
EMBEDDINGS OF COMPUTABLE STRUCTURES

ASHER M. KACH, OSCAR LEVIN, AND REED SOLOMON

Abstract. We study what the existence of a classical embedding between

computable structures implies about the existence of computable embeddings.

In particular, we consider the effect of fixing and varying the computable
presentations of the computable structures.

1. Introduction

Throughout the field of effective algebra, there are a plethora of instances where
classical behavior and effective behavior diverge. A particular example, and the
subject of this paper, is within the context of embeddings of algebraic structures.
For example, there are computable presentations S1 and S2 of computable struc-
tures such that S1 classically embeds into S2 but for which there is no computable
embedding α : S1 → S2. Indeed, such examples exist within most natural classes of
algebraic structures (e.g., linear orders, directed graphs, groups, fields, etc.). How-
ever, if the computable presentations of S1 and S2 are sufficiently altered, often
computable embeddings exist. The following notions capture whether computable
embeddings exist after altering the presentations of S1 and/or S2.

Definition 1.1. A class C of computable presentations of computable structures
is said to have the strong embedding property if for all S1,S2 ∈ C such that S1

classically embeds into S2, there is a computable embedding α : S1 → S2.

Definition 1.2. A class C of computable presentations of computable structures
is said to have the weak domain embedding property if for all S1,S2 ∈ C such
that S1 classically embeds into S2, there is a computable presentation S ′1 ∼= S1 and
a computable embedding α : S ′1 → S2.

Definition 1.3. A class C of computable presentations of computable structures
is said to have the weak range embedding property if for all S1,S2 ∈ C such that S1

classically embeds into S2, there is a computable presentation S ′2 ∼= S2 and a
computable embedding α : S1 → S ′2.

Definition 1.4. A class C of computable presentations of computable structures is
said to have the weak embedding property if for all S1,S2 ∈ C such that S1 classically
embeds into S2, there are computable presentations S ′1 ∼= S1 and S ′2 ∼= S2 and a
computable embedding α : S ′1 → S ′2.

Date: 7 April 2010.
2000 Mathematics Subject Classification. 03C57,03D45.
Key words and phrases. computable embedding, strong embedding property, weak domain

embedding property, weak range embedding property, weak embedding property.
The first author was partially supported by the Marsden Fund of New Zealand via a Post-

Doctoral Fellowship. The authors thank Wesley Calvert, Carl Jockusch, Joe Miller, and Russell

Miller for helpful discussions.

1

2 KACH, LEVIN, AND SOLOMON

Fixing a class C of computable presentations of computable structures, it is
immediate that the pictured implications hold.

weakstrong

weak domain

weak range

A purpose of this paper is to show that no other implications exist. First, we
provide examples of structures which fail to have even the weak embedding prop-
erty: the class of computable ordered abelian groups and the class of computable
trees in the language of undirected graphs in Section 2 and Section 3, respectively
(other examples of the failure of the weak embedding property are already known).
In Section 4, we exhibit a class of algebraic structures that has the weak embedding
property but neither the weak domain embedding property nor the weak range em-
bedding property. We then demonstrate, in Section 5 and Section 6 respectively,
that the class of computable equivalence structures and the class of computable
Boolean algebras have the weak range embedding property but not the weak do-
main embedding property. In Section 7, we exhibit a class of algebraic structures
that has the weak domain embedding property but not the weak range embedding
property. For a class of structures which has both the weak domain embedding
property and the weak range embedding property but not the strong embedding
property, we turn to computable algebraically closed fields in Section 8. Finally, in
Section 9, we conclude with some additional examples and open questions.

2. Ordered Abelian Groups

Here we demonstrate that the class of computable ordered abelian groups does
not have the weak embedding property. Before doing so, we note that the class of
computable trees (viewed as posets), the class of computable linear orders, and any
class known to be universal with respect to common computable model theoretic
notions (e.g., partial orders, lattices, 2-step nilpotent groups, and integral domains)
also fail to have the weak embedding property (see [1], [4], and [4], respectively).

