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Many philosophers think of Bayesianism as a theory of practical rational-

ity. This is not at all surprising given that the view’s most striking successes have

come in decision theory. Ramsey (1931), Savage (1972), and De Finetti (1964)

showed how to interpret subjective degrees of belief in terms of betting behavior,

and how to derive the central probabilistic requirement of coherence from

reflections on the nature of rational choice. This focus on decision-making can

obscure the fact that Bayesianism is also an epistemology. Indeed, the great

statistician Harold Jeffries (1939), who did more than anyone else to further

Bayesian methods, paid rather little heed to the work of Ramsey, de Finetti, and

Savage. Jeffries, and those who followed him, saw Bayesianism as a theory of

inductive evidence, whose primary role was not to help people make wise

choices, but to facilitate sound scientific reasoning.1 This paper seeks to promote

a broadly Bayesian approach to epistemology by showing how certain central

questions about the nature of evidence can be addressed using the apparatus of

subjective probability theory.

Epistemic Bayesianism, as understood here, is the view that evidential rela-

tionships are best represented probabilistically. It has three central components:

Evidential Probability. At any time t, a rational believer’s opinions can be

faithfully modeled by a family of probability functions C t, hereafter called her

credal state,2 the members of which accurately reflect her total evidence at t.

Learning as Bayesian Updating. Learning experiences can be modeled as shifts

from one credal state to another that proceed in accordance with Bayes’s Rule.

Confirmational Relativity. A wide range of questions about evidential relation-

ships can be answered on the basis of information about structural features

credal states.

The first of these three theses is most fundamental. Much of what Bayesians say

about learning and confirmation only makes sense if probabilities in credal
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states reflect states of total evidence. It is often said, for instance, that learning

one proposition E increases a person’s evidence for another X just in case X’s

probability conditional on E exceeds X’s unconditional probability. Clearly, this

assumes that the unconditional and conditional probabilities in a person’s credal

state somehow reflect her total evidence.

The aim of this essay is to clarify the thesis of Evidential Probability by

explaining how a person’s subjective probabilities reflect her total evidence.

After a brief discussion of the Bayesian formalism and its epistemological

significance, it will be argued that a person’s total evidence in favor of any

proposition can be decomposed along three dimensions that have rather differ-

ent probabilistic profiles. The overall balance of the evidence is a matter of how

decisively the data tells in favor of the proposition. This is what individual

probability values reflect. The weight of the evidence is a matter of the gross

amount of relevant data available. It is reflected in the concentration and

stability of probabilities in the face of changing information. The specificity of

the evidence is a matter of the degree to which the data discriminates the truth of

the proposition from that of alternatives. It is reflected in the spread of prob-

ability values across a credal state. By appreciating these disparate ways in

which probabilities can reflect total evidence we shall come appreciate the

richness of the Bayesian formalism, and its importance for epistemology. The

central theses of the paper are (i) that any adequate epistemology must be

capable of accurately representing the distinctions between the balance, weight

and specificity of evidence, and (ii) that only a probabilistic theory is capable of

doing this properly.

Many of the points made here have been made by others. Indeed, the

distinctions between balance, weight and specificity have all been made before,

albeit often in an incomplete or piecemeal way. The novelty here is the integra-

tion of these insights into an appealing and coherent probabilistic theory of

evidence. We begin with a brief sketch of Bayesianism.

1. Credences as Estimates of Truth-Value.

Any adequate epistemology must recognize that beliefs come in varying

gradations of strength. Instead of asking whether a person accepts or rejects a

proposition outright, we must inquire into her level of confidence in its truth.

These confidence levels go by a variety of names—degrees of belief, subjective

probabilities, grades of uncertainty—but ‘credences’ will be the preferred term

here. By any name, a person’s credence in X is a measure of the extent to which

she is disposed to presuppose X in her theoretical and practical reasoning.3

People also have graded conditional beliefs that express their degrees of

confidence in the truth of some propositions on the supposition that other

propositions obtain. It is often said that a believer’s credence for X conditional

on Y is the credence she would invest in X if she were to learn Y. While there is
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something right in this idea, it must be handled delicately. A person’s credence

for X conditional on Y will only coincide with her unconditional credence for X

after learning Y when the learning induced belief change is not driven by any

arational processes that ignore Y’s content, and when Y encompasses literally

everything that the person learns (even the fact that she has learned Y). For

current purposes, it is not crucial to get clear about the precise relationship

between conditional belief and learning. The essential point is that conditional

credences have a clear epistemic interpretation: the epistemic effect of condition-

ing on Y is to provisionally augment the believer’s total evidence by the addition

of Y and nothing else.

Graded beliefs help us estimate quantities of interest. These can be almost

anything: the fair price of a bet, the proportion of balls in an urn, the average

velocity of stars in a distant galaxy, the truth-value of a proposition, the

frequency of a disease in a population, and so on. Since the values of such

quantities often depend on unknown factors, we imagine the believer being

uncertain about which member of a given set W of total contingencies (¼
possible worlds) actually obtains, and we think of the quantity of interest as a

function, or ‘random variable’, f that assigns each world W in W a unique real

number f(W). The objective in estimation is to come up with an anticipated

value f* for f that is, in some sense, the best possible given the information at

hand.

The accuracy of such estimates can be evaluated in a variety of ways. One

can employ a categorical scale that recognizes only two ways of fitting the facts:

getting things exactly right, so that f* ¼ f, or having them wrong. This approach

makes no distinctions among different ways of being wrong, so that ‘‘a miss is as

good as a mile.’’ Alternately, one can use a gradational, or ‘‘closeness counts,’’

scale that assigns estimates higher degrees of accuracy the closer they are to the

actual value of quantity being estimated. In (Joyce 1998) it is argued that degrees

of belief are principally used to make estimates that are judged on a gradational

scale. One can assess the overall quality of a person’s credences by considering

the accuracy of the estimates they sanction. It is, for example, a flaw in a

credence function if it sanctions estimates f* > g* when g dominates f in the

sense that g(W) � f(W) for all W in W .

Different Bayesians construe credences differently depending on the sorts of

estimates they tend to consider. The role of credences in estimating utilities of

actions is often highlighted. This engenders a Bayesianism that emphasizes the

practical virtues of having certain kinds of credences. For example, synchronic

‘‘Dutch book’’ arguments purport to show that one can only avoid choosing

strictly dominated acts by having credences that obey the laws of probability.

Diachronic Dutch books seek to show, in addition, that one will also be subject

to dominance unless one updates by conditioning on the information one

receives. In each case the take-home lesson is that defective beliefs spawn

defective desires. While it is perfectly legitimate to think in this practical vein,

it is crucial to appreciate that (a) credences are used to estimate all sorts of
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quantities, (b) they play the same formal role in estimating these quantities as in

the estimation of utilities, and (c) for certain purposes it can be illuminating to

emphasize their role in estimating quantities that are not so directly tied to

actions. With respect to this last point, it is worth noting that (van Fraassen

1983) and (Shimony 1988) have focused on the role of credences in estimating

relative frequencies, while (Joyce 1998) emphasizes their role in estimating truth-

values (with true ¼ 1 and false ¼ 0). This last approach is best for bringing out

epistemologically salient aspects of degrees of belief. We shall, therefore, think

of a person’s credence in X as being linked to her best estimate of X’s truth-

value, where it is understood that such estimates are evaluated on a gradational

scale that rewards those who believe truths strongly.4

2. Representation of Credences.

Bayesians are often accused of being committed to the existence of sharp

numerical degrees of belief. This is not true. The idea that people have sharp

degrees of belief is both psychologically implausible and epistemologically cala-

mitous. Sophisticated versions of Bayesianism, as found in, e.g., (Levi 1980, 85–

91) and (Kaplan 1996, 27–31), have long recognized that few of our credences

are anywhere near definite enough to be precisely quantified. A person’s beliefs

at a time t are not best represented by any one credence function, but by a set of

such functions C t, what we are calling her credal state. Each element of C t is a

sharp credence function that assigns a unique real number 0 � c(XjY) � 1 to

each proposition X and condition Y.5 Each such function defines unconditional

credences via the rule c(X) ¼ c(XjT), for T is any logical truth.

