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Abstract. Grossberg and VanDieren have started a program to de-
velop a stability theory for tame classes (see [GrVa1]). We name some
variants of tameness (Definitions 1.4 and 1.7) and prove the following.

Theorem 0.1. Let K be an AEC with Löwenheim-Skolem number ≤ κ.
Assume that K satisfies the amalgamation property and is κ-weakly tame
and Galois-stable in κ. Then, K is Galois-stable in κ+n for all n < ω.

With one further hypothesis we get a very strong conclusion in the
countable case.

Corollary 0.2. Let K be an AEC with Löwenheim-Skolem number ℵ0

that is ω-local and ℵ0-tame. If K is ℵ0-Galois-stable then K is Galois-
stable in all cardinalities.

Introduction

A tame abstract elementary class is an abstract elementary class (AEC) in
which inequality of Galois-types has a local behavior. Tameness is a natural
condition, generalizing both homogeneous classes and excellent classes, that
has very strong consequences. We examine one of them here.

The work discussed in this paper fits in the program of developing a
model theory, in particular a stability theory, for non-elementary classes.
Many results to this end were in contexts where manipulations with first
order formulas, or infinitary formulas, were pertinent and consequential.
Most often, types in these context were identified with satisfiable collections
of formulas. The model theory for abstract elementary classes where types
are identified roughly with the orbits of an element under automorphisms
of some large structure moves away from the dependence on ideas from first
order logic.

The main result of this paper is not surprising in light of what is known
about first order model theory, but it does shed light on problems that be-
come more elusive in abstract elementary classes. Theorem 0.1 follows from
Corollary 6.3 of [GrVa1] under the assumption of GCH. The [GrVa1] ar-
gument generalizes an aspect of Shelah’s method for calculating the entire
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spectrum function. The ZFC-argument here illustrates the relation of tame
AEC’s to first order logic. Morley’s argument that ω-stability implies sta-
bility in all cardinalities is just translated naively to move Galois-stability
from a cardinal to its successor. For larger κ some splitting technology is
needed and the result is that Galois-stability in κ implies Galois-stability in
κ+ when κ is at least as large as the tameness cardinal.

We acknowledge helpful conversations with Rami Grossberg and Alexei
Kolesnikov, particularly on the correct formulation and proof of Fact 1.2.

1. Background

Much of the necessary background for this paper can be found in the ex-
position [Gr1] and the following papers on tame abstract elementary classes
[GrVa1] and [GrVa2]. We will review some of the required definitions and
theorems in this section. We will use α, β, γ, i, j to denote ordinals and
κ, λ, µ, χ will be used for cardinals. We will use (K,≺K) to denote an ab-
stract elementary class and Kµ is the subclass of models in K of cardinality
µ. For an AEC K, LS(K) represents the Löwenheim-Skolem number of the
class. Models are denoted by M,N and may be decorated with superscripts
and subscripts. Sequences of elements from M are written as ā, b̄, c̄, d̄. The
letters e, f, g, h are reserved for K-mappings and id is the identity mapping.

For the remainder of this paper we will fix (K,≺K) to be an abstract
elementary class satisfying the amalgamation property. It is easy to see that
we only make use of the κ-amalgamation property for certain κ and some
facts here hold in classes satisfying even weaker amalgamation hypotheses.
Since we assume the amalgamation property, we can fix a monster model
C ∈ K and say that the type of a over a model M ≺K C is equal to the type
b over M iff there is an automorphism of C fixing M which takes a to b. In
this paper we will freely use the term type in place of Galois-type which is
used in the literature to distinguish types defined by collections of formulas
from those defined as orbits. For a model M in K, the set of Galois-types
over M is written as ga-S(M). An AEC K satisfying the amalgamation
property is Galois-stable in κ provided that for every M ∈ Kκ the number
of types over M is ≤ κ.

Let us recall a few results that follow from Galois-stability in κ.

Definition 1.1. Let M ∈ Kκ, we say that N is universal over M provided
that for every M ′ ∈ Kκ with M ≺K M ′, there exists a K-mapping f : M ′ →
N such that f ¹M = idM .

