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Abstract. Judges and jurors must make decisions in an environment of ignorance and uncertainty
for example by hearing statements of possibly unreliable or dishonest witnesses, assessing possibly
doubtful or irrelevant evidence, and enduring attempts by the opponents to manipulate the judge’s
and the jurors’ perceptions and feelings. Three important aspects of decision making in this en-
vironment are the quantification of sufficient proof, the weighing of pieces of evidence, and the
relevancy of evidence. This paper proposes a mathematical framework for dealing with the two first
aspects, namely the quantification of proof and weighing of evidence. Our approach is based on
subjective logic, which is an extension of standard logic and probability theory, in which the notion
of probability is extended by including degrees of uncertainty. Subjective Logic is a framework for
modelling human reasoning and we show how it can be applied to legal reasoning.
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1. Introduction

Every judicial decision is guided by a standard of proof. In civil cases the de-
cision must be based ona balance of probabilities, while criminal cases require
the tougher standard ofproof beyond reasonable doubt. Despite the probabilistic
language, these phrases have seldom been made more specific. Eggleston (1978,
p. 102) comments that judges appear to avoid explaining or elaborating on these
traditional phrases for fear that their attempts to improve them will be found want-
ing by their peers. Quantifying subjective probabilities related to such statements
seems indeed problematic. Simon and Mahan (1971) asked mock jurors to provide
numerical probability levels that in their opinion corresponded with the phrase
beyond reasonable doubtand obtained levels ranging from 0.7 to 0.9. Professional
judges required stricter probability levels when asked the same question.

? The work reported in this paper has been funded in part by the Co-operative Research Centre for
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In the same way as for standards of proof, the legal profession has been suspi-
cious of formalising or quantification of the ‘weighing of evidence’, Eggleston
(1978, pp. 2–3), although many attempts have been made to apply probability
theory to legal problems. In fingerprinting for example, experts in various Western
countries require from 8 to more than 16 matching characteristics and no unex-
plained points of difference to risk the claim that two prints have been made by the
same person. More often, rules of evidence are qualitative and broad, and attempts
to provide a ‘scientific’ basis for weighing evidence has been met with widespread
scepticism, such as for example in connection with the use of the polygraph in the
US, in the UK and in other countries in order to decide whether perjury is being
committed.

Unlike the criteria for proof and evidence, the legal systems in most Western
countries are quite specific about the limits imposed on what kind of evidence
may be admitted or heard, and for how long. These limits amount to (ir)relevancy
rules which distinguishes the matters that must be attended to by the judge and the
jury, from those that may or should be ignored. A piece of evidence is considered
relevant primarily if it may be used to prove statements concerning the case. This
can for example happen if the evidence increases the credibility of acts the court
wishes to (dis)confirm, or if the evidence is inconsistent with another relevant fact.
Probativity is the dominant criterion for relevance insofar as it determines whether
a piece of evidence has any bearing on the case, but veracity, credibility, adherence
to proper procedures for obtaining evidence, and predujiciality all define ‘taboos’
by which material may be banned from the court as inadmissible. For example, a
defendant’s prior criminal record, although verifiable, and perhaps relevant, may
be ruled inadmissible because it would prejudice the jury against the defendant.

These aspects of judicial reasoning are well described by Smithson (1988),
and his analysis shows that the legal profession deals with quantification of suf-
ficient proof, weighing of evidence and determining evidence admissibility quite
differently. As a general rule, there are concise and explicit relevancy criteria
for determining whether a piece of evidence is admissible in court, whereas the
methods for weighing of evidence and determining sufficient level of proof are
subjective and rather inexplicable.

In the following sections we describe a mathematical framework called Subject-
ive Logic that we will apply for weighing evidence and for making legal decisions
in the presence of uncertainty. We do of course not propose to let legal decisions
be based on mathematical analysis alone, but rather to let judges and jurors use it
as a reference to see in which degree their intuitive decision can be formally and
logically supported.

2. Probabilities in Court

An infamous example of the use of probabilities in court was the US 1967 trial of
The People vs. Collins (1968), in which a number of erroneous appeals to probabil-
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ity theory were utilised by the prosecution. Witnesses to a robbery indicated a male
Negro with a beard and a female blonde Caucasian with hair worn in a pony tail,
escaping in a yellow automobile. The police arrested the Collinses, a couple fit-
ting the description. The prosecution pulled probability estimates of several of the
characteristics out of thin air, multiplied them together under the assumption that
they were all independent, and obtained a probability of 1 in 12,000,000 of finding
one such couple possessing all the characteristics. The conviction was eventually
overturned, but this case has often been cited as a warning to members of the legal
profession concerning the use of probability theory.

The legal profession itself has criticised probability theory of being inapplicable
in legal cases, by objecting to the requirement of quantifying uncertainty into a
single numerical value, because for most judges, lawyers and jurors, uncertainty is
multifaceted, as expressed for example in Cohen (1977) and James (1941). Eggle-
ston comments that “the legal profession as a whole has been notably suspicious of
the learning of mathematicians and actuaries. . . ” Eggleston (1978, pp. 2–3), and he
claims that lawyers and judges both find the ambiguities and vagueness of judicial
standards for evidence and proof strategically useful.

The introduction of evidence from DNA analysis in court has been challenged
by the jury’s difficulty of understanding and weighing this type statistical evidence.
The correct model for using matching DNA as evidence against an accused is to
use Bayes theorem where the probability of a DNA match given innocence (usually
in the order of 1 in 100.000.000 or more) is balanced against the prior probability
of innocence (i.e., without the DNA evidence) to produce the statistically correct
probability of innocence given the DNA match. The human brain has a tendency of
succumbing to theprosecutor’s fallacy(Thompson and Schumann 1987) in which
the prior probability of innocence is ignored and the probability of innocence given
a DNA match is assumed equal to the probability of a DNA match given innocence.
Despite the fact that the prosecutor’s fallacy can be avoided by the correct applica-
tion of Bayes theorem the relative complexity of the latter has led courts to dismiss
it. It is for example difficult to assess the prior probability of innocence in most
cases. In the English case R vs. Adams (1996) the prosecution rested entirely on
expert evidence describing matching DNA profiles. Bayes theorem was explained
to the jury but the conviction was quashed being regarded as unsafe, and the the
court took the view that the use of statistics trespassed on an area peculiarly and
exclusively within the province of the jury, namely the way they evaluate the rela-
tionship between a piece of evidence and another. In the subsequent ruling R vs.
Doheny and Adams (1997) the court set out the procedure for the introduction of
DNA evidence in criminal trials. The court recognised that expert witnesses should
give evidence in terms of the probability of a DNA match given innocence and not
the opposite, but did not consider how the distinction between the two probabilities
might best be brought to the attention of the jury.

Several other types of calculi and logics which take uncertainty and ignorance
into consideration have been proposed and quite successfully applied to practical
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problems where conclusions have to be made based on insufficient evidence (see
for example Hunter (1996) or Motro and Smets (1997) for an analysis of some
uncertainty logics and calculi).