Without further ado, we shall assume that all credences in an epistemically

rational believer’s credal state satisfy the laws of (finitely additive) probability,

so that (i) c(T) ¼ 1 for T any logical truth, (ii) c(Y) � 0, (iii) c(X) þ c(Y) ¼ c(X

_ Y) þ c(X & Y) for any propositions X and Y, and (iv) c(XjY) ¼ c(X & Y)/c(Y)

whenever c(Y) > 0. Many arguments have been offered for thinking that cre-

dences must be probabilistically coherent, but considering them would take us

off track. Our question is this: given that credences obey the laws of probability,

how do they reflect evidence?

Determinate facts about the person’s beliefs correspond to properties that are

invariant across all elements of C t. For example, the person can only be said to

determinately believe X to degree x when c(X) ¼ x for every c 2 C t, and she is only

more confident in X than in Y if c(X) > c(Y) for every c 2 C t. Such invariant facts

can come in a wide variety of forms. It might be invariant across C t that a certain

quantity has a specific expected value, or that a particular distribution of prob-

abilities has a uniform, binomial, normal, or Poisson form, and so on.

For purposes of epistemology, it is useful to divide the C t-invariant facts

into three classes. Some can be interpreted as evidential constraints that are

imposed upon the believer by her overall epistemic situation. These will
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sometimes be ‘deliverances of experience’ that directly fix facts about credences.

To borrow a famous example from Richard Jeffrey (1983, p. 165), looking at a

piece of cloth under dim light might lead a believer to assign a credence of 0.7 to

the proposition G that it is green, in which case the evidence requires c(G) ¼ 0.7

to be satisfied throughout her credal state. Or, it might be that seeing two pieces

of cloth under yellow light leads the person to judge that the first is more likely

than the second to be green, so that every c in C t satisfies c(G1) > c(G2). One can

also imagine higher-level evidential constraints. At a given time it might be part

of a person’s evidence that a certain test for heroin use has a fifteen percent false

positive rate, in which case c(þtestjno heroin) ¼ 0.15 everywhere in C t. In

contrast to the constraints that are imposed by the evidence, other C t-invariant

facts are best interpreted as subjective biases or prejudices. It might, for

instance, simply strike the agent as more plausible than not that eight-graders

in Cleveland have about eight unmatched socks under their beds. Evidence and

prejudice can combine to produce additional C t-invariants.

While no attempt will be made here to explain how the invariant features of

credal states are divided up into evidential constraints or subjective biases, a few

sketchy remarks might allay confusion. Bayesians are often portrayed as radical

subjectivists who reject any meaningful epistemic distinction between evidence

and biases. On a subjectivist picture, a person’s biases merely reflect her ‘prior’

judgments of credibility about various propositions, while her evidence is the

‘posterior’ information she gains from experience. This suggests a model in

which a person starts off with a prior probability c0 that reflects her initial

judgments of credibility (sophisticated treatments make this a set of priors), and

learning proceeds by updating the prior in light of data. In the simplest case

where the data specifies that each of the propositions E1, E2, . . ., En is true, the

posterior c1 arises from the prior by simple conditioning, so that

c1(�) ¼ c0(�jE1 & E2 & . . . & En). Priors are required in this process, it is

claimed, in order to get inductive reasoning off the ground. So, according to

subjectivist Bayesians, a person’s total evidence in favor of a proposition X will

encompass both the ‘posterior’ beliefs that she comes to have as the result of

learning experiences as well as her ‘prior’ opinions about the intrinsic credibility

of various propositions, including X itself.

While this fairly characterizes the views of some Bayesians, the probabilistic

approach to epistemology is compatible with the existence of an objective

distinction between evidence and bias. Different Bayesians will surely draw the

line differently. Some might restrict the class of evidential beliefs to those that

reflect observed relative frequencies or known objective chances. Others might

go reliabilist and argue that a person’s evidence is found in those invariant

features of her credal state that were produced by belief-forming mechanisms

that assign high credences to truths and low credences to falsehoods. Others

might claim that some constraints are just ‘given’ in experience. There are other

options as well: indeed, almost everything epistemologists have had to say about

the nature of evidence and be imported into the Bayesian framework.
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For present purposes, it does not much matter how one draws the line

between evidence and bias, or on which side subjective judgments of credibility

lie. What is important is that at any time there should be some set of constraints

E t that specify those invariant features of a person’s credal state that are directly

imposed by her evidence. In the examples we consider E t will never be anything

fancy: it will consist in information about the distribution of objective prob-

abilities over some set of hypotheses about objective chances, and a specification

of truth values for data propositions. The goal is to use such simple cases to

come to understand how the evidence in E t is reflected elsewhere in the believer’s

credal state. To help us focus on essentials, we shall confine our attention to the

ideal case of a person with no biases, so that every invariant feature of C t is either

an evidential constraint or a consequence of such constraints. This will seem like

no restriction to subjectivists, but the more objectively minded will view it as an

idealization. Either way, the supposition is needed if we are to isolate those

aspects of the believer’s credal state that reflect her overall evidential situation.

3. The Distinction Between Balance and Weight.

At an intuitive level, the total evidence for a proposition X is the sum of all

those considerations that tell in favor of its truth. Bayesians, and their opponents,

have often proceeded as if the total amount of evidence for X is directly reflected

in X’s credence. When c(X) ¼ x holds all across C t, this amounts to the claim that

the number x is a meaningful measure of the total amount of evidence for X.

More generally, the view is that (a) the person has more evidence for X than for Y

iff c(X) > c(Y) over C t, (b) she has strong evidence for X iff c(X) � 1 over C t, (c) E

provides the person with incremental evidence for X iff c(XjE) > c(X) over C t, and

so on. This picture of the relationship between credences and evidence is seriously

misleading. As we shall see, the total evidence in favor of a hypothesis can be

separated into at least three components—balance, weight, and specificity—only

one of which is directly reflected in credences.

Let us first distinguish between the balance of the evidence, which is a

matter of how decisively the data tells for or against the hypothesis, and what

J.M. Keynes (1921) called the weight of the evidence, which is a matter of the

gross amount of data available. Here is Keynes:

As the relevant evidence [for a hypothesis] at our disposal increases, the magni-

tude of [its] probability may either decrease or increase, according as the new

knowledge strengthens the unfavorable or favorable evidence; but something

seems to have increased in either case—we have a more substantial basis

on which to rest our conclusion. . . New evidence will sometimes decrease

the probability of [the hypothesis] but will always increase its ‘weight’. (1921,

p. 77)
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The intuition here is that any body of evidence has both a kind of valence and a

size. Its valence is a matter of which way, and how decisively, the relevant data

‘points.’ A body of evidence will often be composed of items of data with

different valances that need to be compared. It is this ‘balance of the evidence’

that credences reflect. The size or ‘weight’ of the evidence has to do with how

much relevant information the data contains, irrespective of which way it points.

As Keynes emphasized, we should not expect the weight of a body of evidence to

be reflected in individual credence values. From the fact two hypotheses have

the same credence we can infer that the balance of the evidence for each is the

same, but we cannot infer anything at all about the relative weights of the

evidence in their favor.

To clarify the distinction, it will be useful to consider a simple sampling

case.

Four Urns: Jacob and Emily both start out knowing that the urn U was

randomly chosen from a set of four urns {urn0, urn1, urn2, urn3} where urni
contains three balls, i of which are blue and 3 � i of which are green. Since the

choice of U was random both subjects assign equal credence to the four

hypotheses about its contents: c(U ¼ urni) ¼ 1/4. Moreover, both treat these

hypotheses as statements about the objective chance of drawing a blue ball from

U, so that knowledge of U ¼ urni ‘screen offs’ any sampling data in the sense

that c(BnextjE & U ¼ urni) ¼ c(BnextjU ¼ urni), where Bnext says that the next

ball drawn from the urn will be blue and E is a proposition that describes any

prior series of random draws with replacement from U. Finally, Jacob and

Emily regard random drawing with replacement as an exchangeable process,

so that any series of draws that produces m blue balls and n green balls is as

likely as any other such series, irrespective of order. Use BmGn to denote the

generic event in which m blue balls and n green balls are drawn at random and

with replacement form U. Against this backdrop of shared evidence, suppose

Jacob sees five balls drawn at random and with replacement from U and

observes that all are blue, so his evidence is B5G0. Emily, who sees Jacob’s

evidence, looks at fifteen additional draws of which twelve come up blue, so her

evidence is B17G3. What should Emily and Jacob think about Bnext?

