditions are satisfied:

(1) α is in B,
(2) for all β < α, |Pβ | < α,
(3) l(α) is a pair 〈ḟ , λ̇〉 of Pα-names and Pα forces that α = ω2, ḟ : ω2 → H(ω2)

is a bijection, and λ̇ ≥ ω2 is a regular cardinal.
Assume these conditions are satisfied.

Note that Pα is α-c.c. Let Gα be generic for Pα over W , and work in W [Gα]. Let
f = ḟG and λ = λ̇G. Since f is a bijection, if N ≺ 〈H(ω2),∈, f〉 then f“(N ∩ω2) =
N . So for each β < ω2, there is at most one such elementary substructure N with
N ∩ ω2 = β. Let F denote the set of β < ω2 for which there exists a unique
N(β) ≺ 〈H(ω2),∈, f〉 such that N(β) ∩ ω2 = β. Then F contains a club.
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Define T ⊆ ω2 by letting β be in T iff (a) β is in F , (b) cf(β) = ω1, and (c) if β
is in B then N(β) is not internally club.

Lemma 5.5. In W [Gα], the set A ∩ T is stationary and is in I[ω2].

Proof. In W let X ⊆ α be club such that for all β in X, if γ < β then |Pγ | < β.
If β is in A ∩ X, then Pβ forces β = ω2 and Qβ = Coll(ω1, β). By Proposition
4.5, A ∩ X is in I[ω2] and A ∩ X ⊆ cof(ω1) ∩ ω2. Since A and B are disjoint,
A ∩X ∩ F ⊆ T . �

Let PT be the proper forcing poset from Section 4 for adding a club subset to
T ∪ cof(ω). By Lemma 5.5 and Proposition 4.4, PT is < ω2-distributive. Now let
Q̇α be a name for PT ∗Add(ω) ∗Coll(ω1, N), where N is a name for the set H(λ)
as computed after forcing with Pα ∗ PT .

This completes the definition of Pκ. Let Gκ be generic for Pκ over W . Standard
arguments show that in W [Gκ], κ = ω2 and 2ω = 2ω1 = ω2.

Working in W [Gκ] fix a bijection f : ω2 → H(ω2). Let F be the set of β < κ
for which there exists a unique N(β) ≺ H(ω2) closed under f . Then F contains a
club. Define T by letting β < ω2 be in T iff (a) β ∈ F , (b) cf(β) = ω1, and (c) if
β is in B then N(β) is not internally club. Let GT be generic for PT over W [Gκ].
Our final model is W ′ = W [Gκ ∗GT ].

By Lemma 5.5 and Proposition 4.4, PT is < ω2-distributive. Since H(ω2) is
determined by P(ω1), H(ω2) is the same in W [Gκ] and W ′. Also f is a bijection
in W ′, and F satisfies the same definition in W ′ as it does in W [Gκ].

Let E denote the club set
⋃
GT . Then E ∩ cof(ω1) ⊆ T ⊆ F .

Lemma 5.6. In W ′, A ⊆ ω2∩ cof(ω1) is stationary, S ⊆ ω2∩ cof(ω) is stationary,
and for all β < ω2, if S ∩ β is stationary in β then β is in B.

Proof. The poset Pκ is κ-c.c., so A and S are stationary in W [Gκ]. Since PT is
proper, PT preserves the stationarity of S by Lemma 1.1. By Lemma 5.5, in W [Gκ],
A ∩ T is stationary and is in I[ω2]. So Proposition 4.4 implies PT preserves the
stationarity of A. The poset Pκ ∗ PT is proper, so it can only change the cofinality
of ordinals less than κ to ω1. Suppose S ∩ β is stationary in β for some β < ω2. If
β is not in B, then S ∩ β is not stationary in β in W and hence also not in W ′. So
β is in B. �

Lemma 5.7. If β is in E ∩B and cf(β) = ω1, then N(β) is not internally club.

Proof. By the definition of T , N(β) is not internally club in W [Gκ]. Since PT is
proper, N(β) is not internally club in W ′ by Lemma 3.3. �

We now verify the main claims of Theorem 5.1.

