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Abstract

Robert Nozick allegedly introduced his liberal theory of private ownership as an objec-

tion to theories of end-state justice. Nevertheless, we show that, in a stylized framework

for the allocation of goods in joint ventures, both approaches can be seen as complemen-

tary. More precisely, in such a context, self-ownership (the basis for Nozick’s entitlement

theory of justice) followed by voluntary transfer (Nozick’s principle of just transfer) can

lead to end-state fairness (as well as Pareto e�ciency). Furthermore, under a certain soli-

darity condition, the only way to achieve end-state fairness, following Nozick’s procedure,

is to endorse an egalitarian rule for the initial assignment of rights.

⇤We thank Roberto Veneziani, as well as the remaining participants of the 2015 QMUL Exploitation Work-

shop for helpful comments and suggestions. We are also grateful to William Thomson, Richard Bradley, and

two anonymous referees for their insightful comments to revise the paper.
†Department of Economics, Seoul National University
‡Department of Economics, Universidad Pablo de Olavide, and CORE, Université catholique de Louvain.
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1 Introduction

The last decades have witnessed a considerable e↵ort among political philosophers to analyze

the problem of distributive justice. A central impetus for this should be attributed to John

Rawls’s theory (e.g., Rawls, 1971), probably the most influential endorsement of egalitarianism

in the twentieth century. Roughly speaking, Rawls argued that in an “original position,” before

knowing what our talents, wealth, or education are, we would agree on basic principles about

justice and the distribution of the fruits of collaboration in society. Rawls then concluded that

justice thus defined depends entirely on the pattern or end-state distribution at any moment

in time. Rawls’ conclusion, the so-called Di↵erence Principle, is that social and economic

inequalities are to be arranged so that they are to the greatest benefit of the least advantaged.

Prompted by Rawls’ theory, Robert Nozick presented another (polar) theory of distributive

justice (e.g., Nozick, 1973; 1974). The theory is grounded on self-ownership, one of the funda-

mental axioms of liberal political philosophy, represented classically by John Locke (e.g., Locke,

1988). Self-ownership, which is taken to a di↵erent level in Nozick’s theory, is a somewhat at-

tractive postulate (albeit denied by Rawls himself and other influential political philosophers,

such as Ronald Dworkin) declaring some rights to derive from superior skills. Nozick’s theory

questions Rawls’ focus on the end-state distribution in assessing distributive justice. The core

of his argument is that, if the initial distribution of property rights is just (i.e., property does

not derive from exploitation or theft), and the exchanges that follow this initial situation are

voluntary (i.e., there is no coercion), then the resulting distribution, no matter how unequal,

would also be just. Nozick argues that justice consists of respecting individual’s rights, partic-

ularly the right to self-ownership and the freedom to decide how to use one’s property. This

means that economic inequalities need not be considered unjust nor be rectified to the benefit of

the disadvantaged. Nozick stresses that justice corresponds to the respect of individual rights,

which are more important than an agreement reached in Rawls’ original position (which is just

a thought experiment). Thus, if attaining end-state equity requires violating property rights,

this cannot be just.

More precisely, the following quote from Nozick (1973, page 47) nicely summarizes the core

position regarding his liberal theory of private ownership:

“If the world were wholly just, the following inductive definition would exhaustively

cover the subject of justice in holdings:

1. A person who acquires a holding in accordance with the principle of justice in
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acquisition is entitled to that holding.

2. A person who acquires a holding in accordance with the principle of justice in

transfer, from someone else entitled to the holding, is entitled to the holding.

3. No one is entitled to a holding except by repeated applications of (1) and (2).”

Our aim in this paper is to show that, in a stylized framework for the allocation of goods in

joint ventures, Nozick’s and Rawls’ approaches can be seen as complementary.

To wit, we consider a model formalizing three di↵erent levels of fairness for the allocation

of goods in joint ventures:

1. Fairness in the initial allocation of rights.

2. Fairness in the transaction of rights.

3. Fairness of the end-state allocation.

The formalization of the first two levels will be inspired by Nozick’s procedural approach. More

precisely, we shall focus on a family of rules allocating goods in two successive stages. The

first stage (rights assignment) determines an initial allocation of rights. The second stage

(exchange) determines a final allocation from such an initial allocation.

We formulate self-ownership as an axiom for the first stage of rights assignment inspired

by Nozick’s principle of justice in acquisition. In our model, individual claims represent the

(objective and verifiable) amounts of goods the person can obtain through her self-ownership,

when it does not conflict with the self-ownership of anyone else. Thus, in an economy with

abundant social endowment for fully satisfying all individual claims, self-ownership admits that

all claims are granted.

Nozick’s procedural approach can also provide a useful guideline for the second stage of

exchange. More precisely, the second stage implements Nozick’s principle of just transfer by

imposing the application of a voluntary exchange rule, i.e., a rule guaranteeing that agents only

exchange when they improve from their endowments.

The formalization of the third level will rely on the notion of no-envy, probably the concept

with the longest tradition in the theory of fair allocation (e.g., Tinbergen, 1953; Foley, 1967).1

No-envy is satisfied if no agent prefers the consumption by anyone else to her own. The same

1No-envy is also used by Ronald Dworkin as a basic test for resource egalitarian allocations (e.g., Dworkin,

1981, p.285).
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comparative notion of fairness, defined through interpersonal comparisons of net consumptions

(consumptions net of “claims”), gives rise to the notion of net-no-envy, which we shall also

consider here.2

No-envy conceptualizes the impartial spectator’s point of view, à la Adam Smith, by re-

quiring that agents place themselves in the situation of other agents. A di↵erent, yet related,

conceptualization of the impartial spectator is the contractarian construct of veil of ignorance

by John Harsanyi (1953, 1955) and John Rawls (1971), which enforces the decision maker to

evaluate the outcome through the individual standards of well-being.3 The main advantage of

no-envy, in comparison with the mentioned contractarian theories, is that it does not rely on

cardinal preferences; it is based purely on ordinal preferences.

Our results show that the combination of a rights-assignment rule, satisfying self-ownership,

with a voluntary exchange rule, may lead to end-state fairness, as formalized by the no-envy

axioms described above, as well as to (Pareto) e�ciency. Conversely, we show that the two

focal (and somewhat polar) rules, known as constrained equal awards and constrained equal

net-awards are the unique solidaristic ones that lead to fair end-state allocations. The two

rules have a long tradition of use, which can be traced back to Maimonides (e.g., Thomson,

2003). Although they assign rights in quite di↵erent ways, they both achieve equality with

di↵erent perspectives; namely, equality of the absolute or net amounts.

Therefore, our investigation provides an instance where a principle of end-state fairness

can facilitate the search of appropriate procedural principles of justice (in particular, princi-

ples of just acquisition), which constitute Nozick’s procedural (or historical) theory of justice.

Conversely, Nozick’s theory can be used to implement a principle of end-state fairness through

informationally simple and voluntary procedures. This is why we claim that Nozick’s procedural

approach, at least in our framework, is complementary to the (Rawlsian) end-state approach.

