
Philosophy of Science, 72 (December 2005) pp. 964–976. 0031-8248/2005/7205-0026$10.00
Copyright 2005 by the Philosophy of Science Association. All rights reserved.

964

Causal Instrumental Variables and
Interventions

Julian Reiss†‡

The aim of this paper is to introduce the instrumental variables technique to the
discussion about causal inference in econometrics. I show that it may lead to causally
incorrect conclusions unless some fairly strong causal background assumptions are
made, assumptions which are usually left implicit by econometricians. These assump-
tions are very similar to, albeit not identical with, James Woodward’s definition of an
‘intervention’. I discuss similarities and differences of the two points of view and argue
that—understood as a practical method of causal inference—the set presented here is
superior.

1. Introduction. The interest in the topic of causality has been revived in
recent years, not only in philosophy but also in empirical disciplines such
as epidemiology, empirical sociology and econometrics. Especially econ-
ometrics has seen a number of developments from within its own field
(compare, for instance, the contributions made by Hendry, LeRoy, Heck-
man, Hoover) and applications of methods developed in other fields (e.g.,
the Bayes’-nets methods). One purpose of this paper is to introduce yet
another alternative to the discussion: the instrumental variables technique.
A curious fact about that technique is that although its use is fairly
widespread as a method of causal inference in applied econometrics, its
official methodology (as introduced in econometrics textbooks) is insuf-
ficient to guarantee the validity of causal claims that are established on
the basis of instrumental variables. On the other hand, in practical ap-
plications, econometricians often (implicitly or explicitly) make at least
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some of the assumptions that are needed to ensure the validity of the
claims.

The negative claim I want to make in this paper is that the instrumental
variables technique can lead to false causal conclusions—if the official
methodology is applied blindly. This is easily demonstrated by means of
a counterexample which satisfies the assumptions required according to
that methodology. The positive claim is that under a suitable set of as-
sumptions the instrumental variables technique is a defensible method of
causal inference from observational data. The set of assumptions that I
use contains a number of very general principles as well as specific con-
jectures about the system under investigation. The specific conjectures
very similar to (but not identical with) James Woodward’s definition of
an intervention. Thus, the positive claim of the paper can be interpreted
as showing that if an instrument satisfies a set of assumptions similar to
the definition of a Woodward-intervention, causal inference on its basis
is valid. And this is true even where the intervention is not an intervention
in the often used sense of the word of “intentional interference by a human
agent”. The causal structure of the system has to be of a particular kind,
but it does not matter whether it is human agents in general, or the
experimenter in particular, who intervene.

That’s the good news. The bad news is that the assumptions made are
very strong indeed. Except a few suggestions that there is good reason to
believe that they are at least sometimes satisfied I do not attempt to defend
any of them here. Nor do I defend the choice of these particular as-
sumptions except by showing that they do the intended job. Specifically,
I do not claim that my preferred set is the only set sufficient for the
rendering the instrumental variable technique valid. But I do want to
make clear that some set or other is required; and that among the as-
sumptions there will be at least some that are causal in nature and at
least one that carries us from probabilities to causes.

2. Can We Get Causes from Statistics? “Correlation is not causation” is
a well-rehearsed slogan. The purpose of this section is to argue that prior
knowledge about causal relations is not only necessary to identify causal
parameters from statistics but that it is also often easier to have than
knowledge about correlations.

The reason to re-rehearse the slogan is that econometrics textbooks
tend to avoid explicitly causal language in their descriptions of estimation
procedures. For example, in simultaneous equations, variables divide into
endogenous and exogenous variables, and that means that they are either
determined within the model or outside it. Importantly, without qualifi-
cation, the “determined” can be read both functionally or causally. Or
sometimes a model is called “structural” if its form is given by the un-
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derlying theory. But no word is lost on whether the theory specifies func-
tional or causal relations. To give a third example, the error term in a
regression model is often said to represent “stochastic disturbances” or
“shocks” as well as omitted factors, measurement error and other “influ-
ences”. Again, it is unclear whether these terms carry a causal meaning
or not.

