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AMOEBA REALS -
HAIM JUDAH AND MIROSLAV REPICKY

Abstract. We define the ideal with the property that a real omits all Borel sets in the ideal which are
coded in a transitive model if and only if it is an amoeba real over this model. We investigate some other
properties of this ideal. Strolling through the “amoeba forest” we gain as an application a modification
of the proof of the inequality between the additivities of Lebesgue measure and Baire category.

§0. Introduction. The concepts of Cohen and random real arose immediately
after the discovery of the method of forcing because of their close relations to
category and measure. These two kinds of generic reals are determined by mea-
ger Borel sets and Borel sets of Lebesgue measure zero, respectively. This basic
property predestines the relevance of these reals in the investigation of properties
of measure and category.

There are other kinds of generic reals having some influence on the behaviour of
measure and category through intermediary phenomena. Though this influence
is not straightforward, still it can shed some new light on the objects. In this
paper we work with amoeba reals. We choose a way of access opposite to the one
that was natural in the case of Cohen or random reals, and through an amoeba
real we define a c.c.c. o-ideal % of sets of reals having Borel base such that
r.0.A = Borel/ % and amoeba reals are just reals avoiding Borel members of the
ideal fz.

We can motivate our interest in amoeba reals also by asking how strong the
following four assertions are:

(1) There is an amoeba real.

(2) The old amoeba forcing is o-centered.

(3) There is a perfect set of random reals of positive measure.
(4) There is a perfect set of random reals.

For (1) — (2) see e.g. [1], and the implication (3) — (4) is trivial. To see the
implication (2) — (3); if the old amoeba forcing is o-centered, i.e. ANV =/, ., An,
with A, centered (amoeba forcing A is the set of all closed sets of measure greater
than 1/2 ordered by inclusion). Then the sets B, = () A,, n € w, are closed sets
of measure > 1/2 and ) ., (B, + Q) is a Borel set of full measure consisting of
random reals over V.
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The only result in the reverse direction known to us is that (4) does not imply (3).
This follows from the observation that (3) implies the existence of a dominating
real while by [4] the existence of a perfect set of random reals without the existence
of a dominating real is possible.

Let us recall that ., .#" denote the ideal of meager sets and the ideal of Lebesgue
measure zero sets, respectively. The underlying set of these ideals is either an
interval of reals or the Cantor space “2; which case holds will be clear from the
context and we do not distinguish them strictly. The Lebesgue measure on “2 is
denoted by u.

Let .# bean ideal on a set X and (P, <) be a partially ordered set. The following
cardinal invariants are commonly used:

add(#) =min{|Z|:  C .~ & | JZ ¢ 7},

§1a. Borel representation of Boolean algebras. It is a well-known fact that ev-
ery o-complete Boolean algebra with countably many o-complete generators is a
homomorphic image of the o-complete Boolean algebra of Borel sets of reals, i.e.
the o-algebra of Borel sets is a free o-complete Boolean algebra. This fact has a
simple expression in terms of Boolean valued models when the generic extension
is generated by a real: if & is a complete Boolean algebra and x is an &-name
of a real in V¥, then the mapping ¢ defined by

(1.1) ¢« (B) =|x € B|, B isa Borel set,
is a g-complete homomorphism, ¢, : Borel — &. Moreover, if & is c.c.c., then
the image of ¢ is a complete subalgebra & C &.
§1b. Amoeba forcing. For a tree T C <“2, [T]={x € “2: (Vn)x|n € T}. We
choose the following form of amoeba forcing:
A={T C<“2:Tisatree and u([T]) > 1/2},
<1, iff T1CT.

If G C A is a generic subset, then P* = G is a perfect tree and u([P*]) = 1/2.
We want to express r.o. A in terms of §la. Let us consider the following space
(homeomorphic to a G; subset of the Cantor space via characteristic functions):

R={PC<?2:Pisatree & u([P]) = 1/2}.
So the homomorphism (1.1) will have the following form:

(1.2) #a(B) = |P* € B|, for Borel subsets B C R.
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Note that although the generic tree is perfect we do not require all trees in R to
be perfect. On the other hand, the set of nonperfect trees is small in the sense of
category base for amoeba (see the definition in the next lemma), i.e. it is @-meager.

§1c. Category base for amoeba. For T € Alet (T) ={P € R: P C T} We
call the family & = {(T') : T € A} a family of regions. Note that & ~ A and every
disjoint family of regions is countable.

LemMA 1.1. The pair (R, %) is a category base, i.e. the following two conditions
are satisfied (cf. [9]):

(1) R=U¢%.
(2) If A € % and @ C & is a nonempty disjoint family of power less than |%|,
then
(a) if AN D contains some region from &, then there is a region D € &
such that AN D contains a region, and
(b) if ANUZ contains no region, then there is a regton B C A4 that is
disjoint with | 9.

Proor. Standard proof using c.c.c. of amoeba.

(1) This is clear.

(2) Notice that 2 must be countable by c.c.c. of A.

(a) If(T) C AN 2 is a region and (T') N (T’) does not contain a region for
any (T') € 9, then for every (T') € @, u([T1N[T']) < 1/2. Hence by removing
sets of small measure from [7'] (a small subset of [T"] for each T’ € &) we manage
to find 77 C T so that T} € A and for all (T') € &, u([Th]1N[T’]) < 1/2. This
is possible since & is countable. Evidently (77) is disjoint with | J<2. This is a
contradiction, since (T7) C (T).

(b) If 4 = (T) and 4 N |JZ contains no region, then for every (T') € @,
u([T1N[T’']) < 1/2. As in the case of (a) we can find a region 4’ C 4 disjoint
with J 2. a

DerINITION 1.2. (i) X C R is @-rare (or singular, see [9]) if for every region
A € % there is a region B C 4 such that BN X = 0.

(i) X C R is #-meager if it is a countable union of &-rare sets.

