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S Y L L O G I S M S  W I T H  F R A C T I O N A L  Q U A N T I F I E R S  

ABSTRACT. Aristotle's syllogistic is extended to inctude denumerably many 
quantifiers such as 'more than 2/3' and 'exactly 2/3.' Syntactic and semantic decision 
procedures determine the validity, or invalidity, of syllogisms with any finite number 
of premises. One of the syntactic procedures uses a natural deduction account of 
deducibility, which is sound and complete. The semantics for the system is non-classical 
since sentences may be assigned a value other than true or false. Results about symmetric 
systems are given. And reasons are given for claiming that syllogistic validity is relevant 
validity. 

1. M O T I V A T I O N  

The literature on syllogisms with fractional quantifiers such as 'at 
least 2/3' contains no decision procedure for determining the 
validity of syllogisms with any finite number of premises. My 
main purpose is to give syntactic and semantic decision procedures 
for the validity of syllogisms, with any finite number of premises, 
where sentences contain the Aristotelian quantifiers - 'all,' 'no,' 
'some,' and 'not all' - and the fractional quantifiers - 'more 
than m/n,' at least re~n,' 'exactly m/n,' 'less than m/n,' 'at most 
m/n,' and 'not exactly m/n.' 

Geach ([5] pp. 61-64) considers syllogisms built from the fractional 
quantifiers 'more than 1/2' and 'at least 1/2.' He gives the following 
procedure, labelled a "decision procedure," for determining the validity 
of syllogisms with more than two premises: (t) Translate the premises 
and the denial of the conclusion into arithmetical claims about the 
cardinality of classes, (2) Use arithmetical reasoning to try to derive a 
contradiction, (3) If  you derive a contradiction, label the argument valid, 
(4) If you do not derive a contradiction, look for a counterexample, and 
(5) If you find a counterexample, label the argument invalid. But this 
procedu/'e is not a decision procedure in any strict sense, given its 
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references to arithmetical reasoning and to classes with unspecified 
cardinality. 

For syllogisms with exactly two premises and with fractional 
quantifiers, decision procedures have been given. See Rescher and 
Gallagher [12] for a diagram decision procedure for two-premised 
syllogisms that may contain 'more than 1/2,' 'at least 1/2,' 'less than 
1/2,' and 'at most 1/2.' 

Below, "numerically definite" quantifiers such as '2 of the . . .  are 
among 3 of the - - - '  are not discussed. See De Morgan [3]. And, 
unlike Finch [4], we shall not assign true to any sentences of the 
form 'more than 2/3 of the A are B' if A denotes an infinite set. (But 
in the system below such a sentence may be true if B denotes an 
infinite set.) 

My main purpose is accomplished by proving Theorem 4. The 
theorem is shown to generalize a result due to Smiley [13]. Theorem 5 
in Section 5 generalizes a result due to Peterson ([11] w and another 
due to Meredith [8]. Section 6 describes general features of syllogistic 
validity. The final section summarizes the decision'procedures that are 
discussed in the paper. 

2. PRELIMINARIES 

Syntax: 
Terms: A, B, C, D, A1, B1, . . .  
Aristotelian quantifiers: A, E , / ,  O 
Relations: >, >, =, <, <, r 
Fully reduced fractions greater than 0 and less than 1 (fractions): 

1/2, 1/3, 1/4, 1 /5 . . .  
2/3, 2/5, 2/7, 2 /9 . . .  
3/4, 3/5, 3/7, 3/8 . . .  

Pm/n is a fractional quantifier iff P is a relation and m/n is a fraction. 
(So, >2/3 and =4/5 are fractional quantifiers, but )4/6  and =5/4 are not. 
P is a quantifier iff P is an Aristotelian quantifier or a fractional 
quantifier. Pab is a sentence iff P is a quantifier and a and b are terms. 
Pab is a fractional sentence iff Pab is a sentence and P is a fractional 
quantifier. (Read AAB as 'All A are B,' EAB as 'No A are B,' IAB as 
'Some A are B,' OAB as 'Some A are not B', Pro~nAB, where P is 
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a fractional quantifier, as 'The ratio of A's that are B's to A's bears P 
to m/n.') 

A non-empty finite set X of sentence is a chain iff the members of X 
can be arranged as a sequence of sentences such that any term that 
occurs in X occurs exactly twice and any term that occurs in a sentence in 
the sequence occurs in the sentence that succeeds it, where the first 
sentence in the sequence succeeds the last. (So, for example, {>I/3AB, 
EBC, <I/3AC} is a chain. So is {<I/3AA}. But {<I/3AB} is not.) (X,y) 
is an n-premisedsyllogism iffX, y (that is, X tO {y}) is a chain, X is not a 
chain, and X has n members (n _> 0). (So, ({AAB}, AAB) is a 1-premised 
syllogism, but ({AAA}, AAA) is not, since {AAA) is a chain. 
({AAB, ABC}, AAC) is a 2-premised syllogism, but 
({AAB, ABA}, AAB) is not.) An n-premised syllogism is a syllogism. 
Evidence that Aristotle's focus was on syllogisms, as defined above, 
comes from Prior Analytics 4266-7, where he says, when discussing valid 
arguments with two or more premises, that the number of terms exceeds 
the number of premises by exactly one. 

(U, 3) is a model iff U is a non-empty set, ,~ is a function that 
assigns non-empty subsets of U to terms and assigns t (true), f(false), 
or u (undetermined) to sentences, where the following conditions 
are met: 

(1) ~(Aab) = t i f3 (a )  _C ,3(b), and f, otherwise 
(2) 3(Eab) = t if,~(a) N ~(b) = (~, and f ,  otherwise 
(3) 3(Iab) = t i f3(Eab) = f ,  and t, otherwise 
(4) 3(Oab) = t if ~(Aab) = f ,  and t, otherwise 
(5) 3(P~ab) = u if 3(a) is infinite, t if 3(a) is finite and 

3(a) r 3(b) + 3(a) Pa ,  and f ,  otherwise 

(So, for example, if {U, 3) is a model where U is the set of natural 
numbers, 3(A) is the set of natural numbers less than 10 and 3(B) is the 
set of even numbers, then 3(=4/9 AB) = t and 3(-4/9 BA) = u.) 