We recall a result about linear orders that will be exploited in our study of
ordered abelian groups. We use η to denote the order type of the rationals.

Theorem 2.1 ([4]). There is a computable nonscattered intrinsically hyperarith-
metically scattered linear order, i.e., there is a computable nonscattered linear or-
der Lη such that for all hyperarithmetic presentations η′ ∼= η and L′η ∼= Lη, there
is no hyperarithmetic embedding α : η′ → L′η.

We also recall the following algebraic terminology.

Definition 2.2. Elements x and y in an ordered abelian group G are archimedean
equivalent, written x ≈ y, if there are m,n ∈ N such that m|x| ≥ |y| and n|y| ≥ |x|.
Here |x| denotes whichever of x and −x is positive if x 6= 0 and zero if x = 0.

Definition 2.3. A subset U of an ordered abelian group G is a set of unique
archimedean representatives for G provided: 0 6∈ U ; for any u 6= v ∈ U , we have
u 6≈ v; and for all 0 6= g ∈ G, there is some u ∈ U such that u ≈ g.

A set of unique archimedean representatives U is a positive set of unique archimedean
representatives if x > 0 for every x ∈ U .

EMBEDDINGS OF COMPUTABLE STRUCTURES 3

Our choice to exclude 0 from any set of unique archimedean representatives is not
necessarily standard, but is chosen to simplify the statements of upcoming results.

It is easy to see that there is always a set of positive unique archimedean repre-
sentatives computable from 0′ if G is computably presented.

Proposition 2.4. If G is a computably presented ordered abelian group, then there
is a Π0

1 (and thus computable from 0′) set of unique archimedean representatives.

It is also easy to check that a set U of positive unique archimedean representatives
for an ordered abelian group G forms a linear order (using the ordering inherited
from G). With a little more work, it is possible to demonstrate the reverse: given
any linear order L, there is an ordered abelian group GL such that for any set U
of positive unique archimedean representatives, 〈U,≤〉 ∼= L. The group GL can be
⊕xi∈LZxi , i.e., the group whose elements are formal sums zi1xi1 + ... + zikxik for
zi1 , . . . , zik ∈ Z, and whose order is generated by

zi1xi1 + ...+ zikxik > 0 if and only if zij > 0

where xij is L-maximal amongst xi1 , . . . , xik . Then for any two sums g, h ∈ GL,
we have g < h if and only if h− g > 0.

It follows that the set of generators {xi : xi ∈ L} is a set of positive unique
archimedean representatives with order type L. Also, if L is computable, then GL
is computable.

Theorem 2.5. The class of computable ordered abelian groups fails to have the
weak embedding property.

Proof. It suffices to exhibit computable ordered abelian groups G1 and G2 such
that G1 classically embeds into G2 but for which there is no computable embed-
ding α : G′1 → G′2 for any computable G′1 ∼= G1 and G′2 ∼= G2. We take G1 to
be any computable presentation of Gη and G2 to be any computable presentation
of GLη , where Lη is a computable nonscattered linear order that is intrinsically hy-
perarithmetically scattered. As Lη is nonscattered, there is a classical embedding
from η into Lη. This induces an embedding from G1 into G2: xij in G1 is mapped
to xik in G2 exactly when ij in η is mapped to ik in Lη. However, there cannot
be computable presentations G′1 ∼= G1 and G′2 ∼= G2 and a computable embedding
α : G′1 → G′2. We reason as follows.

Suppose there were such computable presentations G′1 and G′2 and a computable
embedding α : G′1 → G′2. Then 0′ could compute a set of positive unique archimedean
representatives U ′1 for G′1 and U ′2 for G′2. Then 0′′ could, for each x ∈ U ′1, uniformly
find the element y ∈ U ′2 such that y ≈ α(x). However, the map x 7→ y would give a
hyperarithmetic embedding (indeed, an embedding computable in 0′′) of a 0′ copy
of η into a 0′ copy of Lη, contradicting Theorem 2.1. �

Remark 2.6. A similar argument can be used to establish the corresponding result
for ordered fields. That is, the class of computable ordered fields does not have the
weak embedding property.