Proposition 5.8. In W ′, for all regular λ ≥ ω2, there is a stationary set S∗ ⊆
Pω1(H(λ)) such that S∗ does not reflect to any internally approachable set with size
ℵ1.

Proof. Define S∗ as the collection of a in Pω1(H(λ)) such that a ≺ H(λ), a ∩
H(ω2) ≺ 〈H(ω2),∈, f〉, and sup(a ∩ ω2) ∈ S ∩ E.

To show S∗ is stationary, consider a function H : H(λ)<ω → H(λ). Then there
are club many β < ω2 such that for all α0 < . . . < αn < β, clH({α0, . . . , αn})∩ω2 ⊆
β. Choose such an ordinal β which is in S ∩ E. Let x ⊆ β be cofinal with order
type ω and let a = clH(x). Then sup(a ∩ ω2) = β. This argument shows there
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are stationarily many a in Pω1(H(λ)) with sup(a ∩ ω2) ∈ S ∩ E. The other two
conditions in the definition of S∗ are true for club many sets a. So S∗ is stationary.

Suppose for a contradiction that S∗ ∩ Pω1(N) is stationary in Pω1(N) for an
internally approachable set N with size ℵ1. Fix an increasing and continuous chain
〈Ni : i < ω1〉 of countable sets with union N such that for all i < ω1, 〈Nj : j < i〉 ∈
N . Then there is a stationary set A ⊆ ω1 such that {Ni : i ∈ A} ⊆ S∗. For each i
in A, sup(Ni ∩ ω2) ∈ S ∩ E. Let β = N ∩ ω2. Clearly β is in E ∩ cof(ω1).

For each i in A, Ni∩H(ω2) ≺ 〈H(ω2),∈, f〉, hence N∩H(ω2) ≺ 〈H(ω2),∈, f〉. So
N ∩H(ω2) = N(β). But H(ω2) is a definable class of H(λ), so it is easy to see that
N∩H(ω2) = N(β) is internally approachable by the sequence 〈Ni∩H(ω2) : i < ω1〉.
Lemma 5.7 implies that β is not in B.

Since β is not in B, S does not reflect to β. Choose a club c ⊆ β disjoint
from S. Since S∗ is stationary in Pω1(N), there is a in S∗ closed under the map
α 7→ min(c \ α). But then sup(a ∩ ω2) ∈ c ∩ S, which is a contradiction. �

We complete the proof by verifying the following claim in W ′: For all regular
λ ≥ ω2, for every family {Ui : i < ω1} of stationary subsets of Pω1(H(λ)), there is
an internally stationary set M with size ℵ1 such that Ui reflects to M for all i < ω1.

Let λ ≥ ω2 be regular and assume {Ui : i < ω1} is a family of stationary subsets
of Pω1(H(λ)). Then λ is regular in W [Gκ]. Fix Pκ-names ḟ and λ̇ for f and λ.
Back in W let j : W →M be an elementary embedding with critical point κ such
that j(κ) > λ, M is closed under λ-sequences, and j(l)(κ) = 〈ḟ , λ̇〉.

Note that M [Gκ ∗GT ] is closed under λ-sequences in W ′.
By the choice of j, we have

j(Pκ) = Pκ ∗ PT ∗Add(ω) ∗Coll(ω1, N) ∗ Ptail

where N is a name for H(λ) as computed after forcing with Pκ ∗ PT , and Ptail is a
proper forcing iteration collapsing j(κ) to become ω2.

We would like to extend j to have domain W ′ in some outer model of W ′. Let
K be generic for Add(ω) ∗ Coll(ω1, N) ∗ Ptail over W ′. Since j“Gκ = Gκ ⊆
Gκ ∗ GT ∗K, we can extend j to j : W [Gκ] → M [Gκ ∗ GT ∗K] in W ′[K]. Write
M ′ = M [Gκ ∗GT ∗K].

To further extend j to have domain W ′, we construct a master condition for
j(PT ).

Lemma 5.9. The set s = E ∪ {κ} is a condition in j(PT ).