By definition, a set X of sentences is (finitely) consistent iff there is a 
(finite) model (U, 3) such that .~ assigns t to each member of X. A set of 
sentences is inconsistent iff it is not consistent. (So, for example, 
{>2/5 AB, >2/5 AC, ECB} is finitely consistent (and thus consistent), but 
{>2/5 AB, >3/5 AC, ECB} is inconsistent.) By definition, Aab* =df Oab, 
Eab* =dr lab, lab* =df Eab, Oab* =df Aab, >~ ab* =dr _<~ ab, 
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>_~ ab* =df <~ ab, =~ ab* =df r ab, <~ ab* ~-df ~a ab, 
<_~ ab* ~~-df >c~ ab, and Ca ab* =dr =~ ab. (Read ' . . .* - ' as 'the 
contradictory o f . . .  is - - - . ' )  Given a set X, y of sentences, (X,y) is 
valid (X ~ y) iff X, y* is inconsistent. (So 0 ~ AAA since {OAA) is 
inconsistent.) (X, y) is invalidiff (X, y) is not valid. (X, y) is syllogistically 
valid (X ~s Y) iff (X, y) is a syllogism and X ~ y. (So, for example, 
AAB ~ s lAB (keeping in mind that ,3(A) ~ (~). And EAB ~s  <2/3 AB.) 

Throughout  the discussion lower-case letters, with or without 
subscripts, are used as metalinguistic variables that range over terms. 
P, Q, P~, and Q;~ are used as metalinguistic variables that range over 
quantifiers. 

3. NECESSARY CONDITION FOR SYLLOGISTIC VALIDITY 

Following Smiley [13], the expression Aa-b has this use: a set X 
of  sentences has form Aa-~b iff either X = (~ and a = b, or the 
members of  X can be arranged as a sentence with the following form: 
(AClC2,... Aei_ 1el, Acici+ 1,... Acn-1on) for n > 0. So, for example, 
has form Aa-a. {AAB, ACD, ABC} has form Aa-b. (Make these 
replacements: cl/A, c2/B, c3/C, and c4/D.) But {AAB, ABC, ADC} 
does not have form Aa-b. (The three members of the set cannot be 
arranged as a sequence in which the predicate of the first is the subject 
of the second and the predicate of the second is a subject of the 
third.) 

T H E O R E M  1. X ~s Y only if X, y* has one of the following T-jbrms: 
(1) Ac-a,  Pcd, Ad-b ,  Eab (or Eba), where P is A, L >~, _>~, or =~ 
(2) P~cd, Ad-a, Q/~ce, Ae-b,  Eab, where 

(i) P i s > ,  >_, or -- and Q is >, >, or =; and 
(ii) If  > occurs then ~ +/3 _> 1, otherwise o~ +/3 > 1 

(3) Aa-b ,  Pab, where P is E, O, =~, <~, or < .  
(4) P~ac, Ac-b,  Q/~ab, where 

(i) P is > ,  >_, or = and Q is < ,  < ,  or =;  
(ii) If  = does not occur twice then: > or < occurs and a _>/3, or 

neither > nor < occurs and a >/3; and 
(iii) If  = occurs twice then: a >/3, or c = b and a </3  

(5) P~ab, Q~ab, where both = and r occur 
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({AAB, EAB} has T-form 1. Make these replacements: a/A, b/B, c/A, 
d/B, and P/A. {EAA} has T-form 3. Make these replacements: a/A, 
b/A, and P/E. Given the proof  below, not ({_>I/3AB, ABC, 
E C D }  ~<2/3  AD) since {_>1/3AB, ABC, ECD, >2/3 AD} does not have 
a T-form. Note that the latter set could have no T-form other than 
T-form 2, since this is the only T-form that involves E and exactly 
two fractional quantifiers. This set cannot have T-form 2 given 
restriction (ii) for T-form 2. Note that > does not occur and 
c~ + 3 = 1. In contrast, {>I/3AB, ABC, ECD, >2/3AD} has T-form 
2. Make these replacements: a/C, b/D, c/A, d/B, e/D, P~/>1/3,  
and Q~/>2/3.)  

Proof We use the following five lemmas. 

L E M M A  1. I f  no fractional sentences occur in a chain X that does not have 
a T-form then there is a model (U, 3) such that U has exactly three 
members and 3 assigns t to each member of X (which means that X is 
finitely consistent). 

Proof Use Johnson [6]. The result rests heavily upon Smiley [13]. 

L E M M A  2. I f  Aala2, W (X) and Eala2, W (Y) are finitely consistent, 
where X and Y are chains, W r O, and ~ does not occur in W, then 
=p/q ala2, W (Z) is finitely consistent. 

Proof Assume the antecedent. Let the distinct terms in W be 
a l , . . ,  an (n _ 2). Suppose (U1, ,31) and (U2, ,32) are finite models 
such that ,31 assigns t to every member of  X and ,32 assigns t to 
every member of Y. We give a three-staged construction of a model 
(U3, ,33) that shows that Z is finitely consistent. By definition, if 
(U, ,3) is a model and a~,.., an are distinct terms then C1 A . . .  Cn is 
an a~-a, cell of ,3 iff Ci = ,3(ai) or Ci = ,3(ai). (So there are 2nal-a, 
cells of  3.) 

Stage 1" construction of  models (U/1, ;31)~/and (U/2, 3/2/.\ Suppose 
the al-an cells of  ,31 are C 1 ,., . .  C2., the a l - a ,  cells of  32 are 
D1, . . .  D2., .31(ai) = o~, 32(al) =/3, and the least common multiple 

1 t of ~ and/3 is 7. Construct mutually_ disjoi__~_nt sets C1, . . .  C2., 
D/I,.. .  D~n such that C I = 7/c~ • ~ and Dti = 7//3 • Dii. Let 
UII = 112. r ~t , ~ j = ~ j ,  ;51(a~) --- ~2~ C' where Cj C 251(ai), and for other ~ j = l  j '  
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terms t let = U i. Construct ( 2, 2/ 3~1 (t) ' U' .~' \ in the same way 
(replacing 'C' with 'D', 'Ul '  with 'U2', and '31' with '32'). So 
3tl(al) = 3~(al). 