3. Trees in the Language of Undirected Graphs

Here we demonstrate that the class of computable trees, i.e., acyclic connected
undirected graphs in the language of undirected graphs, does not have the weak
embedding property. The context only necessitates slightly modifying the coding

4 KACH, LEVIN, AND SOLOMON

modules used in demonstrating that the class of computable directed graphs does
not have the weak embedding property (see [4]).

Definition 3.1. If T ⊆ 2<ω is a subtree of 2<ω (in the usual sense), let T̂ be
the computable tree (as an undirected graph) whose universe contains {σ : σ ∈ T}
and three additional elements x, y, w for each non-root σ ∈ T with edge relations
precisely E(σ−, x), E(x, y), E(y, σ), and E(x,w) if σ = σ− a 0 or E(y, w) if σ =
σ− a 1.

Here we use σ− to denote the string of length |σ| − 1 that is an initial segment
of σ.

We illustrate this definition with an example, with T pictured on the left and T̂
pictured on the right. The tree T̂ is T with each non-root vertex replaced by a set
of four edges, with the location of the dead end depending on whether the last digit
in σ is zero or one.

0 1

0

With this coding widget, the proof mirrors the proof for computable directed
graphs (see [4]).

Theorem 3.2. The class of computable trees fails to have the weak embedding
property.

Proof. Fix a subtree (in the usual sense) T ⊆ 2<ω that is infinite, computable, and
has no computable paths. It suffices to take T1 to be any computable presentation
of the tree {0n : n ∈ ω} (in the language of undirected graphs) and T2 to be any
computable presentation of T̂ . As T has an infinite path, classically the tree T1
will embed into the tree T2. We establish the lack of a computable embedding
α : T ′1 → T ′2 for computable presentations T ′1 ∼= T1 and T ′2 ∼= T2 by showing that
both T1 and T2 are computably categorical.

Of course, it is immediate that T1 is computably categorical. We show T2 is
computably categorical by describing a computable isomorphism π : T ′2 → T2 for
any computable presentation T ′2 ∼= T2. Nonuniformly, we may assume knowledge
of the vertices in T2 and T ′2 corresponding to the root of T . Note that given any
vertex v ∈ T ′2, it is possible to effectively determine to which widget v belongs,
which vertex of that widget v is, and to which edge in T that widget corresponds.
This is done by searching through T ′2 for the path from v back to the vertex λT ′

2

and then counting by threes from λT ′
2

back to v. Once this edge in T is found, it
is a simple task to locate the corresponding widget in T2. We can then effectively
define π on all four vertices in v’s widget, including v. As this procedure can be
carried out effectively for any v ∈ T ′2, we see that π is a computable isomorphism.

Finally, there cannot be a computable embedding α : T1 → T2. If there were such
a computable embedding sending the root vertex of T1 to the root vertex of T2, a

EMBEDDINGS OF COMPUTABLE STRUCTURES 5

computable path through T could be recursively defined as follows. The zeroth bit
of the computable path through T under construction is zero if there is an element
w ∈ T2 with E(α(0), w) and one if there is an element w ∈ T2 with E(α(00), w).
As (exactly) one of these must exist, it suffices to search. Iterating this, searching
for w satisfying either E(α(03k+1), w) or E(α(03k+2), w), yields the kth bit of the
computable path under construction.

More generally, if the root vertex of T1 was not sent to the root vertex of T2, only
finitely much (nonuniform) information is necessary to recover a computable path
in T from the sequence recursively defined. Of course, this information corresponds
to removing some number of digits (if α(T1) travels through the root vertex of T2)
or adding some number of digits (if α(T1) misses the root vertex of T2). �

4. A Class of Posets

Here we demonstrate the existence of a class of computable algebraic structures
having the weak embedding property but neither the weak domain embedding prop-
erty nor the weak range embedding property (and so not the strong embedding
property). The class will consist of all computable presentations of two isomor-
phism types of posets.

