COMPUTABLE SHUFFLE SUMS OF ORDINALS

ASHER M. KACH

ABSTRACT. The main result is that for sets S C w + 1, the following are
equivalent:
(1) The shuffle sum o(S) is computable.
(2) The set S is a limit infimum set, i.e., there is a total computable function
f(z, s) such that the function F(z) = liminfs f(x,s) enumerates S.
(3) The set S is a limitwise monotonic set relative to 0, i.e., there is a total
0’-computable function g(z,t) satisfying g(z,t) < g(x,t + 1) such that
the function G(z) = lim¢ g(z, t) enumerates S.
Other results discuss the relationship between these sets and the Eg sets.

1. INTRODUCTION

A countable linear order is said to be computable if its universe can be identified
with w in such a way that the order is a computable relation on w x w. The class of
computable linear orders has been studied extensively; see [3] for an overview. In
this paper we discuss the class of linear orders that are the shuffle sums of ordinals.

Definition 1.1. The shuffle sum of a countable set S = {L;},.,, of linear orders,
denoted o(S), is the (unique) linear order obtained by partitioning the rationals
into dense sets {Q;},,, and replacing each rational of @; by the linear order L;.

Equivalently, the shuffle sum of S = {L;};c. is the linear order obtained by
interleaving copies of each £; densely and unboundedly amongst each other.

The class of shuffle sums of ordinals has yielded various results in computable
model theory. In [1], the authors use shuffle sums to produce, for each computable
ordinal o > 2, a linear order A, such that A, has ath jump degree but not Sth
jump degree for any § < «. In [4], shuffle sums of ordinals are used to exhibit a
linear order with both a computable model and a prime model, but no computable
prime model.

In this paper, we characterize which shuffle sums of the finite order types and
the order type w are computable. In order to do so, we need the following notions.

Definition 1.2. A set S C w+1 is a limit infimum set, written LIMINF set, if there
is a total computable function f : w X w — w such that the function F' : w — w
given by

F(z) =liminfy f(z,s)
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enumerates S under the convention that F(z) = w if liminf, f(x, s) = co. We say
that f is a LIMINF witnessing function for S.

Definition 1.3 ([5]). A set S C w+ 1 is a limitwise monotonic set relative to
a degree a, written LIMMON(a) set, if there is a total a-computable function ¢ :
w X w — w satisfying g(z,t) < g(x,t + 1) for all  and ¢ such that the function
G : w — w given by

G(z) = limg g(z,t)

enumerates S under the convention that G(x) = w if lim; g(x,t) = co. We say
that g is a LIMMON (0") witnessing function for S.

Although the notion of LIMINF sets is new, LIMMON (0’) sets have been previ-
ously studied. Limitwise monotonic functions were first introduced and relativized
in [5] and further studied in [2], [4] and [6]. Our definition departs slightly from
the literature where lim; g(z,t) is required to be finite. With the exception of the
conclusion, we will only have need to consider limitwise monotonic sets relative to
the degree a = 0'.

Blurring the distinction between an ordinal o and the linear order of order type «
(which we will do throughout the paper), we note that o(S) = o (S U {0}) for any
set S of linear orders. In order to avoid complications in several of the proofs, we
assume the following conventions.

Convention 1.4. Any set S of ordinals is assumed to not contain 0. Any set S of
linear orders is assumed to not contain the empty linear order.

Any LIMINF witnessing function f(x,s) is assumed to satisfy f(x,s) # 0 for
all x and s. Any LIMMON (0") witnessing function g(x,t) is assumed to satisfy
g(z,t) #0 for all z and t.

We briefly mention that the following facts justify that all the results in this
paper are correct as stated, without needing to invoke Convention 1.4.

Fact 1.5. If S is a 9 set, then S\{0} is a X9 set. If S is a X set, then SU {0} is
a XY set.

Fact 1.6. If S is a LIMINF set, then S\{0} is a LIMINF set. If S is a LIMMON (0")
set, then S\{0} is a LIMMON (0’) set.

If S is a LIMINF set, then S U {0} is a LIMINF set. If S is a LIMMOoN (0') set,
then S'U{0} is a LIMMON (0’) set.

Fact 1.7. If S is a LIMINF set not containing 0, then there is a LIMINF witnessing
function f for S satisfying f(z,s) # 0 for all z and s.