Here we describeSubjective Logic(see Jøsang (2001) for an more detailed
description) which is a logic of uncertain probabilities, and we show how this can
be applied to judicial reasoning. This work builds on Demspter-Shafer belief theory
(Shafer 1976) which will be briefly introduced next. Subjective Logic must not be
confused with Fuzzy Logic. The latter operates on crisp and certain measures about
linguistically vague and fuzzy propositions whereas Subjective Logic operates on
uncertain measures about crisp propositions.

3. Uncertain Probabilities

3.1. THE BELIEF MODEL

The first step in applying the Dempster-Shafer belief model (Shafer 1976) is to
define a set of possible situations, called theframe of discernment, which delimits
a set of possible states of a given system. In the following, standard set theory
will be used to describe frames of discernment, but the term“state” will be used
instead of“set” because the former is more relevant to the field of application. It
is assumed that only one state can be true at any one time. If a state is assumed to
be true, then all superstates are considered true as well.

The elementary states in the frame of discernment2will be called atomic states
because they do not contain substates. The powerset of2, denoted by 22, contains
the atomic states and all possible unions of the atomic states, including2. A frame
of discernment can be finite or infinite, in which cases the corresponding powerset
is also finite or infinite respectively.

An observer who believes that some states in the powerset of2 might be true
can assign belief mass to these states. Belief mass on an atomic statex ∈ 22

is interpreted as the belief that the state is true. Belief mass on a non-atomic state
x ∈ 22 is interpreted as the belief that one of the atomic states it contains is true, but
that the observer is uncertain about which of them is true. The following definition
is central in the Dempster-Shafer theory.

DEFINITION 1 (Belief Mass Assignment). Let2 be a frame of discernment. If
with each substatex ∈ 22 a numberm2(x) is associated such that:

1. m2(x) ≥ 0
2. m2(∅) = 0
3.

∑
x∈22 m2(x) = 1

thenm2 is called abelief mass assignment1 on 2, or BMA for short. For each
substatex ∈ 22, the numberm2(x) is called thebelief mass2 of x. 2

1 calledbasic probability assignmentin Shafer (1976).
2 calledbasic probability numberin Shafer (1976).
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A belief massm2(x) expresses the belief assigned to the statex and does not
express any belief in substates ofx in particular.

In contrast to belief mass, thebelief in a state must be interpreted as an ob-
server’s total belief that a particular state is true. The next definition from the
Dempster-Shafer theory will make it clear that belief inx not only depends on
m2(x), but also on belief mass assigned to substates ofx.

DEFINITION 2 (Belief Function). Let2 be a frame of discernment, and letm2
be a BMA on2. Then thebelief functioncorresponding withm2 is the function
b : 22 7−→ [0,1] defined by:

b(x) =
∑
y⊆x

m2(y), x, y ∈ 22

2
Similarly to belief, an observer’sdisbeliefmust be interpreted as the total belief

that a state isnot true. The following definition is ours.

DEFINITION 3 (Disbelief Function). Let2 be a frame of discernment, and let
m2 be a BMA on2. Then thedisbelief functioncorresponding withm2 is the
functiond : 22 7−→ [0,1] defined by:

d(x) =
∑
y∩x=∅

m2(y), x, y ∈ 22

2
The disbelief ofx corresponds to thedoubtof x in Shafer’s book. However, we

choose to use the term "disbelief" because we feel that for example the case when
it is certain that a state is false can better be described by "absolute disbelief" than
by "absolute doubt". Our next definition expresses uncertainty regarding a given
state as the sum of belief masses on superstates or on partly overlapping states.

DEFINITION 4 (Uncertainty Function). Let2 be a frame of discernment, and
let m2 be a BMA on2. Then theuncertainty functioncorresponding withm2 is
the functionu : 22 7−→ [0,1] defined by:

u(x) =
∑

y ∩ x 6= ∅
y 6⊆ x

m2(y), x, y ∈ 22

2
A BMA with zero belief mass assigned to2 is called a dogmatic BMA. In later

sections it is argued that dogmatic BMAs are unnatural in practical situations and
strictly speaking can only be defended in idealised hypothetical situations. With
the concepts defined so far a simple theorem can be stated. Proofs of theorems can
be found in the appendix.
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THEOREM 1 (Belief Function Additivity).

b(x)+ d(x) + u(x) = 1 (1)2
For the purpose of expressing uncertain beliefs about particular states we will

show that the relative number of atomic states is also needed in addition to belief
functions. For any particular statex the atomicityof x is the number of states it
contains, denoted by|x|. If 2 is a frame of discernment, the atomicity of2 is
equal to the total number of atomic states it contains.

Similarly, if x, y ∈ 22 then the overlap betweenx andy relative toy can be
expressed in terms of atomic states. Our next definition captures this idea of relative
atomicity:

DEFINITION 5 (Relative Atomicity). Let2 be a frame of discernment and let
x, y ∈ 22. Then therelative atomicityof x to y is the functiona : 22 7−→ [0,1]
defined by:

a(x/y) = |x ∩ y||y| , x, y ∈ 22

2
It can be observed thatx ∩ y = ∅ impliesa(x/y) = 0, and thaty ⊆ x implies

a(x/y) = 1. In all other cases the relative atomicity will be a value between 0 and
1.

The relative atomicity of an atomic state to its frame of discernment, denoted
by a(x/2), can simply be written asa(x). If nothing else is specified, the relative
atomicity of a state then refers to the frame of discernment.

A frame of discernment with a corresponding BMA can be used to determine
a probability expectation value for any given state. Uncertainty contributes to the
probability expectation but will have different weight depending on the relative
atomicities. The idea is that when the atomicity of a state is greater, its belief mass
is spread out on more substates so that the contribution to each substate is reduced.

DEFINITION 6 (Probability Expectation). Let2 be a frame of discernment with
BMA m2, then theprobability expectation functioncorresponding withm2 is the
function E: 22 7−→ [0,1] defined by:

E(x) =
∑
y

m2(y) a(x/y), x, y ∈ 22 (2)

2
Definition 6 is equivalent with the pignistic probability described in e.g., Smets

and Kennes (1994), and is based on the principle of insufficient reason: a belief
mass assigned to the union ofn atomic states is split equally among thesen states.
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3.2. THE FOCUSED FRAME OF DISCERNMENT

The focused frame of discernment and the corresponding BMA will for a given
state produce the same belief, disbelief and uncertainty functions as the original
frame of discernment and BMA.

DEFINITION 7 (Focused Frame of Discernment). Let2 be a frame of discern-
ment and letx ∈ 22. The frame of discernment denoted by2̃x containing onlyx
and¬x, where¬x is the complement ofx in 2 is then called a focused frame of
discernment with focus onx. 2

When the original frame of discernment2 contains more than 2 atomic states,
the relative atomicity ofx in the focused frame of discernment2̃x will in general
be different from1

2 although2̃x per definition contains exactly two states.

DEFINITION 8 (Focused Belief Mass Assignment). Let2 be a frame of dis-
cernment with BMAm2 and letb(x), d(x) andu(x) be the belief, disbelief and
uncertainty functions ofx in 22. Let 2̃x be the the focused frame of discernment
with focus onx. The focused BMAm2̃x on 2̃x is defined according to:

m2̃x (x) = b(x)
m2̃x (¬x) = d(x)
m2̃x (2̃

x) = u(x)
(3)

The focused relative atomicity ofx is defined by the following equation:

a2̃x (x) = [E(x)− b(x)]/u(x) (4)2
It can be seen that the belief, disbelief and uncertainty functions ofx are

identical in in 22 and 2̃2
x
. The focused relative atomicity is defined so that the

probability expectation value of the statex is equal in2 and2̃x, and the expression
for a2̃x (x) in Definition 8 can be determined by using Definition 6.