The neglect of causality in econometrics has its roots deep in the origins
of modern statistics itself. Thus Karl Pearson, famous for being one of
the founders of modern statistics, is at least equally famous for his attacks
against causal language and his substitution of the Humean concepts of
association and correlation for causal concepts (see, for instance, Pearson
1911). For him, causal language was the language of the past; the language
of the new era is that of association and correlation.

This sentiment carried over to early econometrics. For example, in one
of his volumes on business cycles, Wesley Mitchell muses:

In the progress of knowledge, causal explanations are commonly an
early stage in the advance toward analytic description. The more
complete the theory of any subject becomes in content, the more
mathematical in form, the less it invokes causation. (Mitchell 1927,
55, quoted from Hammond 1996, 10)

Surveying more recent contributions (a growing number of exceptions
notwithstanding), one still gets the impression that, in order to be sci-
entific, causal language has to be avoided, while the Humean language
of correlation and association counts as scientific.1 In particular, many
textbooks contain ‘recipes’ for econometric inference that give the im-
pression that econometrics can proceed without causal background
assumptions.

But strangely, a large part of theoretical economics asks questions that
are causal in nature. Many historical controversies, for example, can be
understood as controversies about the causal role certain aggregates play
in the economy. Famous examples include the causal role of money in
determining other aggregates such as income or prices or the interest rate
or the causal role of aggregate demand. Methods tailored to measure the
association between variables only seem ill-suited to bear any light on
such controversies.

Suppose, then, we use the standard techniques of econometrics to an-
swer particularly causal questions. Say we are interested in the question

1. See also Pearl 1997, who makes a similar remark about statistics in general.
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of whether money (X) causes income (Y). We can expect the estimator
of the causal effect of X on Y of the standard regression model2b̂

Y p a ! bX ! ! (1)

to be biased for a number of different reasons. First, it is possible that
X is measured with error, and that the measurement error is correlated
with Y’s error term !. That X is measured with error is more than likely;
it has been a matter of dispute what the ‘right’ definition of money should
be for about as long as economists thought about the quantity theory.
The construction of the money variable has also been one of the major
criticisms of Milton Friedman’s epic studies of the role of money in the
economy. Second, the relationship can be confounded by an unobserved
variable. (1) is simplified in so far as the vector of known confounders
(e.g., a time trend) has been omitted as a regressor on the right hand side.
However, not all potential confounders can be measured, and thus there
might always be residual correlation between X and !. Third, there may
be feedback effects from income to money. This is also a point that came
up in the debate about Friedman’s analysis of the role of money. Critics
tended to understand the monetarist position to assert that money is the
only cause of economic activity, but Friedman emphasized time and again
that he thinks of money merely as one cause (the principal cause, however),
and that it is well possible, especially in the short run, that causality runs
from income to money.

For any of these three reasons, X might be correlated with !, which
biases the estimator for b. A standard technique to solve that problem is
so-called instrumental variables estimation. According to many econo-
metrics textbooks (see e.g., Greene 2000), a variable Z is an instrument
with respect to (X, Y) if and only if the following conditions are satisfied:

IV-1. Z is correlated with X.

IV-2. Z is uncorrelated with !, the error term for Y.

If such a variable can be found, an estimator of the parameter of interest
can be constructed as follows:

b̂ p corr(Z, Y )/corr(Z, X ). (2)

If these are the only assumptions made about the system of interest,
the definition of an instrumental variable is too weak for a causal inter-
pretation of the estimand. To see that most clearly, let us proceed in three

2. The hat signifies that this is the estimator of the true parameter rather than the true
parameter itself.
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stages with increasingly stronger assumptions made about the relations
between the variables.