If S is a LIMMON (0') set not containing 0, then there is a LIMMON (0’) wit-
nessing function g for S satisfying g(z,t) # 0 for all = and ¢.

As the proofs of these facts are all straightforward, we leave them to the reader.
Having introduced all the relevant notions, we are now in a position to state the
main results of the paper. The first result is in computable model theory. In
particular, it provides a necessary and sufficient condition for the shuffle sum o(S)
to be computable in terms of the new computability-theoretic notion of LIMINF sets.

Theorem 1.8. For sets S C w+ 1, the shuffle sum o(S) is computable if and only
if S is a LIMINF set.
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The second result is in classical computability theory. It provides an alternate
characterization of the LIMINF sets, showing their equivalence with the pre-existing
notion of LIMMON (0’) sets.

Theorem 1.9. A set S Cw+1 is a LIMINF set if and only if S is a LIMMON (0’)
set.

In Section 2 we prove Theorem 1.8, and in Section 3 we prove Theorem 1.9. In
Section 4 we discuss the relationship between the LIMINF and LiMMON (0) sets
and the %9 sets, making use of previous work in [2] and [6]. We note that in [2] the
authors show that for sets S C w, if the shuffle sum () is computable, then S is
a LIMMON (0) set.

2. PROOF OF THEOREM 1.8

We prove Theorem 1.8 by proving the forwards and backwards directions sepa-
rately, making each a proposition.

Proposition 2.1. If S C w + 1 is a LIMINF set, then the shuffle sum o(S) is
computable.

Proof. Let f(z,s) be a LIMINF witnessing function for S. Fix a uniformly com-
putable partition of the rationals Q into dense sets {Q.},c,, With Qz = {qzy }yew-
We build a computable copy of o(S) in w many stages s using f(z, s).

The basic idea is to build the finite linear order f(z,s+ 1) at a rational g, , at
stage s + 1. If f(x,s + 1) is larger than f(z,s), then the appropriate number of
points are added to the linear order already built for ¢, ,. If f(x,s+ 1) is smaller
than f(x,s), then the extra points already built for ¢, , are no longer associated
with g, ,; instead they eventually become associated with some other rational at
a later stage. In order to track whether a point is currently associated with some
rational g ,, the states associated and unassociated will be used.

Construction: At each stage s we build a computable linear order L, such that
Ly C Ly for all s. With £ = {J, L,, we aim for £ = ¢(S5). At stage 0 we begin
with the empty linear order, i.e., Ly is the empty linear order. At stage s + 1 we
work on behalf of all rationals ¢, , with z,y < s. This work is done in s? substages,
with a substage devoted to each such rational ¢, (in lexicographic order). Fixing
a rational ¢, with ,y < s, we compare the value of f(z,s+ 1) and f(z,s); our
action is determined by which is greater and whether or not work has already been
done for the rational g 4.

If f(z,s+1) > f(xz,s) and work has already been done for g, ,, then we insert
the appropriate number of new points (namely f(z,s+1)— f(z,s)) at the right end
of the linear order built at ¢, , and give these inserted points the state associated.

If f(z,s+1) < f(z,s) and work has already been done for ¢, ,, then we split
off the appropriate number of points (namely f(z,s) — f(z,s + 1)) from the right
end of the linear order built at g, ,. The points split off have their state switched
to unassociated and receive a priority amongst all points unassociated based first
on the stage at which they became unassociated (lower stage, higher priority) and
then their position in the linear order (further left, higher priority).

If no work has been done for ¢, ,, then we insert the linear order f(z,s + 1)
at gzy. In particular, we note whether or not there are any unassociated points
greater than the greatest associated point to the left of g, , and less than the least
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associated point to the right of g, ,. If there are such unassociated points, we use
the one with highest priority for the first point of the linear order built at g, , and
insert the appropriate number of new points (namely f(z, s+1)—1) immediately to
the right of this first point. If there are no such unassociated points, we insert the
appropriate number of new points (namely f(z,s+ 1)) at ¢, . All points inserted
at ¢, are given the state associated, including the previously unassociated point
if one was used. This completes the construction.

Verification: Since the construction is computable, it suffices to show that £ 2 o(5).
In order to demonstrate this equality, we verify the following two claims. The first
implies that no extra points are built, and the second implies that enough points
are built.

Claim 2.1.1. Every point has state unassociated for at most finitely many stages.

