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AMOEBA REALS 

HAIM JUDAH .4ND MIROSLAV REPICKY 

Abstract. We define the ideal \rpith the property that a real omits all Borel sets in the ideal which are 
coded In a transiti\e model if and only if it is an anloeba real o%er this model. We i~nesti_eate sollle other 

properties of this ideal. Strolling through the "amoeba forest" we gain as an application a modification 

of the proof of the inequality between the add~tivities of Lebesgue measure and Baire categor!: 

$0. Introduction, The concepts of Cohen and random real arose immediately 
after the discovery of the method of forcing because of their close relations to 
category and measure. These two kinds of generic reals are determined by mea- 
ger Borel sets and Borel sets of Lebesgue measure zero, respectively. This basic 
property predestines the relevance of these reals in the investigation of properties 
of measure and category. 

There are other kinds of generic reals having some influence on the behaviour of 
measure and category through intermediary phenomena. Though this influence 
is not straightforward, still it can shed some new light on the objects. In this 
paper we work with amoeba reals. We choose a way of access opposite to the one 
that was natural in the case of Cohen or random reals, and through an amoeba 
real we define a c.c.c. a-ideal 3gof sets of reals having Borel base such that 
r. o. A = Borel/& and amoeba reals are just reals avoiding Borel members of the 
ideal 3%. 

We can motivate our interest in amoeba reals also by asking how strong the 
following four assertions are: 

(1) There is an amoeba real. 
(2) The old amoeba forcing is a-centered. 
(3) There is a perfect set of random reals of positive measure. 
(4) There is a perfect set of random reals. 

For (1) + (2) see e.g. [I], and the implication (3) + (4) is trivial. To see the 
implication (2) + (3); if the old amoeba forcing is a-centered, i.e. A n V  = U,,, A,, 
with A, centered (amoeba forcing A is the set of all closed sets of measure greater 
than 112 ordered by inclusion). Then the sets B,, = n A,, n E m, are closed sets 
of measure > 112 and n,,,w(B, + Q)is a Borel set of full measure consisting of 
random reals over V. 
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The only result in the reverse direction known to us is that (4) does not imply (3). 
This follows from the observation that (3) implies the existence of a dominating 
real while by [4] the existence of a perfect set of random reals without the existence 
of a dominating real is possible. 

Let us recall that k',Jlr denote the ideal of meager sets and the ideal of Lebesgue 
measure zero sets, respectively. The underlying set of these ideals is either an 
interval of reals or the Cantor space "2; which case holds will be clear from the 
context and we do not distinguish them strictly. The Lebesgue measure on "2 is 
denoted by ,u. 

Let 4 be an ideal on a set X and (P,2)be a partially ordered set. The following 
cardinal invariants are commonly used: 

n o n ( 4 )  = min{A : A G X & A q! 4 1 ,  

c o f ( 4 )  = min(l21 : 2 C 4 & (VA E 4 ) ( 3 B  E 2 )  A C: B), 

b(P) = min{lB : B c P & l ( 3 p  E P)(Vq E B) q 5 p),  

a(P)=min{lDI : D G P & (Vp E P)(3q E D ) p  5 q). 

§la.  Borel representation of Boolean algebras. It is a well-known fact that ev- 
ery a-complete Boolean algebra with countably many a-complete generators is a 
homomorphic image of the a-complete Boolean algebra of Borel sets of reals, i.e. 
the a-algebra of Borel sets is a free a-complete Boolean algebra. This fact has a 
simple expression in terms of Boolean valued models when the generic exteilsion 
is generated by a real: if S2' is a complete Boolean algebra and x is an &-name 
of a real in v ~ ,then the mapping qj  defined by 

(1.1) ( B )  = x E B B is a Bore1 set, 

is a a-complete homomorphism, : Borel + d.Moreover, if S2' is c.c.c., then 
the image of @dis a complete subalgebra goC &. 

§lb. Amoeba forcing. For a tree T C 'W2, [TI = {x E "2 : (Vn) x rn E T) .  We 
choose the following form of amoeba forcing: 

A = { T  C <"2 : T is a tree and ,u([T]) > 1/2), 

TI 5 T2 iff TI C T2. 

If G c A is a generic subset, then P*= n G is a perfect tree and ,u([P*]) = 112. 
We want to express r. o. A in terms of §la .  Let us consider the following space 
(homeomorphic to a Gd subset of the Cantor space via characteristic functions): 

R = {P C: '"2 : P is a tree & ,u([P]) = 1/21 

So the homomorphism (1. l )  will have the following form: 

(1.2) ~ A ( B )= IP*E BII, for Bore1 subsets B C R. 
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Note that although the generic tree is perfect we do not require all trees in R to 
be perfect. On the other hand, the set of nonperfect trees is small in the sense of 
category base for amoeba (see the definition in the next lemma), i.e, it is %?-meager. 

$ 1 ~ .Category base for amoeba. For T E A let (T )  = {P E R : P C: T). We 
call the family 5? = {(T)  : T E A) a family of regions. Note that E -.A and every 
disjoint family of regions is countable. 

LEMMA1.1. The pair (R, E?) is a category base, i.e. the following two conditions 
are satisfied (cJ:[9]): 

(1) R = U%?. 
(2) I fA  E %? and 9 C %? is a nonernpty disjoint family of power less than 1 % ? 1 ,  

then 
(a) i f  A nU 9 contains some regionfrom E ,  then there is a region D E9 

such that A nD contains a region, and 
(b) if A n U9 contains no region, then there is a region B C A that is 

disjoint with U 9 .  
PROOF.Standard proof using c.c.c. of amoeba. 
(1) This is clear. 
(2) Notice that 9 must be countable by c.c.c. of A. 
(a) If (T )  CA nU9 is a region and (T )  n (TI) does not contain a region for 

any (TI) E 9 ,  then for every (TI) E 9 ,  p([T]  n [TI]) 2 112. Hence by removing 
sets of small measure from [TI (a small subset of [TI] for each TI E9)we manage 
to find TI C T so that TI E A and for all (TI) E9,p([Tl] n [TI]) < 112. This 
is possible since 9 is countable. Evidently ( T I )is disjoint with U 9. This is a 
contradiction, since (TI )  G (T) .  