It would be clear what each should think if the true chance hypothesis were

known with certainty: since credences should reflect known objective chances,6

c(BnextjU ¼ urni) ¼ i/3 should hold throughout Emily and Jacob’s credal states.

Unfortunately, neither Emily nor Jacob knows the true chance hypothesis, and

so each has to rely on sampling data to form opinions about the various

U ¼ urni possibilities.

Intuitively, Jacob’s total evidence points more decisively than Emily’s does

toward Bnext: all the balls he observed were blue, whereas three of the balls she

saw were green. On the other hand, Emily has a greater volume of relevant

evidence than Jacob does in virtue of having seen more draws. Both these facts

are reflected in their credal states. After seeing five blue balls Jacob’s degrees of
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belief will have shifted from an even distribution over the chance hypotheses to a

distribution in which the urn3 hypothesis is judged to be very probable, so that

every function in his credal state looks like this:

Jacob: c(U ¼ urn0jB5G0) ¼ 0

c(U ¼ urn1jB5G0) ¼ 0.0036

c(U ¼ urn2jB5G0) ¼ 0.1159

c(U ¼ urn3jB5G0) ¼ 0.8804

The probability of the next ball draw being blue is then c(BnextjB5G0) ¼ 0.959.

Emily, in contrast, has credences that make her almost certain that there are

precisely two blue balls in the urn. All the functions in her credal state look like

this:

Emily: c(U ¼ urn0jB17G3) ¼ 0

c(U ¼ urn1jB17G3) ¼ 0.00006

c(U ¼ urn2jB17G3) ¼ 0.99994

c(U ¼ urn3jB17G3) ¼ 0

When Emily estimates the probability of Bnext she comes up with a number

indistinguishable from 2/3 out to the fourth decimal: c(BnextjB17G3) ¼ 0.666626.

This difference in subjective probability reflects a disparity in the respective

balances in the total evidence that Jacob and Emily have for Bnext. The idea of a

balance of evidence is fairly clear in cases where subjective credences are

mediated by beliefs about objective chances. Chance hypotheses function as

evidential funnels: data can only affect a person’s beliefs about the proposition

of interest by altering his or her opinions about its chance. It is then reasonable

to interpret the chances i/3 and (3 � i)/3 as gauging the strength of the evidence

for and against Bnext when U ¼ urni is know for certain.7 Thus, someone with

enough evidence to justify unreserved confidence in U ¼ urni has i/(3 � i) times

the evidence for Bnext as for �Bnext. More generally, whatever the value of

c(U ¼ urni), the conditional credence c(BnextjU ¼ urni) can be interpreted as

that proportion of the balance of total evidence for U ¼ urni that also contri-

butes toward the balance of total evidence for Bnext. Given this, a rational

believer should use the quantity c(Bnext) ¼ Si c(U ¼ urni) � c(BnextjU ¼ urni)

¼ Si c(U ¼ urni) � i/3 as her estimate of the balance of her evidence for Bnext.

That is, she should proportion her beliefs to the evidence by having her credence

reflect the expected balance of her evidence for the proposition believed.

This explains why Jacob’s credence for Bnext increases more dramatically

than Emily’s does. Since both initially know that U was randomly selected from

{urn0, urn1, urn2, urn3}, each starts out with determinate, perfectly symmetrical

evidence for and against the claim that the next ball will be blue. After seeing

five blue balls Jacob’s evidence requires him to regard the two chance hypoth-

eses that favor Bnext, U ¼ urn3 and U ¼ urn2, as much more likely than their
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symmetrical counterparts, U ¼ urn0 and U ¼ urn1. In particular, he assigns

U ¼ urn3, the hypothesis whose truth would conclusively justify Bnext, a cre-

dence of 0.8804, while he assigns U ¼ urn0, whose truth would conclusively

justify �Bnext, a credence of 0. As a result, Jacob’s estimated total evidence for

Bnext exceeds his estimated total evidence against Bnext by a factor of

c(BnextjB5G0)/c(�BnextjB5G0) � 24. Emily’s evidence, on the other hand, forces

her to regard both U ¼ urn3 and U ¼ urn0 as certainly false, and to concentrate

almost all her credence on U ¼ urn2. As a result, her estimate of the total

evidence for Bnext exceeds her estimate of the total evidence against Bnext only

by a factor of c(BnextjB17G3)/c(�BnextjB17G3) � 2. There is thus a clear sense in

which Jacob has better evidence than Emily does: on balance, his evidence tells

more decisively in favor of Bnext than hers does.

Emily’s evidence is better along another dimension. Since she has seen a

greater number of draws, her evidence, though slightly less decisive, provides her

with a more settled picture of the situation. Indeed, if both subjects received

evidence that tells against Bnext, then Jacob’s beliefs are likely to change more

than Emily’s will. Suppose that both see five more balls drawn, and all are green.

Jacob’s credence will fall from near 0.96 to 0.5. Emily’s will move hardly at all,

dropping from 0.666626 to 0.666016. This illustrates the point, made persuasively

by Brian Skyrms (1980), that the weight of the evidence for a proposition X often

manifests itself not in X’s unconditional credence, but in the resilience of this

credence conditional on various potential data sequences. A person’s credence for

X is resilient with respect to datum E to the extent that her credence for X given E

remains close to her unconditional credence for X. Note that resilience is defined

relative to a specific item of data: a person’s belief about X may be resilient

relative to one kind of data, but unstable with respect to another. That said, it is

usually the case that the greater volume of data a person has for a hypothesis the

more resilient her credence tends to be across a wide range of additional data. Our

example illustrates this nicely. Even though Jacob’s evidence points more defini-

tively toward a blue ball on the next draw, his credence is less resilient than

Emily’s with respect to almost every potential data sequence, the sole exceptions

being those sequences in which only blue balls are drawn. In this regard Emily’s

evidence is better than Jacob’s: even though she is not so sure as he is that a blue

ball will be drawn, her level of confidence is better informed that his, and so is less

susceptible to change in the face of new data.8

This example suggests the following provisional conclusions: (i) As Keynes

argued, there is intuitive distinction between the balance of the total evidence in

favor of a hypothesis and the weight of this evidence. (ii) Balances of evidence

are reflected in credences in two ways: a rational believer’s credence for X

reflects the balance of her total evidence in favor of X; her credence for X

conditional on Y reflects that proportion of the balance of her total evidence

for Y that contributes toward the balance of evidence for X. (iii) Weights of

evidence are, at least in some cases, reflected in the resilience of credences in the

face of additional data.
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These conclusions raise as many questions as they answer. Even if it is

plausible to think that probabilities express balances of total evidence in our toy

example, why think this is true in general? Indeed, why think that balances of

evidence can be expressed in terms of numbers at all? (Keynes himself doubted

they could!) Even if they can be quantified, why think balances of evidence are

probabilities? Is there any way to make the concept of ‘‘weight’’ formally precise,

say by specifying some way of measuring it? Partial answers to these and other

questions will be provided in the next two sections.

4. Measuring Balances of Evidence.

Let’s begin by focusing on what it means to say that a body of data provides

some evidence in favor of a hypothesis. If we recall that a believer’s total

evidence is a set E t of constraints on credence functions allowed into her credal

state, then it is natural to say that E t provides some evidence for X just in case the

joint satisfaction of the constraints in E t requires X to have a positive credence

throughout C t. Consider, for example,

E1 ¼ {c(E) ¼ 0.99, c(XjE) > c(Xj�E)}
E2 ¼ {c(E) ¼ 0.99, c(Xj�E) > c(XjE) ¼ 0}

E3 ¼ {c(X _ Y) ¼ 1, c(YjE) ¼ 0, c(E) ¼ 1}

In all these cases the believer has some evidence in favor of X. The first

constraint does not specify any particular credence for X, but it does require it to

be positive. The second highlights the fact a person can have some evidence for

X even though the data makes X incredible (E2 requires 0 < c(X) < 0.01). If this

seems odd, keep in mind that a single body of data can provide evidence both

for and against X. E3 provides conclusive evidence for X since, in addition to

forcing her to recognize that X has some chance of being true, it also requires

her to recognize that X has no chance of being false.