The focused relative atomicity is a constructed value which does not correspond
to real atomicities. It represents in fact the weighted average of relative atomicities
of x to all other states in function of their uncertainty mass. Working with a focused
frame of discernment makes it possible to represent the belief functions relative to
x using a binary frame of discernment. This is a great advantage when operators
on belief functions are introduced in Section 4.

3.3. THE OPINION SPACE

For purpose of having a simple and intuitive representation of uncertain beliefs
we will define a 3-dimensional metric calledopinionbut which will contain a 4th
redundant parameter in order to allow a compact operator definition.
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DEFINITION 9 (Opinion). Let2 be a binary frame of discernment with 2 atomic
statesx and¬x, and letm2 be a BMA on2 whereb(x), d(x), u(x), anda(x)
represent the belief, disbelief, uncertainty and relative atomicity functions onx in
2 respectively. Then theopinionaboutx, denoted byωx, is the quadruple defined
by:

ωx ≡ (b(x), d(x), u(x), a(x)) (5)2
For compactness and simplicity of notation we will in the following denote the

belief, disbelief, uncertainty and relative atomicity functions asbx , dx , ux andax
respectively. Also, the probability expectation of opinions can be denoted by E(ωx)

instead of E(x). By using Definition 6 we can write:

E(ωx) = bx + uxax (6)

The three coordinates(bx, dx, ux) are dependent through Equation (1) so that
one is redundant. As such they represent nothing more than the traditional(Belief,
Plausibility) pair of Shaferian belief theory. However, it is useful to keep all three
coordinates in order to obtain simple expressions when introducing operators on
opinions in Section 4.

Equation (1) defines a triangle that can be used to graphically illustrate opin-
ions as shown in Figure 1. As an example the position of the opinionωx =
(0.40, 0.10, 0.50, 0.60) is indicated as a point in the triangle. Also shown are
the probability expectation value and the relative atomicity.

0,5 00

1

0,5 0,5

Disbelief1 Belief10
0 1

Uncertainty

0,5
Probability axis

Projector

a

Director

ωx

x E(  )x

Figure 1. Opinion triangle withωx as example

The horizontal bottom line between the belief and disbelief corners in Figure 1
is called theprobability axis. The relative atomicity can be graphically represented
as a point on the probability axis. The line joining the top corner of the triangle
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and the relative atomicity point becomes thedirector. In Figure 1ax = 0.60 is
represented as a point, and the dashed line pointing at it represents the director.

The projector is parallel to the director and passes through the opinion point.
Its intersection with the probability axis defines the probability expectation value
which otherwise can be computed by the formula of Definition 6. The position
of the probability expectation E(x) = 0.70 is shown. A hypothetical frame of
discernment with infinite atomicity will make the relative atomicity most opinions
equal to 0 or 1, producing a projector parallel to either the left or the right edge of
the triangle.

Opinions situated on the probability axis are calleddogmatic opinions. They
represent situations without uncertainty and correspond to traditional probabilities.
The distance between an opinion point and the probability axis can be interpreted
as the degree of uncertainty.

Opinions situated in the left or right corner, i.e. with eitherb = 1 or d = 1 are
calledabsolute opinions. They represent situations where it is absolutely certain
that a state is either true or false, and correspond to TRUE or FALSE proposition
in binary logic.

With the definitions established so far we are able to derive the fundamental
Kolmogorov axioms of traditional probability theory as a theorem.

THEOREM 2 (Kolmogorov Axioms). Given a frame of discernment2 with a
BMA m2, the probability expectation function E with domain 22 satisfies:

1. E(x) ≥ 0 for all x ∈ 22

2. E(2) = 1
3. If x1, x2 . . . ∈ 22 are pairwise disjoint

then E(∪|22|i=1xi) =
∑|22|

i=1 E(xi) 2
Opinions can be ordered according to probability expectation value, but ad-

ditional criteria are needed in case of equal probability expectation values. The
following definition determines the order of opinions:

DEFINITION 10 (Ordering of Opinions). Letωx and ωy be two opin-
ions. They can be ordered according to the following criteria by priority:
1. The greatest probability expectation gives the greatest opinion.

2. The least uncertainty gives the greatest opinion.

3. The least relative atomicity gives the greatest opinion. 2
The first criterion is self evident, and the second less so, but it is supported by
experimental findings described by Ellsberg (1961). The third criterion is more an
intuitive guess and so is the priority between the second and third criteria, and
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before these assumptions can be supported by evidence from practical experiments
we invite the readers to judge whether they agree.

4. Logical Operators

So far we have described the elements of a frame of discernment as states. In
practice states will verbally be described as propositions; if for example2 consists
of possible colours of a ball when drawn from an urn with red and black balls, and
x designates the state when the colour drawn from the urn is red then it can be
interpreted as the verbal propositionx: ‘I will draw a red ball’ .

Standard binary logic operates on binary propositions that can take the values
TRUE or FALSE.Subjective Logicoperates on opinions about binary propositions,
i.e. opinions about propositions that are assumed to be either TRUE or FALSE. In
this section we describe the traditional logical operators ‘AND’, ‘OR’ and ‘NOT’
applied to opinions, and it will become evident that binary logic is a special case
of Subjective Logic for these operators.

Opinions are considered individual, and will therefore have an ownership as-
signed whenever relevant. In our notation, superscripts indicate ownership, and
subscripts indicate the proposition to which the opinion applies. For exampleωAx
is an opinion held by agentA about the truth of propositionx.

4.1. PROPOSITIONAL CONJUNCTION AND DISJUNCTION

Forming an opinion about the conjunction of two propositions from different
frames of discernment consists of determining from the opinions about each pro-
position a new opinion reflecting the truth of both propositions simultaneously.
This corresponds to ‘AND’ in binary logic.

THEOREM 3 (Propositional Conjunction). Let2X and2Y be two distinct binary
frames of discernment and letx andy be propositions about states in2X and2Y

respectively. Letωx = (bx, dx, ux, ax) andωy = (by, dy, uy, ay) be an agent’s
opinions aboutx andy respectively. Letωx∧y = (bx∧y, dx∧y, ux∧y, ax∧y) be the
opinion such that

1. bx∧y = bxby
2. dx∧y = dx + dy − dxdy
3. ux∧y = bxuy + uxby + uxuy
4. ax∧y = bxuyay+uxaxby+uxaxuyay

bxuy+uxby+uxuy

Thenωx∧y is called the propositional conjunction ofωx andωy, representing the
agent’s opinion about bothx andy being true. The symbol ‘∧’ can designate this
operator by definingωx∧y ≡ ωx ∧ ωy. 2
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Forming an opinion about the disjunction of two propositions from different
frames of discernment consists of determining from the opinions about each pro-
position a new opinion reflecting the truth of one or the other or both propositions.
This corresponds to ‘OR’ in binary logic.