(b) If A = (T )  and A n U 9  contains no region, then for every (TI) E 9 ,  
p([T] n [T']) 5 112. As in the case of (a) we can find a region A' C:A disjoint 
with U 9 .  

DEFINITION1.2. (i) X C R is %?-rare(or singular, see [9]) if for every region 
A E %? there is a region B CA such that B nX = 0. 

(ii) X C R is 5?-meager if it is a countable union of E?-rare sets. 
(iii) X 2 R is E?-Bai~eif for every region A E 5? there is a region B CA such 

that either B - X is %?-meageror B nX is E?-meager. 
(iv) Ygis the a-ideal of E?-meagersets, and %?-Bakeis the a-algebra of 5?-Baire 

sets in the category base (R,E?). 
LEMMA1.3. (i) 5?-Baire is closed under Souslin &-operation. In particular, it is 

a a-algebra of sets. 
(ii) The regions are not 5?-meager. 
(iii) Bore1 subsets 'of R are 5?-Baire. 
(iv) Analytic sets are %?- Baire. 
PROOF.The propositions (i) and (ii) hold true for any category base (see [9]), 

and (iv) follows easily from (ii) and (iii). Therefore it is enough to prove (iii). 
For an integer n E w and a finite tree z 5"2 whose every branch has length 

n + 1, let 
clopen(r) = {P E R : P n <"2 = 7). 

Clearly, clopen(z) is a clopen subset of R and every clopen subset of R is the 
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finite union of clopen sets of such form. Hence the sets clopen(z), z a finite tree, 
generate the a-algebra of Borel subsets of R, and so it is enough to prove that 
they are %?-Baire.Let us fix r and let n + 1 be the height of z. It is enough to 
prove that for every region ( T )  there is a subregion (TI) c ( T )  such that either 
(TI) L clopen(r) or (TI) nclopen(z) = 0. 

For s E T n "2, T, denotes the subtree of T with stem s. Let E C "2 be a 
minimal subset of T n"2 such that ,u(UAEE[TA])> 112. Choose TI E A, T' C T,  
so that 0 < ,u([T:]) < ,u([T,]) for s E E and [Ti] = 0 for s E "2 - E. Then 
,u([T1]- [T:]) < 112 for every s E E, and so if P E (TI), then P n"2 = E. Hence 
either (TI) C clopen(z) or (TI) n clopen(7) = 0, according to whether E equals 
r n "2 or not. 

Let e : A + r, o. A denote the canonical completion of A (i.e, a compatibility-
preserving mapping onto a dense subset of r. o. A). 

LEMMA1.4. (i) If ( T )  E %?,then $A((T))= e ( T )  # 0for T E A. 
(ii) If B C R is a %?-rareBorel set, then $A(B) = 0. 
PROOF.It is trivial. 
COROLLARY1.5. For any Borel set B C R, $A(B)= 0 if B is %?-meager. 
PROOF.By the previous lemma, for %?-meagersets B we have $*(B) =0because 

q 5 ~is a-complete. The reverse implication follows from the fact that every Borel 
set is %?-Baireand so it can be represented as a countable union (using c.c.c.) of 
sets from %? modulo a %?-meagerset. 

COROLLARY1.6. r. O.A = BorellYg = %?-BairelYg. 
PROOF.r. o. A is a homomorphic image of the algebra of Borel sets by the ho-

momorphism (1.2) with the kernel containing exactly %?-meagerBorel sets. Every 
%?-Baireset is equal to a countable union of regions (hence to a Borel set) modulo 
a %?-meagerset. 

$2. The ideal f8.Note that if {T, : n E w) is a predense subset of A, then 
R - UnGw(T,,)is a E-rare set, and, conversely, every %?-rareset is contained in a 
%?-rareset of such form. 

Let us define another version of amoeba forcing. For E > 0, 

(2.1) A, = { T  C 'w2 : T is a tree and ,u([T]) > E )  

is ordered by inclusion. In particular, A = AIl2. Later we will use the fact that 
the complete Boolean algebras r. o. A and r,  o. A, are isomorphic (see [12]). 

LEMMA2.1. If&> 112 and TG is a generic tree in A,, then ,u([TG])= E and the 
region (TG)is disjoint with R nV. 

PROOF.For every P.E R nV, Dp= { T  E A, : P T )  is a dense subset of A,, 
and every condition in Dp forces P TG. 

For n E w let II, = {n : n is a permutation of "2) and for n E II, and T E A 
let n (T )  = {S E <W2: (3t E T )  It1 > n & s In C n(t rn) & s r(n, oo) = t r(n, oo)). 
Let II= UnCwII,,. 

LEMMA2.2. Let T E A. Then DT = {n(T) : n E H) is a predense subset of A. 
PROOF.Let S E A be arbitrary. We show that there are n E w and n E HI, such 

that S and n (T)  are compatible. Without loss of generality we can assume that 
,u([S]) 5 ,u([TI). For some positive real 6, ,u([S]) -6 > 112. 
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For X C: "2 let UX = U{[s] : s E X) and for n E w let T,,, S, denote the nth 
levels of the trees T,  S ,  respectively. 

There is n E w such that ~ ( U T , ,- [TI) < 6 and IS,, 5 I Tn1. Let n E II, be 
such that S, C n(T,,). We prove that n (T )  and S are compatible. 

Obviously [Sl C Us,, C U,(T,,) and so [Sl n[n(T)]= [Sl - (Uzc , , )- [n(T)]). On 
the other hand , L L ( U ~ ( ~ , , )- [n(T)])=~ ( U T , ,- [TI) <6. Therefore p([S]n[n(T)])> 
p([Sl) -6 L 112. 

Lemma 2.2 implies that after adding an amoeba real the old amoeba forcing 
becomes a-centered (see also [I]). From the above two lemmata and the mentioned 
isomorphism it follows that 

IFA "R nV is a @-rare set". 

This fact distinguishes the amoeba reals from random and Cohen reals, since both 
random and Cohen reals preserve nonsmall sets with respect to their ideals. Let 
us recall that an amoeba real causes the set of old reals to  be a measure zero set. 
Hence the last fact is a more straightforward consequence of the following lemma. 