Stage 2: construction of models (U~, .3'[) and (U2," ~5"_r,~" Construct~_~ 
mutually disjoint sets C~(,... C~,, D~, . . .  D~, such that C i = p x C~ 
and D~i ' = q-p  x D~i . Let U] ~ = ~z~ (~,, ~,, ~J= 'W'  :6, (ai) = UT__,Cy, where 

3/1 (ai), 3'[(t) " /U" 3 "\ Cj. c and for other terms t let = U~. Construct - -  \ 2~  2 /  

in a parallel manner (replacing 'C' with 'D', 'UI'  with 'U2', and '.31' 
with '.~2'). 

Stage 3: construction of model {U3,.33). Let U3 = U] ~ U U~, and for 
any term t, .~3(t) ~t' = u 

The following example illustrates the above procedure. Consider the 
consistent sets {AAB, =1/2BC, =:/3AC} (X) and {EAB, =1/2BC, 
---2/3AC} (Y). We follow the procedure and show the finite consistency 
of {=7/18AB, =I/2BC, =2/3AC} (Z). 

(1) The following diagrams indicate models that show the finite 
consistency of X and Y: 

B B   r4100  0r0 I101  
X: 4 2 1 2 Y: 3 3 3 2 

C C 

The number of members of cells is indicated. So, for example, in the 
model for X there are 6 B's that are C's and 12 B's. In the model for Y 
there are 3 B's that are C's and 6 B's. 

(2) Given Stage 1, construct models: 

B 

0 i01 X: 4 x 5  2 x  l x 5  2 x 5  

C 

B 

Y: 3 x 2  3 x 2  3 x 2  2 x 2  

C 
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(No member of  a cell in either model is a member of another cell in either 
model.) 

(3) Given Stage 2, construct models: 

B 
A 1 0 x 7  2 0 x 7  0 0 

X: 1 2 0 x 7  1 0 x 7  5 x 7  10x  

C 

B 

a~176 I Y: 6 x l l  6->< l l  

C 

2 0 x  11 I 10x  11 ] 
6 x l l  1 4 x l l  1 

(No member of a cell in either model is a member of another cell in 
either model.) 

(4) Given Stage 3, construct model: 

B 1401  01   
Z: ~ 136 101 l14_J 

C 

We need to show that -~p/q ala2 and any sentence in W is assigned 
t by -q3. Given the procedure for constructing (U3, .q3), 
~3(ai) 7/.,~3(aj) = p  • 'y/c~ • .~l(ai) (3 ~l(aj) + (q - p )  • "///3 • 
.32(ai) A .32(@. And .q3(ai) = p x 7 /~  • ~1 (ai) + ( q -  p) x 7/13 x 
.32(ai). Consider =p/q aja2. .~t (al) A .3~ (a2) = .~I (al), 
.~2(al) N .32(a2) = 0, and 7/c~ x .~l (al) = 7/ f l  x .~2(a~). So 

33(a l )A33(a2)  P x-~ x 31(al) 

33(aj) q x 7__ x 31(al) q 
t2e 

So .~3(=p/q ala2) = t. Suppose Eaiaj E 
32(ai) A 32(aj) = O. So 33(ai) f)33(aj) 

W. Then .~1 (ai) A 31 (aj) = 0 and 
= 0. So .~3 (Eaiaj) = t. Use 
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similar reasoning if Iaiaj E W. Suppose >~ aiaj E W. Then 

P • "7_ • 31(ai) n 31(aj) Ol > a and 
p x Z x 31 (ai) oL 

7 
(q - p )  x 5 x 32(ai) n 32(aj) 

( q - p )  x ? x 32(ai) 

So 

33 (ai) N 33 (aj) 

33(a/) 

(If a/b > c~ and c/d > ~ then a + c/b + d > c~.) So 3 (>a  aiaj) = t. Use 
similar reasoning if P~aiaj E W, where P is >_, =, <, or <. Suppose 

Aaiaj c W. 33(ai) N 33(aj) = p  x 3'/~ x 31(ai) N 31(aj) + ( q - p ) x  

7//3 • 32(ai) N 32(aj). Since 31(ai) N 31 (aj) ---- 0 and 32(ai) N 32(aj) = 0, 

33(ai) n 33(aj) = 0. So 3(Aaiab) = t. Use similar 
reasoning if Oaiaj E W. The following convention is used in the 
proofs of the next two lemmas: If  X is a set of sentences and Q is a 
fractional quantifier then XQ..LA and XQ..L E are sets of sentences formed 
by replacing Q.. in X with A.. and E.., respectively. When there is no 
danger of ambiguity we shall shorten Q.. to Q. (If X is {>I/2AB, ABA} 
then X>I/21A is {AAB, ABA} and X>I/21E is {EAB, ABA}. If X is 
{>1/2 AB, >1/2 BA} then X>I/2ABIA is {AAB, >1/2 BA}.) 

L E M M A  3. I f  exactly one fractional sentence occurs in a chain X that 
does not have a T-form then X is finitely consistent. 

Proof. Assume the antecedent. Suppose Qm/n.. is the one fractional 
sentence in X, There are four cases to consider. 

Case 1: Q is 5.  If  XCm/,IA does not have a T-form, then X#,,/,IA is 
finitely consistent, by Lemma 1. Then X is finitely consistent. (For, 
an interpretation that assigns t to Aab assigns t to r ab.) If X#m/,LA 
has a T-form, then X has form Ac-a,  Cm/, cd, Ad-b,  Eab (or Eba). 
Then X#m/,IE is finitely consistent, by Lemma 1. Then X is finitely 
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consistent. (For, an interpretation that assigns t to Eab assigns t to 
5r ab.) 

Case 2. Q is > or _>. If  XQ,,/,] A does not have a T-form then X is finitely 
consistent, by Lemma 1. Suppose XQm/,IA has a T-form. Then X has one 
of  these forms: 

Form 1.1. 

c ~ e .  