(ili) X C R is @-Baire if for every region 4 €  there is a region B C 4 such
that either B — X is @-meager or B N X is &-meager.

(iv) H is the o-ideal of €-meager sets, and @-Baire is the o-algebra of #-Baire
sets in the category base (R,%).

LemMma 1.3. (i) @-Baire is closed under Souslin s/ -operation. In particular, it is
a o-algebra of sets.

(ii) The regions are not €-meager.

(iii) Borel subsets of R are &-Baire.

(iv) Analytic sets are %-Baire.

Proor. The propositions (i) and (ii) hold true for any category base (see [9]),
and (iv) follows easily from (ii) and (iii). Therefore it is enough to prove (iii).

For an integer n € w and a finite tree 7 C "2 whose every branch has length
n+1, let

clopen(r) = {P €R: PN="2 =1}.

Clearly, clopen(z) is a clopen subset of R and every clopen subset of R is the
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finite union of clopen sets of such form. Hence the sets clopen(t), 7 a finite tree,
generate the o-algebra of Borel subsets of R, and so it is enough to prove that
they are #-Baire. Let us fix 7 and let n + 1 be the height of 7. It is enough to
prove that for every region (T) there is a subregion (7') C (T) such that either
(T") C clopen(z) or (T') Nclopen(z) = 0.

For s € TN"2, T, denotes the subtree of T with stem s. Let E C "2 be a
minimal subset of 7N "2 such that u({J,cg[Ts]) > 1/2. Choose T € A, T' C T,
so that 0 < u([T!]) < u([Ts]) for s € E and [T!] = 0 for s € "2 — E. Then
u([T'1—[T!]) < 1/2 for every s € E, and so if P € (T'), then PN"2 = E. Hence
either (T’) C clopen(z) or (T') N clopen(z) = @, according to whether E equals
7N "2 or not. O

Let e : A — r.0. A denote the canonical completion of A (i.e. a compatibility-
preserving mapping onto a dense subset of r. 0. A).

LemMma 1.4. (i) If (T) € &, then po((T)) = e(T) #0 for T € A.

(ii) If B C R is a €-rare Borel set, then ¢s(B) =0.

ProoF. It is trivial. O

COROLLARY 1.5. For any Borel set B C R, ¢A(B) =0 iff B is &-meager.

PrOOF. By the previous lemma, for @-meager sets B we have ¢4 (B) = 0 because
¢a 18 o-complete. The reverse implication follows from the fact that every Borel
set is #-Baire and so it can be represented as a countable union (using c.c.c.) of
sets from & modulo a #-meager set. O

COROLLARY 1.6. 1.0.A = Borel/ % = &-Baire/ F¢.

PROOF. r.0. A is a homomorphic image of the algebra of Borel sets by the ho-
momorphism (1.2) with the kernel containing exactly Z-meager Borel sets. Every
@ -Baire set is equal to a countable union of regions (hence to a Borel set) modulo
a @-meager set. O

§2. The ideal 7. Note that if {7, : n € w} is a predense subset of A, then
R — U, co(Tn) is a @-rare set, and, conversely, every @-rare set is contained in a
% -rare set of such form.

Let us define another version of amoeba forcing. For ¢ > 0,

(2.1) A. ={T C<®2: T isatree and u([T]) > ¢}

is ordered by inclusion. In particular, A = A,/,. Later we will use the fact that
the complete Boolean algebras r.o0. A and r.0. A, are isomorphic (see [12]).

LemMA 2.1. If e > 1/2 and T is a generic tree in A, then u([Tg]) = € and the
region (Tg) is disjoint with RN'V.

PrOOF. For every P.€e RNV, Dp ={T € A, : P Z T} is a dense subset of A.,
and every condition in Dp forces P Z Tg. O

For n € w let I, = {n : 7 is a permutation of "2} and for r € [T, and T € A
let n(T)={s€<*2:(FteT)|t|>n & slnCn(tn) & s}{n,00) = t[(n,00)}.
Let IT = U, ¢, .

LeMMA 2.2. Let T € A. Then Dy = {n(T) : = € 11} is a predense subset of A.

PrOOF. Let S € A be arbitrary. We show that there are n € w and = € I1, such
that S and n(T) are compatible. Without loss of generality we can assume that
u([S]) < u([T]). For some positive real 6, u([S]) —J > 1/2.
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For X C "2 let Uy = |J{[s]: s € X} and for n € w let T,, S, denote the nth
levels of the trees 7', .S, respectively.

There is n € w such that u(Ur, — [T]) < 6 and |S,| < |T,|- Let = € I, be
such that S, C n(T,). We prove that n(T") and S are compatible.

Obviously [S]C Us, € Uyr,) and so [S]N[z(T)] = [S1— (Uy(r,) — [z(T)]). On
the other hand u(Uyr,) — [#(T)]) = u(Ur, —[T1) <6. Therefore u([S]N[=(T)]) >
#([S]) —d > 1/2. t

Lemma 2.2 implies that after adding an amoeba real the old amoeba forcing
becomes o-centered (see also [1]). From the above two lemmata and the mentioned
isomorphism it follows that :

ko “RNV is a @-rare set”.

This fact distinguishes the amoeba reals from random and Cohen reals, since both
random and Cohen reals preserve nonsmall sets with respect to their ideals. Let
us recall that an amoeba real causes the set of old reals to be a measure zero set.
Hence the last fact is a more straightforward consequence of the following lemma.

LemMA 2.3. If u(®2NV) =0, then RNV is @-rare.

ProoF. Choose a sequence T, € A, n € w, such that [7,] is disjoint with “2NV
and u([T,]) > 1 —1/2". Then {T, : n € w} is predense in A and |J,c,,(T») is
disjoint with RN'V. O

Let Z(A) and Z(A) denote the family of all maximal antichains and the family
of all filters in A, respectively. Let us introduce the following cardinal invariants
for amoeba forcing:

m(A) = min{x : “MA,(A)},
r(A) = min{|4]| : 4 CR & (Vo € [Z(A)]=°)(3G € Z(A))
G is D-generic & (Neg(T) N A4 # 0}.