Proof. When a point changes its state to unassociated, there are at most finitely
many unassociated points with higher priority. Moreover, as priority is determined
first by stage, no later point will receive a higher priority.

As a consequence of the density of the rationals and that only those rationals
Gz,y With ,y < s have had work done for them by stage s, at some later stage the
point will meet the criterion for becoming the first point built for some rational
which is having work done for it for the first time. When the point does meet this
criterion, it will never again become unassociated as by convention f(x,s) > 0 for
all s, and thus it will never be split off. Thus each point becomes unassociated at
most once and eventually becomes associated permanently at some later stage. [

Claim 2.1.2. In £, the linear order F(x) = liminfy f(x,s) is built at the ratio-
nal gz y.

Proof. Since F(z) = liminf f(z,s), there is a stage § such that f(x,s) > F(z) for
all s > 5. As a result, the rational ¢, , will have at least F(x) points built at it
at every stage s > §. On the other hand, no other points will remain permanently
associated with ¢, , as infinitely often the value of f(z, s) will drop to F'(x), causing
all other points to be split off from ¢, .

As the rationals are dense, eventually the points split off will be separated from
the F(x) points permanently associated with ¢, ,. Thus the linear order F(x) is
built at the rational g, , in L. O

It follows from the first claim that every point of the linear order eventually
becomes associated permanently with some rational ¢, ,. As each g, has the
correct linear order built at it by the second claim, we conclude that £ = o(5).

|

Before demonstrating the converse, we introduce some vocabulary and notation
which will simplify the language in its proof.

Definition 2.2. A mazimal block in a linear order is a maximal collection of points
with respect to the property that for every pair of points a and b in the collection,
the interval [a, ] is finite.

The block size of an element x, denoted BlockSize(x), is the number of points in
the (unique) maximal block containing x.
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Definition 2.3. If A = {a,},c. is an enumeration of a linear order A = (A :<),
define |(a;, a;)|, to be the number of points strictly between a; and a; amongst the
first s points in the enumeration, i.e., the cardinality of the set {k : a; < ap <
a;, k < s}

Proposition 2.4. If the shuffle sum o(S) is computable with S C w+ 1, then S is
a LIMINF set.

Proof. Assume o(S) is computable and let A = (A :<) be a computable presenta-
tion of o(S) with universe A = {a,},.,,. In order to show that S is a LIMINF set,
we define a LIMINF witnessing function f:w X w — w for S.

The idea will be to define auxiliary functions ¢(x, s) and r(x, s) that guess the
number of points to the left and right of z in its maximal block. The difficulty
is that all linear orders of a fixed finite cardinality are isomorphic. This obstacle
is resolved by believing the left and right boundaries of the maximal block are
determined by the most recently enumerated point on the left and on the right.
Because of the dense nature of the maximal blocks, infinitely often ¢(x,s) and
r(x, s) will be correct.

From the functions ¢(z, s) and r(z, s), we define the function f(z,s). The idea
will be to add £(z, s) and r(z, s) to obtain the value of f(z,s), but we cannot do so
directly as £(z, s) and r(z, s) may never be at their correct values simultaneously.

Construction: Before defining f(x,s), we first define auxiliary functions £(z,s) :
wXw—wand r(z,s):wXw—w by

Uz, s) =[(ai,az)|,  and  r(z,5) = [(az, a5)],

where i is the greatest index less than s such that a; < a; and j is the greatest index
less than s such that a, < a;. If no such index i exists, define £(z, s) = |(—00, az)|,.
Similarly, if no such index j exists, define r(x, s) = |(az, +00)|,.

Fixing x and s, let v be the most recent time before s such that r(z,-) took the
value r(x,s). More formally, we define v = v, 5 to be the greatest integer u less
than s such that ¢(z,u) = ¢(z, s) if one exists; otherwise we define v = v, 5 to be s.
We then define f(z,s) by

flx,s8) =4(x,s) + 1+ min r(x,z).

z€[v,s]

Verification: Since A is a computable presentation of o(S), it is clear that ¢(x,s)
and r(x, s) are computable, from which it follows that f(x,s) is computable. We
claim that the range of F(x) = liminf, f(z,s) is exactly S, which we will show
by demonstrating that liminf f(z,s) = BlockSize(a,). Fixing x, we consider the
cases when BlockSize(ay) is finite and infinite separately.