Our next step is to understand how the evidence for and against a proposi-

tion can be ‘balanced’. It is useful to investigate this matter by considering a

more general problem. Given that E t provides some evidence in favor of each of

X1, X2, . . ., XN, how might this evidence be pooled to yield an overall measure of

the amount of total evidence that E t provides for the combination of the

propositions? More specifically, under what conditions will it make sense to

say that E t provides a greater overall balance of total evidence for the proposi-

tions in {X1, X2, . . ., XN} than for those in {Y1, Y2, . . ., YN}? One tempting

answer invokes a kind of dominance principle:

Combination Principle. If E t provides at least as great a balance of total evidence

for Xi as for Yi for each i � N, then E t provides at least as great a balance of

total evidence for the combination of the Xi as for the combination of the Yi.
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Unfortunately, if ‘‘combination’’ means ‘‘conjunction’’ or ‘‘disjunction,’’ this

is mistaken. For conjunction, note that on a July day we have more evidence for

thinking that a fair coin will come up heads on its next toss, X1, than for

thinking that it will rain in Los Angeles at noon, Y1, and we also have more

evidence for thinking that the coin will not come up heads, X2, than for thinking

that Los Angeles will be struck by an major earthquake at noon, Y2. Even so, it

in no way follows that the balance of the evidence favors X1 & X2, which is

impossible, over Y1 & Y2, which is merely improbable. (Readers may figure out

the dual argument for disjunction.)

There is, however, another sense of ‘‘combination’’ in which we do have

more evidence for the combination of X1 and X2 than for the combination Y1

and Y2: we have more evidence on average for the Xis than for the Yis. This

disparity in average evidence becomes clear when we try to estimate the number

of truths in the two sets. Even thought we have more evidence for Y1 & Y2 than

for X1 & X2 we also think it unlikely that either Y1 or Y2 is true, whereas we

know that exactly one of X1 or X2 is true. So, if we had to come up with

estimates for the number of truths in {X1, X2} and {Y1, Y2}, we would settle

on a value 1 for the first and a value only marginally above 0 for the second.

This difference in estimates reflects the different balances of total evidence we

have in favor of the Xi and the Yi. The general principles at work here are these:

. Thebalancesofaperson’s total evidence for thepropositions in{X1,X2, . . . XN}

is reflected in her estimate of the number of truths the set contains.9

. If the balance of total evidence in favor of Xi is increased, and if no other

Xj experiences a decrease in the balance of total evidence in its favor, then

the person’s estimate for the number of truths in {X1, X2, . . . XN} should

also increase.

A first stab at the combination principle we seek would require all such

estimates to reflect the balances of total evidence in favor of individual hypotheses.

Combination (first approximation). If E t provides at least as great (a greater)

balance of total evidence in favor of Xi as it does in favor of Yi for each i � N,

then E t constrains a person’s credal state in such a way that her estimate of the

number of truths among the Xi is at least as great as (greater than) her estimate

of the number of truths among the Yi.
10

This is only a first approximation because it applies only to sets of the same

cardinality. We often want to compare the evidence for the propositions in one

set with the evidence for propositions in another set with more or fewer ele-

ments. For example, if the geologists are right, we have significantly more

evidence for thinking that California will suffer a major earthquake sometime

in the next century, X, than we do for thinking either that a roll of a fair die will
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produce a number strictly greater than 2, Y1, or that it will produce an odd

number, Y2. Our estimate of the number of truths in {X} is just our credence for

X, let’s say 9/10, whereas our estimate of the number of truths in {Y1, Y2} is

2 � 1/3 þ 1 � (1/6 þ 1/3) ¼ 7/6. In an aggregate sense, then, we have more

evidence for the Yis than we have for X, but this is only because there are more

Yis. To factor out the effect of this difference in cardinality, we can focus on the

average amount of evidence for X and for the Yis by replacing sets of proposi-

tions, which, by definition, have no repeated elements, by ordered sequences of

propositions, whose elements can repeat. If we compare our estimates of the

average number of truths in the sequences <X, X> and <Y1, Y2> we get 9/10

and 7/12. This reflects the fact that, on average, the balance of evidence in favor

of X exceeds the balances of evidence in favor of Y1 and Y2.

Generalizing on this idea leads to the correct version of the combination

principle,

Combination. Let <X1, X2, . . ., XN> and <Y1, Y2, . . ., YN> be ordered

sequences of propositions, which may contain repeated elements. If E t provides

at least as great (a greater) balance of total evidence in favor of Xi as in favor of

Yi for each i < N, then E t constrains a person’s credal state in such a way that

her estimate of the number of truths among the Xi is at least as great as (greater

than) her estimate of the number of truths among the Yi.

Combination supplies the crucial link between balances of evidence and

probabilities. The connection is forged with the help of a simple consistency

condition that was first explored in (Kraft, et. al, 1959) and was put in a

particularly elegant form in (Scott 1964). It says, simply, that if two sequences

of propositions have the same number of truths as a matter of logic, then no

body of evidence can require a person’s estimate of the number of truths in the

first sequence to exceed her estimate of the number of truths in the second. More

formally, the requirement is this

Isovalence. Suppose two ordered sequences of propositions <X1, X2, . . ., XN>
and <Y1, Y2, . . ., YN> are isovalent in the sense that, as a matter of logic, they

contain the same number of truths. If the balance of total evidence in favor of Xi

is at least as great as (greater than) the balance of total evidence in favor of Yi

for all i < N, then the balance of total evidence in favor of YN is at least as great

as (greater than) the balance of total evidence in favor of XN.

Isovalence has the following intuitively appealing consequences:

Normality. The balance total evidence in favor of any proposition never exceeds

the balance of total evidence in favor of any logical truth.

Consequence. The balance of total evidence in favor of X never exceeds the

balance of total evidence in favor of any proposition that X entails.
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Partition. If the balance of balance of total evidence in favor of X & Y exceeds

the balance of total evidence in favor of X & Z, then the balance of total

evidence in favor of X & �Z exceeds the balance of total evidence in favor of

X & �Y.

Each of these brings out a different aspect of the concept of a balance of

evidence. The first two principles make it clear that the ‘evidence’ includes not

only empirical information, like the colors of balls drawn from urns, but also

logical information, like the fact that a blue ball is also a blue or green ball. This

makes perfect sense as long as we keep in mind that we are interested in balances

of total evidence. As noted by Carnap (1962), total evidence (which he referred as

‘firmness’) satisfies both Normality and Consequence. While not every notion of

evidence has this property (e.g., incremental evidence lacks it), total evidence

clearly does. If a body of evidence provides any reason to think that a proposition

is true, then it provides at least as much reason to think that any logically weaker

proposition is true. The partition condition requires the balance of evidence for a

proposition to remain the same no matter how the proposition happens to be

partitioned. It says that if the total evidence, on balance, favors one way for X to

be true over another, then it must also favor X being true in something other than

the second way over its being true in something other than the first way.

As show in (Kraft, et. al., 1959), Isovalence ensures that balances of total

evidence can be represented as probabilities. When Isovalence holds there will

always be at least one (usually many) finitely additive probability functions c

such that c(X) � c(Y) whenever E t provides at least as great a balance of total

evidence in favor of X as in favor of Y. Moreover, for any sequences of

hypotheses <X1, X2, . . ., XN> and <Y1, Y2, . . ., YN>, each such function will

satisfy c(X1 þ . . . þ XN) � c(Y1 þ . . . þ YN) whenever E t provides at least as

great a balance of total evidence in favor of Xi as in favor of Yi for each i � N.

Clearly, this can only happen if balances of total evidence correspond to

probabilistically coherent truth-value estimates. Since a rational believer’s

truth-value estimates coincide with her credences, it follows that her credences

reflect the balances of her total evidence. Though we will not make the case in

detail, it also follows that the believer’s credence for X given Y reflects that

portion of the balance of her evidence for Y that counts in favor of X.