There are two steps involved in the inference from correlations to causes.
The first is the inference from sample correlations to the probabilities of
the underlying populations. The second is from probabilities to causes.
In all that follows, I take the first step to be unproblematic. That is, I
take all measured correlations to be representing the true population prob-
abilities. Although the two steps may be interrelated in practice and it is
disputable whether the step from correlations to probabilities must be
taken prior to inferring from probabilities to causes, analytically, the two
steps can be separated, and discussion only the second step makes for a
much clearer argument.

Now, without any further assumptions, the above pattern of correla-
tions is compatible with any causal structure imaginable. The least prin-
ciple one needs for causal inference from correlations is an inductive
principle which connects probabilities with causes. This is implicit in all
econometric work but it is hardly ever addressed explicitly.3 The reason
is simple: If we allow for ‘brute correlations’, i.e., correlations that cannot
be accounted for in terms of causal relations, then any attempt to infer
causal relations from statistics—no matter how strong the additional as-
sumptions about the system of interest—is futile. Any residual correlation
could then always be ‘brute’. An almost identical remark make Daniel
Hausman and James Woodward:

So when Xj [the putative effect variable] “wiggles” in response to an
intervention with respect to Xi [the putative cause variable] (or in
general without any change in its parents) one has a covariation
between Xi and Xj that cannot be explained by Xj causing Xi or by
a common cause of Xi and Xj [this follows from their definition of
an intervention]. If there are no restrictions on the ways that a cor-
relation between Xi and Xj might arise, one could go no further. But
if one takes CM1 [their version of the principle that connects causality
and correlation] for granted, then one can conclude that Xi causes
Xj (Hausman and Woodward 2004, 151).

The particular version of the Reichenbach principle I am going to
assume is the following:

RP. Any two variables A and B are correlated if and only if either
(a) A causes B, (b) B causes A, (c) a common cause C causes both
A and B, or (d) any combination of (a)–(c).

3. Obvious exceptions include Pearl’s 2000 discussion of econometrics.
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Let us call two variables that are related by any of the causal structures
(a)–(d) causally connected (and causally unconnected in case they fall under
none of the structures). I do not want to argue for the truth or plausibility
of the particular version of the principle here. But let me stress again that
we need some principle of the kind, and since investigations in economics
typically face causally complex systems, we cannot, for example, exclude
a priori the possibility of simultaneous causation or any other combi-
nation of the simpler structures (a)–(c).

The second general assumption we must make is the transitivity of
causal relations. Singular causal relations are not always transitive (cf.
the examples in McDermott 1995) but at the generic level, which I am
talking about here, transitivity seems a safe assumption. Thus:

T. For any three variables A, B, and C, if A causes B and B causes
C, then A causes C.

I will restrict the analysis to linear equations of the general form
. For these, I define the concept of. . .X p a X ! a X ! ! a X ! !j j1 j1 j2 j2 jn jn j

“functional correctness of a structural equation” as follows:

FC. A structural equation is functionallyX p f(X , X , . . . , X , ! )j j1 j2 jn j

correct if and only if it represents the true functional (but not nec-
essarily causal) relations among its variables.

On the basis of these, let us examine what further assumptions we must
make about the system of interest in order for the instrumental variables
technique to yield causally correct conclusions. I will proceed in three
stages, each with different causal assumptions added to the general
assumptions.

Stage 1: No assumptions added.

If no causal assumptions are added to RP, T, and FC, one can easily
show that the instrumental variables technique can yield causally incorrect
conclusions. The system consists of two functionally correct equations:

Y p aX ! !, (3)

X p bZ ! !. (4)

According to the instrumental variables technique under these assump-
tions, the claim is that if Y is correlated with Z then X causes Y. However,
it is possible that the correlation between X and Y arises from other causal
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Figure 1. A counterexample to IV under RP, T, and FC.

relations. Consider the structure in Figure 1.4 Nothing in the assumptions
prevents this situation. In addition to (3) and (4), we now have two further
functionally correct equations:

Z p gC ! m (5)

and

Y p dC ! n. (6)

If (which is implied by RP), then Z and X are correlated and thusb 1 0
IV-1 is satisfied. Suppose further that and (which, too, isg 1 0 d 1 0
implied by RP), which implies that Z and Y are also correlated. This
means that the test condition is fulfilled. Now, depending on the various

4. I could show the same result with an even simpler structure in which the instrument
is a common cause of X and Y. But since in this case, it is so obvious that the correlation
between Z and Y is not due to a causal influence of X to Y, I prefer to illustrate the
claim with this slightly more complicated structure.
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parameters, there are cases in which IV-2 is satisfied: Z and ! may or may
not be correlated as can be seen from the following derivation:

Z p (g/d)Y " gn/d ! m

[substitute C from (6) into (5)]

p (gab/d)Z ! (g/d)(1 ! a)! " gn/d ! m

[substitute for Y from (3) and (4)]

p z(1 ! a)! " zn ! (zd/g)m

[define z p 1/(d/g " ab) and rearrange].

Therefore,

2E(Z!) p z(1 ! a)E(! ) " zE(!n) ! (zd/g)E(!m) (7)

(multiply by ! and take expectations) which may or may not be zero.
This means that there are parameterizations under which IV-1, IV-2, and
the other assumptions are satisfied, but X does not cause Y.

It seems unlikely that an exact cancellation such as this (which makes
(7) equal to zero) should occur, but it is not impossible. One way to ensure
that exact cancellations do not obtain that has been offered in the liter-
ature is to assume that correlations are stable under parameter changes
(Pearl 2000, 48). In this example, we see that the lack of correlation
between Z and ! obtains only under a very specific parameterization.

One assumption that would make the procedure stronger is that the
error terms in an equation represent the net effect of all other causes. The
above counterexample could not obtain because there could not be a cause
of Y, C, which is not represented by !. That the technique yields causally
correct conclusions in general I show in stage 2.

Stage 2: ! represents the net effect of all other causes on Y (except
X and any cause that influences Y through X or lies on the causal
route from X to Y).

If Z and Y are correlated, RP tells us that they must be causally connected.
Since there is a third variable, X, I will first show that Z and Y cannot
be causally connected on a route that excludes X.

Can Z and Y be causally connected on a route that excludes X? Under
the given assumptions, Z cannot cause Y directly or via a route that
excludes X because its influence would be represented by !, which we
have excluded. Y cannot cause Z unmediated by X either, since by tran-
sitivity ! would cause Z and by RP they would be correlated. Nor can
there be a common cause (that causes Z and Y on a route that excludes
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Figure 2. Two valid instruments to identify !. (a) Z causes Y via X. (b) A common
cause causes Y via X.

X) because its influence would be represented by !. Hence, the causal
connection between Z and Y must run through X.

Hence there remain three possibilities: Y causes Z through X, X is a
common cause of Y (or a common cause causes Z and Y through X) and
Z and Z causes Y through X. Y cannot cause Z through X because, as
before, that would imply that ! is correlated with Z. A common cause
now may either be between X and Y or between X and Z. If it is between
X and Y (which means that its influence is represented by !), then X must
cause Z and thus ! causes Z by transitivity and would be correlated with
it. However, there may be a common cause between Z and X. In this case
Z and Y would be correlated if only if X causes Y, and thus Z would be
a valid instrument.

The last remaining possibility is that Z causes Y via X. Again, in this
case Z and Y would be correlated if and only if X causes Y, and Z is a
valid instrument. The two causal structures in which Z is a valid instru-
ment are depicted in Figure 2.

Thus, under the above assumptions, the instrumental variables tech-
nique makes causally correct inferences. The difficulty with the technique
is, however, that it is, taken literally, unoperationable. By its very nature,
the error term is ! unobservable. Hence it is not possible to test statistically
whether Z is or is not uncorrelated with the error term. This a problem
in particular because even slight correlations can severely bias the esti-
mator (see Pearl 1993, Bartels 1991).