Our contribution in this paper can also be viewed as an alternative way of extending

Locke’s theory (at least in a highly stylized framework of joint ventures). Following a sim-

ilar line of investigation, Roemer (1988, 1989), Moulin (1987, 1990), and Roemer and Silvestre

(1993) propose generalizations of Locke’s theory in the framework of common resources under a

2This is reminiscent of the classical notion of fair net trades, introduced by Schmeidler and Vind (1972).
3While no-envy provides a specific standard for fair allocations, the contractarian theories only provide the

environment of impartial decision making and leave it up to the “rational” decision maker to come up with

the exact standard of fair allocations; namely, the utilitarian allocation for John Harsanyi and the di↵erence

principle for John Rawls.
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decreasing-returns-to-scale technology, which gives rise to the so-called tragedy of the commons.

The allocation rules proposed in these works respect Locke’s thesis based on self-ownership: that

is, they coincide with the unlimited appropriation outcome in the case of a constant returns to

scale technology, the case satisfying the Lockean proviso. Nevertheless, unlike Nozick’s radical

generalization, they all have egalitarian features. It turns out that some of the rules highlighted

in this literature are similar to the rules derived here.

Somewhat related, Gibbard (1976) and Grunebaum (1987) propose “equal rights” or “public

ownership” of unowned properties to be the baseline upon which the appropriation should be

judged.4 Moulin and Roemer (1989), in a production economy model, investigate implications of

the baseline of public ownership without denying the thesis of self-ownership.5 Their axiomatic

approach shows that the axioms for public ownership and self-ownership, together with other

standard axioms, imply a unique welfare-egalitarian outcome, which disregards any di↵erence

in individual talents. Hence slightly strengthening their axiom of self-ownership to rule out the

welfare-egalitarian outcomes and admit only less extreme ones will break the coherency of the

set of axioms. All their axioms are for end-state rules and they do not deal with the assignment

of ownership rights. The egalitarian rules we support here exhibit their egalitarian features only

in the assignment of property rights and so diverse end-state allocations may arise through the

exchange of the property rights.

Moulin and Roemer (1989) assume a single representative utility function and, due to this

feature, their axiom of self-ownership, which is essentially an order preservation property for

rights-assignment rules, coincides with no-envy. We do not impose from the outset an order-

preservation property because it is implied by other basic axioms. The solidarity axiom we

consider (for rights-assignment rules) may be compared to their axiom of public ownership,

called “technology monotonicity”. However, our axioms are merely requirements in the rights-

assignment stage. They are not requirements for end-state rules as in Moulin and Roemer

(1989). Hence, it could be argued that our axioms are in a certain sense weaker than theirs;

in fact, they are extremely mild allowing for a rich spectrum of rules. In our approach, the

baseline of public ownership and the thesis of self-ownership can be met jointly without putting

too much restriction on the choice of rules. End-state fairness plays a critical role to pin down

4Nozick sets the baseline to be the state where the unowned properties are unowned; their appropriation,

according to Nozick, gives the appropriator the entitlement to the properties as long as no one is harmed relative

to the baseline. Roemer (1996, Chapter 6) gives a comprehensive overview of the related literature.
5Ownership rights in their paper are assumed to be respected when a rule satisfies certain axioms.
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a unique egalitarian rule.

Using no-envy as both procedural and end-state principles of fairness, Kolm (1972), Feldman

and Kirman (1974), Goldman and Sussangkarn (1980), and Thomson (1982), among others,

investigate whether procedural fairness induces end-state fairness. The results are negative.

The combination of envy-free initial allocation (equal division) and a sequence of envy-free

trades may lead to a core allocation with envy. Our results impose di↵erent versions of no-

envy as the principle of end-state fairness and obtain no-envy, “with some constraints”, of the

initial allocation as an implication. We do not impose no-envy as a procedural requirement.

Nevertheless, other axioms are used as procedural requirements such as self-ownership for rights

assignment rules and voluntary exchange for exchange rules.6

In standard exchange economies, Thomson (1983) is also concerned with the three levels

of justice: fair initial position (endowment), fair trade (or exchange), and end-state fairness.

In his approach, the principle of fair trade plays a central role and the principle of fair initial

position is formulated through the possibility of changing the initial positions of agents (as in

the definition of no-envy) and their objections based on the principle of fair trade from any

reshu✏ed position. Thus, the key idea of no-envy is behind his notion of fair initial position. He

shows that no-envy is the unique end-state fairness concept that is obtained from his procedural

approach using voluntary exchange as the principle of fair trade (Proposition 1). His main result

is that Walrasian trade and the principle of fair initial position defined via Walrasian trade give

rise to the same outcomes as the Walrasian rule from equal division (Proposition 2). In a sense,

this result says that if one accepts Walrasian trade to be a fair rule of trade, and one also accepts

the possibility of changing initial positions among agents, then the only fair initial position is

equal division. Our Theorem 1 can be viewed as reinforcing this conclusion in our extended

framework, when adopting Nozick’s normative perspective. Our approach is informationally

simple and guarantees freedom of choice. It is also representative of actual institutions. The first

stage of rights assignment allows us to use the findings in the vast literature on rights problems.7

The second exchange stage is assumed to meet voluntary exchange; so not only the Walrasian

(perfectly competitive market) trade but also non-Walrasian (imperfectly competitive market)

trades are covered. Unlike Thomson (1983), we use no-envy as the end-state fairness axiom

and characterize egalitarian rights-assignment rules for the first stage.

6Our model and the procedural approach follow the lesson on procedural fairness delineated by Thom-

son (2011, pp.419-422).
7See, for instance, O’Neill (1982) and Thomson (2003, 2015, 2016b).
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2 A model of joint ventures

Consider a society N of agents, who share common resources for producing ` privately appro-

priable and infinitely divisible goods. Agents have preference relations defined on the corre-

sponding set of consumption bundles (i.e., real vectors with ` coordinates).8 Each agent i 2 N

is also endowed with specific capabilities that would allow her to produce certain amounts of the

` goods with exclusive access to the common resources. We shall refer to the resulting profile of

those amounts, denoted by ci, as the claim of agent i. We assume that claims are objective and

verifiable. The classical Lockean “thesis of self-ownership” (e.g., Locke, 1988), to which Nozick

(1974) adheres, would state in this context that, in the society consisting of a single person,

she is the only one with access to the common resources and, thus, her claim can be granted.

We assume that all agents in society collaborate in a joint venture, which allows them to use

the common resources cooperatively to produce a social endowment ⌦ of the ` goods. When

the joint production technology exhibits decreasing returns to scale, the sum of claims exceeds

the social endowment, i.e.,
P

i2N ci = ⌦.9 When the technology exhibits increasing returns to

scale, the sum of claims does not reach the social endowment, i.e.,
P

i2N ci 5 ⌦.10

We thus consider the problem of allocating the social endowment among the agents based

on their claims. Formally, an economy e ⌘ (N,⌦, c, R) is defined by the set of agents, a

social endowment ⌦, a profile of individual claims c ⌘ (ci)i2N , and a profile of preferences

R ⌘ (Ri)i2N . Let E denote the set of all economies. Throughout the paper, we will assume

“private goods” economies where each agent is not concerned with how much others consume.