Form 1.2. Ac-e, 

Form 1.3. Ac-a, 

Form 1.4. Aa-c, 

{ >m/n Ac-e, >-m/n ef, Af-a, Acd, Ad-b, Eab (or Eba), where 

>rn/n >--m/n el, Af-a, Icd, Ad-b, Eab (or Eba). 

{ A cd' Ad-e' { >m/n >-m/n ej,~ Af-b, Eab (or Eba). 

>>-m/n cd, Ad-b, ab, where a r c. 

(Form 1.1's restriction (c r e) and Form 1.5's restriction (a r c) 
are required since we have assumed that X does not have a T-form.) 
To show that X is finitely consistent i f X  has Form 1.1-1.3 let 
U = (1 , . . . rn  + 1, m + 2 , . . . n  + 1). For  Form 1.1 let.~(e) = U, 
.3(f )  = {1, . . . rn  + 1}, and for other terms t let,3(t) = 3 ( f ) i f  
Af-t _C X, otherwise let ,~(t) = {m + 2 , . . . n  + 1}. For  Form 1.2 
let ~(c) = U, .~(f)  = {1,.o .m + 1}, and for other terms t let 
.~(t) = ,~(c) if Ac-t c X and ,~(t) = ,~(f)  if Af-t c_ X, otherwise 
let ,~(t) = (rn + 2 , . . .  n + 1}. For  Form 1.3 let ,~(d) = U, 
,~(f)  = { 1 , . . . m  + 1}, and for other terms t let ~(t) = ,~(d)  if 
Ad-t c_ X and 3(t)  = ,~(f)  ifAf-t C_ X, otherwise let ,~(t) = 
{m + 2 , . . .  n + 1 }. If  X has Form 1.4 then X is finitely consistent 
since Form 1.4 is a special case of  Form 1.3. 

Case 3: Q is < or _<. I f  XQm/nlE does not have a T-form then X is 
finitely consistent, by Lemma 1. If  XQn,/,I E has a T-form then X has 
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one of these forms: 

<m/n , Form 1.5. Ac-a, Acd, Ad-b, <-m/n ao, where c # a. 

{ <rn/n Form 1.6. Ac-a, Icd, Ad-b, <_m/nab" 

Form 1.7. Ac-a, A cd, Ad-b, ba. 

To show that X is finitely consistent let U = {1, . . .  m , . . .  n + 1}. 
For Form 1.5 let ,3(a) = U and for other terms t let ,3(t) = {1, . . .m}.  
For Form 1.6 let ,~(c) = U and for other terms t let ,3(t) -- ,~(c) 
if Ac- t  C X, otherwise let ,3(t) = {1, . . .  m}. For Form 1.7 let 
,3(b) = U and for other terms t let .3(t) = {1, . . .  m}. 

Case 4. Q is =. If  neither X=m/,i A nor X=m/,i ~ has a T-form then X 
is finitely consistent, by Lemma 2. If  either X=m/,LA or X=m/,LE has a 
T-form then X has one of Forms 1.i.l (1 < i < 7) constructed by 
replacing { >m/n in Forms 1.1-1.4 and ( <m/n <m/n in Forms 1.5-1.7 ->m/~ 
with =m/,. Modify the models that show sets of Form 1.i are finitely 
consistent to show that sets of Form 1.i. 1 are finitely consistent. 
(For example, suppose X has 

Form 1.1.1. Ac-e, =m/n ef, Af-a, Acd, Ad-b, Eab (or Eba), where 
c~e. 

L e t U = { l , . . . m , m + l , . .  n } . L e t , ~ ( e ) = U ,  3 ( f ) = { 1 , . . . m } , a n d  
for other terms t let .~(t) = ,3(f) if Af- t  c_ X, otherwise let 
3(t) = {m + 1 , . . .  n}.) 

LEMMA 4. I f  exactly two fractional sentences occur in a chain X that 
does not have a T-form then X is finitely consistent. 

Proof. Assume the antecedent. Suppose the two fractional sentences 
in X are Qm/n.. and Rp/q - - .  There are six cases to consider. 
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Case 1: Q is 5 .  Subcase i: R is not  =. B o t h  XRp/q__]A and XRp/q--IE 
are finitely consistent,  by Lemma 3. So X is finitely consistent. Subcase 
ii : R is =.  If  either X#~/,IA or Xr have a T-form.  Then  X is finitely 
consistent,  by Lemma  3. Suppose both  XCm/,!A and Xr have a 
T-form.  Then  X has 

F o r m  2.1. Aa-c, Cm/n cb, =p/q ab, where a r c or m/n r p/q. 

Suppose a r c. Let  U = { 1 , . . . p , . . . q , . . . r } ,  w h e r e p / r  r m/n. And 
let,~(a) = { 1 , . . .  q}, ,~(b) = { 1 , . . . p } ,  and for  other  terms t let,~(t) = U. 
Suppose a = c and m/n r p/q. So X is Cm/n ab, =p/q ab. Let 
U = ( 1 , . . . p , . . .  q}, ,~(a) = U, and for other  terms t let ,~(t) = ( 1 , . . . p } .  

Case 2. Q is > and R is not  r  (Case 1 covers the situation in which 
R is r  Subcase i: 11 is > or _>. I f  XQ~/o..I A does not  have a T- form then 
X is finitely consistent,  by Lemma  3. I f  XQm/o..IA has a T- form then X 
has one o f  these forms: 

F o r m  2.2. Ac-e, >m/~ ef, Af-a, { >_p/q >p/q cd, Ad-b, Eab (or Eba), 

w h e r e c C e ,  o r m / n + p / q <  1. 