The irony is that one motivation to use the instrumental variables tech-
nique is exactly that there are unobservable common causes between X
and Y. Now, if that is so, it seems hard to see how an instrument in the
sense of a variable that satisfies IV-1 and IV-2 should be found (if a
variable is not measurable, a fortiori its correlation with another variable
is not measurable).

Stage 3: Assuming Z is a “causal instrumental variable.”
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In practice, econometricians identify an instrument on the basis of causal
background knowledge, which often derives from an institutional and/or
historical analysis of the case at hand. Statisticians sometimes judge back-
ground assumption of this kind inadmissible, “subjective.”5 But apart from
the fact that the whole approach would be ineffective unless these back-
ground assumptions (in addition to the general assumptions) are made,
there are two further justifications for making the causal assumptions
explicit. First, the structure of assumptions shows that the system Z-X-
Y is equivalent to an experimental set-up in which Z is used as an “in-
tervention variable” to test the hypothesis whether X causes Y. Let us
call a variable Z a “causal instrumental variable” with respect to (X, Y)
if and only if RP, T and FC as well as the following assumptions are
satisfied:

CIV-1. Z causes X.

CIV-2. Z causes Y if at all only through X (i.e., not directly or via
some other variable).

CIV-3. Z and Y do not have causes in common (except those that
might cause Y via Z and X).

It can be proved relatively easily that these assumptions are sufficient
for the claim “If a variable Z is a causal instrument and it is correlated
with a putative effect Y, then the putative cause X actually causes Y”6

CIV-1–3 make the similarity with a controlled experiment very easily
visible. A randomised clinical trial (RTC) is a paradigmatic example for
a controlled experiment. In an ideal7 RTC, the random allocation is the
causal instrument Z. It (and only it) causes whether or not a subject will
receive treatment (X). It does not have a causal influence on recovery (Y)
which is not mediated by X. And the allocation itself is not caused by
anything that also causes recovery. It is in fact RP which ensures that
randomization is successful (if the random allocation ‘happened’ to pro-
duce biased groups, the resulting correlation of a cause of recovery with
the allocation would have to have a causal explanation, which would
violate either CIV-2 or CIV-3).

3. Interventions and Causal Instruments. Conditions CIV-1–3 are very
similar to James Woodward’s definition of an intervention. According to

5. Even Judea Pearl once seems to have thought this, see his 1993.

6. I have done so in Reiss, forthcoming, Chapter 7. Cf. also Cartwright, forthcoming,
who shows that the causal assumptions one must make in order to render Herbert
Simon’s method of causal inference valid are very similar.

7. I qualify RTC here in order to avoid discussing problems with compliance etc.



974 JULIAN REISS

Woodward, a variable I is an intervention variable for X with respect to
Y if and only if the following conditions are satisfied:

I1. I causes X.

I2. I acts as a switch for all the other variables that cause X. That
is, certain values of I are such that when I attains those values, X
ceases to depend on the values of the other variables that cause X
and instead depends only on the value taken by I.

I3. Any directed path from I to Y goes through X. That is, I does
not directly cause Y and is not a cause of any causes of Y that are
distinct from X except, of course, for those causes of Y, if any, that
are built into the I-X-Y connection itself; that is, except for (a) any
causes of Y that are effects of X (i.e., variables that are causally
between I and X and have no effect on Y independently of X.

I4. I is (statistically) independent of any variable Z that causes Y
and that is on a directed path that does not go through X (Woodward
2003, 98).

The differences concern I2, which does not exist in my characterization
of a causal instrumental variable, and I4, which differs from CIV-3 unless
further assumptions are fulfilled. In this section I want to discuss the
differences between a causal instrument and an intervention with respect
to their relevance for econometrics.