Hence agent i’s preferences Ri, namely the binary orderings of her well-being can be defined

over her consumption bundles. Given any pair of consumption bundles x, y, we write xRi y

when agent i is at least as well o↵ with consuming x as with consuming y; we write xPi y when

agent i is better o↵ with consuming x than with consuming y.

An allocation for an economy is a profile of individual consumption bundles, denoted by

8Preferences satisfy the classical conditions of rationality, continuity, strong monotonicity, and convexity. As

usual, we denote by R

i

the preference relation of agent i, by P

i

the corresponding strict preference relation, and

by I

i

the corresponding indi↵erence relation.
9We rule out decisions in the production-side of the economy from our consideration and focus on the

allocation of produced goods among persons. This may be viewed as an economy with a simple output technology

where there is a uniquely e�cient assignment of the agents into production facilities, which gives rise to a

uniquely e�cient output combination.
10Our mathematical notation x 5 y to relate vectors x, y 2 R`

++ means that x

k

 y

k

for each k = 1, . . . `.

Likewise, x = y means that x
k

� y

k

for each k = 1, . . . `.
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z ⌘ (zi)i2N , which is feasible in the sense that the total consumption of each good equals the

total endowment, i.e.,
P

i2N zi = ⌦. It is Pareto e�cient if there is no other allocation that

makes a person better o↵ without making anyone else worse o↵.

The following examples fit the stylized model just described.

Example 1. Simple joint production economy. Consider a production economy with a common

capital good (land) that can be used for producing a good in each period. There are ` di↵erent

periods and the good produced at period l is referred to as good l. Each agent has a skill

to produce each good. Let si ⌘ (sil)`l=1 be i’s skill vector. All agents supply the same unit

labor for the joint production and thus e↵ective labor is identified with skill. The production

technology for each good l is represented by a production function fl : R+ ! R+ mapping the

total e↵ective labor
P

i2N sil into the amount of output for good l. Let ci ⌘ (fl(sil))l=1,...,` be i’s

claim vector. When the production technology is subadditive,11 the joint production is below

the sum of claims.12 When the production technology is superadditive,13 the joint production

is above the sum of claims.

Example 2. Property rights disputes (Ju and Moreno-Ternero, 2016). Consider a society in

which each person has initial property rights (claims). Due to an unexpected misfortune, for

which no one is responsible, the initial property rights cannot be fully respected; the society

does not have enough resources to satisfy all of them. That is, denoting the available social

endowment by ⌦, and claims as (ci)i2N ,
P

i2N ci = ⌦.

Example 3. Surplus sharing. Consider the alternative case to the previous one in which society

not only has enough resources to satisfy all individual property rights, but also has a surplus

to be shared among all members of society. That is,
P

i2N ci 5 ⌦.

An allocation rule associates with each economy a non-empty set of end-state allocations.

We shall be mostly interested in allocation rules that are defined by the following two consecu-

tive stages: First, a rights-assignment stage to deal with the assignment of rights, mapping the

non-preference information into a profile of individual endowments, and second, an exchange

stage determining final allocations for the exchange economy resulting from such a profile of

individual endowments obtained in the first stage. In doing so, we shall be able to scrutinize

11That is, f
l

(x) + f

l

(y) � f

l

(x+ y), for each x, y 2 R+.
12We assume that the technology cannot be accessed by individuals separately. Otherwise, given the sub-

additivity of the technology, each one would be better-o↵ producing on her own.
13That is, f

l

(x) + f

l

(y)  f

l

(x+ y), for each x, y 2 R+.
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the relationship between principles of procedural justice (imposed in each of these two stages)

and principles of end-state justice (imposed on the final allocations determined by allocation

rules).

2.1 Rights assignment

A rights problem is defined by a set of persons N , a social endowment ⌦, and a profile of

individual claims c. Let C denote the set of all rights problems (N,⌦, c). Good l is in deficit if

the endowment of good l is not large enough to honor all claims, that is,
P

i2N cil � ⌦l. It is

in surplus if the endowment is more than su�cient to satisfy all claims, that is,
P

i2N cil  ⌦l.

A rights problem may involve both a deficit in one good and a surplus in some other good.

A rights-assignment rule ' associates with each rights problem (N,⌦, c) individual prop-

erty rights over the social endowment, specified by an allocation of individual endowments

'(N,⌦, c) ⌘ (!i)i2N (with the feasibility,
P

i2N !i = ⌦) to be traded in the exchange stage.

We impose from the outset the following mild requirement on rights-assignment rules that

models the thesis of self-ownership. It is that each person be assigned ownership rights that

fully respect her claim, if allowing her ownership of the claimed resources leaves (as stated in

the Lockean proviso) “enough and as good left in common for others” (27 in Chapter 5, Locke,

1988). Since her claim represents her own capabilities, the assigned rights in this case fully

respect her self-ownership (the ownership of her own capabilities).

Self-Ownership. For each (N,⌦, c) 2 C and each i 2 N , if ⌦ � ci = P
j2N\{i} cj, then

'i(N,⌦, c) = ci.

Then, by the resource constraint in the definition of a rights-assignment rule, whenever the

sum of individual claims equals the social endowment (
P

i2N ci = ⌦), the rights-assignment

should be determined by the claims ('(N,⌦, c) = c). Self-ownership concerns problems where

a person’s claimed ownership leaves enough of the social endowment to fully honor all the

remaining claims. If this requirement is not met, private appropriation of socially endowed

goods needs to be restricted.

Additionally, we consider a solidarity axiom, which says that the arrival of immigrants,

whether or not accompanied by changes in the available endowment, should a↵ect all original

agents in the same direction: either all gain or all lose.14 Formally,

14This axiom has been used in related contexts by Chun (1999) and Moreno-Ternero and Roemer (2006),

among others.
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Solidarity. Let (N,⌦, c) and (N 0,⌦0, c0) 2 C be such that N ✓ N 0 and, for each i 2 N , c0i = ci.

Then, one of the following statements hold:

'i(N,⌦, c)  'i(N
0,⌦0, c0) for each i 2 N,

'i(N,⌦, c) � 'i(N
0,⌦0, c0) for each i 2 N.

Two focal rights-assignment rules, each obeying the axioms just presented, are defined next.

The constrained equal awards rule 'CEA splits the social endowment as equally as possible,

provided no agent is awarded more than his claim in the case of a social deficit and less than

his claim in the case of a social surplus. Formally, for each (N,⌦, c) 2 C, each i 2 N , and each

l 2 {1, . . . , `},

'CEA
il (N,⌦, c) =

8
><

>:

min{cil,�}, if
P

i2N cil � ⌦l,

max{cil, µ}, if
P

i2N cil  ⌦l,

where � and µ guarantee that the feasibility conditions
P

i2N min{cil,�} = ⌦l and
P

i2N max{cil, µ} =

⌦l are met. In particular, if for each i 2 N , cil is larger than equal division of good l, or cil is

smaller than equal division of good l, the constrained equal awards rule divides good l equally

(i.e., 'CEA
il (N,⌦, c) = ⌦l/n, where n denotes the number of agents in N).