Form 2.3. Ac-a, ~ >p/q cd, Ad-e, >m/~ el, Af-b, Eab (or Eba). >-p/q l 

I f  X has F o r m  2.2, where c r e, or  if X has F o r m  2.3, X is finitely 
consistent since Xap/qcdla is finitely consistent,  by L emma  3. Consider  
F o r m  2.2, where c = e and m/n +p/q < l. Let  U = { 1 , . . . r n  ~ + 1, 
r#  + 2 , . . .  r + 1 }, where r is the least c o m m o n  denomina tor  of  m/n and 
p/q, m/n = m'/r, and p/q = p'/r. (So m' + 1/r + 1 > m/n. And r - m ' /  
r + 1 > p/q.) Let,~(c)  = U, 3 ( f )  = {1 , . . .  m' + 1}, and for  other  terms t 
let ,~(t) = ,~( f )  i fAf - t  C_ X, otherwise let ,~(t) = {m' + 2 , . . . r  + 1}. 
Subcase ii: R is < or _<. IfX>m/nrA does not  have a T- form then X is 
finitely consistent, by Lemma 3. I f  X>~/~jA has a T- form then X has 

F o r m  2.4. Aa-c, >m/~ cd, Ad-b, ~ <p/q ab, where a r c, or  <-;/q I 
rn/n < p/q. 
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Suppose a r c. XRHqablE does not have a T-form. So X is finitely 
consistent, by Lemma 3. Suppose a = c and m/n < p/q. Let 
U = { 1 , . . . m  / + 1 , . . . r  + 1}, where r is the least common 
denominator of m/n and p/q, m/n = ml/r, and p/q = pl/r. (So 
m' + 1/r + 1 > m/n. And m' + 1/r + 1 < p/q.) Let ,3(a) = U and 
for other terms t let ,3(t) = { 1 , . . . m ' +  1}. Subcase iii: R is =. If 
X>m/~iA does not have a T-form then X is finitely consistent, by 
Lemma 3. If  X>mj,!A has a T-form then X has one of these 
forms: 

Form 2.5. Ac-e, >m/n ef, Af-a, -~-p/q cd~ Ad-b, Eab (or Eba), 
where c ~ e, or m/n +p /q  < 1. 

Form 2.6. Ac-a, =p/q cd, Ad-e, >m/n ef, Af-b, Eab (or Eba). 
Form 2.7. Aa-c, >m/n cd, Ad-b, =p/q ab, 

where a 7~ c, or m/n < p/q. 

To show that Forms 2.5, 2.6, and 2.7 are finitely consistent, modify 
the reasoning for Forms 2.2, 2.3, and 2.4, respectively. 

Case 3: Q is > and R is neither ~ nor >. Use reasoning similar to 
that for Case 2. 

Case 4: Q is < and R is =, <, or _<. Subcase i: R is < or _<. 
XQm/,..LE is finitely consistent, by Lemma 3. So X is finitely 
consistent. Subcase ii: R is =. X=,/ql E is finitely consistent, 
by Lemma 3. If X=p/,i A does not have a T-form then X is finitely 
consistent, by Lemmas 3 and 2. If X=~/ql A has a T-form then 
X has 

Form 2.8. Aa-e, =p/q cd, Ad-b, <m/n ab, 
where a r e or p/q < m/n. 

To show X is finitely consistent use reasoning similar to that for 
Form 2.4. 

Case 5: Q is < and R is = or <. Use reasoning similar to that for 
Case 4. 

Case 6: Q is = and R is =. If  neither XO~/,..LA nor Xom/,. IE has a T-form 
then X is finitely consistent, by Lemma 2. If  XQm/,..IA has a T-form then X 
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has one of these forms: 

Form 2.9. Ac-e, =m/n ef, A f -a ,  =p/q cd, Ad-b, Eab (or Eba), 
where c r e, or m/n + p/q < 1. 

Form 2.10. Ac-a, =p/q cd, Ad-e, =m/n ef, Af-b, Eab (or Eba). 
Form 2.11. Aa-c, =m/~ cd, Ad--b, =p/q ab, 

where a r c, d r b and m/n < p/q, or m/n = p/q. 

Use reasoning similar to that for Forms 2.2, 2.3, and 2.4, respectively, 
to show that X is finitely consistent. I f  XQ~/~ has a T-form then X 
has one of these forms: 

Form 2.12. Ac-a, =p/q cd, Ad-b, =m/n ab, 
where c r a, d r b and p/q <_ m/n, or p/q = m/m. 

Form 2.13. Ac-a, -=p/q cd, Ad-b, =m/n ba. 

Consider Form 2.12. Suppose c r a. Let U = { 1 , . . . p , . . . q ,  q + 1 , . . . r ,  
r + 1,... n'}, where m/n = m'/n', m' > p, n' > q, and r + p - q = m'. 
Let ,~(a) = U, ,~(c) = { 1 , . . .  q}, and for other terms t let ,~(t) = 
{1 , . . . p}  U {q + 1 , . . .  r}. I f  c = a, then use the reasoning for 
Form 2.11. Consider Form 2.13. Let U = { 1 , . . . r , . . . r / p  x q, 
(rip x q) + 1,... (rip x (q - p) ) + (rim x n)}, where r is the least 
common multiple o f p  and m. Let ,~(c) = {1, . . .  r/p x q} and 
for other terms t let ~(t)  = ~(c) if Ac- t  C X, otherwise let 
3(t)  = {1 , . . . r }  U {(riP x q) + 1,... (rip • ( q - p ) )  + (r/m x n)}. 

L E M M A  5. I f  more than two fractional sentences occur in a chain J( 
then J( is finitely consistent. 

Proof Assume the antecendent. Then at least two fractional sentences, 
Pab and Qcd, occur in X, where a r c. Let Y = X - {Pab, Qcd}. 
Construct sets Y1,. .   9 Yn by replacing every occurrence of >~, _>~, 
or =~ in Y with A and by replacing every occurrence of =~, <~, _<~, 
or 5Z~ in Y with E. Yi U {Pab, Qcd} is finitely consistent, by Lemma 4. 
I f  = does not occur then n = 1, and thus X is finitely consistent. I f  = 
occurs m times (m > 0) then by 2 m - 1 uses of  Lemma 2 it follows that X 
is finitely consistent. (So, for example, consider X -- {>I/2 AB, --=1/2 BC, 
>1/2 CD, --1/2 DA) .  Construct the following sets, which are finitely 
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consistent, by Lemma 4: (1) {>1/2 AB, ABC, >1/2 CD, ADA}, (2) 
{>1/2 AB, ABC, >1/2 CD, EDA}, (3) {>1/2 AB, EBC, >I/2CD, ADA}, 
and (4) {>I/2AB, EBC, >1/2 CD, EDA}. By Lemma 2, {>V2 AB, 
ABC, >I/2CD, =1/2 ADA} and {>I/2AB, EBC, >1/2CD, =1/2 ADA} 
are finitely consistent. So, by Lemma 2, X is finitely consistent.) 