Definition 4.1. Define Q1 to be the computable partial order with universe X ∪
Y ∪ U , where X = {xi}i∈ω, Y = {yi}i∈ω, and U = {ui}i∈ω and order

• the X elements form an ω-chain x0 ≺ x1 ≺ . . . ;
• the Y elements form an ω∗-chain y0 � y1 � . . . sitting above theX elements

(i.e., xi ≺ yj for all i, j); and
• the U elements form an antichain and the only order relations they satisfy

are xi ≺ uj if i ≤ j.
So the element u0 sits above x0 and is incomparable with everything else; the
element u1 sits above x1 and x0 and is incomparable with everything else; etc.

Definition 4.2. Define Q2 to be the computable partial order with domain X ∪
Y ∪ U ∪ V ∪W where X = {xi}i∈ω, Y = {yi}i∈ω, U = {ui}i∈ω, V = {vi}i≥2, and
W = {wi}i≥2 and order

• the X elements form an ω-chain x0 ≺ x1 ≺ . . . ;
• the Y elements form an ω∗-chain y0 � y1 � . . . sitting above theX elements

(i.e., xi ≺ yj for all i, j);
• the U elements form an antichain and the only order relations they satisfy

are xi ≺ uj if and only if i ≤ j;
• the V elements form an antichain and the order relations vi satisfies with X

and Y elements are xj ≺ vi for all j, and yj ≺ vi if j ≥ i; that is, we make
vi � yi and then only include additional order relations that are forced by
transitivity; and

• the W elements form an antichain and the only order relations wi satisfies
are vi ≺ wi, xj ≺ wi for all j, and yj ≺ wi if j ≥ i; that is, we place wi � vi
and only include additional order relations forced by transitivity.

So the poset Q2 looks like Q1 except above each element yi with i ≥ 2 we have
added a new chain yi ≺ vi ≺ wi of length two.

The isomorphism types of these posets were chosen to have various effectiveness
properties, which we proceed to demonstrate.

6 KACH, LEVIN, AND SOLOMON

Lemma 4.3. In every computable presentation P ′1 of Q1, the set of X elements
in P ′1 is computably enumerable.

Proof. An element a ∈ P ′1 is an X element if and only if there are two incomparable
elements above it. �

Lemma 4.4. There is a computable presentation P1 of Q1 such that the set of Y
elements in P1 is immune.

Proof. The idea is essentially the same as when making a copy of (ω + ω∗,≤) in
which the ω∗ part is immune. The requirements are

Re : We infinite →We ∩ (X ∪ U) 6= ∅
where X ∪ U refers to the X and U elements in the copy we are building. We
build P1 by starting to build the X and U elements, placing xs and us at stage s
if they are not already built by that stage. We also place potential Y elements and
use markers yi,s to denote the current yi element at stage s. We need to make sure
that each yi,s has a limit for each s, so we need a requirement to protect them.

Ni : yi,s has a limit

The action of Ni is just to restrain lower priority requirements from changing yi,s.
The action of Re is to wait for a stage s at which some yi,s ∈ We for i > e
(to respect the higher priority Ni requirements). Then we move the current yj,s
element for j ≥ i down to the X part (so each becomes some xk element) and add
appropriate U elements to them. We add new yj,s+1 elements to P1 and declare Re
satisfied. The interaction involves only finite injury to the Ni requirements and no
injury to the Re requirements. �

Lemma 4.5. In every computable presentation P ′2 of Q2, the set of Y elements
in P ′2 is computably enumerable.

Proof. Let T be the five element partial order with elements ei for 1 ≤ i ≤ 5 and
order relations e1 ≺ e2 ≺ e3 and e1 ≺ e4 ≺ e5. Thus, T looks like a “V”. Notice
that if T is embedded into P ′2, then the e1 element must lie on the ω + ω∗ chain
formed by the X and Y elements. Furthermore, the e2, e3, e4 and e5 elements must
lie in Y ∪ V ∪W .