Proof. Since M [Gκ ∗GT ] is closed under λ-sequences, it contains the set s, so M ′

does as well. As E ∩ cof(ω1) ⊆ T , j“(E ∩ cof(ω1)) = E ∩ cof(ω1) ⊆ j(T ). So it
suffices to prove that κ is in j(T ).

In M ′, κ ∈ j(B) by Lemma 5.3 and cf(κ) = ω1. Also κ is in j(F ), so N(κ)
exists. By the definition of T , κ is in j(T ) iff N(κ) is not internally club in M ′.

At stage κ, j(Pκ) forces with PT ∗ Add(ω) ∗ Coll(ω1, N). By the closure of
M [Gκ ∗GT ], N is equal to H(λ)W

′
. Now here is the reason we forced with Add(ω):

by Proposition 3.5 and Lemma 3.3, H(ω2)W
′

= H(ω2)W [Gκ] is not internally club
in M ′. Now the transitive collapse of j“(H(ω2)W [Gκ]) is equal to H(ω2)W [Gκ], so
j“(H(ω2)W [Gκ]) is not internally club by Proposition 4.6.

We claim j“(H(ω2)W [Gκ]) is in M ′ and is equal to N(κ), which completes the
proof. Recall that N(κ) = j(f)“(N(κ)∩ j(κ)) = j(f)“κ. For each ξ < κ, j(f)(ξ) =
j(f)(j(ξ)) = j(f(ξ)). So N(κ) = j(f)“κ = j“(f“κ)) = j“(H(ω2)W [Gκ]). �
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Choose h generic for j(PT ) over W ′[K] containing the condition s. Now extend
j in W ′[K ∗ h] to j : W ′ →M ′[h].

Recall that N = H(λ)W
′
.

Lemma 5.10. The set j“N is in M ′[h].

Proof. The model M ′[h] is not closed under λ-sequences in W ′[K ∗ h]. However
j“(H(λ)W ) is in M . Fix a surjection g : [λ]<λ → N in W ′. Every set in [λ]<λ

is the interpretation of a Pκ ∗ PT -name in H(λ)W . Also for any Pκ ∗ PT -name ẋ,
j(ẋGκ∗GT ) = j(ẋ)Gκ∗GT ∗K∗h. So

j“N = {j(g)(yGκ∗GT ∗K∗h) : y ∈ j“(H(λ)W )}
and this set is definable in M ′[h]. �

By Proposition 3.5 and Lemma 3.3, N is internally stationary in M ′[h]. So by
Proposition 4.6, j“N is internally stationary in M ′[h].

Proposition 5.11. In M ′[h], for all i < ω1, j(Ui) reflects to j“N .

Proof. Fix i < ω1. By the closure of M [Gκ ∗ GT ], Ui is in M [Gκ ∗ GT ] and is
stationary in Pω1(N). Since K ∗ h is a generic filter for a proper forcing poset over
M [Gκ ∗GT ], Ui is stationary in Pω1(N) in M ′[h]. Now j � N is the inverse of the
transitive collapse of j“N , therefore is in M ′[h] by Lemma 5.10. For each a in Ui,
a ⊆ N and j(a) = j“a. So j“Ui is definable in M ′[h] from j � N and Ui, hence is
in M ′[h]. It is easy to check that since Ui is stationary in Pω1(N) in M ′[h], j“Ui
is stationary in Pω1(j“N) in M ′[h]. But j“Ui ⊆ j(Ui) ∩ Pω1(j“N), therefore j(Ui)
reflects to j“N . �

Since j({Ui : i < ω1}) = {j(Ui) : i < ω1}, by elementarity there is an internally
stationary set with size ℵ1 to which each Ui reflects.

This completes the proof.

We were able to verify stationary reflection in the preceding argument because
the iteration Pκ∗PT is proper, and so preserves the stationarity of a given stationary
set after forcing with a tail of j(Pκ ∗ PT ). On the other hand, the properness of
the iteration guaranteed that the set to which the given stationary set reflects is
internally stationary. This raises the following question.

Question 5.12. Does WRP imply that every stationary set S ⊆ Pω1(H(λ)) reflects
to an internally stationary set N with size ℵ1?
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