Lemma 2.4, (a) cov(SF) = m(A).

(b) non(F) = w(A).

Proor. For a @-rare set B C Rtheset Dp = {T € A: (T)NB = 0} is
a dense subset of A. Hence, whenever & is a family of &-rare sets and G is
a {Dp : B € o/}-generic filter over A, then (", ;(T) N« = 0, where the set
Nrec(T) is nonempty. Hence, if || < m(A), then |J & # R and m(A) < cov( 7).
Similarly, if A C R witnesses the equality |4| = to(A), then 4 cannot be covered
by a countable family of &@-rare sets, and so non(%z) < tv(A)

In the reverse direction: If D C A is a predense set, then the set R — ;¢ p(T)
is a @-rare set. However, we need another observation.

We say that a maximal antichain D C A is strict if for every two different
members T, T’ € D, u([T1N[T’]) < 1/2. We say that a maximal antichain D’
strictly refines a maximal antichain D if for every T € D and for every T’ € D’
either T/ C T or u([T]1N[T’]) < 1/2. We prove three simple facts about these
notions.

CLAIM 2.4A. For every maximal antichain D there is a strict maximal antichain
D’ which refines D.
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ProOF. Let {T; : £ < 2“} be an enumeration of A. By induction on & < 2¢
define Té’ € A as follows. If there is { < £ such that T; is compatible with 77, then
set T = T;. Assume that T is not compatible with any 77, i.e. p((TN[T) < 1/2
for every { < £. By c.c.c. of A, the set {T{’ : { < &} is countable; let T, n € w,
be an enumeration of this set. Choose any sequence of positive reals €,, n € w,
such that u([T:]) — > ,c, €n > 1/2, and let 5, € Tz, n € w, be arbitrary with
u([sn]) < ey and u([T:1N[T;]— [sa]) < 1/2 for all n. Now let T € A be such that
[T7] = [T¢] — U,eolsn]. Clearly, the set D' = {T; : & < 2%} is a strict maximal
antichain refining D. |

Cram 2.4B. For every finite family & of maximal antichains there is a strict
maximal antichain which strictly refines all antichains of the family.

Proor. For a antichain D the set

Hp={T'€e A:(NT €D)T' <T or u([T1N[T']) < 1/2}

is an open dense subset of A. Let D* C (1, Hp/ be a maximal antichain. Now
let D be a strict maximal antichain which refines D*. Then clearly D strictly refines
all antichains in 9. O

We say that a family of maximal antichains & is closed under finite strict refine-
ments if for every finite subfamily & there is a strict maximal antichain D € &
which strictly refines all antichains in &). Note that for an infinite family & of
maximal antichains there is a family &’ of the same size which is closed under
finite strict refinements.

CrLam 2.4c. If @ is a family of strict maximal antichains closed under finite
strict refinements, then whenever P € (\pco Urep(T), the set

G={TeA:(3T' e J2)PCT' CT}

is a D-generic filter.

ProoF. Notice that, as P € [y U7rep(T), for each D € & thereisa T € D
such that P C T (the presence of refining strict maximal antichains ensures that
there is only one such T in each D). Let Ty, T; be any elements from G N|J 2.
There are Dy, D, € & such that T; € D; fori = 1,2. Let D € & be a strict
maximal antichain which strictly refines D;,D; andlet T € DN G,ie. P C T.
Then, as u([T1N[T:]) > 1/2, we have T < T; for i = 1,2 and so G is a &-generic
filter. O

Now, if & is a family of maximal antichains of cardinality less than cov(.%),
without loss of generality we can assume that & is closed under finite strict re-
finements, the set |J,.q (R — Uzcp(T)) is nonempty, and each element of this
set determines a & -generic filter. Consequently, cov(_%z) < m(A).

Similarly, let 4 C R have cardinality less than to(A). So, there is a countable
family & of maximal antichains such that, for each &-generic filter G, (" .;(T)N
A = (. Without loss of generality we can assume that & is closed under finite
refinements. Then, by Claim 3, for each P € (. Urep(T), P ¢ A. Hence 4
is #-meager and w(A) < non(.%). O

The same proof yields:
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Lemma 2.5. (a) The €-meager Borel sets coded in 'V cover R if and only if there
is no amoeba real over V. Moreover, a real is an amoeba real over V if and only if
it omits all €-meager Borel sets coded in V.

(b) 4 set A CR is not &-meager if and only if for every countable system & of
dense subsets of A there is a D-generic filter G such that (\;c(T) N A # 0.

§3. Special Z-rare sets. Often when we construct a &-meager set it has a simple
definition.

DEFINITION 3.1. A @-rare set A is special if there is T € A such that 4 C
R — U,en(n(T)). A set A is a special &-meager set if it is the countable union
of special @-rare sets, i.e. there are conditions 7,, € A, n € w, such that 4 N
Muco Uren(7(Tn)) = 0. We say that the sequence T, n € w, witnesses that A is
a special &-meager set. We denote by 7 the family of all special #-meager sets.

By Lemma 2.3, if ®2 NV has measure zero, then RNV is @-rare. We show
that it is even a special % -rare set. Let us choose a perfect set 4 C 2 consisting
of new reals of measure greater than 1/2. Let T € A be such that 4 = [T]. By
Lemma 2.2, the set Unen<”(T)> is a complement of a &-rare set, and because of
new reals it is disjoint of RNV,

We can give another example of a special @-rare set. If there is an unbounded
real over V, then RNV is special @-rare. To see this let us follow the notation
of [8]: For every strictly increasing function g € “w, let H, = {x € *2 :
(3°°n) x|{g(n),g(n) + n) = 0}. For G C “2 an open set and n € w define
G, =U{[s]:5s €"2 & [s] € G}. Define a sequence e, >0sothaty ., e <1)2
and for G C “2 open define f¢ € “w so that for all n, u(G — G/, (,) < en. So
the sets H, are measure zero sets for suitable g. A. W. Miller has proved that if
H, C G, then f¢ eventually dominates g.