Theorem 1 is proved as follows. Suppose (X, y) is a syllogism and 
X, y* does not have a T-form. Then X, y* is a chain. (For a term 
belongs to y iff it belongs to y*.) X, y* is finitely consistent, given 
Lemrnas 1, 3, 4, and 5. So not (X ~ y). So X ~s Y only if X, y* has a 
T-form. 

4. SUFFICIENT CONDITION FOR SYLLOGISTIC VALIDITY 

We give a natural deduction (Aristotelian) account of deduction, using 
rules of inference, as in Smiley [13], instead of axioms, as in Lukasiewicz 
[7]. The rules of inference are: 

(1) (Barbara) From Pab, Abc infer Pac (P = A,/ ,  >~, or >~). 
(2) (Celarent) From Pab, Ebc infer Qac ([P, Q] = [A, El, [I, O], 

o r  

(3) (Baroco) From Pab, Acb infer Pac (P = O, <~, or <~). 
(4) (Felapton) From P~ab, Q~ac infer Obc (Either [P, Q] = [>, <] 

or [>_, <], where a >_/3, or [P, Q] = [>_, <], where a >/3). 
(5) (E-conversion) from Eab infer Eba. 
(6) (Subordination) From >~ ab infer >~ ab; from =~ ab infer 

>_~ ab; from =~ ab infer _<~ ab; and from <~ ab infer <~ ab. 

By definition, a sentence y is deducible from a set X of sentences (X F- y) 
iff either y c X or there is a sequence of sentences (Zl,... z,) such that (i) 
either zk E X, y* or zk is entered by a rule of inference from previous 
members of the sequence, (ii) no rule of inference is allowed to introduce 
a sentence that has had a prior occurrence, and (iii) a sentence of form 
Eaa; Oaa, or <_~ aa occurs in the sequence. (So, for example, {>I/2AB, 
ABC, ECD} F- <V2 AD, given the following sequence: (1) >]/2AB, (2) 
ABC, (3) ECD, (4) >I/2AD (that is, <I/2AD*), (5) >I/2AC (from 1 and 2 
by Barbara), (6) <I/2AD (from 5 and 3 by Celarent), (7) ODD (from 4 
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and 6 by Felapton). "Cesare," formed by replacing 'Ecb' in Celarent 
with 'Ebc', is among the derived rules of the system. Cesare is proven 
by using Celarent and E-conversion. "Darapt i"  (From Pab, Aac infer 
Ibc, where P = A, L >~, or >~) is proven as follows. Suppose P = A. 
Use this sequence: (1) Aab, (2) Aac, (3) Ebe (that is, Ibc*), (4) Eac 
(from 1 and 3 by Celarent), (5) Eca (from 4 by E-conversion), (6) Eaa 
(from 2 and 5 by Celarent). Suppose P = I or >_~. Use this sequence: 
(1) Pab, (2) Aac, (3) Ebc, (4) Qac, where Q = O or _<1-~ (from 1 and 3 
by Celarent), (5) Qaa, where Q = O or _<1-~ (from 4 and 2 by Baroco). 
Suppose P = >~. Use this sequence: (1) >~ ab, (2) Aac, (3) Ebc, 
(4) < t - ~  ac (from I and 3 by Celarent), (5) < l - ~  aa (from 4 and 2 
by Baroco), (6) _<l ~ aa (from 5 by Subordination).) 

THEOREM 2. I f  X I- y then J( ~ y. 
Proof  Assume the antecendent. There are two cases to consider. 
Case 1: y E X. Then for any model (U, ,3) such that ,~ assigns t to 

each member of X, ,~ assigns t to y. So X ~ y. 
Case 2: there is a sequence (z l , . . .  z,,) as described in the definition 

of k. First, each of the rules of inference passes truth downwards (that 
is, if (U, ,~) is a model and ,3 assigns t to the premises of a rule then 
,~ assigns t to the premises of a rule then .~ assigns t to the conclusion). 
(The reasoning is familiar if no fractional sentences occur in the premises 
of the rules. And there is no difficulty in showing that the Subordination 
rules pass truth downwards. Consider the other rules. Barbara, where P 
is >~. Suppose (U, 3) is a model, 3(>~ ab) = t, and 3(Abc) = t. So 3(a) 
is finite and 

3(a) n 3(b) 
>0~ 

3(a) 
Since 3(b) _c 3(e), 

3(a) n 3(C) >oq 
3(a) 

So ,~(>~ ac) = t. Use similar reasoning if P is >~. Celarent, where P 
is >~ and Q is <1 ~. Suppose <U, 3} is a model, 3(>~ ab) = t, and 
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3 ( E b c )  = t. So 3(a) is finite and 

3(a) n 3(b) 
3(a) 

So 

3(a) n 3(b) < l - a .  
3(a) 

Since 3(e) c_ 3(b), 

3(a) n 3(c) < l - a .  
3(a) 

So 3(<1-4  ac)  = t. Use simitar reasoning for the other values of [P, Q]. 
B a r o e o ,  where P is <. Suppose (U, 3) is a model, 3(<~ ab) = t, and 
3 ( A c b )  = t. So, 3(a) is finite and 

3(a) n 3(b) 
d o z .  

3(a) 

Since 3(c) c 3(b), 

3(a) n 3(e) 
<O~. 

3(a) 

So ,~(<~ ac)  = t. Use similar reasoning i fP is _<~. F e l a p t o n ,  where P is > 
and Q is <. Suppose (U, 3) is a model, 3(>~ ab) = t, 3 ( < ~  ac)  = t, and 
a > 3. So, 3(a) is finite, 

3(a) n 3(b) > o~, and 3(a) n 3(c) _</~. 
.3(,) 3(a) 

So 

3(, )  n S(c) 
3(,)  
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If 3(Obc) = f t h e n  

3(a) n 3(c) > 3(a) n .,~(b) 
3(a) 3(a) 

contradicting our previous assumptions. Use similar reasoning for the 
other values of [P, Q].) Secondly, there is no model (U, 3) such that ,~ 
assigns t to any of the following sentences: Eaa, Oaa, and _<~ aa. So, 
X y. 