THEOREM 4 (Propositional Disjunction). Let2X and2Y be two distinct binary
frames of discernment and letx andy be propositions about states in2X and2Y

respectively. Letωx = (bx, dx, ux, ax) andωy = (by, dy, uy, ay) be an agent’s
opinions aboutx andy respectively. Letωx∨y = (bx∨y, dx∨y, ux∨y, ax∨y) be the
opinion such that:

1. bx∨y = bx + by − bxby
2. dx∨y = dxdy
3. ux∨y = dxuy + uxdy + uxuy
4. ax∨y = uxax+uyay−bxuyay−uxaxby−uxaxuyay

ux+uy−bxuy−uxby−uxuy

Thenωx∨y is called the propositional disjunction ofωx andωy, representing the
agent’s opinion aboutx or y or both being true. The symbol “∨” can designate this
operator by definingωx∨y ≡ ωx ∨ ωy. 2

As would be expected, propositional conjunction and disjunction of opinions
are both commutative and associative. Idempotence is not defined because that
would assume that the arguments are identical and therefore belong to the same
frame of discernment. It must be assumed that the opinions are independent and
that the propositions to which they apply belong to distinct frames of discernment.

Propositional conjunction and disjunction are equivalent to the ‘AND’ and
‘OR’ operators of Baldwin’s support logic (Baldwin 1986) except for the relative
atomicity parameter which is absent in Baldwin’s logic. When applied to absolute
opinions, i.e., with eitherb = 1 ord = 1, propositional conjunction and disjunction
are equivalent to ‘AND’ and ‘OR’ of binary logic, that is; they produce the truth
tables of logical ‘AND’ and ‘OR’ respectively. When applied to dogmatic opinions,
i.e opinions with zero uncertainty, they produce the same results as the product and
co-product of probabilities respectively.

It can be observed that for dogmatic opinions the denominator becomes zero in
the expressions for the relative atomicity in Theorems 3 and 4. However, the limits
do exist and can be computed in such cases. See also comment about dogmatic
opinions in Section 4.4 below.

Propositional conjunction and disjunction of opinions are not distributive on
each other. If for exampleωx, ωy andωz are independent opinions we have:

ωx ∧ (ωy ∨ ωz) 6= (ωx ∧ ωy) ∨ (ωx ∧ ωz) (7)

This result which may seem surprising is due to the fact that thatωx appears twice
in the expression on the right side so that it in fact represents the propositional
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disjunction of partially dependent arguments. Only the expression on the left side
is thus correct.

Propositional conjunction decreases the relative atomicity whereas proposi-
tional disjunction increases it. What really happens is that the product of the two
frames of discernment produces a new frame of discernment with atomicity equal
to the product of the respective atomicities. However, as opinions only apply to
binary frames of discernment, a new frame of discernment with corresponding
relative atomicity must be derived both for propositional conjunction and propos-
itional disjunction. The expressions for relative atomicity in Theorems 3 and 4
are in fact obtained by forming the product of the two frames of discernment and
applying Equation (3) and Definition 6 .

In order to show that Subjective Logic is compatible with probability calcu-
lus regarding multiplication and co-multiplication of probabilities we state the
following theorem.

THEOREM 5 (Product and Co-product). Let2X and2Y be two distinct bin-
ary frames of discernment and letx and y be propositions about states in2X

and2Y respectively. Letωx = (bx, dx, ux, ax) and ωy = (by, dy, uy, ay) be
an agent’s respective opinions about the propositionsx and y, and letωx∧y =
(bx∧y, dx∧y, ux∧y, ax∧y) andωx∨y = (bx∨y, dx∨y, ux∨y, ax∨y) be the propositional
conjunction and disjunction ofωx andωy respectively. The probability expectation
function E satisfies:

1. E(ωx∧y) = E(ωx)E(ωy)
2. E(ωx∨y) = E(ωx)+ E(ωy)− E(ωx)E(ωy) 2

4.2. NEGATION

The negation of an opinion about propositionx represents the agent’s opinion about
x being false. This corresponds to ‘NOT’ in binary logic.

THEOREM 6 (Negation). Letωx = (bx, dx, ux, ax) be an opinion about the
propositionx. Thenω¬x = (b¬x, d¬x, u¬x, a¬x) is the negation ofωx where:

1. b¬x = dx
2. d¬x = bx
3. u¬x = ux
4. a¬x = 1− ax

The symbol ‘¬’ can designate this operator by defining¬ωx ≡ ω¬x. 2
Negation can be applied to expressions containing propositional conjunction

and disjunction, and it can be shown that De Morgans laws are valid.
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4.3. DISCOUNTING

Assume two agentsA andB whereA has an opinion aboutB in the form of
the proposition:‘B is knowledgeable and will tell the truth’. In additionB has
an opinion about a propositionx. AgentA can then form an opinion aboutx by
discountingB ’s opinion aboutx with A’s opinion aboutB. There is no such thing
as physical belief discounting, and discounting of opinions therefore lends itself
to different interpretations. The main difficulty lies with describing the effect ofA

disbelieving thatB will give a good advice. This we will interpret as ifA thinks
thatB is uncertain about the truth value ofx so thatA also is uncertain about the
truth value ofx no matter whatB ’s actual advice is. Our next definition captures
this idea.

DEFINITION 11 (Discounting). LetA and B be two agents whereωAB =
(bAB, d

A
B , u

A
B, a

A
B ) isA’s opinion aboutB ’s advice, and letx be a proposition where

ωBx = (bBx , dBx , uBx , aBx ) isB ’s opinion aboutx expressed in an advice toA.
LetωABx = (bABx , dABx , uABx , aABx ) be the opinion such that:

1. bABx = bABbBx ,
2. dABx = bABdBx
3. uABx = dAB + uAB + bABuBx
3. aABx = aBx

thenωABx is called the discounting ofωBx by ωAB expressingA’s opinion aboutx as
a result ofB ’s recommendation aboutx toA. By using the symbol ‘⊗’ to designate
this operator, we defineωABx ≡ ωAB ⊗ ωBx . 2

It is easy to prove that⊗ is associative but not commutative. This means that
in case of chains of two or more recommenders the computation can start in either
end of the chain, but that the order of opinions is significant. Opinion independence
must be assumed, which for example translates into not allowing the same entity
to appear more than once in a chain.

4.4. INDEPENDENT CONSENSUS

The consensus opinion of two opinions is an opinion that reflects both opinions
in a fair and equal way. For example if two agents have observed an unreliable
machine over two different time intervals they might have different opinions about
its reliability depending on the behaviour of the machine in the respective periods.
The consensus opinion must then be the opinion that a single agent would have
after having observed the machine during both periods.