Let us assume that there is an unbounded real g over V. Let [T] be a perfect
set disjoint with H, such that T € A (i.e. u([T]) > 1/2). Then by Miller’s result
(T) NV =, and consequently RNV is a special &-rare set.

LemMa 3.2. For every special &-meager set A there is a decreasing sequence of
conditions T, € A, T, < T,, witnessing that A is a special -meager set.

Proor. We can find such a sequence inductively using Lemma 2.2. O

LeMMA 3.3. If RNV is a &-rare set, then it is a special €-rare set.

ProOF. If there is T such that (RNV)N(T) =0, then also (RNV)N{(n(T)) =10,
for all = € I1. O

LemMa 3.4. Let B be random algebra. Then RNV is a special & -rare set if and
only if BY is not a dense subset of B.

Proor. If BY is not dense in B, then there is a perfect set F C “2 of positive
measure such that no perfect subset of F' of positive measure is coded in V. Let
[s] be a basic clopen set for some s € <2 such that u([s]N F) > 1/2u([s]). The
set F/ = {x € ®2: s7x € F} has measure > 1/2 and does not contain perfect
sets of positive measure coded in V. Let T € A be such that [T] = F’. Then
obviously (T) NV =), and so- RNV is special &-rare.

Conversely, let () NV = ( for some 7 € A. Let 2 be a maximal family of
disjoint perfect sets of positive measure coded in V which are subsets of [T']. The
family 2 is countable, and so the set X = |J # is measurable. Now u(X) < 1/2,
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since otherwise there would exist a finite system 2, C & such that u( 2) > 1/2
while | % is a perfect set coded in V. This leads to a contradiction, since by
assumption [7T'] does not contain any perfect set of measure > 1/2 coded in V.
Hence u(JZ) < u([T]). Let F C [T]— JZ be any set of positive measure.
Then no perfect subset of F of positive measure is coded in V. d

LemMA 3.5. If special &-rare sets with definition in 'V do not cover R, then ANV
is o-centered.

PROOF. Let us assume that there is P € R such that P € | J,o;(n(T)) for every
T € ANYV. Without loss of generality we can assume that, for every s € P,
u([Ps]) > 0 (otherwise take P’ = P — {s : u([Ps]) = 0}). For every T € ANV
there is 7 such that z~!(P) € (T). Evidently P ¢ V.

Let A, = {T € ANV :n!(P) € (T)}. Since the sets A, cover ANV, it is
enough to prove that they are centered.

Let T,T' € A,. We prove that TN T’ € A, ie u([T1N[T’]) > 1/2. If not
and u([T1N[T’]) < 1/2, then since n~1(P) C T NT’, u([T1N[T’]) = 1/2. Hence
P is definable from T and 7', since =1 (P) = TNT' — {s : u([Ts]1N[T]) = 0}.
Hence P €V, which is a contradiction. O

LeEMMA 3.6. (a) cov(FZ) < add(/).

(b) cof (/) < non(special &-rare set) < non(.#g).

ProOF. For every measure zero set 4 C “2 we can find T4 € A such that
(A4+Q)N[T4]=0. Since [z(T4)] contains only finite modifications of reals from
[T.], it follows that A N [x(T4)] = 0 for every = € I1, and B4 = R — U, (n(T4))
is a special #-rare set. For every P € R the set Cp = ®2 — ([P]+ Q) is a measure
zero set, and whenever P ¢ B, then A C Cp.

(a) Let & be a family of measure zero sets, || < cov(#Z). We prove that
u(J)=0. Thereis P € R—J ., B4, and so for every 4 € &/, P ¢ B4. Hence
J& C Cp, and so | J & is a measure zero set.

(b) Let Ry C R not be a special &-rare set. Then for every measure zero set
A C “2, we have Ry € B, and so some P € Ry is not in B4. Consequently
A C Cpand {Cp: P € Py} is cofinal in . d

In the next section we will see that the equalities in the above lemma hold, and
we also give a characterization of the additivity and the cofinality of the ideal .7
(Corollary 4.5 and Theorem 4.6).

§4. The ideal .7z and Lebesgue measure. We prove the following theorem.

THEOREM 4.1. (a) cov(F) = add(/#)

(b) non(F) = non(¥-rare set) = cof (N).

In [1] the equality. add(.#") = m(A) is proved, and (a) of Theorem 4.1 follows
from this equality and Lemma 2.4. But there is a symmetry (or duality) in the
present proof of the assertions (a) and (b), and this is why we prove them both
here.

ProoF OF THEOREM 4.1. Since special @ -meager sets are &-meager, the inequal-
ities

cov(F) < add(), cof (#) < non(®-rare set) < non(%)

follow from Lemma 3.6. In the proof of the reverse inequalities we will use a
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characterization of add(.#") and cof(.#") using the following partial order. The

set
5= {f, € ([@1): Il < oo}
new
is ordered by f <* g iff (Im)(Vn > m) f(n) C g(n). We will need just the
inequalities proved in the next lemma, although e.g. by [2] it is evident that the
reverse inequalities hold too. O

Lemma 4.2 (J. Stern, J. Raisonnier). add(/#') < b(S), 3(8) < cof (/).

Proor. We find two mappings o : § — A, B : # — & such that a(f) C 4
implies f <* B(4) for f € S and 4 € /. From this property one can easily
verify the inequalities in the lemma (see [6]).

Let {G;; :i,j € w} be a sequence of independent clopen sets in “2 such that

u(G;;) =27". For f €S put
=N U U @

mew i>m jef(i)

Of course a(f) € /.