The constrained equal net-awards rule 'CEN allocates the social endowment so that both

agents end up having as equal net awards as possible, provided no agent gets a negative amount.

Formally, for each (N,⌦, c) 2 C, each i 2 N , and each l 2 {1, . . . , `},

'CEN
il (N,⌦, c) = max {cil � ⌫, 0} ,

where ⌫ guarantees the feasibility condition
P

i2N max{cil�⌫, 0} = ⌦l. In particular, if, for each

i 2 N , cil is larger than the equal net awards of good l, the constrained equal net-awards rule

divides the total net-awards of good l equally (i.e., cil �'CEN
il (N,⌦, c) = cjl �'CEN

jl (N,⌦, c) =

(
P

i2N cil � ⌦l)/n).
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Figure 1: Rules in the two-agent case. This figure illustrates the “paths of awards” (the locus of the

awards vector chosen by a rule as the endowment ⌦
l

varies from 0 to 1) of the constrained equal awards rule

and the constrained equal net-awards rule for N = {1, 2} and c

l

2 RN

+ with c1l < c2l. The path of awards of the

constrained equal awards rule (red) follows the 45o line until agent 1 obtains her whole claim. Then, it is vertical

until it reaches the vector of claims. For endowments above the aggregate claim (i.e., the surplus case), the

path is horizontal until agent 1 obtains c2l. From there on it follows again the 45o line. As for the constrained

equal net-awards, its path of awards (blue) is vertical until the average loss coincides with the lowest claim, i.e.,

until the endowment reaches ⌦
l

= c2l � c1l. After that, it becomes the line of slope 1 (thus crossing the vector

of claims, when moving to the surplus case). In the specific deficit case illustrated in the figure (for endowment

⌦̄
l

< c1l+c2l), the allocation proposed by the constrained equal awards rule is at the intersection x with the 45o

line, whereas the allocation proposed by the constrained equal net-awards rule is at the intersection y with the

parallel line emanating from (0, c2l � c1l). In the specific surplus case illustrated in the figure (for endowment

⌦̄0
l

> c1l + c2l) the allocation proposed by the constrained equal awards rule is at the intersection x

0 with the

horizontal line from c

l

, whereas the allocation proposed by the constrained equal net-awards rule is also at the

point of intersection y

0 with the line of slope 1 emanating from (0, c2l � c1l).
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The next property, which is a useful implication of the combination of self-ownership and

solidarity (as shown in Lemma 1 in the Appendix), indicates that in a deficit situation all agents

are rationed, whereas in a surplus situation no one is.

Claims Boundedness.

• For each (N,⌦, c) 2 C and each l, if
P

i2N cil � ⌦l, then 'il(N,⌦, c)  cil, for each i 2 N .

• For each (N,⌦, c) 2 C and each l, if
P

i2N cil  ⌦l, then 'il(N,⌦, c) � cil, for each i 2 N .

It is evident by definition that the two focal rights-assignment rules satisfy claims bound-

edness.

2.2 Exchange

A rights-assignment rule converts each economy into an ordinary exchange economy with in-

dividual property rights (individual endowments) compatible with the social endowment. For-

mally, an exchange economy is a triple (N,⌦, c), where ! denotes the profile of individual en-

dowments (adding up to the social endowment ⌦). Let Ē denote the set of exchange economies.

An exchange rule F associates with each exchange economy a non-empty set of allocations.

Exchange rules are studied extensively in the literature. The best known one is the so-called

Walrasian (exchange) rule, FW , which associates with each exchange economy its set of Wal-

rasian equilibrium allocations.15 We shall also consider other rules that are not Walrasian, yet

satisfy the following basic condition of voluntary exchange, which can be seen as the natural

way of implementing Nozick’s principle of just transfer. In words, voluntary exchange requires

that the outcome of the exchange process determined by the exchange rule does not leave any

agent within the group worse o↵ (according to the agent’s preferences) than in the initial sit-

uation, where they were all in possession of their endowments.16 That is, everyone ends up at

least as well o↵ as she initially was. Formally,

15Formally, for each vector of market prices p, define the individual budget, delineated by the initial endow-

ment !
i

, as B(!
i

, p) = {z
i

: p · z
i

 p · !
i

}. An allocation z is a Walrasian equilibrium allocation if there exists

a vector of prices p, such that, for each i 2 N , and each z

0
i

2 B(!
i

, p), z
i

2 B(!
i

, p) and z

i

R

i

z

0
i

.
16It is reasonable to formulate justice in transfer more strongly, adding, to voluntary exchange, a criterion of

fair trades, e.g., fair net trades by Schmeidler and Vind (1972). In fact, as long as we adopt Walrasian exchange

rule in the exchange stage, the stronger version of justice in transfer will be satisfied and so numerous market-

based allocation rules characterized in our results will also satisfy the stronger version. Further investigation in

this direction is worthwhile, which is left for future research.
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Voluntary exchange. For each (N,⌦, c) 2 Ē , z 2 F (N,⌦, c), and i 2 N ,

zi Ri !i.

Note that the so-called no-trade exchange rule, which recommends the initial profile of

endowments as the outcome of the exchange process, is a well-defined exchange rule satisfying

voluntary exchange. The Walrasian rule also does.17 An important distinction between the two

is that the former does not guarantee Pareto e�ciency of the final outcome, whereas the latter

does so, by virtue of the First Fundamental Theorem of Welfare Economics (see for instance,

p.549, Mas-Colell et al., 1995). Another example is the Core rule selecting the allocations upon

which no coalition of agents can improve through the exchange of endowments among coalition

members excluding non-members. The Core rule also guarantees Pareto e�ciency and contains

all Walrasian equilibrium allocations (p.654, Mas-Colell et al., 1995).

2.3 End-state fairness

An allocation rule S associates with each economy a non-empty set of allocations. We model

end-state fairness by means of some classical fairness axioms for allocation rules. One of the

fundamental notions in the theory of fair allocation is envy-freeness, which can be traced back

to Tinbergen (1953) and Foley (1967). The concept has come to play a central role in the

theory of fair allocation.18 An allocation satisfies no-envy, or is said to be envy-free, if no agent

prefers the allocation of another agent. An allocation rule S satisfies no-envy if it only selects

envy-free allocations. Formally,

No-Envy. For each e ⌘ (N,⌦, c, R) 2 E , and each z 2 S (e), there is no pair of agents i, j 2 N

such that zj Pi zi.