DEFINITION 12 (Independent Consensus). LetωAx = (bAx , d
A
x , u

A
x , a

A
x ) and

ωBx = (bBx , d
B
x , u

B
x , a

B
x ) be opinions respectively held by agentsA andB about
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the same propositionx. Let ωA,Bx = (bA,Bx , dA,Bx , uA,Bx , aA,Bx ) be the opinion such
that:

1. bA,Bx = (bAx uBx + bBx uAx )/κ
2. dA,Bx = (dAx uBx + dBx uAx )/κ
3. uA,Bx = (uAx uBx )/κ
4. aA,Bx = aBx u

A
x +aAx uBx −(aAx +aBx )uAx uBx
uAx +uBx −2uAx uBx

whereκ = uAx + uBx − uAx uBx such thatκ 6= 0, andaA,Bx = (aAx + aBx )/2 when
uAx , u

B
x = 1. ThenωA,Bx is called the consensus betweenωAx andωBx , representing

an imaginary agent[A,B]’s opinion aboutx, as if she represented bothA andB.
By using the symbol ‘⊕’ to designate this operator, we defineωA,Bx ≡ ωAx ⊕ωBx .2

Justification for the consensus operator can be found in (Jøsang 2001). It is easy
to show that⊕ is both commutative and associative which means that the order in
which opinions are combined has no importance. Opinion independence must be
assumed, which obviously translates into not allowing an agent’s opinion to be
counted more than once

The effect of the consensus operator is to reduce the uncertainty. For example
the case where several witnesses give consistent testimony should amplify the
judge’s opinion, and that is exactly what the operator does. Consensus between an
infinite number of independent non-dogmatic opinions would necessarily produce
a consensus opinion with zero uncertainty.

Two dogmatic opinions can not be combined according to Definition 12.
This can be explained by interpreting uncertainty asroom for influence, mean-
ing that it is only possible to reach consensus with somebody who maintains
some uncertainty. A situation with conflicting dogmatic opinions is philosophic-
ally counterintuitive, primarily because opinions about real situations can never
be certain, and secondly, because if they were they would necessarily be equal.
The consensus of two absolutely uncertain opinions results in a new absolutely
uncertain opinion, although the relative atomicity is not well defined. The limit of
the relative atomicity when bothuAx , u

B
x → 1 is (aAx + aBx )/2, i.e. the average of

the two relative atomicities, which intuitively makes sense.
The consensus operator will normally be used in combination with the discount-

ing operator, so that if dogmatic opinions are recommended, the recipient should
not have absolute trust in the recommending party and thereby introduce uncer-
tainty before combining the advice by the consensus operator. This is illustrated by
Example A in Section 6.1 below.

The consensus operator has the same purpose as Dempster’s rule (Shafer 1976),
but is quite different from it. Dempster’s rule has been criticised for producing
counterintuitive results (see e.g., Zadeh 1984; Cohen 1986), and (Jøsang 2001)
compares our consensus operator with Dempster’s rule.
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4.5. DEPENDENT CONSENSUS

Assume two agentsA andB having observed the same evidence. Because their
observations are identical, their respective opinions will necessarily be dependent,
and a consensus according to Definition 12 would be meaningless.

If the two observers have made exactly the same observations and their opinions
are equal, it would be sufficient to take only one of the opinions into account.
However, although two observers witness the same phenomenon, it is possible that
they record and interpret it differently. Some observers may temporarily lose con-
centration when a piece of evidence is presented and thereby miss or misinterpret
it, resulting in different, but still dependent opinions. We will define a consensus
operator for dependent opinions based on the average of positive and negative evid-
ence supporting the opinions. By “evidence” we here mean the statistical evidence
that would produce a given opinion as explained in Section 5.2 below.

DEFINITION 13 (Dependent Consensus). LetωAix = (bAix , dAix , uAix , aAix ) where
i ∈ [1, n], be n dependent opinions respectively held by agentsAi about the
same propositionx. The relative atomicitiesaAix will normally be equal but for
generality we provide an expression that equals the average value. LetωA1,..,An

x =
(bA1,..,An
x , dA1,..,An

x , uA1,..,An
x , aA1,..,An

x ) be the opinion such that:

1. bA1,..,An
x =

∑n
1(b

Ai
x /u

Ai
x )∑n

1(b
Ai
x /u

Ai
x )+∑n

1(d
Ai
x /u

Ai
p )+n

2. dA1,..,An
x =

∑n
1(d

Ai
x /u

Ai
x )∑n

1(b
Ai
x /u

Ai
x )+

∑n
1(d

Ai
x /u

Ai
x )+n

3. uA1,..,An
x = n∑n

1(b
Ai
x /u

Ai
x )+∑n

1(d
Ai
p /u

Ai
x )+n

4. aA1,..,An
x =

∑n
1 a

Ai
x

n

where all theuAix are different from zero. ThenωA1,..,An
x is called the dependent

consensus between all theωAix . By using the symbol⊕ to designate this operator,
we defineωA1,..,An

x ≡ ωA1
x ⊕ ... ⊕ωAnx . 2

It is easy to show that⊕ is both commutative and associative which means that
the order in which opinions are combined has no importance.

The effect of the dependent consensus operator is to produce an opinion which
is based on an average of observed positive and an average of observed negative
evidence. Opinions based on little observed evidence will carry less weight than
those with a large evidence basis. If the operator instead was defined to take the av-
erage of the(b, d, u) components, uncertain opinions would carry as much weight
as certain opinions, but we feel that such an operator would be counterintuitive.
Jurors will for example have dependent opinions, because they have received the
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same evidence. However, jurors who for example have had problems concentrating
during court proceedings will have more uncertain opinions regarding guilt than
jurors who have followed the proceedings with interest and concentration. It is then
natural that the more uncertain opinions carry less weight than the more certain
opinions. A more detailed justification for the operator can be found in Jøsang and
Knapskog (1998).

Opinions without uncertainty can not be combined according to Definition 13
because the(b, d, u, a) components would be undefined according to Th.13. A
situation with conflicting opinions without uncertainty is intuitively meaningless,
primarily because no such opinion really exists, and secondly, because if it did, then
they would necessarily be equal. Hypothetically seen, if only one of the opinions
is without uncertainty, then it would dictate the consensus.

4.6. MIXING DISCOUNTING AND CONSENSUS

It is possible that several chains of discounted advice produce opinions about the
same proposition. Under the condition of opinion independence, these opinions
can be combined with the consensus rule to produce a single opinion about the
target proposition. An example of mixed consensus and discounting is illustrated
in Figure 2.

Legend:

TrustA EB
C

D
F

Figure 2. Mixing discounting and consensus

The discounting rule is not distributive relative to the consensus rule because it
would violate the independence requirement. To see this letωAB , ωBC , ωBD, ωCE, ωDE
andωEF represent the opinion relationships in Figure 2. We then have

ωAB ⊗ ((ωBC ⊗ ωCE)⊕ (ωBD ⊗ ωDE ))⊗ ωEF6=
(ωAB ⊗ ωBC ⊗ ωCE ⊗ ωEF )⊕ (ωAB ⊗ ωBD ⊗ ωDE ⊗ ωEF )

(8)

which according to the notation in Definition 12 and Definition 11 can be written
as

ω
AB(C,D)E
F 6= ωABCE,ABDEF (9)

The not-equal sign may seem surprising, but the right sides of (8) and (9) violate
the requirement of independent opinions because bothωAB andωEF appear twice.
Only the left sides of (8) and (9) represent the graph of Figure 2 correctly.