5. Measuring Weight.

No satisfactory measure of the weight of evidence has yet been devised.

Most of the functions that have been suggested for the task—e.g., the log-

likelihood ratio log(c(EjX)/c(Ej�X)) of (Good 1984)—are really measures of

evidential relevance that compare balances of total evidence irrespective of

weight. Since the values of these measures can remain fixed even as the volume

of data increases, they do not capture the weight of evidence in the sense Keynes
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had in mind. The difficulties of formulating a general measure of weight are not to

be underestimated. Indeed, Keynes argued that it is impossible to capture the

weight of a body of evidence using a single number. This may or may not be so,

but it turns out that we can make some headway in the special case where a

subject’s credence for H depends on her credences for hypotheses about objective

chances.

It was suggested above that the weight of evidence manifests itself in the

resilience of credences in the face of new data. This is only partly right. While

resilience is often a reliable symptom of weight, it is not the heart of the matter.

Consider a believer whose credence for X is her estimate of its objective chance,

so that c(X) ¼ Sx c(Ch(X) ¼ x)�x all across C t for some fixed partition of chance

hypotheses {Ch(X) ¼ x}, and where c(XjCh(X) ¼ x) ¼ c(XjE & Ch(X) ¼ x) for

any potential item of data E. Here, the weight of evidence tends to stabilize X’s

credence in a particular way: it stabilizes credences of chance hypotheses, while

concentrating most of the credence on a small set of these hypotheses. Since

acquiring the datum E will not alter X’s probability conditional on any chance

hypothesis, the disparity between c(XjE) and c(X) will, other things equal, tend to

be small when the disparity between c(Ch(X) ¼ xjE) and c(Ch(X) ¼ x) is small for

most x. That said, data that alters the credence of Ch(X) ¼ xwill also, other things

equal, induce a smaller change in X’s credence when x is close to c(X) than when x

is far from c(X). Consequently, even if E does not alter the probability of a given

chance hypothesis at all, so that c(Ch(X) ¼ xjE) ¼ c(Ch(X) ¼ x), this promotes

instability in the subject’s beliefs if E affects other chance hypotheses in such a way

that the distance between x and c(XjE) is greater than the distance between x and

c(X). The real effect of the weight of evidence is to ensure that such increases in the

disparity between chance and credence are compensated by proportional decreases

in the probabilities of the offending chance hypotheses. Weight really stabilizes not

the probabilities of the chance hypotheses themselves, but their probabilities dis-

counted by the distance between X’s chance and its credence. So, the most basic

resilient quantity is not c(X) or even c(Ch(X) ¼ x); it is c(Ch(X) ¼ x)�jx � c(X)j
or, what is better for technical reasons, w(x) ¼ c(Ch(X) ¼ x)�(x � c(X))2.

The proposal is this: When a subject’s credence for X is mediated by chance

hypotheses, the weight of her evidence forX tends to make w(x) resilient, so that the

difference between c(Ch(X) ¼ xjE)(x � c(XjE))2 and c(Ch(X) ¼ x)(x � c(X))2 is

small for most data propositions E. We can then evaluate the overall weight of the

evidence for X relative to E by summing these quantities

WðX ;EÞ ¼ �xjcðChðXÞ ¼ xjEÞ�ðx� cðX jEÞÞ2 � cðChðXÞ ¼ xÞ�ðx� cðXÞÞ2j

The weightier the evidence for X is, the smaller W (X, E) will tend to be.

W is not a perfect measure of weight. Its applicability is limited since it

assumes that X’s credence is mediated by credences for chance hypotheses.

Moreover, its value depends on the choice of E (though weighty evidence will
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tend to make W (X, E) it small for a wide range of E). Even so, w has some

properties that any measure of weight should have. First, it has no evidential

valence, i.e., its value is the same for X as for �X. Second, when W (X, E) is

small, X’s credence will tend to be resilient, and when W (X, E) is large X’s

credence will tend not to be resilient (except for accidental reasons). Third, W

relates the weight of evidence to the stable concentration of credences. It is easy

to show that W (X, E) is never less than the absolute difference between

X’s variance conditional on E and its unconditional variance: W (X, E)

� js2(XjE) � s2(X)j.11 Consequently, when the evidence for X is weighty

W (X, E) places a low upper bound on the amount by which the spread in

probabilities for chance hypotheses can change when E is learned. This high-

lights what is perhaps the most important fact about the weight of evidence.

Increasing the gross amount of relevant evidence for X tends to cause credences

to concentrate more and more heavily on increasingly smaller subsets of chance

hypotheses, and this concentration tends to become more resilient. As a result,

the expected chance of X comes to depend more and more heavily on the

distribution of credence over a smaller and smaller set of chance hypotheses.

This is what weight does, and what W measures.

6. Specificity of Evidence.

Another subtlety in the way credences reflect evidence concerns the handling of

unspecific data. In the terminology to be used here, data is less than fully specific

with respect to X when it is either incomplete in the sense that it fails to

discriminate X from incompatible alternatives, or when it is ambiguous in the

sense of being subject to different readings that alter its evidential significance

for X.12 Both incompleteness and ambiguity are defined relative to a given

hypothesis, and both are matters of degree. When you are told that Ed is either

a professional basketball player or a professional jockey you are given very

specific information about the hypothesis that he is an athlete, but somewhat

less specific information about the hypothesis that he is a jockey. Likewise, if

you draw a ball at random from an urn and examine it under yellow light that

makes it hard to distinguish blue from green, then finding that the ball looks

blue gives you specific information about how it appears in yellow light, but the

data is ambiguous with respect to the hypothesis that the ball is actually blue.

The treatment of unspecific evidence has always posed a challenge for

Bayesians. One approach to the problem has been to invoke some version of

Laplace’s infamous Principle of Insufficient Reason. The Principle states that

‘‘equipossible’’ hypotheses, those for which there is symmetrical evidence, should

always be assigned equal probabilities. The idea that credences should reflect

evidence might seem to require us to endorse Laplace’s Principle, and the fact

that unspecific evidence tends to be symmetric among possibilities would seem
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to show that it is applicable. To see why not, consider the following series of

examples:

Four Urns-II: Joshua knows that each of four urns – U1, U2, U3, U4 – was

selected from a (different) population of urns {urn0, urn1, urn2, . . ., urn10}

where urni contain exactly i blue balls and 10 – i green balls. A ball will be

randomly chosen from each urn Ui, and Bi is the proposition that it will be blue.

Here is Joshua’s evidence:

U1: Joshua has been allowed to look into the first urn and has seen that it

contains exactly five blue balls and five green balls, so he knows that

U1 ¼ urn5.

U2: Joshua knows that the second urn was selected in such a way that each

urni had an equal probability of being chosen.

U3
13: Joshua knows that the third urn was selected in such a way that urni was

chosen with probability ð10iÞ/210 where ð10 iÞ ¼ 10!=i!ð10� iÞ!
U4: Joshua has no information whatever concerning the process by which the

fourth urn was selected.

What credences should Joshua assign to the various Bi?

There is perfect symmetry in both the balance and weight of evidence for and

against each Bi. So, if rational credences must reflect total evidence, it looks as if

Joshua should treat each Bi and its negation equally by assigning each credence

1/2, just as the Principle of Insufficient Reason suggests. While this seems like a

fine idea in the first three cases, it is clearly wrong in the fourth. Let’s consider

each case in turn.

Because Joshua knows U1 ¼ urn5, he has specific and precise evidence that

is entirely symmetrical for and against B1. This clearly justifies setting c(Bi) ¼ 1/

2. Joshua’s evidence about U2 is not quite so definitive, but it is still specific

enough to determine a distribution of credences over chance hypotheses:

c(U2 ¼ urni) ¼ 1/11. Since this distribution is uniform, the balance of Joshua’s

evidence is again captured by c(B2) ¼ 1/2. The third case is like the second,

except that the distribution is binomial rather than uniform. It is still symme-

trical about 1/2, i.e., c(U4 ¼ urni) ¼ c(U4 ¼ urn10 � i) for each i, so c(B2) ¼ 1/2

again captures the balance of Joshua’s evidence.

