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IDENTITY LOGICS

JOHN CORCORAN and STANLEY ZIEWACZ

In this paper* we prove the completeness of three logical systems I LI,
IL2 and IL3. IL1 deals solely with identities {a = b), and its deductions are
the direct deductions constructed with the three traditional rules: (T) from
a = b and b = c infer a = c, (S) from a = b infer b = a and (A) infer a = a
(from anything). IL2 deals solely with identities and inidentities {a Φ b) and
its deductions include both the direct and the indirect deductions con-
structed with the three traditional rules. IL3 is a hybrid of IL1 and IL2:
its deductions are all direct as in IL1 but it deals with identities and
inidentities as in IL2. IL1 and IL2 have a high degree of naturalness.
Although the hybrid system IL3 was constructed as an artifact useful in the
mathematical study of IL1 and IL2, it nevertheless has some intrinsically
interesting aspects.

The main motivation for describing and studying such simple systems
is pedagogical. In teaching beginning logic one would like to present a
system of logic which has the following properties. First, it exemplifies
the main ideas of logic: implication, deduction, non-implication, counter-
argument (or countermodel), logical truth, self-contradiction, consistency,
satisfiability, etc. Second, it exemplifies the usual general metaprinciples
of logic: contraposition and transitivity of implication, cut laws, complete-
ness, soundness, etc. Third, it is simple enough to be thoroughly grasped
by beginners. Fourth, it is obvious enough so that its rules do not appear
to be arbitrary or purely conventional. Fifth, it does not invite confusions
which must be unlearned later. Sixth, it involves a minimum of presupposi-
tions which are no longer accepted in mainstream contemporary logic.
These are vague conditions which are satisfied to a greater or lesser
extent by propositional logic, PL, and by Aristotelian logic (or syllogistic),
AL, and the majority of contemporary beginning logic students are

*The authors wish to thank Wendy Ebersberger (SUNY/Buffalo) and George Weaver (Bryn
Mawr College) for useful criticisms and for encouragement.
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presented either with PL or AL as a first system. Of course, versions of
Boolean logic are often presented as first systems but Boolean logic
satisfies the above conditions to a much lesser extent than PL or AL.

In the opinion of the authors, IL1 and IL2 satisfy the above conditions
better than either PL or AL. In regard to the first two conditions per se
IL1 and IL2 are probably no better than PL or AL. In regard to the third
condition, both are superior to PL and AL in that the identity logics involve
fewer logical primitives, viz., only identity and non-identity, and the logical
primitives which they involve are less apt to be confused with near-
neighbors in ordinary English. There is no "material implication", no
"inclusive or", etc., as in PL and no "quantification" as in AL. In regard
to the fourth condition, "naturalness", it must be admitted that PL can be
formulated in a way that makes it equally natural. But the natural
formulations of PL involve many complexities (subproofs, conditionaliza-
tion, etc.) which are not present in identity logic. In its original formula-
tion, AL has a degree of naturalness comparable to identity logic. The fifth
and sixth conditions, involvement of possible confusions and presupposi-
tions, seem to be satisfied better by the identity logics than by PL. At
least identity logics do not suggest that there are atomic propositions
wholly devoid of structure, nor does it suggest that validity is merely a
matter of truth-tables. Likewise, comparing identity logic now with AL,
there is no problem of "existential import" nor is there any suggestion
that validity is merely a matter of relations between classes (Venn
diagrams).

We do not mean to suggest that PL or AL should not be taught in
beginning logic. Our only point is that the general framework of meta-
logical concepts and principles is more clearly and more simply exem-
plified in a system of identity logic than in PL or AL. Moreover, in moving
from an identity logic to PL, to AL, or to one of the other elementary
systems (e.g., Boolean logic or monadic logic) there is nothing to be
abandoned or unlearned. Besides, the sooner the logic student learns to
use "identity" carefully and precisely the better.1

1 Preliminaries Let PN be a countably infinite set of proper names (or
individual constants): p19 p2, . . ., p.n, . . . . A sentence of L = i s a s t r ing
ζa = b' or 'a Φ b', with a, b in PN. An interpretation (or model) for L = i s a

(denotation) function D defined on PN (and taking values in an arbitrary
set). If Da and Db are identical then ζa = b' is true in D and 'a Φ b' is false
in D, and if Da and Db are distinct then 'a = b9 is false in D and 'a Φ by is
true in D.