Note that in contrast to most model theoretic literature, in AEC a tradi-
tion has grown up of defining ‘universal’ as ‘universal over submodels of the
same size’.

Fact 1.2 ([Sh 600], see [Ba2] or [GrVa1] for a proof). If K is Galois-stable
in κ and satisfies the ≤ κ-amalgamation property, then for every M ∈ Kκ
there is some (not necessarily unique) extension N of M of cardinality κ
such that N is universal over M .
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If K is Galois-stable in κ, we can construct an increasing and continuous
chain of models 〈Mi ∈ Kκ | i < σ〉 for any limit ordinal σ ≤ κ+ such that
Mi+1 is universal over Mi. The limit of such a chain is referred to as a
(κ, σ)-limit model.

Corollary 1.3. Suppose K is κ-Galois-stable and Kκ has the amalgamation
property with LS(K) ≤ κ. Then for any model M ∈ K with cardinality κ+

we can find a κ+-saturated and (κ, κ+)-limit model M ′ such that M can be
embedded in M ′.

Proof. Write M as an increasing continuous chain Mi of models of cardi-
nality at most κ. We define an increasing chain of models M ′i , each with
cardinality κ, and fi so that fi is a K-embedding of Mi in M ′i and such
that each M ′i+1 realizes all types over Mi; indeed, M ′i+1 is universal over
M ′i . For this, first choose M1

i which is universal over M ′i by Fact 1.2. Then
amalgamate Mi+1 and M1

i over fi : Mi 7→ M ′i with M ′i ≺K M ′i+1. Now the
union of the M ′i is a (κ, κ+)-limit model which imbeds M . a

Now we turn our attention to two definitions which capture instances in
which types are determined by a small set. These two approaches to local
character play different roles in this paper.

Definition 1.4. Let K be an AEC.

(1) We say that a class K is χ-tame provided that for every model M in
K and every p and q, types over M , if p 6= q, then there is a model of
cardinality χ which distinguishes them. In other words if p 6= q, then
there exists N ∈ Kχ with N ≺K M such that p ¹ N 6= q ¹ N .

(2) A class K is ω-local provided for every increasing chain of types {pi |
i < ω} there is a unique p such that p =

⋃
i<ω pi.

For some of the results in this paper we could replace χ-tameness with the
two-parameter version of [Ba1], (κ, χ)-tameness, which requires only that
distinct types over models of cardinality κ be distinguished by models of
cardinality χ. Since we don’t actually carry out any inductions to establish
tameness, this nicety is not needed here. Note that if χ < κ, χ-tame implies
κ-tame.

Remark 1.5. If K is an AEC with the amalgamation property, for every
increasing ω-chain of types pi, there is a type over the union of the domains
extending each of the pi; however, this extension need not be unique (1.10
of [Sh394], proved as 3.14 in [Ba1]).

Remark 1.6. If an AEC axiomatized by a Lω1,ω(Q)-sentence satisfies
“Galois-types = syntactic types” then the AEC is both ℵ0-tame and ω-local.
Shelah showed, assuming weak GCH, this happens for Lω1,ω classes that are
categorical in ℵn for every n < ω; it also holds for Zilber’s quasiminimal
classes in Lω1,ω(Q).
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A weaker version of tameness requires that only those types over saturated
models are determined by small sets. This appears as χ-character in [Sh394]
where Shelah proves that, in certain situations, categorical AECs have small
character.

Definition 1.7. For an AEC K and a cardinal χ, we say that K is χ-weakly
tame or has χ-character iff for every saturated model M and every p 6= q ∈
ga-S(M), there exists N ∈ Kχ such that N ≺K M and p ¹ N 6= q ¹ N .

2. ℵ0-tameness

In this section we assume K has a countable language and Löwenheim-
Skolem number ω. We consider the simpler case where K is ℵ0-tame since
in this case we get a more general result than stated in the abstract.