Then a ∈ P ′2 is a Y element if and only if either
• a = y0 (determined nonuniformly); or
• a = y1 (determined nonuniformly); or
• there are at least two elements of P ′2 above a, and there is an embedding

of T into P ′2 such that at least two elements in the image of the embedding
lie below a.

The first half of the third condition guarantees that a is not a V or W element and
the second half of third condition guarantees that a is not an X or U element. �

Lemma 4.6. There is a computable copy P2 of Q2 such that the set of X elements
in P2 is immune.

Proof. The idea is just like the proof of Lemma 4.4 except we move potential X
elements (with their corresponding potential U elements) up to the Y part (and
the U elements become V elements) and we add new W elements. Thus, the idea
is just like making a copy of (ω + ω∗,≤) in which the ω part is immune. �

EMBEDDINGS OF COMPUTABLE STRUCTURES 7

Notice that Q1 classically embeds into Q2, but Q2 does not classically embed
into Q1. Furthermore, any embedding of Q1 into Q2 has to send X elements to X
elements, Y elements to Y elements, and U elements to U elements.

Theorem 4.7. The class of computable presentations of Q1 and Q2 has the weak
embedding property but neither the weak domain embedding property nor the weak
range embedding property.

Proof. For the weak embedding property, the only case where anything needs to be
shown is when S1 is a computable copy of Q1 and S2 is a computable copy of Q2.
Taking S ′1 to be Q1 and S ′2 to be Q2 suffices.

For the weak domain embedding property, let P2 be the copy from Lemma 4.6.
Suppose for a contradiction that there is a computable copy P ′1 of Q1 and a com-
putable embedding α : P ′1 → P2. This embedding must send the X elements of P ′1
into the X elements of P2. Therefore, a ∈ P2 is an X element of P2 if and only if
there is a b ∈ P ′1 such that a ≺ α(b) and b is an X element of P ′1. Therefore, the set
of X elements in P2 is computably enumerable, giving the desired contradiction.

For the weak range embedding property, let P1 be the copy from Lemma 4.4.
Suppose for a contradiction there is a copy P ′2 of Q2 and a computable embedding
α : P1 → P ′2. Such an embedding has to map the Y elements of P1 into the Y
elements of P ′2, and the X ∪U elements of P1 into the X ∪U elements of P ′2. Since
the set of Y elements in P ′2 is computably enumerable, the embedding α gives a
computably enumerable description of the Y elements in P1. That is, a ∈ P1 is
a Y element of P1 if and only if α(a) is a Y element in P ′2. This is the desired
contradiction. �

5. Equivalence Structures

Here we demonstrate that the class of computable equivalence structures has the
weak range embedding property (and so the weak embedding property) but not the
weak domain embedding property (and so not the strong embedding property). We
refer the reader to [2] for background on computable equivalence structures.

Lemma 5.1 (implicit in [2]). If E is a computable equivalence structure with
unbounded character (i.e., finite classes of arbitrarily large size) and (at most)
finitely many infinite equivalence classes, then there is a decomposition E ∼= S1⊕S2

(where ⊕ denotes disjoint union) and a computable function g : ω × ω → ω such
that for all x:

• g(x, s) ≤ g(x, s+ 1),
• G(x) := lims g(x, s) is finite,
• G(x) > x,
• S1 and S2 are computable,
• S1 has a class of size k if and only if k is in the range of G, and
• S1 has no infinite classes and at most one class of any fixed finite size.

Proposition 5.2. The class of computable equivalence structures has the weak
range embedding property.

Proof. Fixing computable presentations E1 and E2 of computable equivalence struc-
tures such that E1 classically embeds into E2, we exhibit a computable presenta-
tion E ′2 ∼= E2 and a computable embedding α : E1 → E ′2. The manner in which
we construct the computable presentation E ′2 depends primarily on whether E2

8 KACH, LEVIN, AND SOLOMON

has bounded or unbounded character and finitely many or infinitely many infinite
classes.