Let P, Q and R be subsets of L = and let p, q, r, and s be members of
L = . P is satisfied by an interpretation D if every member of P is true in
D. If every interpretation which satisfies P satisfies p then P implies
P (P\=P)' If P is satisfied by some interpretation then P is satisftable,
otherwise P is unsatisftable.

P + Q is the union of P and Q, and P + p is the union of P and the unit
set of p.
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In a few places below we will have occasion to refer to the contra-
dictory p of a sentence p. This is defined as follows: a = b is a Φ b, a Φ b
is a = b.

2 Semantic results2 The main purpose of this section is to prove some
results about the semantics of identities and inidentities which will reveal
one set of rules of inference sufficient for constructing a deduction for each
implication (P\=p). We begin by setting up some technical apparatus.

By an identity lab we mean one of the two sentences a = b or b = a. By
an inidentity Nab we mean one of a Φ b or b Φ a. If a and b are distinct then
by an identity chain la . . . b we mean a set which contains for some
distinct c x, c2, . . ., cn at least one perhaps both of each of the following:
an Iacly an Icγc2, . . . an Icn.γcn, an Icnb (and nothing else). A single identity
lab is also an identity chain la . . . b. The null set is an identity chain
la . . . a. Thus every identity chain la . . . b is an identity chain Ib . . . a,
and when a and c are distinct the union of an la . . . b and an Ib . . . c
contains an la . . . c. Thus, if P is an arbitrary set of sentences the
relation on PN of being * 'linked'' by some identity chain contained in P is
an equivalence relation.

Using this equivalence relation we define a unique function fP from PN
to PN, for each P: fPa is the first constant b in PN with an identity chain
la . . . b in P.

Sublemma fPa = fPb if and only if some la . . . b is in P.

Proof: If fPa =fPb then there is a unique first constant c, viz. fPa, such
that an la . . . c and an Ic . . . b are both in P. The union is then in P. But
the union contains an la . . . b. Conversely, if some la . . . b is in P, then
every c with an la . . . c in P also has an Ic . . . b in P and vice versa.
Thus the first constant c with an la . . . c in P is the first constant c in PN
with an Ib . . . c in P. QED

The following lemma and its corollaries concern the satisfiability and
the consequences of an arbitrary set P of sentences of L =.

L e m m a 1 If for no a, b is there both an Nab and an la . . . b in P, then fP
satisfies P.

Proof: Suppose the hypothesis. If a Φ b is in P, then by hypothesis no
la . . . b is in P. Thus by the sublemma fPa Φ fPb and so a Φ b is true in
/ P . If a = b is in P, then trivially an la . . . b is in P and by the sublemma
fPa =fPb. Thus a = δ is true in / P . QED

Corol lary XS P is unsatisfiable if and only if for some a, b both an Nab

and an la . . . b are in P.

Corol lary IS If P\=a = b then either an la . . . b is in P or P is unsatis-
fiable.

Proof: Suppose P t = α = b% If P is unsatisf iable the conclusion follows.
Assume that P is sat is f iable. Then by L e m m a 1 fP sat i s f ies P and by the
sublemma fPa = fPb if and only if some la . . . b i s in P . Since PNf l = b
and fP sa t i s f ies P , fPa - fPb and so t h e r e i s an la . . . b in P. QED
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Corollary NS If PJpa Φ b then either for some c, d an Ic . . . a, an Id . . . b
and an Ned are all in P or P is not satisfiable.