THEOREM 3. If  X, y* has a T-form then X~- y. 
Proof. Assume the antecedent. For T-forms 1-4 we show how a 

sentence of form Qaa, where Q is E, O, or <-e, can be entered in a 
sequence that begins with the members of the T-form. For each 
T-form there are restrictions which must be noted. T-form 1: Ac-a, 
Pcd, Ad-b, Eab (or Eba): Enter Prcb, where pl is A,/ ,  or >~, by 
Subordination (if necessary) and Barbara (if necessary); Eab, by 
E-conversion; Ecb, by Barbara and Celarent (from Ac-a and Eab); 
Ebc, by E-conversion; Qcc, where Q is E, O, or <_1-~, by Celarent 
(from P~ cb and Ebc). T-form 2: P~cd, Ad-a, Qgce, Ae-b, Eab. 
Suppose P is >. Enter >~ ca, by Barbara; _>~ ce, by Subordination; 
>-9 cb, by Barbara; Eba, by E-conversion; _<1-9 ca, by Celarent; Oaa, 
by Felapton. Use similar reasoning if P is not >. T-form 3: Aa-b, Pab. 
If a = b, enter Ptaa, where P~ is E, O, or <_~, by Subordination. If 
a r b enter Aab, by Barbara. If P is E enter Eaa by E-conversion and 
Celarent. If P is not E enter Qaa, where Q is O or <_~, by Subordination 
and Baroco. T-form 4: Paac, Ae-b, Qgab. Suppose P is >. Enter 
>~ ab, by Barbara; <_3 ab, by Subordination: Obb, by Felapton. Use 
similar reasoning if P is not >. If X, y* has T-form 5, then X, y* is 
{=~ ab, r ab}. Then y E X. Then X ~- y. 

By definition, X F-T y iff (X, y) is a syllogism and X, y* has a T-form, 
and X F-s y iff (X, y) is a syllogism and X F- y. 

THEOREM 4. X ~ s  y iff X~-T y, and X ~ s  y i f fX F-s y. 
Proof. Suppose X F-s y. So X ~-T Y (Theorem 1). So X F-s y 

(Theorem 3). So X F-s y (Theorem 2). 
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Aristotelian syllogisms are syllogisms that contain no fractional 
quantifiers. 

COROLLARY 1 (Smiley [13]). I f  'X, so y' is an Aristotelian syllogism 
then X ~s Y iff X, y* has one of  these forms, listed as they occur in Theorem 
2 of([13] p. 143): (i) Aa-b, Oab, (ii) Ac-a, A_c-b, Eab, and (iii) Ac-a, 
Ad-b, Icd (or Idc), Eab. 

Proof. Form (i) has T-form 3 (where P = O). Form (ii) has T-form 1. 
(If P = A then Pcd, Ad-b has form Ac-b). Form (iii) has T-form 1. 
(If Idc, rather than Icd, occurs in form (iii) make these replacements in 
Ac-a, led, Ad-b, Eba: a/b, b/a, c/d, die.) T-form 1 has form (ii) i f P  = A 
and form (iii) if P = L T-form 3 has form (ii) if P = E and form (i) if 
P = O. T-forms 2, 4, and 5 are irrelevant since their only instances are 
syllogisms in which there are fractional quantifiers. 

5. SYMMETRIC SYSTEMS 

We weaken the above language so that the only other quantifiers, 
if any, in addition to A, E, I, and O are the finitely many fractional 
quantifiers >~1,. . .  >~k, -<~1,- -- -<~k, where for each >~  there is 
an >~j such that c~i + c~j = 1. We shall say that such a system is a 
symmetric system. (Note that k is odd iff > 1/2 is one of the quantifiers in 
the system.) 

Consider a symmetric system where the fractional quantifiers are  >3/4, 
>1/2, >1/4, -<3/4, _<1/2, and _<1/4- Peterson ([9] pp. 355-356) points out 
that the 5-quantity syllogistic may, for some purposes, be expressed in 
this symmetric system. (For discussions of the 5 (and higher) - quantity 
syllogistic see [2], [9], [10], and [11].) Following Peterson, let the above six 
fractional quantifiers correspond to almost-all (P), most (T), many (K), 
not-almost-all (G), not-most (D), and not-many (B), respectively. 
Peterson shows that there are exactly 105 valid two-premise syllogisms 
in this symmetric system. These 105 forms are listed in [9]. Among these 
forms are APT-1 ('Aab, >3/4 ca; so >1/2 cb'), ADO-2 ('Aab, ~1/2 cb; so 
Oca'), PTI-3 ('>3/4 ab, >1/2 ac; so Icb'), and TAI-4 ('>1/2 ab, Abc; so 
lea'). APT-1 is valid since 'Aab, >3/4 ca, <_1/2 ab' has T-form 4. (Make 
these replacements: a/c, b/b, c/a, P~/>3/4,  and Q;~/_<1/2-) ADO-2 is 
valid since 'Aab, _<1/2 cb, Aca' has T-form 3. ('Aclc2, Ac2c3, PClC3' is a 
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special case of T-form 3. Make these replacements: cl/c, c2/a, c3/b, and 
P/<-I/2.) PTI-3 is valid since '>3/4 ab, >1/2 ac, Ecb' has T-form 2. (Make 
these replacements: a/c, b/b, c/a, d/c, e/b, P~/>1/2,  and Qg/>3/4.)  
TAI-4 is valid since '>1/2 ab, Abc, Eca' has T-form 1. (Make these 
replacements: a/a, b/c, c/a, d/b, P/>1/2 . )  

Peterson ([9] p. 354) mentions his proof  in ([11] w that for 
symmetric systems with 2j quantifiers (including A, E, / ,  and O) there are 
exactly 3j(j + 2) valid syllogistic forms that have two premises. The 
following theorem generalizes this result. 

T H E O R E M  5. For symmetric systems with exactly 2k fractional 
quantifiers the number of valid n-premise syllogistic forms (n >_ 2) is 
equal to (n + 1)(k + 2 + n(k 2 + 5k + 6)/2). 