Now we define the mapping 8. Let 4 € #". Choose a closed set K of positive
measure such that KN4 =0 and u(KNU) > 0iff K N U # @ for every open set
U. Let {U, : n € w} be an enumeration of all clopen sets U such that K N U # (.
For every n € w let

F,(i)={j:KnU,NG;; =0}

Then 0 < u(K N U,) < u(Nico njeF,,(i)(wz = Gij)) = [liew HjeF,,(f)(I —27).
Therefore Y, ., [Fu(i)[27" < 00, and so F, € & for all n € w. Let f(4) € S be
such that F, <* B(A) for all n € w.

Now assume that f €5, 4 € # and a(f) C 4. Then K Na(f) =0, and by the
Baire category theorem there are m, n such that K N U, N5, Ujer) Gy = 0.
Therefore f (i) C F,(i) for all i > m, and so f <* F, <* f(4).

Let us denote

5= {f (o) fn) €2 & 3 If )2 < 1/2}.
new
Since b(S) < b(Sp), ¥(Sp) < B(S), it is obvious that Lemma 4.2 holds also for the
family S, instead of . We will use elements of & for a representation of elements
of amoeba forcing in the following way.

For f € &, the set Uy = U,c,, Uy r(n[5] is an open set of measure less than
1/2. Let Ty C <“2 be the tree representing the closed set [Ty] = “2 — Uy. Then
Tf €A. :

We write f =* gif f <* gand g <* f. For f e Solet Ay = {T, : g €
So & g =* f}. Ay is a countable subset of A, but, as we can see from the next
lemma, A is a “good approximation” of the forcing A.

LemMA 4.3. There is a mapping w which assigns to every open dense subset D
of A a member w(D) € Sy such that for every f € Sy, whenever w(D) <* f, then
DNAy is dense in Ay,
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To make the proof of Lemma 4.3 more lucid we prefer to work for a while with
an isomorphic version of amoeba forcing:

A'={UC®2:Uisopen & u(U) < 1/2},

with ordering defined by U < V iff ¥/ C U. In this context, A", = {U, : g €
So & g =* f}, and we prove '

LemMa 4.3'. There is a mapping w' which assigns to every open dense subset D
of A a member w'(D) € Sy such that for every f € Sy, whenever y'(D) <* f,
then D N A, is dense in A',.

PrOOF. For an open set V' let

frin)={se"2:[s]1CV &[sl(n-1)]Z V}.

Then obviously V' C Uy, (actually V = Uy,).

Let & C D be a maximal antichain. Since & is countable, there is g € & such
that (VV € Z)(v>®°n) fv(n) C g(n). Set w'(D) = g. We prove that g has the
property stated in the lemma.

Let g <* f and U € A’; be arbitrary. We have U = U, for some h =" f.
There is V € & such that the set W = U U V is in A’. We show that W € A’/-,
which finishes the proof since W € D and W € U. ’

By the choice of g and since g <* f, there is no € w such that

(Vn > no) fv(n) C f(n) & h(n) = f(n)
and 3, [f(n)[27" < 1/2 — u(W). Let us define

f/(l’l) _ { fw(l’l), for n < no,

f(n), forn > ny.

First we note that ' € . This is because | J{f'(n) : n < no} represents a finite
subsystem of the partition of W into clopen sets, and so

ST 2 < ().

n<ngy

Hence, by the choice of ng, >, ., [//(n)[27" < u(W)+(1/2—u(W)) =1/2. We
show that Uy = W. Let us consider the following cases.

(a) If |s| < no, then, by definition, [s] C U,/ iff [s] C W.

(b) If |s| =n >np and s € f/(n), then [s] C U C W since f'(n) = f(n).

These two cases prove Uy CW.

(c)If |s| =n>npand s € fy(n), then s € f'(n) since f(n) C f'(n).

Since V' C W, (c) together with (a) proves V' C U;/. So to prove W C U, it
is enough to prove U C Uy.

(d) If |s| =n > np and s € h(n), then h(n) = f'(n) and so s € f'(n).

Since U C W, (d) together with (a) proves U C U,/ and the proof of the
lemma is finished. O

The next lemma finishes the proof of Theorem 4.1.
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Lemma 44. (a) add(#) < cov(Fz)

(b) non(Sz) < cof (). .

Proor. Similar characterizations as in Lemma 2.4 are true also for the cardinal
invariants cov(«#) and non{.#) (and any countable nonatomic forcing notion
instead of A; recall that . is the ideal of meager sets in ©2).

(a) Let &/ be a family of @-rare sets, |&/| <add(#). Forde &/, Ds={T €A
(T)N A =10} is an open dense subset of A. Since add(/") < b(Sy), thereis f € Sy
such that w(D,) <* f for all 4 € & (w was defined in Lemma 4.3). Hence, by
Lemma 4.3, D, N Ay is dense in A, for every 4 € &. Since || < cov(.#), there
isa {DsNAy: A€ s }-generic filter G C Ay. The set F = (4[] is closed,
and u(F) > 1/2. There is P € R such that [P] C F. Evidently, P € (¢ (T)
and so P ¢ |J&, which proves add(/") < cov(SFz).

(b) For every &-meager set A C R there is a sequence of &-rare sets 4, such
that 4 C {J, ., 4n. The sets D, = {T € A: (T) N A = (} are open dense subsets
of A. Since b(Sy) > w, there is g € Sy such that w(D,) <* g for all n € w.
Hence, by Lemma 4.3, D, N A, are dense in Ay whenever g <* f. For every
f €8 let Z; be a family of filters in A, such that |Z| = non(.#) and for every
countable family Z of dense subsets of Ay there is G € &, which is Zj-generic.
For every G € &y let us choose Pg € (\;.(T) and let Ay = {P; : G € Zr}.
Hence [As| < non(#) < cof(/#). Let F C & be a dominating family in &,
of cardinality cof (.#") (i.e. > 9(&))). Then the set 4 = |J res Ay has cardinality
cof (/') and it witnesses the inequality non(.%) < cof (/). O

Since #g C S, immediately from Theorem 4.1, Lemma 2.4 and Lemma 3.6
we get the following.