Things get dicey in the last case. Since Joshua is in a state of complete

ignorance with respect to the fourth urn, his evidence does not pick out any

single distribution of credences over the chance hypotheses U4 ¼ urni. This is

precisely the point at which some Bayesians tend to overreach by trotting out

the Principle of Insufficient Reason and proposing that there is a single prob-

ability function—an ‘‘ignorance prior,’’ ‘‘uninformative prior,’’ or ‘‘objective

Bayes’’ prior—that captures Joshua’s evidential state. The siren song sounds

like this: Since Joshua has no evidence either for or against any chance hypoth-

esis, he no grounds for thinking that any one of them is more or less likely than

any other. Given this perfect symmetry in his reasons, Joshua should not play
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favorites. The only way for him to avoid playing favorites is by investing equal

credence in each chance hypothesis, so that c(U4 ¼ urni) ¼ 1/11.

Many philosophers and statisticians object to this sort of reasoning on the

grounds that it yields inconsistent results depending upon how the possibilities

happen to be partitioned. This objection was first raised by John Venn in the

1800s and has been recapitulated many times since. Here is a version: Suppose

you have inherited a large plot of land. You know the parcel is a square that is

between one and two kilometers on a side, but this is all you know. How many

square kilometers of land would you estimate that you own? On one hand, you

might partition the possibilities by side-length in kilometers. If so, the Principle

of Insufficient Reason seems to require each hypothesis Lx ¼ ‘‘Each side has

length x km2,’’ for 1 � x � 2, to be accorded the same credence. The expected

side length of your parcel is then 3/2 km and its expected area is 9/4 km2. On the

other hand, if you partition the possibilities by area in square kilometers, the

Principle tells you to distribute your credence evenly over Ay ¼ ‘‘The area of the

parcel is y km2,’’ where 1 � y � 4. The expected length and area are then
ffiffiffi

5
p

/2 km

and 5/2 km2. So, applying the Principle jointly to length and area produces a

contradiction.

While opponents of the Principle of Insufficient Reason often regard this

objection as fatal, few of its defenders are troubled by it. It is clear, they argue,

that your ‘‘prior’’ should not be uniform over either length in meters or area in

square kilometers. After all, these distributions are tied to specific units for

measuring distance, and it is clear a priori that your credences should not

depend on the (arbitrary) choice of a distance scale. Specifically, if your cre-

dences over the side-lengths have the functional form c(Lx) ¼ f(x), and if

t(x) ¼ u�x, with u > 0, is a transformation that alters the unit of distance

(u ¼ 0.6214 to switch kilometers to miles), then your credences for the rescaled

side-lengths L*t(x) ¼ ‘‘Each side has length t(x) in units u,’’ should have the form

c(L*t(x)) ¼ f(t(x)). This guarantees, for example, that the probability of finding

the side length between 1.2 and 1.3 kilometers is the same as that of finding it

between 0.6214 and 0.8078 miles. It is easy to show, (Lee 1997, 101–103), that

any f that has this property for all u produces credences of the form c(x) ¼ kx/x

where kx is the normalizing constant kx ¼
R 2

1 dx=x ¼ lnð2Þ. Similar reasoning

shows that your credences for area hypotheses must have the form c(Ay) ¼ ky/y

where ky ¼
R 4

1 dy=y ¼ lnð4Þ. With these priors the contradiction vanishes.

Computing expected area by averaging over side-length yields
R 2

1
x2dx=x ¼ 3=2lnð2Þ, while computing it by averaging over area also yields

R 4

1 ydy=y ¼ 3=lnð4Þ ¼ 3=2lnð2Þ. As shown in (Jeffries 1939), this sort of maneuver

can be used in a wide variety of situations.

Adjudicating this dispute is too large a task to be undertaken here, but it is

worth noting that, while the k/x prior has some nice features, it has some odd

ones as well. Since it probabilifies values of x in inverse proportion to their size,

the function blows up to infinity as x approaches zero. This makes k/x an

‘‘improper prior’’ in the sense that
R b

0 dx=x ¼ 1 for any b > 0. Clearly, no
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such function can represent the credences of a rational believer over any interval

containing zero. Likewise, since
R1
a 1=x dx ¼ 1 for any a > 0 the k/x prior

cannot represent the credences of a believer who is unable to impose an upper

bound on the size of x. There are ways to finesse these difficulties. In some

situations one can plausibly argue that uncertainty can be confined to an

interval [a, b] with 0 < a < b < 1. It is also possible to show that many

improper priors generate proper posterior probabilities when updated using

Bayes’ Theorem. So, even though they cannot represent coherent beliefs, some

improper priors (e.g., k/x) can be used as starting points for learning from

experience. Whether or not these gambits actually succeed is a matter of

controversy.14

Whatever the ultimate verdict on the k/x prior and its brethren, there is a

deeper problem with ‘‘uninformative priors.’’ The real difficulty is not that the

Principle of Insufficient Reason might be incoherent; it is that the Principle, even

if it can be made coherent, is defective epistemology. It is wrong-headed to try to

capture states of ambiguous or incomplete evidence using a single credence

function. Those who advocate this approach play on the intuition that someone

who lacks evidence that distinguishes among possibilities should not ‘‘play

favorites,’’ and so should treat the possibilities equally by investing equal cre-

dence in them. The fallacious step is the last one: equal treatment does not

require equal credence. When Joshua, who knows nothing about the contents of

U4, assigns each hypothesis U4 ¼ urni an equal probability he is pretending to

have information he does not possess. His evidence is compatible with any

distribution of objective probability over the hypotheses, so by distributing his

credences uniformly over them Joshua ignores a vast number of possibilities that

are consistent with his evidence. Specifically, if we let p range over all probability

distributions on {U4 ¼ urni}, and if we consider all hypotheses of the form

Op ¼ ‘‘U4 was chosen by a probabilistic process governed by distribution p,’’

then Joshua is ignoring all those Op in which p(U4 ¼ urni) 6¼ 1/11.

Proponents of Insufficient Reason might respond that Joshua need not

ignore any Op. With no evidence that favors any one of them over any other,

they will say, Joshua should distribute his credences uniformly over the Op. If he

does this he is not ignoring any Op: in fact, he is treating them equally.

Moreover, when he computes expected truth-values relative to the uniform

distribution over Op he arrives at a credence function in which

c(U4 ¼ urni) ¼ 1/11. We should not be mollified by this response since it only

pushes the problem up a level. Instead of ignoring potential distributions of

objective probability over {U4 ¼ urni}, Joshua is now ignoring distributions of

objective probability over the Op. He is acting as if he has some reason to rule

out those possibilities in which the Op have different chances of being realized,

even though none of his evidence speaks to the issue. One could, of course, move

up yet another level, but the same difficulties would rearise. In the end, there is

no getting around the fact that the Principle of Insufficient Reason (even if
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coherent) is bad epistemology because it requires believers to ignore possibilities

that are consistent with their evidence.

As sophisticated Bayesians like Isaac Levi (1980), Richard Jeffrey (1983),

Mark Kaplan (1996), have long recognized, the proper response to symmetri-

cally ambiguous or incomplete evidence is not to assign probabilities symme-

trically, but to refrain from assigning precise probabilities at all. Indefiniteness

in the evidence is reflected not in the values of any single credence function, but

in the spread of values across the family of all credence functions that the

evidence does not exclude. This is why modern Bayesians represent credal states

using sets of credence functions. It is not just that sharp degrees of belief are

psychologically unrealistic (though they are). Imprecise credences have a clear

epistemological motivation: they are the proper response to unspecific evidence.

Joshua’s case illustrates this nicely. Given his complete lack of evidence

regarding U4, Joshua is being epistemically irresponsible unless, for each i and

for each x between 0 and 1, his credal state C t contains at least one credence

function such that c(U4 ¼ urni) ¼ x. If his opinions are any more restrictive

than this, then he is pretending to have evidence that he does not have.

Moreover, if Joshua’s credal state is as described, then he treats each chance

hypothesis U4 ¼ urni exactly the same way. For every assignment

c(U4 ¼ urni) ¼ xi that appears in Joshua’s credal state, and for every way s of

permuting the eleven indices, the assignment cs(U4 ¼ urni) ¼ xs(i) also appears in

Joshua’s credal state. This is all that good epistemology demands. Symmetrical

evidence only mandates equal credences when the data is entirely unequivocal and

sufficiently definitive to justify the assignment of sharp numerical probabilities.