The above notion does not use information on claims to establish envy comparisons. The

following one does so. For each allocation and each agent, we can describe an agent’s net

awards at the allocation as the di↵erence between the claim and the awarded amount. An

allocation satisfies net-no-envy, or is said to be net-envy-free, if no agent prefers the net awards

of anyone else to her own net awards. An allocation rule S satisfies net-no-envy if it only selects

net-envy-free allocations. Formally,

17At a Walrasian equilibrium allocation, each agent is maximizing welfare within her individual budget, which

is determined by her own endowment.
18See, for instance, Kolm (1972), Pazner and Schmeidler (1974), Feldman and Kirman (1974), and recent

surveys, such as Fleurbaey and Maniquet (2011) and Thomson (2011).
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Net-No-Envy. For each e ⌘ (N,⌦, c, R) 2 E , and each z 2 S (e), there is no pair of agents

i, j 2 N , such that ci � (cj � zj) Pi zi.

Net-no-envy is similar to the notion of fair net trades (e.g., Schmeidler and Vind, 1972) for

exchange economies, in which the no-envy requirement is formalized for agents’ net trades, i.e.,

the di↵erences between their allocations and their endowments.

2.4 Market-based allocation rules

The composition of a rights-assignment rule and an exchange rule gives rise to an allocation

rule, associating a set of allocations for each economy. If the rights-assignment rule satisfies

self-ownership and the exchange rule satisfies voluntary exchange, we say that the resulting

allocation rule is market-based.

Market-based allocation rules. There exist a rights-assignment rule ', satisfying self-

ownership, and an exchange rule F , satisfying voluntary exchange, such that S ⌘ F � ', i.e.,

for each e ⌘ (N,⌦, c, R) 2 E , S(e) = F ('(N,⌦, c), R).

As trivial examples, each rights-assignment rule satisfying self-ownership yields a market-

based allocation rule, when combined with the no-trade exchange rule. Focal market-based

allocation rules arise when combining a rights-assignment rule satisfying self-ownership (such

as the two presented above) with Walrasian exchange.

E -
Rights-Assignment Rule: '(N,⌦, c) = !

Self-ownership; Solidarity

S = F � '

⌘
⌘

⌘
⌘

⌘
⌘

⌘
⌘

⌘
⌘

⌘
⌘

⌘
⌘

⌘⌘+

Exchange Rule: F (N,!, R)

Voluntary Exchange

Ē
Q

Q
Q
Q

Q
Q
Q

Q
Q
Q

Q
Q
Q

Q
QQs

Allocation Rule: S(N,⌦, c, R)
No-Envy Axioms

Z

Figure 2. Market-based allocation rules. A market-based allocation rule S is the result of applying a

rights-assignment rule ', satisfying the self-ownership thesis (and, possibly, solidarity), and an exchange rule F

satisfying voluntary exchange. For each e ⌘ (N,⌦, c, R) 2 E , S(e) = F (N,'(N,⌦, c), R).
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3 The results

Our first results illustrate how, in our stylized context, Nozick’s theory can indeed be seen as

a way of obtaining end-state fairness. More precisely, we show that there exist market-based

allocation rules that yield no-envy in each of the two forms described above.

We consider first end-state fairness formalized by no-envy, whose scope needs to be re-

stricted. This is because claims-boundedness (a consequence of the combination of self-ownership

and solidarity) might make that an unequal choice of endowments, followed by any voluntary

exchange from these endowments, will render an agent with small claims envy agents with large

claims. To rule out such cases, we restrict our attention to the domain of economies where equal

division satisfies claims boundedness.

The first result says that there exist market-based allocation rules that yield e�cient and

envy-free allocations at any economy within such a domain. In other words, self-ownership

followed by voluntary exchange (formalizing Nozick’s principles of just acquisition and just

transfer) guarantee end-estate fairness of no-envy.

Proposition 1. There exist market-based allocation rules satisfying e�ciency and no-envy (on

the domain of economies where equal division satisfies claims boundedness).

Proof. We consider the (market-based) allocation rule arising when combining the constrained

equal awards rights-assignment rule with Walrasian exchange. Such a rule guarantees equal

allocation of initial rights for the domain of economies where equal division satisfies claims

boundedness. The Walrasian exchange from equal endowments guarantees no-envy and e�-

ciency. The former follows because individual budget sets are identical across agents and, thus,

each one selects her optimal bundle within such a budget set. The latter follows by the First

Fundamental Theorem of Welfare Economics.

We now switch to net-no-envy, whose scope needs to be limited too. Note that, when agents

have su�ciently disparate claims (e.g., an agent with claims larger than the social endowment,

and the others with negligible claims), it may not be possible to satisfy net-no-envy. Thus,

we restrict our attention to economies without disparate claims. More precisely, we focus on

the domain of economies for which equal net division is feasible. The next result states that

there exist market-based allocation rules that yield e�cient and net-envy-free allocations at

any economy within such a domain. Again, self-ownership, followed by voluntary exchange can

also guarantee end-state fairness, formalized as net-no-envy.
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Proposition 2. There exist market-based allocation rules satisfying e�ciency and net-no-envy

(on the domain of economies where equal net division is feasible).

Proof. We consider the (market-based) allocation rule arising when combining the constrained

equal net-awards rights-assignment rule with Walrasian exchange. Such a rule guarantees equal

net awards among agents at the allocation of initial rights for the domain of economies where

equal net division is feasible. As the Walrasian budget sets provide equal opportunities of

trades across agents, when the endowment is chosen at the allocation with equal net awards,

they provide equal opportunities for final net awards across agents (note that the final net

award of each agent results from the sum of the equal net award at the endowment and her

Warasian trade). Therefore, all equilibrium allocations satisfy net-no-envy. Furthermore, Wal-

rasian exchange guarantees e�ciency of the final outcomes, by virtue of the First Fundamental

Theorem of Welfare Economics.

The previous results have illustrated how self-ownership, followed by voluntary exchange,

can be invoked to guarantee end-state fairness. In what follows, we focus on the opposite

implication, i.e., we search for rights-assignment rules that lead to market-based allocation rules

yielding (end-state) fair outcomes. For such an implication, the notion of solidarity introduced

above becomes relevant. More precisely, we show that the only way to derive end-state fairness,

under solidaristic market-based allocation rules (composing a rights-assignment rule satisfying

self-ownership and solidarity, and a voluntary exchange rule), is to use an egalitarian rights-

assignment rule.

As we show in the next result, if one focuses on solidaristic market-based allocation rules

satisfying no-envy (on the domain of economies where equal division satisfies claims bounded-

ness) only one rights-assignment rule survives.

Theorem 1. A market-based allocation rule, generated by a solidaristic rights-assignment rule,

satisfies no-envy (on the domain of economies where equal division satisfies claims boundedness)

only if the rights-assignment rule is the constrained equal awards rule.