COROLLARY 4.5. (a) cov(.5Z) = m(A) = add(/).

(b) non(.#Z) = non(special &-rare set) = w(A) = cof (¥').

We say that a tree T C “2 is regular if for each s € T, u([T;]) > 0. Note
that the family of all regular trees in A, (defined by (2.1)) is a dense (and even
separative) subset of A.. Let us recall some ideas of [12] which we will use in the
proof of the next theorem.

Assume that T} € A, T» € A, are regular trees such that

u([T1]) _ u([T>])
w(T) —er w(T2)) — e’

There are countable sets Q) C [T1], @ C [T>] and a one-to-one continuous
mapping m from [T1] — Q) onto [T>] — @ which is measure preserving, i.e.
u(m(4)) = u(4)u([T2))/u([T1]) for each measurable set 4 C [T1] — Q;. For
e > 0and T € A, let us denote 4.7 = {S € A. : S < T}. The set
P ={T <T:[TINQ; =0} is open dense in A,, 7,, and for T € & we can define
e(T) = T iff [T'] = m([T]). Clearly, for any T € 9, e[Ac, 1 : Ae;,7 — AL, (1)
is an isomorphism, and we say that this isomorphism is induced by the mapping
m.

J. Truss [12] showed that there are maximal antichains {7}, : k € o} C A,
i = 1,2, such that each pair T,é’l, T,é,z satisfies the equality (4.1), and the isomor-
phism from r. 0. A,, ontor.o.A,, presented in [12,Theorem 3.3] can be described

(4.1)
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as follows: There are maximal antichains {7}, : k € o} C A,,, i = 1,2, and an

isomorphism
€. U Acy 1y — U Ac, 1y,
kew kew

such that for each k the restriction e[A. 7, is induced by a one-to-one measure-
preserving mapping. We will need the following.particular property of the map-
ping e. For &/ C A, 1,

(4.2) if p < ﬁ [T]> > €1, then u ( ﬂ [e(T)]> > e,

Tey Tey

or, more generally,

U ( ﬂ [e(T)]) =u ( ﬂ [T]> ([Tk2)) /([ Tx,1D)-

Ted Tes

Now we prove the characterization promised at the end of the previous section.

TueoreM 4.6. (a) add(.#Z) = add(/).

(b) cof(Fg) = cof ().

PrOOF. According to Corollary 4.5 it is enough to prove (a) m(A) < add(.7%)
and (b) cof(7Z) < ro(A).

Let us consider a fixed sequence of amoeba forcing notions A., with 1/2 <
€nt1 < €, and lim, e, = 1/2. Foreachn € w let D, = {T,x : k € w} be a
maximal antichain in A = A/, such that there is an isomorphism

en: U AT, — A,
kew

such that each restriction e, [A 3,7, , is induced by a measure-preserving mapping.
Without loss of generality we can assume that D, refines D, for each » and that
the family @y = {D, : n € w} is closed under finite strict refinements (see the
proof of Lemma 2.4).

We say that P € R is @y-generic if the set Gp = {T € A : P C T} chooses
an element from each D € Z,. By Claim 3 in the proof of Lemma 2.4, if P is
D-generic, then Gp chooses exactly one element from each D € Zy. Moreover,
by the property (4.2) of the mappings e,, there are trees 7, C <“2 such that
u([T,]) > €, and T, C e,(T) for each T € Gp Ndom(e,). In particular, T, € A
for each n € w.

Now let S € A. There is n € @ such that S € A.,, and by Lemma 2.2 the set

D,s ={T € dom(e,) : (3n € ) e,(T) < =(S)}

is open dense in A. Hence for any Zj-generic point P € R there is a sequence
{T, : n € o} of conditions in A such that whenever Gp N D, s # (), then there is
7 € II with T,, C =(S).

The above scheme describes two mappings. The first one finds for each element
S € A an integer n = n(S), and the second one assigns to a Zy-generic point P € R
a sequence of conditions 7, € A, n € w, with the property that, for every S € A,
if n =n(S) and Gp N D, s # 0, then there is 7 € IT such that T, C =(S).
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Now let & be a family of special @-rare sets. For every 4 € & there is a tree
S4 € A such that 4 N{J,.;(n(S4)) = 0. The family @ = {D,(5,)s,: 4 € ¥} of
dense subsets of A has cardinality |2| < |/|. Hence, if |%| < m(A), there is a
(2 UDyp)-generic filter G, and clearly G C Gp for some Z-generic point P. Hence
there is a sequence {7, : n € w} of conditions such that for every 4 € &/ there is
n =n(S,) and 7 € IT such that 7, C #(S4). Then U, (n(T%)) € Uyer(n(Sa))
and this set is disjoint with A. It follows that % N(,c,, Upen(n(T)) = 0 and
the union | J./ is a special #-meager set. Therefore m(A) < add(.#).

If A C R is a set that witnesses the equality |4| = ro(A), then for each countable
family 2 of maximal antichains there is a (2 U 9))-generic point P € A4, and
the same reasoning produces a cofinal family of special Z-meager sets (for each
P € A the above procedure gives a special #-meager set) of the same cardinality
as the set 4. Therefore cof(.#Z) < ro(A). O

§5. Meager and Z-meager sets.

DEFINITION 5.1. Let Z* be a family of all subsets X of the interval (0, 1/2) for
which the set 4(X) ={P € R: (3s € <“2) u([P;]) € X} is a special Z-meager set,
and let #** be the family of all sets X C (0,1/2) for which A(X) is @-meager.

We prove that the both these families of sets coincide with the ideal of meager
subsets of the interval (0, 1/2).