Proof: Suppose P\=aφb. If P is unsatisfiable the conclusion follows.
Assume that P is satisfiable. Then no identity chain la . . . b is in P,
because otherwise a = b and a Φ b both follow from P. But P + a = b is
unsatisfiable. Thus for some c, d, an Ned and an Ic . . . d are both in
P + a = b. The Ic . . . d must contain a = b. (Otherwise the Ned and the
Ic . . . d are both in P, but P is satisfiable.) This means that Ic . . . d is
a = b plus a union of an Ic . . . a and an Ib . . . d. Since the Ned must be in
P, the conclusion follows. QED

3 Deductions in IL3 For pedagogical reasons and in order to reflect
deductive practice it is useful to mark the assumptions and the goal of a
deduction. Accordingly all deductions begin with a finite list of sentences
of L = prefixed with A (for assumption) followed by a sentence prefixed
with ? (the goal). Thereafter each line is added according to one of the
following six rules (until the goal is reached3).

Rules of Group 3:

T Affirmative Transitivity: a = b, b = c/a = c
NT Negative Transitivity: a = b, b Φ c/a Φ c

S Affirmative Symmetry: a = b/b = a
NS Negative Symmetry: a Φ b/b Φ a

X Contradiction: a Φ a/p
A Axiom: /a = a

The last two rules, of course, countenance (1) the addition of an arbitrary
line once a self-contradiction has been inferred and (2) the addition of any
logical identity a = a at any point.

Any list constructed according to the above rules is called a deduction
in IL3. If there is a deduction in IL3 whose assumptions are all in P and
whose goal is p, we write P v-3p and where it is clear from the context that
IL3 is under discussion we write simply Php.

Corol lary ID If an la . . . b is in P then P \-3 a = b.

Proof: List the members of la . . . b prefixed with A and followed with
?a= b. If a and b are identical the deduction is completed using the axiom.
Assume that a and b are not identical. Using symmetry one can add the
following intermediate conclusions: a = cl9 cλ = c2, . . . cn-γ = cm cn = b,
where of course cl9 . . . cn axe the other constants in Iα . . . b. Then using
transitivity repeatedly one obtains: α = c 2 , α = c 3 , . . ., α = cn> cn = δ, α = b.
The deduction is thus constructed. QED

Corollary ND If P contains, for some c, d, an Ic. . . α, an Id . . . b, and an
Ned then P H3 aΦb.

Proof: List all of the mentioned as assumptions and put Ίa Φ b as the goal.
By the reasoning of the previous corollary a = c and b = d can be added. By
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negative symmetry d Φ c can be added (if it is not already present). By
negative transitivity b Φ c is added, then c Φ b is added by NS. Using NT
again, add a Φ b. QED

C o r o l l a r y X D If P contains both an Nab and an la . . . b, then for every s
in L=, P1-3S,

Proof: Set down the mentioned sentences as assumptions followed by ?s.
By the reasoning of corollary ID one can add intermediate conclusions end-
ing with a = b. By NS one can add b Φ a (if such is not already an assump-
tion). From the last two sentences mentioned one can add a Φ a using NT.
And by Rule X, s can be added. QED

4 Completeness and soundness of IL3 By combining the semantic results
with the results concerning the deductions one easily obtains completeness
and soundness of IL3.

Theorem C3 If P f= s then P h-3 s.

Proof: If P is unsatisfiable use corollaries XS and XD. Assume that P is
satisfiable. Then s is either ζa = b9 or (a Φ bf. Us is the former use
corollaries IS and ID. If the latter use NS and ND. QED

Theorem S3 If P \-3s then P N s.

Proof: Suppose PΉ3s. Let π be an arbitrary deduction in IL3 of s from P.
All of the assumptions in π follow from P. After the goal, each line was
added by one of the six rules, each of which only permits the addition of
consequences of its operands. Since s is the last line added, P \= s. QED

5 Indirect deductions in IL2 An indirect deduction begins with assump-
tions and a goal, ?s, just like the direct deductions, but in an indirect
deduction the line following the goal is the reductio assumption of s, the
contradictory of s, prefixed with R to signify its role. (Recall that a = b is
a φb and a Φ b is a = b.) The remaining lines of an indirect deduction in
IL2 are added by means of rules of Group 2 (below) until a pair of
contradictories (a = b, a Φ b) have both been reached. A direct deduction in
IL2 is constructed as in IL3 except that only rules in Group 2 may be used.
We use P f-2s to indicate deducibility in IL2.