Claim 2.4.1. If BlockSize(ay) is finite, then liminfy f(x, s) = BlockSize(ay).

Proof. If BlockSize(a,) = n, then there is a § such that {ao,...,as} includes all of
the elements of the maximal block of a,. Moreover, we may assume that at stage 3,
the points a; and a; (as in the definition of ¢(x, s) and r(x,s)) are not part of the
maximal block of a.

Denote the elements in a,’s maximal block by {a,, < - < az = az, < -+ <
agz,}. Then {az,,...,as,} C {ag,...,as}. Note that for any s > §, we have
lz,s) > k—1and r(z,s) >n—k.
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When a new element is enumerated directly to the left of a,,, we have £(x, s) =
k — 1; similarly, when a new element is enumerated directly to the right of a, _, we
have r(z, s) = n—k. Because of the dense nature of shuffle sums, such points will be
enumerated infinitely often. Thus liminf; ¢(x, s) = k—1 and lim inf; r(z, s) = n—k,
from which it follows that liminf, f(z,s) = (k—1)+ 1+ (n — k) = n. O

Claim 2.4.2. If BlockSize(a,) is infinite, then liminf, f(z, s) = BlockSize(ay).

Proof. If BlockSize(a;) = oo, then a, belongs to a maximal block of order type w.
For every k, there is an § = §; such that {ao,...,as} includes the k points im-
mediately to the right of a, in o(S). Moreover, we may assume that at stage §,
the point a; (as in the definition of (x, s)) is not part of the maximal block of a,.
Then r(z,s) > k for all s > §. Since there is a stage § = § for every k, it follows
that lim, r(x, s) = co. We conclude that liminf f(z,s) = co. O

As a consequence of F'(z) = liminf, f(z,s) = BlockSize(a,) for all z, we con-
clude that f(z,s) is a LIMINF witnessing function for S.
O

3. PROOF OF THEOREM 1.9

We prove Theorem 1.9, again by proving the forwards and backwards directions
separately as separate propositions.

Proposition 3.1. If S Cw+ 1 is a LIMINF set, then S is a LIMMON (0’) set.

Proof. Let f(z,s) be a LIMINF witnessing function for S. Define a function g :
w X w — w by setting g(xz,t) equal to the largest number n such that f(z,s) > n for
all s > t. Note that g(z,t) is total, increasing in ¢, and computable in 0’. Moreover
lim; g(z,t) = liminfy f(z,s), so that the range of G(x) = lim; g(x,t) is the same
as the range of F(x) = liminf, f(z,s). It follows that g(z,t¢) is a LIMMON (0’)
witnessing function for S. (]

Proposition 3.2. If S Cw+ 1 is a LIMMON (0') set, then S is a LIMINF set.

Proof. Let g(z,t) be a LIMMON (0) witnessing function for S. By the Limit

Lemma, there is a total computable function A : w X w X w — w such that

limy h(z,t, k) = g(z,t). Fixing z, for each s we define a natural number ¢, by

recursion. Let to = 0 and let t5 for s > 0 be the least ¢ not greater than t5_; such

that h(x,t,s) # h(xz,t,s — 1) if such a t exists, and otherwise let ts be ts_1 + 1.
We define a function f:w X w — w by

flz,s) = max{fz(m,i,s) :0<i < ts}.

As f(z, s) is clearly total and computable, it suffices to show that liminf, f(x,s) =
lim; g(z,t) for all x. We begin with a combinatorial claim about the sequence

{tS}SEw-

Claim 3.2.1. For every t, there are at most finitely many s with t; = t. In
particular, for every ¢, there are at most finitely many s with ¢4 < ¢.

Proof. We prove the claim by induction on ¢. For ¢t = 0, we have t; = 0 when s =0
and when h(z,0,s) # h(z,0,s —1). Since limy, h(z, 0, k) exists, the latter condition
occurs at most finitely often. Thus t; = 0 for only finitely many s.
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For t + 1, we have t, =t + 1 possibly when h(z,t+1,s) # h(z,t+1,s — 1) and
possibly when ts_; = ¢. Since limy, h(x,t+1, k) exists, the former condition happens
at most finitely often. The inductive hypothesis assures that the latter condition
happens at most finitely often. Thus t; = ¢ + 1 for only finitely many s. O

In order to show that liminf, f(x,s) > lim; g(x,t), we argue that for every t,
there is an § such that f(z,s) > g(z,t) for all s > §. Fixing ¢, let § be such that
ts >t for all s > §, which is possible by the claim. As limy h(z,t, k) exists, we may
assume that § satisfies h(z,t,s) = g(z,t) for all s > 5. Then for s > § we have

flz,s) = max{h(z,i,s):0<i<ts}
> max{h(x,i,8):0<i<t}
> h(z,t,s) = g(,1).