LEMMA2.3. I f ~ ( ~ 2nV) = 0, then R nV is @-rare. 
PROOF.Choose a sequence T, E A, n E w, such that [T,] is disjoint with W2nV 

and p([T,]) > 1 - 112". Then {T, : n E w) is predense in A and U,,,(T,,) is 
disjoint with R nV. 

Let (A) and ?? (A) denote the family of all maximal antichains and the family 
of all filters in A, respectively. Let us introduce the following cardinal invariants 
for amoeba forcing: 

LEMMA2.4. (a) ~ o v ( 3 ~ )=m(A).  
(b) non(3E) = tu(A). 
PROOF.For a E-rare set B R the set DB = { T  E A : (T )  n B = 0) is 

a dense subset of A. Hence, whenever d is a family of @-rare sets and G is 
a {DB : B E d)-generic filter over A, then [7,,,(T) n Us! = 0, where the set 
n,,, (T) is nonempty. Hence, if /sf/ <m(A), then U d # R and m(A) _< ~ o v ( 3 ~ ) .  
Similarly, if A CR witnesses the equality lA( = tu(A), then A cannot be covered 
by a countable family of 5?-rare sets, and so non(YE) 5 m(A) 

In the reverse direction: If D c A is a predense set, then the set R - UTED(T)  
is a f??-rare set. However, we need another observation. 

We say that a maximal antichain D 2 A is strict if for every two different 
members T, Tf E D, p([T]  n [TI]) < 112. We say that a maximal antichain D f  
strictly rejnes a maximal antichain D if for every T E D and for every T1 E D f  
either TI C T or p([T]  n [TI]) < 112. We prove three simple facts about these 
notions. 

CLAIM2 . 4 ~ .For every maximal antichain D there is a strict maximal antichain 
Dl which reJines D.  
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PROOF.Let {T,- : ( < 2") be an enumeration of A. By induction on ( < 2" 
define T;l EA as follows. If there is (< < such that Tt is compatible with TI, then 
set Ti = Ti. Assume that Tt is not compatible with any TI,i.e. ,u([Tc]n[TI]) 5 112 
for every 4 < <. By c,c ,c  of A, the set {T; : [ < (} is dountable; let T::, n t w, 
be an enumeration of this set. Choose any sequence of positive reals E,,, n E w, 
such that ,u([T(]) - CnEwE, > 112, and let s,, E T,-, n E w,be arbitrary with 
,u([s,]) < E~ and ,u([T(]n[Ti] - [s,]) < 1/2 for all n .  Now let Ti E A be such that 
[T,'] = [T,-] - U,,,,[s,]. Clearly, the set D'  = {T;l : < < 2m) is a strict maximal 
antichain refining D . 

CLAIM2.4s. For every fi~zitefamily 9 of nzaxi~nalarzticlzairzs there is a strict 
maximal antichain which strictly reJines all antichains of the family. 

PROOF. For a antichain D the set . 

is an open dense subset of A. Let D*  Cn,,,, HD,be a maximal antichain. Now 
let D be a strict maximal antichain which refines D*. Then clearly D strictly refines 
all antichains in 9 .  

We say that a family of maximal antichains 9 is closed underJinite stvict reJine-
ments if for every finite subfamily SBo there is a strict maximal antichain D E 9 
which strictly refines all antichains in 9'0. Note that for an infinite family 9of 
maximal antichains there is a family 9' of the same size which is closed under 
finite strict refinements. 

CLAIM2 . 4 ~ .If SB is a family of strict maximal antichains closed undevjnite 
strict re$nements, then whenever P En,,, uT,,(T), the set 

is a 9-generic Jilter. 
PROOF.Notice that, as P E n,,, U,,,(T), for each D E 9 there is a T E D 

such that P c T (the presence of refining strict maximal antichains ensures that 
there is only one such T in each D ) .  Let TI ,T2 be any elements from G nU SB. 
There are D1,D2 E 9 such that T, E D, for i = 1,2. Let D E 9 be a strict 
maximal antichain which strictly refines D l ,D2 and let T E D n G,  i.e. P C T.  
Then, as ,LL([T]n[T,]) > 112, we have T 5 T, for i = 1,2 and so G is a 9-generic 
filter. 0. 

Now, if 9 is a family of maximal antichains of cardinality less than cov(&g), 
without loss of generality we can assume that 9is closed under finite strict re-
finements, the set U,,, (R - UTE, (T ) )  is nonempty, and each element of this 
set determines a 9-generic filter. Consequently, cov(3g)  5 m(A). 

Similarly, let A C R have cardinality less than tu(A). So, there is a countable 
family 9 of maximal antichains such that, for each SB-genericfilter G,  n,,, ( T )n 
A = 0. Without loss of generality we can assume that SB is closed under finite 
refinements. Then, by Claim 3, for each P E n,,, UT,,(T), P $ A. Hence A 
is t?-meager and m(A) 5 non(&). 

The same proof yields: 



1174 HAIM JUDAH AND MIROSLAV REPICKY 

LEMMA2.5. (a) The %'-meagerBorel sets coded in V cover R i f  and only if there 
is no amoeba real over V, Moreover, a real is an amoeba real over V if and only if 
it omits all %'-meager Borel sets coded in V. 

(b) A set A & R is not %'-meager if and only i f f o r  every countable system B of 
dense subsets of  A there is a 9 -gener i c j l t e r  G such that n,,,(T) n A # 0. 

$3. Special %?-raresets. Often when we construct a fZ'-meager set it has a simple 
definition. 

DEFINITION3.1. A %'-rareset A is special if there is T E A such that A 
R - U n E n ( n ( T ) )A set A is a special %?-meagerset if it is the countable union 
of special %'-raresets, i.e. there are conditions T, E A, n E w, such that A n 
n,,,, U,,,(n(T,,)) = 0. We say that the sequence Ti,, n E w, witnesses that A is 
a special %'-meagerset. We denote by Y;the family of all special %'-meagersets. 