There will always be cases which can not be analysed directly. Figure 3 illus-
trates a situation where agentA needs to determine her trust in agentF , of which
she only has second-hand evidence trough a network of agents.
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Legend:

TrustA EB
C

F
D

Figure 3. Network which can not be analysed

Whether some advice are ignored, and thereby leaving out some of the evidence,
or all advice are included, and thereby violating the independence requirement,
the result will never be as correct as one could wish. We will leave this problem
open and simply mention that standard probability theory also does not give a clear
answer in such situations.

5. How to Determine Opinions

The major difficulty with applying Subjective Logic is to find a way to consistently
determine opinions to be used as input parameters. People may find the opinion
model unfamiliar and difficult to relate to, and different individuals may produce
conflicting opinions when faced with the same evidence.

5.1. DETERMINING OPINIONS USING STATISTICAL EVIDENCE

In Jøsang (2001) it is describes how opinions can be formed based on statistical
evidence. Assume a process that can produce positive or negative outcomes. When
the process previously has producedr positive ands negative outcomes the opinion
that any random outcome is positive can be expressed asω = (b, d, u, a) where:

b = r/(r + s + 2)
d = s/(r + s + 2)
u = 2/(r + s + 2)
a = relative atomicity of event

(10)

The numbers of positive and negative outcomes,r and s, represents the stat-
istical evidence supporting the opinion. Unfortunately, this method can only be
applied in idealised cases such as for example when picking red and black balls
from an urn. In most real life situations, the evidence at hand can only be analysed
intuitively, and this will be discussed next.

5.2. USING GUIDELINES FOR DETERMINING OPINIONS

In this section we will attempt to formulate a questionnaire for guiding people in
expressing their beliefs as opinions. The idea behind the questionnaire is to make
the subject consider each component of her opinion separately.

An opinion is always about a proposition, so the first task when trying to determ-
ine an opinion intuitively is to express the proposition clearly. The subject should
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be informed that it is assumed that nobody can be absolutely sure about anything,
so that opinions with absolute belief (b = 1) or disbelief (d = 1) should never
be specified. The questionnaire below will help subjects isolate the components of
their opinions in the form of belief, disbelief and uncertainty.

5.2.1. Questionnaire for Determining Subjective Opinions

1. Is the proposition clearly expressed?
Yes: → (2)
No: Do it, and start again.→ (1)

2. Is there any evidence, or do you have an intuitive feeling in favour of or against
the proposition?
Yes: → (3)
No: You are totally uncertain.b := 0, d := 0,u := 1. → (7)

3. How conclusive is this evidence or how strong is this feeling?
Give a value 0≤ x ≤ 1. → (4)

4. How strong is the evidence or the intuitive feeling against the proposition?
Give a value 0≤ y ≤ 1. → (5)

5. How strong is the evidence or the intuitive feeling in favour of the proposition?
Give a value 0≤ z ≤ 1. → (6)

6. Normalisation of results:

b := z
z+y+(1−x)

d := y

z+y+(1−x)
u := 1−x

z+y+(1−x) → (7)

7. What is the total number of states in the event space (e.g. if you are picking
coloured balls from an urn containing balls ofn different colours then there are
n states)?
n := total number of states→ (8)

8. How many states does the proposition cover (e.g. of you are interested in pick-
ing any out ofm different colours wherem ≤ n then the proposition coversm
states)?
m := number of states covered by the propositions,→ (9)

9. a := m
n

, → (10)

10. ω = (b, d, u, a) is the subjective opinion.

The relative atomicity of propositions about statements that are either true or
false is always 0.5, and in other cases the relative atomicity can usually be specified
when giving the proposition. Steps 7, 8 and 9 can therefore be skipped in most
cases.
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6. Examples of Applying Subjective Logic

Legal reasoning in criminal law cases consists of considering evidence in favour
of or against claims expressed either by the defence or by the prosecution, on the
background of the relevant legislation. The judge or the jury then has to decide
whether the claims are true or false, and ultimately whether the accused is guilty
or not according to the accusation and the relevant legislation.

The truth value of this type of claims, and therefore the frame of discernment to
which the proposition belongs, can be characterised as binary, because it is assumed
that the claims are either true or false, and not something in between. In the same
manner, the accused is assumed to be innocent or guilty, and not for example half
guilty or half innocent.

Although it is assumed that a statement made in court is true or false, it is
impossible to be absolutely certain about its truth value, and the judge or the jury
can only ever have anopinionabout it. Subjective Logic seems suitable to this type
of reasoning.

Many judicial systems allow the severity of guilt to be graded, for example by
expressing whether the crime was premeditated or not, but our examples will only
cover the purely binary situation.

6.1. EXAMPLE A: ASSESSMENT OF TESTIMONY FROM WITNESSES

The evidence can be presented in a multitude of forms, but usually the judge or the
jury will only be presented with second-hand evidence. That is, they will rarely be
able to assess the physical evidence themselves, but have to accept the statement
about the first-hand evidence from witnesses. In this case, the judge or the jury
members will have to determine the witnesses’ credibility, and take the statements
from the witnesses as recommendations about the first-hand evidence they have
observed. The discounting operator can be used to model this process.

In this example we consider a court case where 3 witnessesW1, W2 andW3

are giving testimony to express their opinions about a verbal propositionx which
has been made about the accused. We assume that the verbal proposition is either
true or false, and let each witness express his or her opinion about the truth of the
proposition as an opinionωWx , to the courtroom. The judgeJ then has to determine
her own opinion aboutx as a function of her trustωJW : ‘WitnessW is reliable and
will tell the truth’ in each individual witness. This situation is illustrated in Figure
4 where the arrows denote trust or opinions about truth.

xJ

W

W

W

2

1

3

Trust

Legend:

Figure 4. Trust in testimony from witnesses
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The effect of each individual testimony on the judge can be computed using the
discounting operator, so that for exampleW1’s testimony causes the judge to have
the opinion

ωJW1
x = ωJW1

⊗ ωW1
x

about the truth ofx. Assuming that the opinions resulting from each witness are
independent, they can finally be combined using the consensus operator to produce
the judge’s own opinion aboutx:

ωJ(W1,W2,W3)
x = (ωJW1

⊗ ωW1
x )⊕ (ωJW2

⊗ ωW2
x ) ⊕ (ωJW3

⊗ ωW3
x ) (11)

As a numerical example, letJ ’s opinion about the witnesses, and the witnesses’
opinions about the truth of propositionx be given by:

ωJW1
= (0.90,0.00,0.10,0.50) ωW1

x = (0.90,0.00,0.10,0.50)

ωJW2
= (0.00,0.90,0.10,0.50) ωW2

x = (0.90,0.00,0.10,0.50)

ωJW3
= (0.10,0.00,0.90,0.50) ωW3

x = (0.90,0.00,0.10,0.50)

It can be seen that the judge has a high degree of trust inW1, that she distrusts
W2, and that her opinion aboutW3 is highly uncertain, meaning that she is very
uncertain about whetherW3 should be trusted or not.