I2 demands that an intervention breaks all causal laws that have X as
an effect. This condition ensures that any variation in Y that follows the
intervention is due to a causal influence of X on Y rather than another
cause of X, which happened to ‘fire’ at the same time as the intervention
(e.g., a common cause of X and Y). For practical purposes, I2 appears
to be very strong indeed. It presupposes, for example, perfect compliance
in a RCT. If the concept of an intervention is not only supposed to
illuminate the concept of cause but also to help testing for causal relations,
the condition is too strong, surely for econometrics applications. Consider,
for example, Joshua Angrist’s study of the effect of veteran status on civil
earnings (Angrist 1990). In this study, Angrist exploits the lottery that
assigned a number between 1 and 365 to the birth dates of white men
born between 1950 and 1952 randomly. Men from each year were drafted
up to a threshold number, depending on the manpower needs of the
Defense Department. He uses the random number as an instrument. But
the random number raises the probability of being drafted by only 10 to
15 percent (see, for instance, his Table 2, 321). In no way does it stop
other causes of the conscription operating.

In the characterization of a causal instrument, the equivalent job is
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done by assuming the Reichenbach principle. If a causal instrument Z is
correlated with Y, there can be no other cause of X that is correlated with
Z. Suppose there is a common cause V of X and Y. If V was correlated
with Z, that would imply that either V causes Z, Z causes V or there is
a common cause which causes Z and V. If V causes Z and if there is a
common cause, CIV-3 is violated; if Z causes V, then CIV-2 is violated.

As mentioned in the previous section, I do not want to defend RP as
a universal principle. Clearly, there are many counterexamples. However,
let me say that controlling for violations of RP (and subsequently assum-
ing the principle in the controlled data) is more consistent with econo-
metric practice than Woodward’s assumption I2. Elliott Sober, famously,
pointed out that the correlation between British bread prices and Venetian
Sea levels constitutes a violation of RP (e.g., Sober 2001). As Kevin
Hoover (2003) remarked, however, econometricians would not regard the
correlation between the two variables as indicative of a causal connection.
Rather, they would regard these two time-series as non-stationary and
use co-integration as the appropriate measure of probabilistic dependence
in this case. Thus only if the two series were co-integrated, they would
start looking for a causal connection.

Similar things can be said about other types of ‘brute’ correlations. For
example, minimum wage legislation can be used as an instrument to test
the claim whether an increase in the minimum wage causes employment
to change (see, for instance, Card and Krueger 1995). In such studies the
effect of economic conditions on employment is carefully controlled for.
Importantly, this happens independently of whether or not the wage bill
is passed in response to favourable economic conditions or merely acci-
dentally at the same time. An accidental correlation between the two
events would constitute a violation of RP. But prudent econometricians
do not let that happen.

The other difference between an intervention and a causal instrument
concerns the difference between I4 and CIV-3. This difference, too, can
be explained by the assumption of RP in the definition of a causal in-
strument. In fact, under RP, the two conditions are equivalent. Without
RP, Woodward must assume that I is probabilistically independent of
other causes of C that are not on the route I-X-Y, because otherwise the
variation in Y that follows the intervention could be due to C rather than
the causal effect of X on Y. But again, I want to claim that CIV-3 in
conjunction with controlling for violations of RP is more in line with
econometric practice than is I4. In practice, the assumptions about the
absence of a probabilistic dependence are made on the basis of causal
considerations plus (at least, implicitly), RP. In few cases, thus, I4 can
be assumed without grounding it in CIV-3 and RP.

My conclusion is therefore that testing claims using causal instruments
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is a more practical affair than testing them using interventions. There
may be a good reason why this is so. Woodward explicitly states that he
regards the aim of his analysis to be an illumination of the concept of
cause and of the truth conditions for causal claims rather than a provision
of feasible tests (e.g., 95). I have nothing to say here about the metaphysics
of causation. But I do agree that as a test for causal claims, Woodward’s
conditions fare less well than the econometricians’ conditions for causal
instruments.
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