By Lemma 2.3, if "2 n V has measure zero, then R n V is %'-rare. We show 
that it is even a special g-rare set. Let us choose a perfect set A CW2consisting 
of new reals of measure greater than 112. Let T E A be such that A = [TI. By 
Lemma 2.2, the set U,,,(n(T)) is a complement of a %?-rareset, and because of 
new reals it is disjoint of R n V. 

We can give another example of a special %?-rareset. If there is an unbounded 
real over V, then R n V is special %'-rare. To see this let us follow the notation 
of [a]: For every strictly increasing function g E "w, let H, = { x  E "2 : 
(gXn) x r(g(n),g ( n )  + n) = 0). For G c W2an open set and n E w define 
G, =U{[s] : s E "2 & [s] C G). Define a sequence ~k >0 SO that C,,, 2k2~ , c< 112 
and for G c "2 open define f G E "w so that for all n, ,u(G - GiG(,,))< E, .  So 
the sets H, are measure zero sets for suitable g .  A. W. Miller has proved that if 
H, c G, then f G eventually dominates g .  

Let us assume that there is an unbounded real g over V. Let [TI be a perfect 
set disjoint with H, such that T E A (i.e. ,u([T]) > 112). Then by Miller's result 
(T)nV = 0, and consequently R n V is a special %?-rareset. 

LEMMA3.2. For every special %'-meager set A there is a decreasing sequence of  
conditions T, E A, Ti,+, < T,, witnessing that A is a special %?-meagerset. 

PROOF.We can find such a sequence inductively using Lemma 2.2. 
LEMMA3.3. If R n V is a %'-rareset, then it is a special fZ'-rare set. 
PROOF.If there is T such that (R n V )  n ( T )  =0, then also (R n V )  n (n(T) )=0, 

for all 71 E I1. 
LEMMA3.4. Let B be random algebra. Then R n V is a speczal %'-rareset if and 

only if B" is not a dense subset of B. 
PROOF.If B" is not dense in B, then there is a perfect set F C "2 of positive 

measure such that no perfect subset of F of positive measure is coded in V. Let 
[s] be a basic clopen set for some s E <"2 such that p([s] n P )  > 1/2p([s]). The 
set Ft = {x E "2 : s-x E P) has measure > 112 and does not contain perfect 
sets of positive measure coded in V. Let T E A be such that [TI = P t .  Then 
obviously ( T )  n V = 0, and so R n V is special %'-rare. 

Conversely, let ( T )  n V = 0 for some T E A. Let 2' be a maximal family of 
disjoint perfect sets of positive measure coded in V which are subsets of [TI. The 
family 2'is countable, and so the set X = U 2' is measurable. Now p ( X )  5 112, 
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since otherwise there would exist a finite system To T such that p ( U  To)> 112 
while U Tois a perfect set coded in V. This leads to a contradiction, since by 
assumption [TI does not contain any perfect set of measure 2 112 coded in V. 
Hence , u ( U T )  < p([T]).  Let F [TI - U T  be any set of positive measure. 
Then no perfect subset of F of positive measure is coded in V. 

LEMMA3.5. If special %?-raresets with de$nition in V do not cover R, then A nV 
is 0-centered. 

PROOF.Let us assume that there is P E R such that P E UnEn(rc(T))for every 
T E A n V. Without loss of generality we can assume that, for every s E P ,  
p([P,]) > 0 (otherwise take Pf = P - {s : p([P,]) = 0)). For every T E A n  V 
there is rc such that rc-'(P) E (T ) .  Evidently P $! V. 

Let A, = { T  E A n V : rcP1 (P) E (T) ) .  Since the sets A, cover A nV, it is 
enough to prove that they are centered. 

Let T, T1 E A,. We prove that T n T1 E A,, i.e. p([T] n [TI]) > 112. If not 
and p([T] n [TI]) 5 112, then since r c - I  (P)C T nT f ,p ([TI n [TI]) = 112. Hence 
P is definable from T and TI, since rc-' (P)= T n T' - {s : p([T,] n [T,']) = 0). 
Hence P E V, which is a contradiction. 

LEMMA3.6. (a) cov(9;) 5 add(N) .  
(b) co f (N)  5 non(specia1 E-rare set) 5 non(f;). 
PROOF.For every measure zero set A C "2 we can find TA E A such that 

(A +Q)  n [TA]= 0.Since [rc(TA)]contains only finite modifications of reals from 
[TA],it follows that A n [rc(TA)]= 0 for every rc E II,and BA= R - UnEn(rc(T~))  
is a special %?-rareset. For every P E R the set Cp = "2 - ([PI +Q) is a measure 
zero set, and whenever P $ BA,then A c Cp. 

(a) Let d be a family of measure zero sets, (dl< cov(Y4). We prove that 
p ( U  d)= 0. There is P E R -U,,, BA,and so for every A E d ,  P $ BA. Hence 
U d r4 Cp,and so U d  is a measure zero set. 

(b) Let Ro c R not be a special g-rare set. Then for every measure zero set 
A c "2, we have Ro BA, and so some P E Ro is not in BA. Consequently 
A c CB and {Cp : P E Po) is cofinal in N .  

In the next section we will see that the equalities in the above lemma hold, and 
we also give a characterization of the additivity and the cofinality of the ideal 3; 
(Corollary 4.5 and Theorem 4.6). 

54. The ideal YE and Lebesgue measure. We prove the following theorem. 
THEOREM4.1. (a) cov(Yg) = add (N)  
(b) non (3g )  = non(%?-rareset) = cof (N) .  
In [I] the equality. add (N)  = m(A) is proved, and (a) of Theorem 4.1 follows 

from this equality and Lemma 2.4. But there is a symmetry (or duality) in the 
present proof of the assertions (a) and (b), and this is why we prove them both 
here. 

PROOFOF THEOREM4.1. Since special %?-meagersets are E-meager, the inequal-
ities 

cov(&) 5 add(-&"), co f (N)  5 non(%?-rareset) 5 non(3g)  

follow from Lemma 3.6. In the proof of the reverse inequalities we will use a 
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characterization of add(Af) and cof(Af) using the following partial order. The 
set 

f E"([w]<"'): C l f ( n ) 2 - "  < oo 
n E w  

is ordered by f I*g iff (3m)(Vn > m )  f (n) g g(n).  We will need just the 
inequalities proved in the next lemma, although e.g. by [2] it is evident that the 
reverse inequalities hold too. 