Rules of Group 2:

T: a = b, b = c/a = c
S: a = b/b = a

A: /a = a

C o r o l l a r y ID2 If an la . . . b is in P then P h-2 α = b.

Corollary ND2 If for some c, d, an Ic . . . a, an Id . . . b and an Ned are in
P then P \-2a Φ b.

Corollary XD2 If for some a, b, an la . . . b and an Nab are in P then for
all s in L=, P \-2s.
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Proofs: ID2 is proved like ID. To see ND2, set up the assumptions and the
goal ?a Φ b and then put Ra = b as the reductio assumption. Note that a = b
plus Ic . . . a plus Id . . . δ is an led. Thus using Γ and S one can construct
a chain of identities ending with c = d. Either c = d is the contradictory of
the JVcd or such can be added by S. QED To see XD2, set up the pre-
mises and the goal ?s. Put Rs as the reductio assumption. Using S and T
one can add a list of intermediate inferences ending with a = b. This or
b = a is the contradictory of the Nab. QED

Theorem C2 If P h s then P\-2s.

Proof: Similar to that of Theorem C3.

Theorem S2 If Ph-2s then P f= s.

Proof: Assume P κ>s. Let 5 b e a deduction of s from P. If B is direct the
conclusion follows by Theorem S3. If B is indirect the reasoning of
Theorem S3 gives us that P + ~s \=q and P + ~s \=~q where q, ~q is the contra-
dictory pair ending the deduction. Thus P + s is unsatisfiable. Thus
P|=s. QED

It should be clear that IL2 is in effect the "natural deduction" system
one normally uses when dealing with identities or, more precisely, that
IL2 is a subsystem of the usual logic of mathematics. The particular
completeness proof given here illustrates the way metamathematical
considerations suggest replacing a natural system with a mathematically
more convenient one. In particular, this example can be used to show the
kind of motivation that exists for replacing a natural deduction system by a
Hubert-type linear/axiomatic system.

6 The pure identity logic IL1 The language of this system is the set of
identities. There are no inidentities. The deductions are the direct
deductions using the rules of Group 2. The soundness and completeness of
this system are immediate corollaries of results obtained above. However,
the value of IL1 as a first system is enhanced if completeness and
soundness are proved for IL1 itself without reference to a larger system.
Soundness is too obvious to warrant discussion here.

Completeness is proved by means of two lemmas which illustrate
interesting techniques in a context simple enough to be grasped by very
inexperienced classes. The first lemma is essentially corollary ID (above),
viz., if P contains an la . . . b then there is a deduction of a = b from P in
ILL The second lemma is as follows: if P contains no identity chain
la . . . b then there is an interpretation which satisfies P but in which a = b
is false. To see this let Q be the union of all of the identity chains in P
which involve a. If a = a is in P put it in Q also. Let R be the rest of the
sentences in P. Q and R have no constants in common, a is not in R and b
is not in Q (otherwise there is an identity chain la ... b in P). Let Dx = 1
for x = a and for all x in Q. Let Dx = 2 for the rest of the constants x in
PN. D satisfies P and a = b is false in D.

Completeness is proved by putting these two lemmas together as
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follows. Suppose P implies a = b. Then by the second lemma P contains an
identity chain la . . . b. By the first lemma then there is a deduction from
P to a = b.

1 Identity logic without necessary truths and self-contradictions Some
teachers prefer to teach the ideas of logical consequence (implication), of
establishing implications by deduction, and of establishing non-implications
by counterarguments (or countermodels) before introducing the somewhat
heady ideas of necessary truths and self-contradictory sentences. More-
over, the original Aristotelian system lacks both sorts of sentences.4 The
system IL presented here is essentially the result of deleting the sentences
a = a and a Φ a (all a in PN) from the language of IL2, and leaving every-
thing else the same.