The technical proof of this result can be found in the appendix. The intuition goes as

follows. Suppose first, by contradiction, that the rights-assignment rule does not yield the

same outcome as the constrained equal awards rule (such as allocation A in Figure 3). If so,

an economy can be constructed for which any market-based allocation rule, arising from such a

rights-assignment rule, produces envy. An illustration for the case of two agents and two goods,
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assuming the Walrasian exchange for the exchange procedure, is provided in Figure 3.19 Thus,

if we want to obtain no-envy of the market-based allocation rule, we are forced to allocate initial

rights as equally as possible bounded by claims for all the corresponding rights problems.

s

s
s

s

s

s

s s

A

⇡(!A)

!ed

WA
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Figure 3. No-Envy in the Edgeworth box. Let !

ed ⌘ '

CEA (N,⌦, c) be equal division and W

ed ⌘

F

W

�
N,!

ed

, R

�
the Walrasian equilibrium from equal division. Let ⇡

�
W

ed

�
be the allocation obtained by

swapping the two bundles atW ed. Note that for each i, W ed

R

i

⇡

�
W

ed

�
. Thus, W ed satisfies no-envy. Consider

any rights-assignment rule ' (·) that yields A ⌘ ' (N, c,⌦) 6= !

ed. Let W

A ⌘ F

W (N,A,R). Let ⇡

�
W

A

�
be

the allocation obtained by swapping the two bundles at W

A. Under the above preferences, ⇡
�
W

A

�
P1 W

A,

that is, agent 1 prefers 2’s bundle to his own. Thus, WA violates no-envy.

A parallel result is obtained for net-no-envy and the constrained equal net-awards rule.

Theorem 2. A market-based allocation rule, generated by a solidaristic rights-assignment rule,

satisfies net-no-envy (on the domain of economies where equal net division is feasible) only if

the rights-assignment rule is the constrained equal net-awards rule.

The proof of this result can also be found in the appendix. Its intuition goes parallel

to that of the previous one. More precisely, suppose first, by contradiction, that the rights-

assignment rule does not yield the same outcome as the constrained equal net-awards rule. If

19For such a case, illustrations can be made at the so-called Edgeworth box, an intuitive tool to describe

bilateral exchange processes (e.g., Mas-Colell et al., 1995).
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so, an economy can be constructed for which any market-based allocation rule, arising from

such a rights-assignment rule, produces net-envy. Thus, if we want to obtain net-no-envy of

the market-based allocation rule, we are forced to allocate net-awards as equally as possible

bounded by claims for all the corresponding rights problems. An illustration for the case of two

agents and two goods, assuming the Walrasian exchange for the exchange procedure, appears

in Figure 4.
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Figure 4. Net-No-Envy in the Edgeworth box. Let !en ⌘ '

CEN (N,⌦, c) be the equal net division and

!

en ⌘ F

W (N, c

en

, R) the Walrasian equilibrium from the equal net division. Let ⇡ (!en) be the allocation

obtained by swapping the two bundles at !

en. Note that, for each i, !en

R

i

⇡ (!en). Thus, !en satisfies net-

no-envy. Consider any rights-assignment rule ' (·) that yields A ⌘ ' (N, c,⌦) 6= !

en. Let !A ⌘ F

W (N,A,R).

Let ⇡

�
!

A

�
be the allocation obtained by swapping the two net awards in !

A. Under the above preferences,

⇡

�
!

A

�
P1 !

A, that is, agent 1 prefers agent 2’s net awards instead of his own. Thus, !A violates net-no-envy.

4 Discussion

We have revisited Nozick’s entitlement theory of justice in a stylized context for the allocation

of goods in joint ventures. We have considered a general model of exchange economies that

accommodate the three levels in which fairness can be scrutinized in this context; namely,

fairness in the initial allocation of rights on the social endowment, fairness in the transaction of

allocated rights, and fairness of the end-state allocation. We have focused, in such a context,
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on what we dubbed market-based allocation rules, which arise after the combination of rights-

assignment rules satisfying self-ownership and voluntary exchange rules.

Self-ownership (and, therefore, Nozick’s extension of Locke’s theory) is too weak to provide

a useful guideline for the resolution of problems such as the ones modeled in this paper. In

particular, it gives a green light to any resolution satisfying some minimal respect of the claims.

For the case of joint ventures exemplified in our stylized model, Nozick’s principle of just

acquisition is, consequently, not only modeled by self-ownership, but by the rights-assignment

rules we consider. We also keep Nozick’s principle of just transfers (voluntary exchange) and

show that end-state fairness (formalized by the no-envy conditions we consider) is obtained

as a result of combining both principles. More importantly, we show that the only way to

derive end-state fairness when composing a solidaristic rights-assignment rule, and a voluntary

exchange rule, is to consider an egalitarian rights-assignment rule.

Our approach also resemblesDworkin’s insurance mechanism (e.g., Dworkin, 1981). Dworkin

wished to hold persons responsible for their risk preferences, but not for each person’s talent.

Thus, behind the veil of ignorance he constructed, the soul representing a person knows its

person’s utility function, but does not know its person’s talent. Behind the veil, the souls

purchased insurance against bad luck in the birth lottery. Equality enters importantly into

Dworkin’s view, as he assumes that the souls have equal purchasing power for insurance. This

means that the only way to purchase insurance for indemnity in one state is to sell insurance

for the other’s indemnity in the other state.20 In our setting, if claims are interpreted as in-

dividuals’ purchasing power, then equality is not imposed from the outset. Nevertheless, we

obtain equality (in one of the two focal forms considered) of the end-state allocations via the

market-based allocation rules. Likewise, we derive equality of the initial allocation of rights as

a necessary condition for the end-state fairness of market-based allocation rules.

Finally, we elaborate further on the connection between our work and the theory of exploita-

tion. Most philosophers agree that exploitation should be understood as taking advantage of

another person in a way that is unfair or degrading. Classical liberals distinguish between

exploitation that is mutually advantageous, and exploitation that is harmful (e.g., Wertheimer

and Zwolinski, 2015). Mutually advantageous exploitation occurs when parties come away from

a transaction better o↵ than they would have been without it, but one party considers the dis-

tribution of the benefits as unfair. In the parlance of our paper, and if we define unfairness

20The reader is referred to Roemer (1996, chapter 7) for a more leisurely discussion of Dworkin’s insurance

rule).
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(of the end-state allocations) as envy (in one of the two forms defined in our model), this is

equivalent to saying that, once the allocation of initial property rights has been addressed, vol-

untary exchange might not preclude the existence of envy (in the end-state allocations). The

theoretical implications of our formal approach convey that a just allocation in Nozick’s terms is

an allocation without mutually advantageous exploitation. In other words, we have shown that

there exist market-based allocation rules that yield allocations without mutually advantageous

exploitation. Furthermore, we have also shown that, under a solidaristic assignment of initial

rights, just allocations in Nozick’s terms exist only if such an assignment is egalitarian.

5 Appendix

We collect in this appendix most of the technical parts of our analysis, as well as some auxiliary

results.

First, we show some implications of our axioms for our analysis.

The solidarity axiom implies the axiom of resource monotonicity, which says that when

there is more to be divided, other things being equal, nobody should lose.21 Formally,

Resource Monotonicity. For each pair (N,⌦, c) and (N,⌦0, c) 2 C, such that ⌦ 5 ⌦0,

'(N,⌦, c) 5 '(N,⌦0, c).