LEMMA4.2 (J. Stern, J. Raisonnier). add(Af) I b(S), a(&)5 cof (A / ) .  
PROOF.We find two mappings a : S + Af, P : Af + S such that a (f )  c A 

implies f <* P(A) for f E S and A E A'. From this property one can easily 
verify the inequalities in the lemma (see [6] ) .  

Let {Gi,i : i, j E w) be a sequence of independent clopen sets in "2 such that 
p(G,,,) = 2-'. For f E S put 

Of course a ( f )E A'. 
Now we define the mapping P. Let A E Af. Choose a closed set K of positive 

measure such that K nA = 0 and p (K  n U) > 0 iff K n U # 0 for every open set 
U .  Let {U,, : n E w) be an enumeration of all clopen sets U such that K n U # 0. 
For every n E w let 

Fn( i )= { j  : K n U, n G,,, = 0). 

Then 0 < p ( ~n U,) I p ( n i E wniEFl,(i)(W2- Gi,i??= niEwn i E ~ , , ( i ) ( l- 2-'). 
Therefore xi,, lFn(i)/2-' < oo,and so FnE S for all n E w. Let P(A) E S be 
such that Fn5*P(A) for all n E w. 

Nowassumethat f E S ,  A ~ N a n d a ( f )c A .  T h e n K n a ( f ) = @ , a n d b y t h e  
Baire category theorem there are m, n such that K n U,, nUi2ni.Ui,j(i) Gi,i = 0. 
Therefore f (i)  c E;,(i) for all i 2 m, and so f <* FnI*P(A). 

Let us denote 

Since b ( S )  I b(So), a(So)< a($), it is obvious that Lemma 4.2 holds also for the 
family Soinstead of S .  We will use elements of Sofor a representation of elements 
of amoeba forcing in the following way. 

For f E So, the set Uj = U,,,, U,,(,) [s] is an open set of measure less than 
112. Let T f  c '"2 be the tree representing the closed set [Tj] = W2- Uf. Then 
T f  E A. 

We write f =* g i f f  I*g and g I"f .  For f E Solet Ai = {T, : g E 
So& g =' f ). Ai is a countable subset of A, but, as we can see from the next 
lemma, A j  is a "good approximation" of the forcing A. 

LEMMA4.3. There is a mapping y which assigns to every open dense subset D 
of A a member y ( D )  E Sosuch that for every f E So, whenever y ( D )  I*f ,  then 
D nA i  is dense in A f  . 



To make the proof of Lemma 4.3 more lucid we prefer to work for a while with 
an isomorphic version of amoeba forcing: 

with ordering defined by U 5 I/ iff I' c U .  In this context, A) = { U ,  : g E 
So & g =* f ), and we prove 

LEMMA4.3'. There is a mapping y '  whzch assigns to every open dense subset D 
of A' a member y l ( D )  E Sosuch that for every f E So, whenever y l ( D )  5" f ,  
then D nA> is dense in A; . 

PROOF.For an open set I/ let 

f I (n) = {S E "2 : [s] c I f  & [sr(n - l)] I/). 

Then obviously I f  c U t ,  (actually I f  = Ui ,). 
Let 2 c D be a maximal antichain. Since 2 is countable, there is g E Sosuch 

that (VI' E 2 ) ( V X n )f r,(n) C g(n) .  Set y l ( D )  = g .  We prove that g has the 
property stated in the lemma. 

Let g I*f and U E A', be arbitrary. We have U = Ui, for some h =" f .  
There is V E2 such that the set W = U U V is in A'. We show that W E A', , 
which finishes the proof since W E D and W E U .  

By the choice of g and since g I*f ,  there is no E w such that 

and Cn211u1 f (n)12-" < 1/2 - ,u(W). Let us define 

flt .(n),  f o r n < n o ,  
I n )  = { n for n 2 no. 

First we note that f '  E So. This is because U{f '(n) : n < no) represents a finite 
subsystem of the partition of W into clopen sets, and so 

Hence, by the choice of no, CIlEC,1 f '(n)12-" < ,u(W) + (112 - ,u(W))= 112. We 
show that U f1 = W. Let us consider the following cases. 

(a) If 1s < no, then, by definition, [s] c U f ,  iff [s] c W. 
(b) If s l  = n  >no  a n d s  E f l ( n ) ,  then [s] U c W since f l ( n )  = f ( n ) .  
These two cases prove U , I C W. 
(c) If I S ]  = n > no and s E f r (n),  then s E f l ( n )  since f ,  (n) C f l ( n ) .  
Since Tf C W, (c) together with (a) proves Tf c U f , .  So to prove W c Ul it 

is enough to prove U c U f/ .  

(d) If 1s 1 = n > no and s E I? (n), then h (n) = f '(n) and so s E f '(n).  
Since U c W, (d) together with (a) proves U c U , , ,  and the proof of the 

lemma is finished. 
The next lemma finishes the proof of Theorem 4.1. 
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LEMMA4.4. (a) add(M) 5 cov(Yg) 
(b) non(Yg) < cof (M). 
PROOF.Similar characterizations as in Lemma 2.4 are true also for the cardinal 

invariants cov(A') and non(A') (and any countable nonatomic forcing notion 
instead of A; recall that A' is the ideal of meager sets in " 2 ) .  

(a) Let dbe a family of %?-raresets, Id1< add(-&").For A E d,DA= { T  E A : 
( T )  nA = 0) is an open dense subset of A. Since add (N)  < b(So), there is f ESo 
such that (w(DA)<* f for all A Ed ((w was defined in Lemma 4.3). Hence, by 
Lemma 4.3, DAnAj is dense in A/ for every A E&. Since 1 & 1  < cov(A'), there 
is a {DAnA j  : A E &)-generic filter G g A/.  The set P = n,,,[T] is closed, 
and p ( F )  2 112. There is P E R such that [PI G F .  Evidently, P E nTEG( T )  
and so P $! Ud, which proves add(M) < C O V ( ~ % ) .  