The judge’s separate opinions about the propositionx as a function of the advice
from each witness then become:

ωJW1
x = (0.81, 0.00, 0.19, 0.50)

ωJW2
x = (0.00, 0.00, 1.00, 0.50)

ωJW3
x = (0.09, 0.00, 0.91, 0.50)

It can be seen thatωJW2
x is totally uncertain due to the fact that the judge dis-

trustW2, and thatωJW3
x is highly uncertain because the judge is very uncertain

about testimonies fromW3. OnlyωJW1
x represents an opinion that can be useful for

making a decision. By combining all three independent opinions into one the judge
gets:

ωJ(W1,W2,W3)
x = (0.8135,0.0000,0.1865, 0.5000)

Obviously the combined opinion is mainly based on the advice fromW1.

6.2. EXAMPLE B: QUANTIFICATION OF SUFFICIENT PROOF

In case a judge decides on the verdict alone, she alone must weigh the presented
evidence and from this determine an opinion. In case a jury decides on the verdict,
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the members must somehow reach a consensus. In some judicial systems, absolute
consensus is required, whereas others only need a majority of votes to pronounce
the accused as guilty. This example introduces a new principle, whereby an opin-
ion about guilt is determined with the consensus operator. The consensus opinion
is finally compared with a predetermined threshold value to decide whether the
accused shall be pronounced guilty.

In this example we consider a jury which has to decide whether the accused
in a criminal case is guilty or not. For simplicity, the jury consists of only the
three jurorsJ1, J2 andJ3. They each have an individual opinionωJig about whether
the accused is guilty according to the charge. For the jury to reach a consensus,
the opinions can be combined using the consensus operator. The jury must be
considered as an imaginary agent [J1, J2, J3] consisting of all the jury members
combined. This is illustrated in Figure 5.

1 2 3J  , J  , J[                ]g

J

J

J

1

2

3

g

Individual opinions Consensus opinion

Figure 5. Consensus in a jury

The jurors’ opinions will necessarily be dependent, since they have been
listening to the court proceedings together and therefore have received the same
evidence. If the operator for independent consensus was used, a larger jury would
produce a stronger opinion of guilt (or innocence), simply because the number of
jury members is large. The operator for dependent consensus must therefore be
used. This has the effect of producing an average opinion, where the most certain
opinions carry the most weight. The opinion of the jury can then be expressed as:

ωJ1,J2,J3
g = ωJ1

g ⊕ωJ2
g ⊕ωJ3

g (12)

The final part of the analysis is to compare the jury’s opinion with threshold
value in order to determine whether the opinion about guilt is sufficiently strong to
pronounce the accused as guilty. This can be done by using the ordering operator,
but first, a threshold value must be determined.

The topic of fixing a threshold value for guilt is likely to cause considerable
controversy. Our proposal is to let the threshold value be determined by the ac-
ceptable rate of wrongful convictions. Some will say that wrongful convictions can
never be accepted, but then we claim that convictions can never be made, except
perhaps when the accused pleads guilty.

The question of acceptable wrongful conviction within a judicial system could
be partly politically and partly judicially determined. As an example we will let the
threshold opinion about guilt be fixed asωTguilty = (0.999, 0.001, 0.000, 0.500),
meaning that it is acceptable that 1 in 1000 convictions is wrongful.
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Assume further that the jurors have valued their individual opinions about guilt
to be:

ωJ1
g = (0.9993,0.0005,0.0002,0.5)
ωJ2
g = (0.9985,0.0010,0.0005,0.5)
ωJ3
g = (0.9990,0.0005,0.0005,0.5)

By using these values in (12), the jury’s opinion about guilt can be computed
as:

ωJ1,J2,J3
g = (0.99906, 0.00061, 0.00033, 0.5)

It can be observed thatωTguilty < ωJ1,J2,J3
g , meaning that the jury’s opinion about

guilt is sufficiently strong to pronounce the accused as guilty.

6.3. EXAMPLE C: THE PEOPLE VS. COLLINS REVISITED

In this example we will apply Subjective Logic to the case of The People vs. Collins
described in Section 2 and show that by taking a subjective approach, the results are
much less conclusive. To repeat the case, witnesses to a robbery indicated a male
Negro with a beard and a female blonde Caucasian with hair worn in a pony tail,
escaping in a yellow automobile. The probability of finding a couple possessing
these characteristics was estimated to 1/12,000,000. The Collins couple appar-
ently matched the characteristics, and were therefore thought to have committed
the robbery with overwhelming certainty.

Instead of accepting the testimonies as absolutely reliable (which they never
are) we will assume that the witnesses are invited to numerically express opinions
about each statement they make and that the judge expresses her trust in the
witnesses in the same way. The statements made by the witnesses can be expressed
as:

x1: The robbery was committed by a couple consisting of a male
Negro and a female Caucasian

x2: The male Negro had a beard

x3: The female Caucasian wore her hair in a pony tail

x4: The robbers escaped in a yellow automobile

According to the argument put forward by the prosecution, the Collinses are
guilty if they fit the description. This implicitly means that they can only be guilty
according to the same argument if the description is correct. Logically, the descrip-
tion of the robbers is correct only if all the statements are true. To simplify our
example, we will assume that there are only two witnessesW1 andW2, and that
their opinions about the respective statements are:

Assume further that the judgeJ ’s trust in W1 andW2 is given byωJW1
=

(0.82, 0.03, 0.15, 0.5) andωJW2
= (0.80, 0.05, 0.15, 0.5) respectively.
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Table I. The witnesses’ opinions about the statements

W1’s opinions: W2’s opinions:

x1: (0.95, 0.00, 0.05, 0.50) (0.97, 0.00, 0.03, 0.50)

x2: (0.90, 0.00, 0.10, 0.50) (0.92, 0.00, 0.08, 0.50)

x3: (0.90, 0.00, 0.10, 0.50) (0.92, 0.00, 0.08, 0.50)

x4: (0.96, 0.00, 0.04, 0.50) (0.98, 0.00, 0.02, 0.50)

For witnessW1, the opinion about the correctness of the description can be
expressed as:

ω
W1
x1∧x2∧x3∧x4

= ωW1
x1
∧ ωW1

x2
∧ ωW1

x3
∧ ωW1

x4

and similarly for witnessW2

The judge must discount the witnesses’ advice by her opinions about the wit-
nesses and use the consensus operator in order to determine her own opinion about
the correctness of the robbers’ description. This can be expressed and computed
as:

ω
J(W1,W2)
x1∧x2∧x3∧x4

= (0.77, 0.00, 0.23, 0.48)

If the Collinses really fit the description, they can only be guilty to the degree
that the description is correct. The value above can be interpreted as the judge’s
opinion about the correctness of the description. The mean value of the judge’s
opinion which is equal to 0.88 gives a probability estimate of the correctness of the
description. This means that there is about 12% chance that the description actually
is wrong. Even if the Collinses fit the description the likelihood of them actually
being guilty is then substantially reduced.

Although the values used here are purely hypothetical, the example illustrates
the effect of interpreting statements from witnesses as advice, and how the judge’s
opinions about the witnesses are applied to discount the witnesses advice.

7. Conclusion

There seems to be a consensus between the judicial and statistical professions that
probability theory is insufficient for modelling legal reasoning, mainly because
probability is not able to express uncertainty. In the present paper we have de-
scribed a calculus for uncertain probabilities called Subjective Logic, and explored
how this calculus can be applied to legal reasoning.