Theorem 2.1. Suppose LS(K) = ℵ0. If K is ℵ0-tame and µ-Galois-stable
for all µ < κ and cf(κ) > ℵ0 then K is κ-Galois-stable.

Proof. For purposes of contradiction suppose there are more than κ types
over some model M∗ in K of cardinality κ. We may write M∗ as the union
of a continuous chain 〈Mi | i < κ〉 under ≺K of models in K which have
cardinality < κ. We say that a type over Mi has many extensions to mean
that it has ≥ κ+ distinct extensions to a type over M∗.

Claim 2.2. For every i, there is some type over Mi with many extensions.

Proof of Claim 2.2. Each type over M∗ is the extension of some type over
Mi and, by our assumption, there are less than κ many types over Mi, so
at least one of them must have many extensions.

a
Claim 2.3. For every i, if the type p over Mi has many extensions, then for
every j > i, p has an extension to a type p′ over Mj with many extensions.

Proof of Claim 2.3. Every extension of p to a type over M∗ is the extension
of some extension of p to a type over Mj . By our assumption there are less
than κ many such extensions to a type over Mj , so at least one of them
must have many extensions. a
Claim 2.4. For every i, if the type p over Mi has many extensions, then
for all sufficiently large j > i, p can be extended to two types over Mj each
having many extensions.

Proof of Claim 2.4. By Claim 2.3 it suffices to establish the result for some
j > i. So assume that there is no j > i such that p has two extensions
to types over Mj each having many extensions. Then, by Claim 2.3 again,
for every j > i, p has a unique extension to a type pj over Mj with many
extensions. Let S∗ be the set of all extensions of p to a type over M∗ – so
|S∗| ≥ κ+. Then S∗ is the union of S0 and S1, where S0 is the set of all q in
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S∗ such that pj ⊆ q for all j > i, and S1 is the set of all q in S∗ such that
q does not extend pj for some j > i. Now if q1 and q2 are different types
in S∗ then, since K is ℵ0-tame and cf(κ) > ℵ0, their restrictions to some
Mi ≺K M∗ with i < κ must differ. Hence their restrictions to all sufficiently
large Mj must differ. Therefore, S0 contains at most one type. On the other
hand, if q is in S1 then, for some j > i, q ¹ Mj is an extension of p to a
type over Mj which is different from pj , hence has at most κ extensions to
a type over M∗. Since there are < κ types over each Mj (by our stability
assumption) and just κ models Mj there can be at most κ types in S1. Thus
S∗ contains at most κ types, a contradiction.

a

Claim 2.5. There is a countable M ≺K M∗ such that there are 2ℵ0 types
over M .

Proof of Claim 2.5. Let p be a type over M0 with many extensions. By
Claim 2.4 there is a j1 > 0 such that p has two extensions p0, p1 to types over
Mj1 with many extensions. Iterating this construction we find a sequence
of models Mjn and a tree ps of types for s ∈ 2ω with the 2n types ps (where
s has length n) all over Mjn and each ps has many extensions. Invoking
ℵ0-tame, we can replace each Mjn by a countable M ′jn and ps by p′s over
M ′jn while preserving the tree structure on the p′s. Let M̂ be the union of
the M ′jn . Now for each σ ∈ 2ω, pσ =

⋃
s⊂σ ps is a Galois-type, by Remark

1.5 a

Since Claim 2.5 contradicts the hypothesis of ω-Galois-stability, this es-
tablishes Theorem 2.1. a

Corollary 2.6. Suppose LS(K) = ℵ0. If K is ℵ0-weakly-tame and ω-Galois-
stable then

(1) K is Galois-stable in all ℵn for n < ω.
(2) If in addition K is both ω-local and ℵ0-tame, K is Galois-stable in all

cardinalities.

Proof of Corollary 2.6. In the proof of Theorem 2.1 if κ is a successor cardi-
nal, then by Corollary 1.3, M∗ can be embedded into a saturated model and
the proof can be carried through with the weaker assumption of ℵ0-weak-
tameness. Thus the first claim follows by induction.