Resource monotonicity captures the public ownership of the external world (social endow-

ment) in our model. When the public ownership is respected, it is required that no one’s

property rights should decrease when the external resource increases.

Resource monotonicity allows us to assign rights good by good. More precisely, for each

pair of rights problems with identical claims, if the endowment of one good is the same in both

problems, then the rights-assignment for such a good should be the same. Formally,

Decomposability. For each pair (N,⌦, c) and (N,⌦0, c) 2 C, and each l 2 {1, . . . , `} such

that ⌦l = ⌦0
l, ('il(N,⌦, c))i2N = ('il(N,⌦0, c))i2N .

We first show that the combination of self-ownership and resource monotonicity implies

claims boundedness: hence, in a deficit situation all agents are rationed, whereas in a surplus

situation no one is.

Lemma 1. Self-ownership and resource monotonicity together imply claims boundedness.

21This axiom was first formalized by Roemer (1986).
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Proof. Let ' be a rights-assignment rule satisfying self-ownership and resource monotonicity.

Let (N,⌦, c) 2 C. Let ⌦[0] ⌘
P

i2N ci. Consider good 1. Let ⌦[1] be such that ⌦[1]
1 ⌘ ⌦1 and,

for each l 6= 1, ⌦[1]
l ⌘ ⌦[0]

l .

Suppose
P

i2N ci1 � ⌦1. By self-ownership and feasibility, '
�
N,⌦[0], c

�
= c. Then, by

resource monotonicity, for each i 2 N , 'i1(N,⌦[1], c)  'i1(N,⌦[0], c) = ci1 and, by decompos-

ability, 'i1(N,⌦, c) = 'i1(N,⌦[1], c). Therefore,

'i1(N,⌦, c)  ci1.

The inequality is reversed when
P

i2N ci1  ⌦1.

The same argument applies for all other goods k = 2, . . . , `.

Solidarity also requires that the application of a rule to each subproblem derived by imag-

ining that some agents leave with their corresponding awards in the original problem, and

reassessing the situation from the viewpoint of the remaining agents, produces precisely the

allocation that the subgroup obtained in the original problem. This is normally known in the

literature as the axiom of consistency, which has played a crucial role in axiomatic work (e.g.,

Thomson, 2012). Formally,

Consistency. For each (N,⌦, c) 2 C, each M ⇢ N , each j 2 N\M , and each l 2 {1, . . . , `},

'jl(N\M,
X

k2N\M

'k(N,⌦, c), cN\M) = 'jl(N,⌦, c).

The last property we consider is the converse to the previous one. It allows us to deduce

the desirability of a proposed awards vector for a given problem from the desirability of its

restriction to each two-agent subgroup for the reduced problem obtained by imagining the

departure of the members of the complementary subgroup with their awards. The property

says that if an awards vector is such that for each problem and each proper two-agent subgroup,

the rule chooses the corresponding awards of the vector to this subgroup for the reduced problem

it faces, then the rule should choose the awards vector for the initial problem. Formally, for

each (N,⌦, c) 2 C and each rule ', let cv.cs(N,⌦, c;') ⌘ {! :
P

i2N !i = ⌦ and, for each M ⇢

N with |M | = 2,!M = '(cM ,
P

i2M !i)}.

Converse Consistency. For each (N,⌦, c) 2 C, there is ! such that {!} = cv.cs(N,⌦, c;')

and ! = '(N,⌦, c).
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For (unidimensional) rights problems with deficit, resource monotonicity and consistency

imply converse consistency. The same result holds in our model.22 Thus, a rule satisfying

solidarity also satisfies converse consistency. This is the case for the two rules introduced

above.

The previous implication has important consequences. As stated by the so-called Elevator

Lemma (e.g., Thomson, 2016a), if a conversely consistent rule coincides with a consistent rule in

the two-agent case, coincidence holds in general. Thus, it su�ces to characterize the constrained

equal awards rule and the constrained equal net-awards rule in the two-agent case, to derive

characterizations in the general case appealing to consistency.

Finally, we introduce additional notation. Let E0 denote the domain of economies in which

equal division satisfies claims boundedness. Formally, E0 ⌘ {(N,⌦, c, R) 2 E : for each l =

1, . . . , `, either, for each i 2 N , ⌦l/n  cil, or for each i 2 N , ⌦l/n � cil}. Let C0 be the

corresponding domain of claims problems, i.e., C0 ⌘ {(N,⌦, c) 2 C : for some preferences

profile R, (N,⌦, c, R) 2 E0}.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let ' be a rights-assignment rule satisfying self-ownership and solidarity,

F be an exchange rule satisfying voluntary exchange, and S ⌘ F � ' be the corresponding

market-based allocation rule satisfying no-envy on E0. We will prove that ' = 'CEA on the

class of 2-person problems. Then, the coincidence extends to all other problems with more than

2 persons by the Elevator Lemma. In what follows, and without loss of generality, we fix the

set of two persons to be N ⌘ {1, 2}. We skip N from the notation.

For each l = 0, . . . , `, let C0(l) ⌘ {(⌦, c) 2 C : for each k � l + 1, either cik � ⌦k/2 for each

i = 1, 2, or cik  ⌦k/2 for each i = 1, 2.} Then, C0(0) ⌘ C0(N) and C0(`) = C(N). We show

that ' coincides with 'CEA on C0(k) for each k = 0, 1, . . . , `, using mathematical induction.

We show first that ' = 'CEA on C0(0). Consider any problem (⌦, c) 2 C0(0). Suppose, by

contradiction, that '(⌦, c) 6= (⌦/2,⌦/2). Then, as illustrated in Figure 3, there is an economy

with a preferences profile R and rights problem (⌦, c) such that ! is the only e�cient allocation

satisfying voluntary exchange from endowment ! and one of the two agents envies the other at

!. Then, the market-based allocation rule necessarily chooses ! and no-envy is violated.

22This result for (unidimensional) rights problems with deficit, also known as bankruptcy problems, is due to

Chun (1999). The proof presented by Thomson (2016b) is easily extended in our multi-dimensional setting due

to decomposability.[see the supporting note for referees]
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Suppose, on our induction basis, that ' coincides with 'CEA on C0(k) for each k  l � 1. We

now prove that ' coincides with 'CEA on C0(l). Let (⌦, c) 2 C0(l)\C0(l � 1).