The main difficulty with applying Subjective Logic is that there is no consist-
ent way of determining opinions when the evidence at hand can not be analysed
statistically. If for example two individuals value their opinions differently when
confronted with the same evidence, and their opinions can change over time
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without any clear reason, it becomes evident how subjective, and ultimately
unmanageable a mathematical analysis can become.

Judicial decisions are influenced by an infinity of factors, of which only a frac-
tion is contemplated in a conscious way by the judges and jurors. It can therefore
not be expected that these complex mental mechanisms can be modelled by a dozen
formulas. The present contribution is more an attempt to understand this process
than it is an attempt to clone and eventually replace it. However, we believe it
would be interesting to compare results produced by a formal model with actual
legal decisions, to see whether the latter can be formally and logically supported.

Appendix

PROOF 1 (Belief Function Additivity). The sum of the belief, disbelief and uncer-
tainty functions is equal to the sum of the belief masses in a BMA which according
to Definition 1 sums up to 1. 2
PROOF 2 (Kolmogorov Axioms). Each property can be proved separately.
1. Immediate results of Defs.1 & 2 are thatbx ≥ 0, thatux ≥ 0, and thatax ≥ 0

for all x. As a consequence any probability expectation according to Definition
6 will satisfy 0≤ E(x) ≤ 1.

2. Immediate results of Defs.1 are thatb2 = 1 and thatu2 = 0, resulting in
E(2) = 1.

3. Letx1, x2 . . . ∈ 22 be a set of disjoint states, i.e. so thatxi ∩ xj = ∅ for i 6= j .
According to Definition 6 we can write:

E((xi ∪ xj )) =
∑
y

m2(y) a((xi ∪ xj )/y), y ∈ 22 (13)

Becausexi andxj are disjoint the following holds:

a((xi ∪ xj )/y) = a(xi/y)+ a(xj /y) (14)

The sum in (13) can therefore be split in two so thatE((xi ∪xj )) can be written
as:

E((xi ∪ xj )) =∑y m2(y)a(xi/y)+
∑

y m2(y)a(xj /y), y ∈ 22

= E(xi)+ E(xj )
(15)

This can be generalised to cover arbitrary sets of disjoint states. 2
PROOF 3 and 4. (Propositional Conjunction and Disjunction). Let2X and2Y be
two binary frames of discernment, werex,¬x ∈ 2X andy,¬y ∈ 2Y . The product
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frame of discernment of2X and2Y , denoted by2X×Y is obtained by conjugating
each element of 22X with each element of 22Y . This produces:

2X×Y = {x,¬x,2X} × {y,¬y,2Y }
= {x ∩ y, x ∩ ¬y, x ∩2Y ,¬x ∩ y,¬x ∩ ¬y,
¬x ∩2Y ,2X ∩ y,2X ∩ ¬y,2X ∩2Y }

Let m2X andm2Y be BMAs on2X and2Y respectively. Because2X and2Y

are binary, the belief masses can be expressed according to Equation (3) as simple
belief functions such that:

m2X(x) = bx m2Y (y) = by
m2X(¬x) = dx m2Y (¬y) = dy
m2X(2X) = ux m2Y (2Y ) = uy

The BMA on2X×Y is obtained by multiplying the respective belief masses on
the elements of 22X with the belief masses on the elements of 22Y . This produces:

m2X×Y (x ∩ y) = bxby m2X×Y (2X ∩ y) = uxby
m2X×Y (x ∩ ¬y) = bxdy m2X×Y (2X ∩ ¬y) = uxdy
m2X×Y (x ∩2Y) = bxuy m2X×Y (2X ∩2Y) = uxuy
m2X×Y (¬x ∩ y) = dxby
m2X×Y (¬x ∩ ¬y) = dxdy
m2X×Y (¬x ∩2Y) = dxuy
− Propositional Conjunction:
The conjunction betweenx ∈ 2X andy ∈ 2Y is simply x ∩ y ∈ 2X×Y .
The derived frame of discernment with focus onx ∩ y then becomes̃2x∩y

X×Y ={x ∩ y,¬{x ∩ y}}, where¬{x ∩ y} = {x ∩¬y,¬x ∩ y,¬x ∩¬y}. According
to Definition 8 the BMAm

2̃
x∩y
X×Y

is such that:

1. m
2̃
x∩y
X×Y
(x ∩ y) = bx∧y

2. m
2̃
x∩y
X×Y
(¬{x ∩ y}) = dx∧y

3. m
2̃
x∩y
X×Y
(2̃

x∩y
X×Y ) = ux∧y

By using Equation (4) it can also be observed that the derived relative
atomicity ofx ∩ y is such that:

4. a
2̃
x∩y
X×Y
(x ∩ y) = ax∧y

These four parameters defineωx∧y as specified in Theorem 3.
− Propositional Disjunction:
Similarly to propositional conjunction, the propositional disjunction between
x ∈ 2X and y ∈ 2Y is simply x ∪ y = {x ∩ y, x ∩ ¬y,¬x ∩ y}, with
x ∪ y ∈ 2X×Y . The derived frame of discernment with focus onx ∪ y then
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becomes̃2x∪y
X×Y = {x∪y,¬{x∪y}}, where¬{x∪y} = {¬x∩¬y}. According

to Definition 8 the belief mass assignmentm2x∪y is such that:

1. m
2̃
x∪y
X×Y
(x ∪ y) = bx∨y

2. m
2̃
x∪y
X×Y
(¬{x ∪ y}) = dx∨y

3. m
2̃
x∪y
X×Y
(2̃

x∪y
X×Y ) = ux∨y

By using Equation (4) it can also be observed that the derived relative
atomicity ofx ∪ y is such that:

4. a
2̃
x∪y
X×Y
(x ∪ y) = ax∨y

These four parameters defineωx∨y as specified in Theorem 4. 2
PROOF 5 (Product and Co-product). Each property can be proved separately.

1. Equation 1 corresponds to the product of probabilities. By using Definition 6
and Theorem 3 we get:

E(ωx∧y) = bx∧y + ux∧y ax∧y
= bxby + bxuyay + uxaxby + uxaxuyay
= (bx + uxax)(by + uyay)
= E(ωx)E(ωy)

(16)

2. Equation 2 corresponds to the co-product of probabilities. By using Definition
6, Theorem 4 and Equation (1) we get:

E(ωx∨y) = bx∨y + ux∨y ax∨y
= bx∨y + (dxuy + uxdy + uxuy) ax∨y
= bx∨y + (ux + uy − bxuy − uxby − uxuy) ax∨y
= bx + by − bxby + uxax + uyay − bxuyay
− uxaxby − uxaxuyay

= bx + uxax + by + uyay − (bx + uxax)(by + uyay)
= E(ωx)+ E(ωy)− E(ωx)E(ωy)

(17)

2
PROOF 6 (Negation). The opinion about the negation of the proposition is the
opinion about the complement state in the frame of discernment. An immediate
result of Equation (3) is then thatb¬x = dx , d¬x = bx and u¬x = ux . The
probability expectation values ofx and¬x satisfy E(ωx) + E(ω¬x) = 1 which
when used in Equation 3 results ina¬x = 1− ax . 2
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