LemMmA 5.2. The families #* C M** are both o-ideals extending the ideal of
meager subsets of the interval (0,1/2).

Proor. The fact that Z* C #Z** are o-ideals is clear from the definition. We
prove that for every meager set X C (0,1/2), the set A(X) is a special Z-meager
set. The idea of the proof can also be used to prove that, for a generic amoeba
tree P*, u([P7]) is a Cohen real for every s € <“2 — {()}. Let us denote

A;(X) ={P: p([P) € X} and A4,(X)= | 4.(X).
sen

We have A(X) =, ccwr 4s(X) =, e, 4n(X). First we show that for a nowhere
dense set X C (0,1/2), the sets 4,(X) are special Z-rare sets. Note that the sets
A,(X) are closed under translations by permutations from II, i.e. 7(4,(X)) =
A,(X) for m € I1. So it is enough to find S € A such that (S) N 4,(X) =0. We
will need the following claim.

Cram 52A. If T € A, n > 0, s € "2, then there is S < T, S € A such that
(SYN4,(Xx) =0.

Proor.. If u([Ty]) = 0, then take S = T and we are done, since for every
P € (S) we have u([P;]) =0 ¢ X. Similarly, if x([7}]) > 1/2, put S = T,. Then
u([Ps]) = 1/2 ¢ X for P € (S).

Let u([T,]) =a>0,a <1/2,and u([T]) — 1/2 =5 > 0. We can assume that
0 < b < a< 1/2(if not, then by shrinking 7, we can satisfy the requirement a < 1/2
and then by shrinking T, for 7 # s, |¢| = n, we can satisfy the inequality b < a).
Since X is nowhere dense, there is an interval I = (¢,d) such that I N X = and
max{a —b,b} <c<d<a. Wecanfind S < T, S €A, such that ¢ < u([S,]) < d (by
shrinking 7) and u([S]) — 1/2 < u([S]) — ¢ (by shrinking T for ¢ # s, |t| = n).
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Now, for every P € (S), d > u([S,]) = u([Ps]) = u((S,]) — (u((S]) - 1/2) > c.
So u([Ps]) € I and (S) N A;(X) = 0. The proof of the claim is finished. O

Let us fix an enumeration s,, n =1, 2, ..., 2", of the set "2. Using Claim 5.2a
iteratively 2” times, we can find a decreasing sequence Ty, > Ty, > --- > T, of
conditions such that Ty, N 4, (X) = 0. Set S = T,,. Then (S) N 4,(X) =0, and
so the 4, (X) are special Z-rare sets and A(X) is a special @-meager set.

If X C (0,1/2) is meager, then X is the union of countably many nowhere
dense sets X,,, n € w, and, by the previous part of the proof, A(X) =J,¢,, 4(X,)
is a special @-meager set. O

LemMA 5.3. If X C (0,1/2) is open, X # 0, then A(X) is not €-meager.

Proor. Let n € w and ¢ < d be such that 27" ! <c<d <27 and (c,d) C X.
Let us fix s € "2. As in the proof of Claim 5.2a, we can find S € A such that
u([Ps]) € (c,d) for every P € (S). Hence A(X) contains a region, and so it is
not #-meager. O

COROLLARY 5.4. If X C (0,1/2) has the Baire property, then X € A if and only
if X e 4% if and only if X € #**

Proor. By Lemma 5.2 it is enough to show that whenever a set X € /Z** has
the Baire property, then X is meager.

Let us assume that X € .Z** has the Baire property. So there is an open set U
such that the symmetric difference X AU is meager. So there is a meager set X’
such that U C X U X', Since A(U) C A(X)U A(X"), U € #** and by Lemma
5.3, U = (). Therefore X is meager. O

Below we eliminate the assumption in the last corollary. For this reason we
need the next lemma.

Lemma 5.5. (a) If A(X) is a special &-meager set, then there is X* € T1} such
that X C X* and A(X*) is a special &-meager set.

(b) If A(X) is a &-meager set, then there is X* € I} such that X C X* and
A(X*) is &-meager.

Proor. (a) If A(X) is a special @-meager set, then there are T, € A, n € w,
such that A(X) NN, U,{=(T,)) = 0. Then for every P € ", U, (=(T,)) and for
every s € <“2 we have u([P;]) ¢ X. Set

X*=1(0,1/2) — {c eR: (3s) (EIP € ﬂU(n(Tn)>) c= ,u([Ps])} .

It is easy to see that X* € 1'[}, X C X*, and the same sequence T,, n € w,
witnesses that A(X*) is a special @-meager set.

(b) If A(X) is Z-meager, then there are maximal antichains {7}, : m € w} C A,
for n € w, such that 4(X) N, U,,(Tsm) = 0. Then

n m

XcCcx*=(0,1/2) - {c eR:(3s) <3P € ﬂU(Tn,m>> c= ,u([PX])} . O

COROLLARY 5.6. # = M* = M**.
Proor. It is enough to see that #** C AZ.
Let X € #**,ie. A(X) is #-meager. By Lemma 5.5(b), there is X* € I1} such
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that X C X* and A(X*) is #-meager. So X* € £** and, by Corollary 5.4, since
I1! sets have the Baire property, X C X* € /. O
COROLLARY 5.7. add(/#) < add(#), and cof (#) < cof (¥).
Proor. Immediately from definition of the ideal .#* (the set mapping A(:) is
additive) we can see that

add(7g) < add(£*) and cof(#*) < cof (F2).

But # = #*, and the ideal .77 has the same additivity and cofinality as the ideal
A by Theorem 4.6. O

§6. Subsets of amoeba forcing. We find characterizations for the following car-
dinal invariants related to subsets of amoeba forcing. Note that for the measure
algebra the corresponding problem was studied in [5] and in [3]. Let us recall that
X C A is separable in A if there is a countable set X; C A such that for every
p € X there is ¢ € Xj such that g < p. We define

One can easily verify that
centered(A) < dense(A) and nonseparable(A) < noncentered(A).