(b) For every %?-meagerset A g R there is a sequence of %7-rare sets A,, such 
that A G U,,, A,. The sets Dl, = { T  E A : (T )  nA = 0) are open dense subsets 
of A. Since b (So)> w, there is g E Sosuch that y/(D,) <* g for all n E w. 
Hence, by Lemma 4.3, Dl, nA/ are dense in A j  whenever g <* f .  For every 
f E So let E'j be a family of filters in A j  such that IFj I = non(A') and for every 
countable family goof dense subsets of Aj  there is G E gj which is 90-generic. 
For every G E gj let us choose PGE n T E G ( T )and let A j  = {PG: G E g j ) .  
Hence IAf 1 Inon(A') Icof(M). Let 9 G Sobe a dominating family in So 
of cardinality cof (N) (i.e. 2 i)(So)).Then the set A = U j  ,,-Aj has cardinality 
cof ( N )and it witnesses the inequality non(Yg ) < cof (Af ) . 

Since 3; g Yg, immediately from Theorem 4.1, Lemma 2.4 and Lemma 3.6 
we get the following. 

COROLLARY4.5. (a) cov(Y4) = m(A) = add(N) .  
(b) non(Yg) = non(specia1 %?-rareset) = to (A) = cof ( N ) .  
We say that a tree T G "2 is regular if for each s E T, p([T,]) > 0. Note 

that the family of all regular trees in A, (defined by (2.1)) is a dense (and even 
separative) subset of A,. Let us recall some ideas of [12] which we will use in the 
proof of the next theorem. 

Assume that Tl E A,,, T2 E A,, are regular trees such that 

There are countable sets Ql c [TI], Q2 G [T2] and a one-to-one continuous 
mapping m from [TI] - Ql onto [T2] - Q2 which is measure preserving, i.e. 
p(m(A)) = p(A)p([T2])/p([T1]) for each measurable set A C [TI]- Ql .  For 
E > 0 and T E A,. let us denote A,,T = { S  E AE : S 5 T)  The set 

= { T  5 T1 : [TI n Ql =0) is open dense in and for T E g we can define 
e ( ~ )= T' iff [T'] = m([T]). Clearly, for any T E g ,  e r A , , > ~: A,,,T + AE2,C(T) 
is an isomorphism, and we say that this isomorphism is induced by the mapping 
m. 

J. Truss [12] showed that there are maximal antichains IT;,, : k E w) G A,,, 
i = 1,2, such that each pair Ti>,,Ti,2 satisfies the equality (4.1), and the isomor-
phism from r. o. A,, ontor. o. A,? presented in [12,Theorem 3.31 can be described 
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as follows: There are maximal antichains {Tk,i : k E w) C A,,, i = 1,2, and an 
isomorphism 

: U A E 1 . ~ / c , ~- U A E 2 , ~ / c , 2  

kc" k E w  

such that for each k the restriction e rAE1,T,, , is induced by a one-to-one measure- 
preserving mapping. We will need the following particular property of the map- 
ping e. For &' & A,, T, , 

or, more generally, 

Now we prove the characterization promised at the end of the previous section. 
THEOREM4.6. (a) add(9;) = add(M). 
(b) cof (9;)= cof (M)  . 
PROOF. According to Corollary 4.5 it is enough to prove (a) m(A) 5 add(9;) 

and (b) cof(9;) 5 tu(A). 
Let us consider a fixed sequence of amoeba forcing notions A,,, with 112 < 

&,+I < E, and lim,,,, E, = 112. For each n E w let D, = {T, k : k E w) be a 
maximal antichain in A = AlI2 such that there is an isomorphism 

such that each restriction en rAIIZ,TI,,,, is induced by a measure-preserving mapping. 
Without loss of generality we can assume that D,+l refines Dl, for each n and that 
the family go= {Dl, : n E w) is closed under finite strict refinements (see the 
proof of Lemma 2.4). 

We say that P E R is go-generic if the set Gp = { T  E A : P & T )  chooses 
an element from each D E g o .  By Claim 3 in the proof of Lemma 2.4, if P is 
go-generic, then Gp chooses exactly one element from each D E go.Moreover, 
by the property (4.2) of the mappings en, there are trees T, & '"2 such that 
,LL([T,,])2 E, and T, c e,,(T) for each T E Gp ndom(e,). In particular, TI, E A 
for each n E w. 

Now let S E A. There is n E w such that S E A,,,, and by Lemma 2.2 the set 

D,,, = { T  E dom(e,) : (371 E II)e , ( ~ )5 z(S)) 

is open dense in A. Hence for any go-generic point P E R there is a sequence 
{T, : n E w) of conditions in A such that whenever Gp n D,J # 0, then there is 
n E I I  with TI, 2 n(S).  

The above scheme describes two mappings. The first one finds for each element 
S E A an integer n = n(S), and the second one assigns to a go-generic point P ER 
a sequence of conditions T, E A, n E w, with the property that, for every S E A, 
if n = n(S) and Gp n D,J # 0,then there is n E I I  such that TI, g z (S ) .  
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Now let d be a family of special %'-raresets. For every A Ed there is a tree 
SAEA such that A nU,,,, (n(SA))= 8. The family = {D,(,s,),s, :A E .d}of 
dense subsets of A has cardinality la1< Idi. Hence, if Id1 < m(A), there is a 
(LBU go)-genericfilter G, and clearly G 2 Gp for some go-generic point P .  Hence 
there is a sequence {T, : iz E co} of conditions such that for every A E.dthere is 
n = n(S,d) and n E H such that T, c n(S,I). Then U,En(~(T,l))c UnEn(n(S,4)) 
and this set is disjoint with A. It follows that U d  nn,,, U,,,(n(T,,)) = 0) and 
the union U .dis a special %'-meagerset. Therefore m(A) < add(3;). 

If A gR is a set that witnesses the equality IAj = tu(A),then for each countable 
family a of maximal antichains there is a (gu So)-generic point P E A, and 
the same reasoning produces a cofinal family of special %'-meagersets (for each 
P E A the above procedure gives a special @-meagerset) of the same cardinality 
as the set A. Therefore cof (4;)5 tu(A). 