When the evidence lacks specificity, propositions that are equally well supported

by the evidence should receive equal treatment in the probabilistic representation.

Proponents of the Principle of Insufficient Reason were right to think that good

epistemology requires us to treat hypotheses for which we have symmetrical

evidence in the same way; they went wrong in thinking that equal treatment

requires equal investments of confidence.

7. The Contrast Between Balance and Specificity.

In general, a body of evidence E t is specific to the extent that it requires

probabilistic facts to hold across all credence functions in a credal state. If E t
entirely specific with respect to X, then it requires c(X) to have a single value all

across C t. So, perfectly specific evidence produces a determinate balance of

evidence for X. Less specific evidence leaves the balance indeterminate. When

the evidence for X is unspecific its credence will usually be ‘‘interval-valued,’’ i.e.,

the values of c(X) represented in Ct cover an interval [x�, xþ].15 It is then only

determinate that the balance of evidence for X is at least x� and at most xþ. The

difference between the ‘upper probability’ xþ and the ‘lower probability’ x�

provides a rough gauge of the specificity of the evidence with respect to X (where
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smaller ¼ more specific). Even if the evidence for X is less that entirely specific,

certain facts about balances of evidence can still be determinate. For example,

even though one or both of c(X) and c(Y) might be interval-valued, the evidence

can still dictate that c(X) > c(Y) should hold across C t, in which case it is

determinate that there is a greater balance of evidence for X than for Y.

One thing that might seem to put pressure on the balance/specificity dis-

tinction is the fascinating phenomenon of probabilistic dilation discussed in

(Seidenfeld and Wasserman 1993). Here is a motivating example:

Trick Coins. The Acme Trick Coin Company makes coins in pairs: one silver,

one gold. The silver coin in each pair is unremarkable, but always fair. The gold

coin is quite remarkable. It contains a tiny device that can detect the result of

the most recent toss of the silver coin. The device then determines a bias(GjS) 2
[0, 1] for a gold head in the event of a silver head, and a bias(�Gj�S) 2 [0, 1] for

a gold tail in the event of a silver tail. The device can be set at the factory so that

the first bias is any real number between 0 and 1, but the second bias is always

the same as the first. A gold coin set at bias(GjS) ¼ 2/3 will come up heads two

times in three after the silver coin lands heads, but it will come up heads only

one time in three after the silver coin lands tails. You have a pair of Acme coins

in front of you, which are about to be tossed in sequence (silver, then gold).

How confident should you be that the gold coin will come up heads?

Interestingly, there is a determinate answer to this question even though your

evidence is quite unspecific. Since you are completely ignorant about the gold

coin’s bias, your credal state contains functions whose values for c(GjS)
and c(�Gj�S) span the whole of [0,1]. Despite this, your credence for G is fully

determinate. Every function in your credal state will satisfy c(GjS) ¼ c(�Gj�S).
Since the silver coin is fair, it follows that c(G) ¼ c(S)c(GjS) þ c(�S)c(Gj�S) ¼ 1/

2. Thus, your evidence for G and �G is determinately and perfectly balanced even

though your evidence about the bias of the coin is highly unspecific.

So far there is nothing to worry about: evidence that is unspecific in one respect

can be specific in another. Things get hairy when we imagine that the silver coin is

tossed. Suppose it comes up heads. Intuitively, it would seem that adding this very

specific item of data to your evidence should increase its overall specificity, and the

general effect should be a narrowing of ranges of permissible credences. Precisely

the opposite happens. Once you learn S your new set of credences for G corre-

sponds to your old set of credences conditioned on S. Since c(GjS) ranges over the
whole of [0,1], cnew(G) ranges over the whole of [0,1] as well. Obviously, the

same will happen if the silver coin comes up tails. This looks like a problem.

If the addition of a completely precise and specific item of data can make a body

of evidence so much less specific that the balance of evidence in favor of a

hypothesis goes from completely determinate to entirely indeterminate, then one

wonders whether any cogent distinction between specificity and balance can be

maintained.
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Things are not as dire as they seem. Even though you start out knowing

that bias(GjS) ¼ bias(�Gj�S), the evidential relevance of this information

for questions about G’s truth-value is rather vexed. Clearly, the information

can only be relevant the extent that it allows you to use evidence about S and �S
to draw conclusions about G. Oddly, in this case your ability to do this turns

on the amount of total evidence you have for S. To see this, suppose for a

moment that you do not know the bias of the silver coin. Then

c(G) ¼ c(�S) þ [c(S) � c(�S)]c(GjS) will hold all across your credal state.

You will then be able to draw reasonably determinate conclusions about G if

your credences for S and �S are close together, but not if they are far apart. For

if c(S) � c(�S) is small then the imprecise term c(GjS) will not matter much to

your views about G, but it will matter if c(S) � c(�S) is large. The moral is that

the relevance of the information bias(GjS) ¼ bias(�Gj�S) to your opinions

about G declines with the distance between c(S) to c(�S). It is only when

c(S) ¼ c(�S) that it is completely relevant, and its degree of relevance shrinks

to nothing when c(S) or c(�S) is 1. So, while learning S or �S does make your

evidence more specific overall, it also decreases the amount of specific evidence

that is relevant to G. It does this not by making the evidence any less specific,

but by making it less relevant.

8. The Contrast Between Weight and Specificity.

It is particularly difficult to disentangle weight and specificity because increases

in one are often accompanied by increases in the other. This is no accident: it follows

from the well-known ‘‘washing out’’ theorems,16 which show that subjective prob-

abilities, as long as they are not toomuch at odds with one another, tend to converge

toward a consensus as more and more data accumulates. Here is a simple case:

Imagine that a subject’s credal state contains only two functions c and c*, which

assignX different probabilities strictly between 0 and 1. Suppose also that there is an

infinite sequence of evidence propositions {E1, E2, E3, . . .} such that:

. c and c* assign each finite data sequence Dj ¼ 	E1 & . . . & 	Ej a prob-

ability strictly between 0 and 1 (where 	E is either E or �E).
. X and �X function like a chance hypotheses with respect to the Ejs, so

that c(Ek/X) ¼ c(Ek/	X & Ej) ¼ c*(Ek/X) ¼ c*(Ek/	X & Ej).
. At each time j the subject acquires (perfectly specific) evidence that makes

her certain of either Ej or �Ej, so that her credal state at j is {c(X/Dj),

c*(X/Dj)} where Dj is the data she has received up to j.

Under these circumstances the subject’s credences for X at successive times form

a martingale sequence in which each term is the expected value of its successor.

The Martingale Convergence Theorem of (Doob 1971) entails that, except for a

set of data sequences to which the subject assigns probability zero, cj(X) and
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cj*(X) each converge to a definite limit. Moreover, since X and �X function like

chance hypotheses these limits coincide.

Results of this sort show that, in a wide variety of circumstances, increasing the

amount of specific, relevant data that a subject has for a proposition will tend to

shrink the range of its admissible credence values.Of course, increasing the amount of

specific, relevant data forX increases the weight of the evidence forX, and this causes

the values of c(X) and c*(X) to be increasingly stable. So, there is a natural conver-

gence of opinion, and an attendant reduction of imprecision, that tends to occur as

increasinglyweighty evidence is acquired.Thismakes it difficult to separate the effects

of weight from those of specificity, andmany who have written on the topic have run

the two together. Indeed, in an excellent recent paperBrianWeatherson (2002, 52) has

argued than many of Keynes’s remarks are best interpreted as supposing that the

weight of the evidence for a hypothesis is reflected in the spread of its credence values.

Weatherson proposes, on behalf ofKeynes, that the weight of a person’s evidence for

X canbemeasuredas 1 � (xþ � x�).While this is a veryplausible readingofKeynes,

it also shows that he conflated weight with specificity. It is a natural conflation to

make, given that two quantities typically increase together as data accumulates, but it

does run together quite different things. As we have seen, the overall volume of

relevant evidence for X is tied not to the spread of values for X’s credence across a

credal state, but to the stability and concentration of these values in the face of

potential future data. The spread in credence values is a matter of the level of

incompleteness or ambiguity in the data.