THEOREM 6.1. (a) centered(A) = dense(A) = cof (),
(b) nonseparable(A) = noncentered(A) = add (/).
ProOF. (a) By previous remark and by Theorem 4.1 it is enough to prove

non(%-rare) < centered(A), dense(A) < non(%-rare).

Let A be k-centered and let {A; : & € k} be a partition of A into centered sets.
For every ¢ choose P: € R such that P C T for every T € A;. Then {P;: : ¢ € k}
is not Z-rare, and so k > non(%-rare).

Let X C R be a non-%-rare set. Then the set X' = {n(P): P € X & n € 1}
has the same cardinality as X and X" is everywhere (in every region) non-&-rare.
Without loss of generality we can assume that X = X’. We prove that the family

{PLUP,:P|,P, € X & u([P,UPy]) > 1/2}

is a dense subset of A, and so this family witnesses the inequality dense(A) <
non(®-rare).

Let T € A be arbitrary, u([T]) = 1/2+ €. Since X is everywhere non-&-rare,
there is P € X N (T). Let U C “2 be an open set with u(U) < ¢ such that
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uw(UN[P]) > 0. Let T" € A be such that [T'] = [T] — U. Again, there is
P, € XN (T"). Since

u([PLU Py]) > u([P1]) + p([PIINU) > 1/2,

it follows that the tree P; U P, is a condition in A and Py UP, C T.
(b) By Theorem 4.1 it is enough to prove

cov(fz) < nonseparable(A), noncentered(A) < add(.#).

Let Ry be the set of all P € R such that, for every open set U C “2, [P]NU # 0
iff u([P1NU) > 0. The set Ry is the complement of a special #-meager set. To
see this, for every n € w find T,, € A so that for every s € "2, if s € T,, then
/"([Tn] - [S]) < 1/2 Obviously, ﬂn UnEl’[(n(Tn)> C Ry.

Note that Ry is invariant under permutations from IT. We will use this property:
whenever Pi, P, € Ry and P| # P,, then Py UP; € A (ie. u([P1U P,]) > 1/2).

Let X C A, |X| < cov(Fe). The set 4 = ey Upen(n(T)) is not &-meager,
and so there are Pi, P, € AN Ry such that for every 7 € II, n(P;) # P,. So the
set {m1(P;) Umy(Py) : my,my € I1} C A witnesses the separability of X, and so
cov(fz) < nonseparable(A).

To prove the last inequality, note that noncentered(A) = noncentered(A.) for
e > 0. This fact follows from the isomorphism r.0.A ~ r.0. A, (see [12]).

Let & be a family of special Z-rare sets, || < noncentered(A). For every
A€ o, let us fix Ty € A such that AN J,cq(n(T4)) = 0. Let us fix a sequence
en>1/2,n € w, of reals with lim,c,, £, = 1/2, and let &, = {4 € & : u([T4]) > €n}.
Since |#/,| < noncentered(A,, ), the family X, = {T: A € &, } is o-centered in A,,,.
Let T,,,, m € w, be a sequence of trees which are the intersections of countably
many centered subsets of X, C A.,. Hence, u([T,m]) > €, and for every 4 € &,
there is an m such that T, C T4, and consequently | J,cr(n(Tpm)) N A = 0.

Hence
N Ur e an(Tm) N o =0,
nmew
which means that | & € %, and so noncentered(A) < add(.7Z). O

LEMMA 6.2. The forcing A adds a perfect set of amoeba reals.

ProoF. Let e > 1/2. By the already mentioned result of Truss, r. 0. A, ~r.0. A.
Moreover, r. 0.(A x C) can be completely embedded into r. 0. A. Hence it is enough
to prove the conclusion of the lemma for A, x C.

Let P, be an A.-generic tree, i.e. u([P.]) =¢. In V[P.], consider the following
notion of forcing (conditions are subtrees of P,):

Q = {T C P. : [T] is relatively clopen in [P.] & u([T]) > 1/2&},
TW<T, iff T,CT,.

Obviously @ is Cohen forcing, and it is well known that the existence of a Cohen
real implies the existence of a perfect set of Cohen reals. So it can easily be seen
that the existence of a single Cohen real implies the existence of a perfect set of
generic trees in Q (i.e. a perfect set in the product topology of #(<“2)). To finish
the proof it is enough to note that every V[P.]-generic tree in Q is an amoeba
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generic real over V. The essential part of the proof of this fact is the following:
if D C A is dense open and D €V, then the set

D ={Te€Q:(3TeD) TC T}

is a dense open subset of Q in V[P.]. The proof of the particulars we leave to the
reader, since it is very similar to the proof of [11, Lemma 6.3]. O

§7. Questions. (1) Does there exist a c.c.c. forcing notion P killing &-meager
sets, i.e. IFp “(J{B C R : B is a ¥-meager Borel set coded in V} is @-meager™?

(2) Can we get a model with add(_#z ) > R;? Prove in ZFC that add(.%) = N,

(3) Prove that each assertion in the following list is a consequence of the previous
one.

(i) U(Fz NV) #R (ie. there is an amoeba real).
(i) U(Fg NV) #R
(i) ANV is o-centered.
(iv) There is a perfect set of random reals of positive measure.
(v) u(*2nV)=0.
(vi) RNV is a special @-rare set.
(vii) RNV € 7.
(viii) RNV € F.

Which of these implications can be reversed?

Let us note that the implications (iv) — (v) — (vi) cannot be reversed. For
the first implication consider a single Cohen extension. For the second one a
counterexample is provided by the extension obtained by adding a single Laver
real. In this extension there is an unbounded real (even a dominating one), so,
by the note after Definition 3.1, RNV is special #-rare while the condition (v)
does not hold in the extension (see [7]).
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