$5. Meager and %'-meager sets. 
I~~FINITION5.1. Let A'* be a family of all subsets X of the interval (0,112) for 

which the set A(X) = {P  E R : (3s E <"2) ,u([P,]) E X} is a special 53'-meager set, 
and let A?'** be the family of all sets X c (0,112) for which A(X) is %'-meager. 

We prove that the both these families of sets coincide with the ideal of meager 
subsets of the interval (0,112). 

LEMMA5.2. The $zmz/ie,s A?'" C A:'"âre both o-ideals extending the ideal o j  
meager subsets of tlze irztervul (0, 112). 

PROOF.The fact that A'* c A?'** are 0-ideals is clear from the definition. We 
prove that for every meager set X C (0,1/2), the set A(X) is a special %'-meager 
set. The idea of the proof can also be used to prove that, for a generic amoeba 
tree P*, ,u([P,*])is a Cohen real for every s E <"'2 - (8). Let us denote 

We have A(X) =U,,t<co2As(X)= UnEwAn(X). First we show that for a nowhere 
dense set X C (0,1/2), the sets A,(X) are special %'-raresets. Note that the sets 
A,, (X)  are closed under translations by permutations from H, i.e. n(A,,(X)) = 
A, (X)  for n E II.So it is enough to find S EA such that (S) nA,(X) = 0). We 
will need the following claim. 

CLAIM5 . 2 ~ .If T E A, n > 0, s E "2, then there is S 5 T, S E A such that 
(S) nA, ( X )= 69. 

PROOF.If p([T,]) = 0, then take S = T and we are done, since for every 
P E (S)we have ,u([P;]) = 0 if X. Sin~ilarly,if ,u([Ts])> 112, put S = T, . Then 
,U([P,~])= 112 f X for P E (S). 

Let p([Ty])= a > 0, a 5 112, and ,u([T]) - 112 = b > 0. We can assume that 
0 <b < a < 112 (if not, then by shrinking T, we can satisfy the requirement a < 1/2 
and then by shrinking T,, for t # s, It1 = n,  we can satisfy the inequality h < a ) .  
Since X is nowhere dense, there is an interval I = (c,d )  such that I nX = 8 and 
max{a-b ,b}<c<d<a.  Wecanf inds5 T , S ~ A , s u c h t h a t c < , u ( [ S , ] ) < d(by 
shrinking T s )and ,u([S]) - 112 < p([S,])- c (by shrinking T, for t # s,  ltj = 11). 
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Now, for every P E (S),d > p([S,,l)L p([P,,l)L p([S,,l)- (p([Sl)- 1/21 > c. 
So ,LL([P,~])E I and (S)nA,(X)= 0.The proof of the claim is finished. 

Let us fix an enumeration s,,n = 1, 2,. . . ,2",of the set "2.Using Claim 5.2a 
iteratively 2" times, we can find a decreasing sequence T,, > T,,?> . . . > T,,,,,of 
conditions such that T,,nA,yi(X)= 0.Set S = T,,,,,. Then (S)nA,(X)= @,-and 
so the A,(X)are special $?-rare sets and A(X)is a special $?-meager set. 

If X (0,112)is meager, then X is the union of countably many nowhere 
dense sets X,,n E w, and, by the previous part of the proof, A(X)= U,,, A(X,,) 
is a special $?-meager set. 

LEMMA5.3. If X (0,112)is open, X # 0, then A(X)is not $?-meager. 
PROOF.Let n E o and c < d be such that 2-"-' < c < d < 2-" and (c,d)c X. 

Let us fix s E ,2.As in the proof of Claim 5.2a,we can find S E A such that 
p([P,,])E (c,d)for every P E (S).Hence A(X)contains a region, and so it is 
not $?-meager. 

COROLLARY5.4.IfXC (0,112)has the Baire property, then X E A? ifarzd only 
i f X ~ d *i f a r z d o n l y i f X ~ d * *  

PROOF.By Lemma 5.2 it is enough to show that whenever a set X E A?**has 
the Baire property, then X is meager. 

Let us assume that X E A?**has the Baire property. So there is an open set U 
such that the symmetric difference XnU is meager. So there is a meager set Xf 
such that U c X U X'.Since A(U) A(X)U A(Xf),U E A?**and by Lemma 
5.3, U = 0.Therefore X is meager. 

Below we eliminate the assumption in the last corollary. For this reason we 
need the next lemma. 

LEMMA5.5. (a) vA(X)is a special $?-meager set, then there is X*E rI1 such 
that X c X* and A(X*)is a special $?-meager set. 

(b) vA(X)is a $?-meager set, then there is X* E rI; such that X c X* and 
A(X*)is $?-meager. 

PROOF.(a) If A(X)is a special $?-meager set, then there are T,E A,n E w, 
such that A(X)n n, U,(n(T,))= 0. Then for every P E n,U,(n(TIl))and for 
every s E '"2 we have p([P,\])@ X.Set 

It is easy to see that X* E rIt,X c X*,and the same sequence T,,n E w, 
witnesses that A(X*)is a special $?-meager set. 

(b) If A(X)is $?-meager, then there are maximal antichains IT,,,,,: m E w) c A, 
for n E w, such that A(X)n n,,U,(T,>,)= 0. Then 

COROLLARY5.6.A? = d*= A * * .  
PROOF.It is enough to see that A?**c A?. 
Let X E A?**,i.e. A(X)is $?-meager. By Lemma 5.5(b),there is X*E rIt such 
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that X c X* and A(X*) is t?-meager. So X* EA**and, by Corollary 5.4, since 
n,' sets have the Baire property, X c X* E A .  I7 

COROLLARY5.7. add(.&') < add(A) ,  and cof (A)5 cof ( N ) .  
PROOF.Immediately from definition of the ideal A* (the set mapping A(.) is 

additive) we can see that 

add(3;) L add(A*)  and cof (A*)  < cof (3;). 

But A =A * ,  and the ideal 3; has the same additivity and cofinality as the ideal 
N by Theorem 4.6. 