If E2 has infinitely many infinite classes, it suffices to take E ′2 = E2⊕E∞ where E∞
is a computable equivalence structure with infinitely many infinite classes and no
finite classes. Then E1 computably embeds into E ′2 by embedding each equivalence
class in E1 into one of the infinitely many additional infinite equivalence classes.

If E2 does not have infinitely many infinite classes, we must break into two
cases: when E2 has bounded character and when E2 has unbounded character. In
considering these cases, we will without loss of generality assume that E2 has no
infinite classes. For if E2 has a positive but finite number of infinite classes, we can
(nonuniformly) select representatives of the infinite classes in E2 and representatives
of the appropriate corresponding classes in E1. This allows us to compute the
embedding (as described below) on all the other classes independent of these finitely
many classes.

If E2 has bounded character and no infinite classes, let k be the largest size such
that E2 has infinitely many classes of size k (such a k must exist). Then E1 also
has only finitely many classes of size larger than k as it classically embeds into E2
by hypothesis. It is then possible to (nonuniformly) map the classes of size larger
than k in E1 to appropriate classes in E2. For the remaining classes in E1, it is
possible to map them to classes of size k in E2.

If E2 has unbounded character and no infinite classes, it is easy when E1 has
bounded character. It suffices to map each class in E1 to a class of size at least k,
where k is an integer witnessing that E1 has bounded chracter. When E1 has
unbounded character, it is slightly more difficult. Fix a (classical) decomposition
E2 ∼= S1⊕S2 and a computable function g as in Lemma 5.1. We build E ′2 = S ′1⊕S ′2
where S1

∼= S ′1 and S2 = S ′2; the structure E1 will computably embed into S ′1.
The construction of S ′1 is dynamic and depends on both the presentation E1 and

the function g. For each new class in E1 (say, of size n at stage s) that appears, we
choose a column x (with x large) and start a new class in S ′1 of size g(x, s). The
computable embedding α : E1 → S ′1 maps this new class in E1 to this new class
in S ′1. As the stage s increases, we grow (as necessary) this class in S ′1 to have size
g(x, s). If the size of the class in E1 grows beyond the current value of g(x, s), we
choose a new large column y and grow the class of S ′1 to have size g(y, s). In this
fashion, we have this class of S ′1 always is larger than or equal to the class in E1
and has size g(z, s) for some column z.

Additionally, at each stage s, we assure that there is a class of size g(z, s) for all
z < s. This is done by adding additional elements to the class built for g(z, s− 1)
as necessary if it exists and building a fresh class otherwise.

As each class in E1 is finite, it is not difficult to see that each class in S ′1 will
eventually choose a permanent column x to follow. Indeed, the column x can change
only when the class in E1 grows. Also, it will be the case that S1

∼= S ′1 as each class
in S ′1 is associated to a value g(z, s− 1) and each column z is associated to a class
(either explicitly or implicitly at the end of each stage). Finally, the construction
explicitly gives the computable embedding α : E1 → S ′1.

Having exhausted all possible cases, we conclude that the class of computable
equivalence structures has the weak range embedding property. �

Proposition 5.3. The class of computable equivalence structures fails to have the
weak domain embedding property.

EMBEDDINGS OF COMPUTABLE STRUCTURES 9

Proof. It suffices to construct computable equivalence structures E1 and E2 with
unbounded character and no infinite classes (so E1 classically embeds into E2) such
that for all E ′1 ∼= E1, there is no computable embedding α : E ′1 → E2.

Towards stating the requirements, we view each function ϕe(x, y) as computing
the characteristic function of a binary relation on ω × ω and let Ae denote the
resulting computable structure. Of course, the function ϕe may not be total, in
which case Ae is not really a computable structure and we can safely disregard it.
We view each function ϕi(x) as a candidate embedding of Ae into E2. Again, the
function ϕi may not be total, in which case ϕi is not really a computable embedding
and we can safely disregard it.