To carry out the induction for all cardinals, we follow the argument in
Theorem 2.1 for limit ordinals of cofinality ω. At the stage where we called
upon ℵ0-tameness in Claim 2.4, we now use the hypothesis of ω-locality.
For limit ordinals of uncountable cofinality, we use the assumption of ℵ0-
tameness since we have no guarantee that M∗ can be taken to be saturated.

a
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3. κ-tame: Uncountable κ

Note that the proof of Theorem 2.1 cannot be immediately generalized to
deducing stability in κ+ from stability in κ when the class is tame, but not
ℵ0-tame. The fact that the countable increasing union of Galois types is a
Galois type is very much particular to ‘countable’ and in general does not
hold when we replace countable by uncountable. We solve this with a use
of µ-splitting.

Definition 3.1 ([Sh394]). A type p ∈ ga-S(N) µ-splits over M ≺K N if
and only if there exist N1, N2 ∈ K≤µ and h, a K-embedding such that
M ≺K Nl ≺K N for l = 1, 2 and h : N1 → N2 such that h ¹ M = idM and
p ¹ N2 6= h(p ¹ N1).

This dependence relation behaves nicely in Galois-stable AECs. The exis-
tence of unique non-splitting extensions fromM toM ′ whereM andM ′ have
the same cardinality and M ′ is universal over M holds for any AEC with
amalgamation. There is a full proof as 1.4.13 and 1.4.14 of [Va]. Existence
of non-splitting extensions to larger cardinalities is more difficult although
under the assumption of categoricity, it is asserted in [Sh394] and a special
case is given a short proof in [Ba3]. In the more general situation, unique-
ness requires tameness; see 6.2 of [Sh394]. Here we state the uniqueness and
existence statements upon which we will be explicitly calling.

Lemma 3.2 (Uniqueness [Sh394] and [Va]). Let N,M,M ′ ∈ Kµ be such
that M ′ is universal over M and M is universal over N . If p ∈ ga-S(M)
does not µ-split over N , then there is a unique p′ ∈ ga-S(M ′) such that p′

extends p and p′ does not µ split over N .

Lemma 3.3 (Existence Fact 3.3 of [Sh394] see also [GrVa1]). Let M ∈ K≥κ
be given. Suppose that K satisfies the (≤ ‖M‖)-amalgamation property. If
K is Galois-stable in κ, then for every p ∈ ga-S(M), there exists N ∈ Kκ
such that N ¹K M and p does not κ-split over N .

Remark 3.4. The arguments in Claim 2.5 and Lemma 3.3 differ. In Claim 2.5,
we construct a tree of height ω of Galois types and must find a union for
each branch. In Lemma 3.3, a tree of height κ is constructed by spreading
out copies of a given type.

We are able to carry out the following argument under the hypothesis of
weakly tame rather than tame so we record the stronger result.

Theorem 3.5. Let K be an abstract elementary class that has Löwenheim-
Skolem number ≤ κ and is κ-weakly-tame. Then if K is Galois-stable in κ
it is also Galois-stable in κ+.

Proof. We proceed by contradiction. So we make the following assumption:
M∗ is a model of cardinality κ+ with more than κ+ types over it. By
Corollary 1.3, we can extend M∗ to a (κ, κ+)-limit model which is saturated.
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Since it has at least as many types as the original we just assume that M∗

is a saturated, (κ, κ+)-limit model witnessed by 〈Mi | i < κ+〉.
Let {pα | α < κ++} be a set of distinct types over M∗. By stability in κ,

for every pα there exists iα < κ+ such that pα does not κ-split over Miα (by
Lemma 3.3). (Note, we don’t need a (κ, κ+)-limit here but we do below.) By
the pigeon-hole principle there exists i∗ < κ+ and A ⊆ κ++ of cardinality
κ++ such that for every α ∈ A, iα = i∗.