$6. Subsets of amoeba forcing. We find characterizations for the following car-
dinal invariants related to subsets of amoeba forcing. Note that for the measure 
algebra the corresponding problem was studied in [5] and in [3]. Let us recall that 
X c A is separable in A if there is a countable set Xo c A such that for every 
p E X there is q E Xo such that q < p. We define 

dense(A) = min{lXI : X c A & X is a dense subset of A), 

centered(A) = min{n : A is n-centered), 

nonseparable(A) = m i n { X  : X 2 A & X is not separable in A), 

noncentered(A) = min{lXI : X c A & X is not a-centered). 

One can easily verify that 

centered(A) 2 dense(A) and nonseparable(A) < noncentered(A). 

THEOREM6.1. (a) centered(A) = dense(A) = cof ( N ) ,  
(b) nonseparable(A) = noncentered(A) = add(N) .  
PROOF.(a) By previous remark and by Theorem 4.1 it is enough to prove 

Let A be n-centered and let {A6 : < E n) be a partition of A into centered sets. 
For every 5 choose P,: E R such that PCc T for every T E A<. Then {PC: < E n)  
is not g-rare, and so n > non(E-rare). 

Let X C R be a non-g-rare set. Then the set X' = {n(P)  : P E X & n E rI) 
has the same cardinality as X and X1 is everywhere (in every region) non-g-rare. 
Without loss of generality we can assume that X = XI. We prove that the family 

is a dense subset of A, and so this family witnesses the inequality dense(A) 5 
non(g-rare). 

Let T E A be arbitrary, p([T])  = 112 + E .  Since X is everywhere non-g-rare, 
there is P1 E X n (T) .  Let U c "2 be an open set with p ( U )  < E such that 
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p ( U  n [PI])  > 0. Let T' E A be such that [T'] = [TI - U. Again, there is 
P2E X n (T').  Since 

it follows that the tree P1U Pz is a condition in A and P1 u P2 C T.  
(b) By Theorem 4.1 it is enough to prove 

Let Ro be the set of all P E R such that, for every open set U C "2, [PI n U # 0 
iff p([P]  n U) > 0.The set Ro is the complement of a special E-meager set. To 
see this, for every n E cu find T, E A so that for every s E "2, if s E T,, then 
p([T121- [s]) < 112. Obviously, n, UnEn(n(Tn))C Ro. 

Note that Ro is invariant under permutations from n .  We will use this property: 
whenever P I ,Pz E Ro and PI # P2, then P1U P2E A (i.e. p([Pl U Pz]) > 112). 

Let X c A, X < cov(38) .  The set A = n,,, U,,,(n(T)) is not E-meager, 
and so there are P I ,Pz E A nRo such that for every n E n ,  n(P1) # Pz. So the 
set {nl(PI)U nl(P2) : 711,712 E n) C A witnesses the separability of X, and so 
COV(&) 5 nonseparable(A). 

To prove the last inequality, note that noncentered(A) = noncentered(A,) for 
E > 0.This fact follows from the isomorphism r. o. A cx r. o. A, (see [12]). 

Let d be a family of special 'iZ-rare sets, Id1 < noncentered(A). For every 
A E d ,  let us fix TA E A such that A n U,,,(71(TA)) = 0. Let us fix a sequence 
E, > 112, n E cu, of reals with limn,, E, = 112, and let dn= {A E d : ,LL([TA])>E,). 
Since dn1 <noncentered(A,, ), the family X, = {TA: A E sal,) is a-centered in A,, . 
Let T,,,, m E o,be a sequence of trees which are the intersections of countably 
many centered subsets of X, c A,, . Hence, ,LL([T,,,]) > E, and for every A E d, 
there is an m such that T,,, c TA, and consequently U,,,(n(T,,,)) n A = 0. 
Hence n unE n ( n ( ~ , , , ) ;  nU d  = 0, 

n,mEw 

which means that U d  E 3$,and so noncentered(A) 5 add(Y$). 
LEMMA6.2. The forcing A adds a perfect set of alnoeba reals. 
PROOF.Let E > 112. By the already mentioned result of Truss, r. o. A, 2 r. o. A. 

Moreover, r. o.(A x C) can be completely embedded into r. o. A. Hence it is enough 
to prove the conclusion of the lemma for A, x C. 

Let P, be an A,-generic tree, i.e. p([P,]) =E.  In V[P,], consider the following 
notion of forcing (conditions are subtrees of P,): 

Q = { T  c P, : [TI is relatively clopen in [P,] & P([T]) > 1/2&), 

T1 5 T2 iff T1 c T2. 

Obviously Q is Cohen forcing, and it is well known that the existence of a Cohen 
real implies the existence of a perfect set of Cohen reals. So it can easily be seen 
that the existence of a single Cohen real implies the existence of a perfect set of 
generic trees in Q (i.e. a perfect set in the product topology of 9(<"2) ) .  To finish 
the proof it is enough to note that every V[P,]-generic tree in Q is an amoeba 
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generic real over V. The essential part of the proof of this fact is the following: 
if D c A is dense open and D E V, then the set 

is a dense open subset of Q in V[P,]. The proof of the particulars we leave to the 
reader, since it is very similar to the proof of [ l l ,  Lemma 6.31. 

57. Questions. (1) Does there exist a c.c.c. forcing notion P killing t?-meager 
sets, i.e. Itp.'U { B  C R : B is a t?-meager Bore1 set coded in V) is @?-meagern? 

(2) Can we get a model with add(&) > N l ?  Prove in ZFC that add(YB)= N1. 

(3) Prove that each assertion in the following list is a consequence of the previous 
one. 

(i) U ( 9 g  n V) # R (i.e. there is an amoeba real). 
(ii) U(Yt n V )  # R. 

(iii) A nV is a-centered. 
(iv) There is a perfect set of random reals of positive measure. 
(v) , ~ ( " 2nV) = 0. 

(vi) R n V is a special t?-rare set. 
(vii) R n V  E 3;. 

(viii) R n V E 3 ~ .  
Which of these implicatioils can be reversed? 
Let us note that the implications (iv) + (v) + (vi) cannot be reversed. For 

the first implication consider a single Cohen extension. For the second one a 
counterexample is provided by the extension obtained by adding a single Laver 
real. In this extension there is an unbounded real (even a dominating one), so, 
by the note after Definition 3.1, R n V is special @?-rarewhile the condition (v) 
does not hold in the extension (see [7]). 
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