Case 1 : c1l+ c2l � ⌦l. Without loss of generality, suppose c1l < c2l. Then c1l < ⌦l/2  c2l and,

for each k � l + 1, either for each i = 1, 2, cik � ⌦k/2 or for each i = 1, 2, cik  ⌦k/2. Thus,

'CEA
l (N,⌦, c) = (c1l,⌦l � c1l). Let ! ⌘ '(N,⌦, c). Let ⌦0 be such that ⌦0

l ⌘ 2c1l and for each

k 6= l, ⌦0
k ⌘ ⌦k. Then, (⌦0, c) 2 C0(l � 1) and, by the induction hypothesis,

'(⌦0, c) = 'CEA(⌦0, c). (1)

In particular, 'l(⌦0, c) = (⌦0
l/2,⌦

0
l/2) = (c1l, c1l). As ⌦0 5 ⌦, then, by resource monotonicity,

! = '(⌦, c) = '(⌦0, c). By boundedness, !1l = c1l. Then, !2l = ⌦l � c1l. Therefore, 'l(⌦, c) =

'CEA
l (⌦, c). As ⌦0

k = ⌦k for each k 6= l, then by decomposability of both ' and 'CEA, 'k(⌦0, c) =

'k(⌦, c) and 'CEA
k (⌦0, c) = 'CEA

k (⌦, c). Hence, using (2), for each k 6= l, we conclude the proof.

Case 2 : c1l+ c2l < ⌦l. Without loss of generality, suppose c1l < c2l. Then c1l < ⌦l/2  c2l and,

for each k � l + 1, either for each i = 1, 2, cik � ⌦k/2 or for each i = 1, 2, cik  ⌦k/2. Thus,

'CEA
l (⌦, c) = (⌦l � c2l, c2l). Let ! ⌘ '(⌦, c). Let ⌦0 be such that ⌦0

l ⌘ 2c2l and, for each k 6= l,

⌦0
k ⌘ ⌦k. Then (⌦0, c) 2 C0(l � 1) and, by the induction hypothesis,

'(⌦0, c) = 'CEA(⌦0, c). (2)

In particular, 'l(⌦0, c) = (⌦0
l/2,⌦

0
l/2) = (c2l, c2l). As ⌦0 = ⌦, then, by resource monotonicity,

! = '(⌦, c) 5 '(⌦0, c). By claims boundedness, !2l = c2l. Then, !1l = ⌦l � c2l. Therefore,

'l(N,⌦, c) = 'CEA
l (⌦, c). As ⌦0

k = ⌦k for each k 6= l, then, by decomposability of both '

and 'CEA, 'k(⌦0, c) = 'k(⌦, c) and 'CEA
k (⌦0, c) = 'CEA

k (⌦, c). Hence, using (2), 'k(⌦, c) =

'CEA
k (⌦, c), for each k 6= l.

For the proof of Theorem 2, we need additional notation. Let E⇤ denote the domain of

economies in which equal net division is feasible. Formally, E⇤ ⌘ {e = (N,⌦, c, R) 2 E :

for each i 2 N , 0 5 ci � (
P

j2N cj � ⌦)/n}. Let C⇤ be the corresponding domain of claims

problems.

Proof of Theorem 2. Let ' be a rights-assignment mechanism satisfying self-ownership and

resource monotonicity, F be an exchange rule satisfying voluntary exchange, and S ⌘ F � '

be the corresponding market-based allocation rule satisfying net-no-envy on E⇤. We will prove

that ' = 'CEN on the class of 2-person problems. Then the coincidence extends to all other
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problems with more than 2 persons by the Elevator Lemma. In what follows, and without loss

of generality, we set N ⌘ {1, 2} and skip N from the notation.

For each l = 0, . . . , `, let C⇤(l) ⌘ {(⌦, c) 2 C : for each k � l + 1, and for each i =

1, 2, (c1k + c2k � ⌦k)/2  cik}. Then, C⇤(0) ⌘ C⇤ (the domain of claims problems for which

equal net division is feasible) and C⇤(`) = C. We show that ' coincides with 'CEN on C(k) for

each k = 0, 1, . . . , `, using induction.

We first show that ' = 'CEN on C⇤(0). Let (⌦, c) 2 C⇤(0). Suppose, by contradiction, that

'(⌦, c) = ! 6= 'CEN(⌦, c). Then, as illustrated in Figure 4, there is an economy for which ! is

the only e�cient allocation satisfying voluntary exchange (from endowment !) and therein one

of the two agents envies the net consumption of the other. Then the market-based allocation

rule necessarily chooses ! and net-no-envy is violated.

Let l 2 {1, . . . , `}. Suppose, by induction, that ' = 'CEN on C⇤(k) for each k  l � 1. We

now prove that ' = 'CEN on C⇤(l). Let (⌦, c) 2 C⇤(l)\C⇤(l � 1). Without loss of generality,

suppose c1l  c2l. Then, since (⌦, c) /2 C⇤(l � 1), (c1l + c2l � ⌦l)/2 > c1l (i.e., c2l � c1l > ⌦l).

Hence, 'CEN
l (⌦, c)= (0,⌦l) and 'CEN

l (⌦, c)  (0, c2l � c1l). Let ⌦0
l ⌘ c2l � c1l and, for each

k 6= l, ⌦0
k = ⌦k. Then (⌦0, c) 2 C⇤(l � 1) and, by the induction hypothesis,

'(⌦0, c) = 'CEN(⌦0, c). (3)

Note that 'CEN
l (⌦0, c) = (0, c2l � c1l). Since ⌦ 5 ⌦0, by resource monotonicity and non-

negativity, '1l(⌦, c) = 0, which implies '2l(⌦, c) = ⌦l. Therefore, 'l(⌦, c) = 'CEN
l (⌦, c). As

⌦0
k = ⌦k for each k 6= l, then applying resource monotonicity to both ' and 'CEN , we have

'k(⌦, c) = 'k(⌦0, c) and 'CEN
k (⌦0, c) = 'CEN

k (⌦, c). Hence, using (3), 'k(⌦, c) = 'CEN
k (⌦, c).
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Supporting Note for Referees

The proof of the claim that resource monotonicity and consistency

together imply converse consistency.

Let ' be a resource monotonic and consistent rule. Let (N,⌦, c) 2 C and ! = '(N,⌦, c). By

consistency, ! 2 cv.cs(N,⌦, c;'). Suppose, by contradiction, that there is y 2 cv.cs(N,⌦, c;')\

{!}. Then, as y 6= !, there is M ✓ N such that
P

i2M yi 6=
P

i2M !i. Without loss of

generality, suppose that
P

i2M yi >
P

i2M !i. By resource monotonicity, yi � !i, for each

i 2 M . As
P

i2M yi >
P

i2M !i, it follows that there exists i0 2 N such that yi0 > xi0 . Now, for

each j 2 N \ {i0}, let Nj ⌘ {i0, j}. By resource monotonicity applied to (Nj, yj + yi0 , cNj) and

(Nj,!j+!i0 , cNj), we obtain that yj � !j (for each j 2 N\{i0}). Thus,
P

i2N yi >
P

i2N !i = ⌦,

a contradiction.

The Elevator Lemma.

If a rule is consistent, another conversely consistent, and they coincide in the two-agent case,

then they coincide for any number of agents. Formally, let ' be a consistent rule and � be

a conversely consistent rule. If, for each (M,⌦, c) 2 C, such that |M | = 2, '(M,⌦, c) =

�(M,⌦, c), then '(N,⌦, c) = �(N,⌦, c), for each (N,⌦, c) 2 C.
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