Now apply the argument of the Claims from the previous section to the
pα for α ∈ A to conclude there exist p, q ∈ S(M∗) and i < i′ ∈ A, such that
neither p nor q κ-splits over Mi or Mi′ but p ¹ Mi′ = q ¹ Mi′ . By weak
tameness, there exists an ordinal j > i′ such that p ¹ Mj 6= q ¹ Mj . Notice
that neither p ¹Mj nor q ¹Mj κ-split over Mi. This contradicts Lemma 3.2
by giving us two distinct extensions of a non-splitting type to the model Mj

which by construction is universal over Mi′ . a
Using Theorem 3.5 with an inductive argument on n < ω, together with

Corollary 2.6 (1), we obtain the theorem from the abstract:

Theorem 3.6. Let K be an abstract elementary class that has Löwenheim-
Skolem number ≤ κ and is κ-weakly tame. Then if K is Galois-stable in κ
it is also Galois-stable in κ+n for any n < ω.

One motivation for working out these arguments was to explore whether
or not Galois-superstability (in the sense of few types over models in every
large enough cardinality) could be derived from categoricity in the abstract
elementary class setting. Following tradition, we write Hanf(K) for the Hanf
number for omitting types in first order languages with the same size vocab-
ulary as K. Using Ehrenfeucht-Mostowski models as in the first order case,
for an AEC with amalgamation, categoricity in a λ greater than Hanf(K)
implies Galois-stability below λ. In the first order case analysis of the sta-
bility spectrum function allows one to conclude stability in λ. Although we
don’t have such a full analysis of the spectrum function, we can immediately
conclude from Theorem 3.5:

Corollary 3.7. Suppose λ is a successor cardinal. Let K be an abstract
elementary class that has Löwenheim-Skolem number < λ and is λ-weakly
tame. If K is λ-categorical, then it is Galois-stable in λ.

This result is also a consequence of Theorem 4.1 in [GrVa2] in which the
hypotheses of Corollary 3.7 allow one to construct for every M ∈ Kλ a model
M ′ also of cardinality λ so that M ′ realizes every type over M .

References

[Ba1] John Baldwin. Ehrenfeucht-Mostowski Models in Abstract Elementary Classes.
Preprint. URL:http://www2.math.uic.edu/~jbaldwin/pub/EM8.pdf

[Ba2] John Baldwin. Categoricity. In preparation.
URL:http://www2.math.uic.edu/~jbaldwin/pub/AEClec.pdf

[Ba3] John Baldwin. Non-splitting Extensions. Technical Report.
URL:http://www2.math.uic.edu/~jbaldwin/model.html



8 JOHN BALDWIN, DAVID KUEKER, AND MONICA VANDIEREN

[Gr1] Rami Grossberg. Classification theory for non-elementary classes. Logic and Al-
gebra, ed. Yi Zhang, Contemporary Mathematics, 302, (2002) AMS, pp. 165–204.

[GrVa1] Rami Grossberg and Monica VanDieren. Galois-stability in
Tame Abstract Elementary Classes. Preprint (23 pages). Submitted.
URL:http://www.math.lsa.umich.edu/~mvd/home.html

[GrVa2] Rami Grossberg and Monica VanDieren. Upward Categoricity Trans-
fer Theorem for Tame Abstract Elementary Classes. Preprint (20 pages).
URL:http://www.math.lsa.umich.edu/~mvd/home.html

[Sh394] Saharon Shelah. Saharon Shelah. Categoricity of abstract classes with amalgama-
tion. Annals of Pure and Applied Logic, 98(1-3), pages 141–187, 1999.

[Sh 600] Saharon Shelah. Categoricity in abstract elementary classes: going up inductive
step. Preprint. 92 pages.

[Va] Monica VanDieren. Categoricity in abstract elementary classes with no maximal mod-
els. (61 pages). Submitted. URL: http://www.math.lsa.umich.edu/~mvd/home.html

E-mail address, John Baldwin: jbaldwin@uic.edu

Department of Mathematics, University of Illinois at Chicago, Chicago IL
60607

E-mail address, David Kueker: dwk@math.umd.edu

Department of Mathematics, University of Maryland, College Park MD
20742-4015

E-mail address, Monica VanDieren: mvd@umich.edu

Department of Mathematics, University of Michigan, Ann Arbor MI 48109-
1109