Thus for every ¢ there is an § such that f(x,s) > g(z,t) for all s > §, from which
the inequality liminf f(z,s) > lim; g(z,t) follows.

In order to show that liminf, f(z,s) < g(z,t), we argue that for every ¢ there is
an s such that f(z,s) = g(z,t) (with s # &' if t # t'). Fixing t, let § be minimal
such that h(z,i,s) = g(x,i) for all i < t and s > §. Let s be the least number
greater than or equal to § such that 5 = ¢, which is possible since § was chosen to
satisfy h(z,i,8) = g(x,4) # h(x,i,§ — 1) for some ¢ < t. Then

fz,s) = max{h(z,i,s):0<i<ts}
= max{h(z,i,8):0<1i<t}
= max{g(z,i):0<i<t}
= g(x,t).
Moreover, the value of s will be distinct for distinct values of ¢ as s satisfies t; = t.
Thus for every ¢ there is an s such that f(z,s) = g(x,t), with s # §' if t # ¢/, from
which the inequality liminfy f(x, s) < lim; g(x,t) follows.

We conclude that liminfy f(z,s) = lim; g(z,t) for all z, so that f(z,s) is a

LIMINF witnessing function for S. t

4. LiMINF AND LIMMON (0") SETS

With the characterization of the computable shuffle sums of subsets S C w + 1
in terms of LIMINF and LIMMON (0) sets completed, it is natural to ask which
subsets of w + 1 are LIMINF and LIMMON (0") sets. We note that a LIMINF set
(and thus a LIMMON (0’) set) can be no more complicated than a X9 set. For if
f(z,s) is a LIMINF witnessing function for S, then

nesS iff Jz [liminf, f(x,s) = n]
iff  Jz[38Vs > §[f(x,s) = n] & VsIs' > s[f(z,s") =n]].
As the last predicate is clearly ©3, membership in S cannot be more complicated
than ©3. We state this as a proposition.

Proposition 4.1. If S is a LIMINF and LIMMON (0') set, then S is a X9 set.

We next show that for sets S with w € S, the LIMINF sets (and thus LIMMON (0’)
sets) coincide exactly with the 39 sets.

Proposition 4.2. If S C w is a X3 set, then SU{w} is a LIMINF and L1MMOoN (0')
set.
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Proof. Let S be a X3 set witnessed by the predicate 3Im3°°s R(n,m, s), where R is
a computable relation. Define a function f: w X w — w by
F,) = f(lnm) ) = 4 1 A0
s otherwise.
Note that f(z,s) is computable as R is computable.

Ifn € S, we have 3m3>°s R(n, m, s). Letting mo witness this, we have f({n,mo),s) =
n for infinitely many s. As s will be less than n only a finite number of times,
it follows that liminfy f((n,m¢),s) = n. Thus n is in the range of F(z) =
liminfg f(z, s).

If instead n € S, we have Ym3<>°s R(n,m,s). For any z = (n,m), it follows
that f(x,s) = n for only finitely many s. Thus liminf, f(x,s) = oo, and so w is in
the range of F(z) and n is not in the range of F(z).

In the extreme case when S = w, we can (non-uniformly) arrange to have the
range of F(z) = liminf, f(z,s) be w U {w} if w would otherwise not be in the
range. O

It follows immediately from Theorem 1.8 and Proposition 4.2 that o (S U {w})
is computable for every X set S, a result shown in [1]. However o(S) is not
computable for every X set S, a corollary of our results and the following result
found in [2] (which is a relativization of a result in [6]).

Proposition 4.3 (Coles, Downey, and Khoussainov). There is a £ set S that is
not a LIMMON (0) set.

We conclude by leaving open two questions.
Question 4.4. For which subsets S C wI¥ + 1 is 0(S) computable?

Question 4.5. Which subsets S C w 4 1 are 9 sets but not LIMINF sets, or
equivalently LIMMON (0') sets?
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