Proof For each T-form, taken in order, we give the number of  
forms of n-membered inconsistent sets (n _> 2) identified by it that 
are not identified by a preceding T-form. T-form 1: 2nk + 3n + t. 
(If P = A, there are n + 1 such forms. Note that Ac-a, Ac-b, Eab 
and Ac-a, Ac-b, Eba generate the same sets. If  P r A, there are 
2n(k + 1) such forms.) T-form 2: (n - 1)(~k 1i). (There are n - 1 
ways P and Q can be located in the set and there are (~k_ li) ways 
of meeting the restriction on T-form 2.) T-form 3: (k + 1). (Aa-b, 
Eab was identified as having T-form 1.) T-form 4: (~k=li). T-form 5: 
0. So the number of forms of n-membered inconsistent sets (n > 2) 
identified by T-forms is (2nk + 3n + 1) + n(E/k=l i) + k + 1 (that 
is, k + 2 + n(k 2 + 5k + 6)/2). Multiply this number by n + 1 to 
find the number of valid syllogistic forms (X,y), where X has n 
members. 

C O R O L L A R Y  1 (Peterson [11] w For symmetric systems with 
exactly 2k fractional quantifiers the number of  valid two-premise 
syllogistic forms is equal to 3k 2 + 18k + 24. 

C O R O L L A R Y  2 (Meredith [8]). For symmetric systems with 
exactly O fractional quantifiers (that is, for Aristotelian syllogisms) 
the number O f valid n-premise syllogistic forms (n > 2) is equal to 
3n 2 + 5n + 2. 
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6. RELEVANT VALIDITY 

Some "relevant" features of ~s are expressed in the following 
theorem. 

THEOREM 6. (1) (Non-overlap) There are choices of Z and y such 
that y E X and not (X ~s Y). (2) (Non-dilution) There are choices of 
X, y and z such that X ~s Y and not (X, z ~s Y). (3) (Non.cut) There 
are choices of X, y, z and w such that X ~s Y, and {y, z} ~s w, but not 
(X,z ~s w). (4) (Term sharing) I f  X ~s Y and X T~ 0 then any term that 
occurs in y occurs in X. (5) (Non-trivial conclusion) I f  X ~s Y and X r 0 
then there is a model (U, 3) such that 3 assigns f to y. (6) (Premise 
consistency) I f  X ~s Y and X r 0 then 32 is consistent. (7) (Boethius's 
Thesis) IF X ~s Y then not (X ~s Y*). (8) (Aristotle's Thesis) I f  X, y ~s z 
then not (X,y* ~s z). 

Proof. (1) Not ({AAB, ABC} ~s AAB). (2) 0 ~s AAA), but not 
({AAB} ~s AAA). (3) {AAB, ABC} ~s AAC, and 
{AAC, ACB} ~s AAB, but not ({AAB, ABC, ACB} ~s AAB). (4) Use 
the fact that X, y is a chain. (5) Given the antecedent, two distinct 
terms occur in y. Models in which y is false are easily constructed. (6) 
We use induction on the number n of members of X to show there is a 
finite model that assigns t to each member of X. Basis step: n = 1. So 
X = {Pab}, where a r b. Finite models in which Pab is true are easily 
constructed. Induction step: n > 1. By the induction hypothesis there is a 
model ({1,. . .  m}, 3) such that 3 assigns t to each member of(X) P1 (abt), 
P2(blb2),.. .  Pn(bn- lbn), where the parentheses indicate that either term 
in a sentence may be the subject term. We use this model to construct a 
model that shows the consistency of X, Pn+l(bnc), where c does not 
occur in X. 

Case 1: Pn+l is A, I, >~, >_~, r Construct (U,,~), where 
3'(c) = 3(bn) and for other terms t, 3'(t) = 3(t). 

Case 2: P,+I  is E, O, <, or <. Construct (UI,,~}, where 
U' = U U {m + 1}, 3'@) = {m + 1} and for other terms t 3'(t) = 3(t). 

Case 3: Pn+l (b,c) is =p/q b,c. Construct (U',,~') where 
U' = {1/1 , . . .  l /p , . . .  1/q}  9 {2 /1 , . . .Z /p , . . . 2 /q}U 
... {m/1, . . .  m/p , . . ,  re~q}. For terms other than e let 
3'(t) = {x/ill <_ i < q and x E 3(t)}. Let 3'@) = {x/i[1 < i <_ p and 
x c 
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Case 4: P~+l(b,c) is =-p/q cbn. Use a model similar to that for 
Case 3. (7) If X, y* has a T-form then X, y does not have a T-form. 
(8) If  X, y, z* has a T-form then X, y*, z* does not have a 
T-form. 

Since both Aritotle's Thesis and Boethius's Thesis hold for ~s, 
the above logic is a connexive logic, as defined by McCall 
([1] p.435). 

7. DECISION PROCEDURES 

Given the above discussion there are three decision procedures for 
determining the validity of a syllogism (X, y). The most practical is 
simply to determine whether X, y* has a T-form. Another, also syntactic, 
decision procedure requires answering at most two questions: (1) 
Does y E X? and (2) After listing all of the sentences in a deduction 
that begins with X, y*, does any sentence of  the form Paa appear, 
where P is E, O, or _<4? (Given the nature of  the rules of inference at 
most finitely many distinct sentences can be entered, for no rule 
introduces a new term, and the number of new fractions that may be 
introduced is at most twice the number of fractions that occur in X, y.) 
And this (impractical) semantic decision procedure is available. Use 
Theorem 4 and the reasoning for Theorem 1 to place an upper bound n 
on the cardinality of  the domains of models required to show the 
invalidity of (X, y), if it is invalid. Check all models with domain 
{ 1 , . . .  n}, determining whether any provides a counterexample, 
keeping in mind that any syllogism that can be shown invalid using a 
domain of size m can be shown invalid using a domain of size n if n > m. 
(So, for example, if =4/sAB is the only fractional sentence that belongs 
to X, y, then (X ~s Y) iff there is no counterexample in a model with 
domain {1, . . .  15}.) 
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