To illustrate this point we need an example in which the weight evidence for

X increases, but its specificity with respect to X does not. It not easy to find such

an example that is both simple and uncontrived, so contrived will have to do.

Guess the Weight. You are a contestant on a rather odd game show. The host

holds up an opaque bag and tells you that it contains either an iron or an

aluminum ingot that was chosen at random from among ingots produced

yesterday at the Acme Foundry. Your job is to guess whether the ingot is iron

or aluminum. You know that the iron ingots produced at Acme tend to heavier

than the aluminum ones, but neither have a uniform weight. The weights of iron

ingots are normally distributed about a mean of 500 oz with a variance 200 oz,

whereas the aluminum ingots are normally distributed about a mean of 300 oz,

again with a variance of 200 oz. You have no specific information about the

proportions of iron and aluminum ingots that Acme produces, and so your

credence for the proposition I that the ingot in the bag is iron covers all of [0, 1].

The host tells you that you may weight the bag ten times on a special scale

before guessing. Unfortunately, the scale is not a terribly accurate: its results

tend to be normally distributed around the true weight with a variance of 100

oz. Moreover, the scale does not report weights as such. Rather, it contains a

detector that determines whether the ingot in the bag is iron or aluminum, and

then it reports the difference between the ingot’s true weight and the mean

weight of ingots of its type. So, if the scale reads 10 oz this might mean that the

ingot is iron and the scale determines it to be 510 oz, or that the ingot is
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aluminum and the scale determines it to be 310 oz. You place the bag on the

scale ten times and get readings of 10, �15, �8, 4, �4, 16, 12, �7, �11, 3. Call
this data D, and note that the mean of the data is 0 and that it variance is 100.

How does the evidence you have for I before the weighing compare with the

evidence you have after you learn D?

The contrived nature of the example ensures that there is no difference at all in

the specificity of your evidence for I before and after the weighing. The infor-

mation you glean from each individual weighing does nothing to distinguish I

from �I since each report is symmetrically ambiguous between the two.

Moreover, the spread of reported values also provides no grounds for distin-

guishing I from �I since the standard deviation in the weights of iron and

aluminum ingots is identical. So, both before and after you learn D your

credence for I is spread over all of [0, 1].

Though you gain nothing in specificity, you do gain in weight. After you condi-

tion on D your credal state sets probabilities for ingot weights conditional on both I

and�I that are normally distributed about the samemeans of 500 oz and 300 oz, but

with a common, smaller variance of 9.52. The smaller variance indicates that you are

now more certain than you were that the ingot is close to average for its type.

Moreover, these conditional means and variances are much more stable in the face

of information about the ingot’sweight than theywere before you learnedD. It is easy

to see that they will be more stable in the face of more measurements on the host’s

unspecific scale.Whatmight not be so obvious is that they also tend to bemore stable

under specific information about the ingot’s actual weight (not just it weight relative

to the mean in its class). Suppose, for example, that the ingot weighs in at 450 oz on a

(real) scale that returns a value that is normally distributed about the trueweight with

a variance of 50 oz. Then the variance of both conditional distributions will shrink

from 9.52 to 9.34 oz, and their means will become, respectively, about 475 oz and 375

oz. Contrast this with what happens if you learned this same fact about the ingot’s

weight before knowingD. In this case, the variances of both conditional distributions

shrink to 40 oz., but their means become 458 oz and 425 oz, respectively. This sort of

thing happens across the board. For any value the scale might read (except the

midpoint 400 oz), both the changes in variances and the changes in the mean values

for weights conditional on I and�Iwill be smaller afterD is learned than before. As

we saw above, this kind of stable concentration of probability is precisely what one

expectswhen theweight of evidence increases.Again, theweight of a bodyof evidence

and its specificity are different things. While the first is plausibly measured by the

spread in credence values over a credal state the second is not.

9. Conclusion.

Subjective probabilities reflect three aspects of a believer’s total evidence—

balance, weight, and specificity—in significantly different ways. The
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unconditional credence of a proposition reflects the balance of total evidence in

its favor. The weight of this evidence is reflected in the tendency for credences to

stably concentrate on a small set of hypotheses about the proposition’s objective

chance. The specificity of the evidence is reflected in the spread of credence

values for the proposition across the believer’s credal state. Any satisfactory

epistemology must recognize these three aspects of evidence, and must be

attuned to the different ways in which they affect credences. It is a great strength

of the Bayesian approach to epistemology that it can characterize the differences

between the balance, weight and specificity of evidence in such perspicuous and

fruitful ways.17

Notes

1. For a splendid discussion of Jeffries’s work see (Howie 2002).

2. The terminology here is from (Levi 1980).

3. As noted in (Ramsey 1932, p. 169), it is a mistake to equate the strength of an

opinion with the intensity of any feeling of conviction the believer might have

since the beliefs we hold most strongly are often associated with no feelings at

all.

4. It is a matter of some subtlety to say how the accuracy of truth-value estimates

should be evaluated. One natural measure is the Brier score (Brier 1950), which

was developed as a way of judging the accuracy of weather forecasts. For

discussion see (Joyce 1998) and (Joyce forthcoming).

5. The proposition X is chosen from some underlying Boolean of algebra of

propositions, and the condition Y is taken from some distinguished set within

this algebra.

6. David Lewis (1980) dubs this the ‘Principal Principle’. As Lewis observes, it can

come undone in circumstances where ‘undermining’ evidence is possible, but no

such situation will be entertained here.

7. This assumes a measurement scale on which a value of 1 indicates the existence

of conclusive evidence for the truth of the proposition, 0 signifies conclusive

evidence against its truth, and 1/2 means that the evidence (determinately) tells

for and against the proposition in equal measure. The merits of such a measure-

ment scheme will be discussed below.

8. Failure to keep straight the distinction between balances and weights of evidence

can lead to confusion. See, for example, Popper’s infamous ‘‘paradox of ideal

evidence’’ (1959, 406), and Jeffrey’s (1983, 196) decisive refutation of it.

9. Formally, a person’s estimate of the number of truths in {X1, X2, . . . XN} is her

estimated value of the sum X1 þ X2 þ . . . þ XN, where each proposition is an

indicator functions that has value 1 when true and 0 when false.

10. A person’s estimate of the number of truths in one set may exceed her estimate of

the number of truths in another set even though she invests a low credence is the

proposition that the first set contains more truths than the second. This will

happen, for example, when c(H1 & H2) ¼ 1/3, c((H1 & �H2) _ (�H1 &

H2)) ¼ 0, c(�H1 & �H2) ¼ 2/3, and c(G1 & G2) ¼ 0, c((G1 & �G2) _ (�G1 &

G2)) ¼ 1/2, c(�G1 & �G2) ¼ 1/2.
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11. s2(XjE) ¼ Sxc(Ch(X) ¼ xjE)�(x � c(XjE))2 and s2(X) ¼ Sx c(Ch(X) ¼ x)�(x �
c(X))2.

12. Readers should be cautioned that unspecificity is different from vagueness.

When the evidence for X is vague it is impossible even to assign determinate

upper and lower credences to X. The treatment of vague evidence is a difficult

problem that goes far beyond the scope of this paper.

13. This distribution is obtained by first randomly choosing from all the 210 possible

ordered sequences of blue and green balls, and then selecting the urni that has

the same number of balls as the chosen sequence.

14. Interested readers are encouraged to consult (Howson 2002, 53–56).

15. This is only ‘‘usually’’ because Ct need not be convex. This can happen,

in particular, when Et only determinately specifies facts about probabilistic

dependence and independence.

16. For an especially lucid discussion of the convergence results see (Hawthorne

2005).

17. I am grateful to Aaron Bronfman, Branden Fitelson, Dustin Locke, Louis Loeb,

Eric Lormand, Jason Stanley and Michael Woodroofe for their insightful com-

ments on the issues discussed in this paper. This research was supported by a

Rackham Interdisciplinary Research Grant from the Rackham School of

Graduate Studies at the University of Michigan
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