In particular: the language of IL consists in all of the identities and
inidentities between distinct members of PN, the deductions of IL and the
direct and indirect deductions constructed using only transitivity and
symmetry, and the interpretations of IL are the same as above.

By suitable modification of the lemmas and corollaries in the proofs of
completeness and soundness for IL2, the completeness and soundness of IL
can be proved. This highlights the otherwise plausible fact that the logical
axiom a = a plays no role in a IL2 other than to ensure the provability of
the logical truths a = a.

8 Simple metalogical principles One of the main purposes in presenting
a simple logical system is to illustrate some of the more common
metalogical principles. IL1 and IL2 can be used to illustrate a surprisingly
large group of such principles. Following are a selection of principles for
IL1 and IL2 and a selection of principles which apply only to logics which
contain the equivalent of negation. We use Op to mean that p is logically
true. The proofs of these principles are, of course, very easy.

8.1 Metalogical principles for IL1 and IL2

1. Premise Addition: If P)FP then P + Q h£
2. Theorem Deletion5: If P + q Nr and P Nq then P^r
3. Logical Truth Deletion: If P + q N r and D q then P\=r
4. Transitivity6: If p |= q and q N r then p f= r
5. Cut7: If P + q^r and Qt-q then P + Q\=r
6. Chaining: If Pt=ply P\=p2, . .., P)rpn and [pl9 . .., pn]\=q; then P\=q
7. Logical truths: Up if and only if for all P, P\=p.

8.2 Metalogical principles for IL2

1. Reductio8: If P + qϊ=r and P + q^r then PN q
2. Dilemma9: If P + qμr and P + #1= r then P\=r
2a. Dilemma: If q\=r and q Nr then Ώr
3. Contraposition10: If p \= q then ~q f=?
4. General Contraposition11: If P + r \= q then P + ~q |= r
5. Self contradiction: If£h]5thenDJ
6. Self contradiction: If D^ then, for all q, p\=q
7. Logical truths: if p μp then Up.
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9 Glimpses beyond There are several directions which may be pursued
with a class which knows I LI and/or IL2. For example, one can put a
propositional logic on top of IL2 by adding the connectives, their truth-
functions and their rules. There is some advantage in adding the connec-
tives one by one. Another possibility is to add predicates and relations to
show the interaction of identities, inidentities and atomic sentences.

Another possibility is to put an algebraic logic (complex terms and the
universal quantifier) on top of ILL This would be a good move for a
teacher who wanted to present elementary algebraic theories (semigroups,
groups, Boolean Algebra, etc.) early in the course.

In philosophy courses where Aristotelian logic is usually presented one
could present Aristotelian logic as a separate system having the same
general form as IL or one could put Aristotelian logic in with IL. The
latter has the disadvantage of compounding the problems of separating
particulars from classes in the minds of beginning students but it has the
advantage of showing that both can be discussed using the same formal
language.

In courses where foundational questions are to be discussed or in
courses where some metamathematics is to be treated, one can supply
interesting but trivial proof procedures and decision procedures for these
systems.

NOTES

1. A secondary motivation of the paper is to give yet another example of a logic which does not
contain propositional logic as a part. It has been widely asserted that propositional logic is
"prior to" all other logics and that propositional logic is "more fundamental than" other
logics. The presentation of identity logics should invite those who hold the above views to
revise them—at least to the extent of defining what they mean by "prior to" and "more
fundamental than".

2. The methods and results of sections 2-4 are due to Ziewacz.

3. For pedagogical purposes one might want to require that "QED" or some other "deduction
completed" sign be added after the goal has been reached.

4. See for example, Corcoran, J., The Journal of Symbolic Logic, vol. 37 (1972), pp. 696-702.

5. This was known by Stoic logicians.

6. This was known by Aristotle.

7. This is a Stoic principle.

8. This was known by Aristotle.

9. These two principles have been attributed to the Stoics by ancient writers.

10. This was known by Aristotle. In the Prior Analytics he used this in connection with transi-
tivity to show that a proposition implied by both of a pair of contradictories is implied by its
own contradictory.

11. This is in Galen's Institutio Logica.
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