Throughout, if E is an equivalence structure and a ∈ E, we denote the equiva-
lence class of a by [a]E and the size of this class by |[a]E |.

We meet the requirements:

R〈e,i〉 : If Ae ∼= E1, then ϕi is not an embedding of Ae into E2.

The strategy to meet a single requirement R〈e,i〉 is as follows. Fix an element
a ∈ Ae (i.e., fix a number) and wait for ϕi(a) to converge. Once it converges,
we want to force either |[a]Ae | > |[ϕi(a)]E2 | (assuring ϕi is not an embedding) or
|[a]Ae | 6= |[k]E1 | for all k ∈ E1 (assuring Ae 6∼= E1).

To make progress on the first option, we freeze the size of [ϕi(a)] in E2. That is,
we refrain from ever putting another element into the class of ϕi(a). However, this
might not be enough as it might currently be the case that |[a]Ae | ≤ |[ϕi(a)]E2 |.
So, we need to force the size of [a]Ae to grow. To do this, we add elements to
the equivalence classes in E1 to guarantee that E1 has no classes of any size n with
|[a]Ae | ≤ n ≤ |[ϕi(a)]E2 | (using the current values of these classes). That is, for any
class in E1 with a size currently in this range, we add elements to the class so that
it becomes strictly larger than [ϕi(a)]E2 .

Having taken this action, the requirement R〈e,i〉 is satisfied (provided it is not
later injured) as the only way to have Ae ∼= E1 is if [a]Ae grows to a size larger
than the size of [ϕi(a)]E2 . However, if it does this, then ϕi cannot be extended to
an embedding. Notice that our action to meet R〈e,i〉 imposes two restraints on the
construction:

• the class [ϕi(a)]E2 cannot grow – which causes no problem since we want
the classes in E2 to be finite and we can add other large classes to make E2
have unbounded character; and

• all future classes created in E1 must have size greater than |[ϕi(a)]E2 | – which
also causes no problem since we want E1 to have unbounded character.

To combine multiple requirements, we use a standard finite injury construction.
In terms of building E1 and E2, at each stage we add a new class of large size to each
structure. We will never change the size of an E2 class, so although we mention
freezing the size of such classes, they are really always frozen in the sense that they
never grow.

Each requirement R〈e,i〉 has a parameter b〈e,i〉. When the requirement first acts
(or first acts after being initialized), it sets the value of this parameter large. It then
waits for an element a ∈ Ae such that |[a]Ae | ≥ b〈e,i〉 and ϕi(a) converges. (Notice
that once b〈e,i〉 settles down, if Ae ∼= E1, then there must be Ae classes satisfying
this size restriction since E1 has unbounded character.) If the current values satisfy
|[a]Ae | > |[ϕi(a)]E2 |, it freezes [ϕi(a)]E2 and wins. Otherwise, it does the following:

10 KACH, LEVIN, AND SOLOMON

• increases the sizes of the appropriate E1 classes so that there are no classes
of size between |[a]Ae | and |[ϕi(a)]E2 |;
• freezes [ϕi(a)]E2 ;
• let m be large (in particular, larger than the size of any of the current

classes in E1 including the ones that were just expanded) and declares that
all new E1 classes must have size at least m; and
• initializes all lower priority requirements.

The initialization will force all lower priority requirements to do their diagonaliza-
tion with classes of size greater than m, so the classes that were just expanded will
not be expanded again by a lower priority requirement. Therefore, each E1 class
can only grow finitely often and hence will be finite in the limit. �

6. Boolean Algebras

Here we demonstrate that the class of computable Boolean algebras has the weak
range embedding property (and so the weak embedding property) but not the weak
domain embedding property (and so not the strong embedding property). We refer
the reader to [5] or [7] for background on countable Boolean algebras.

Proposition 6.1. The class of computable Boolean algebras has the weak range
embedding property.

Proof. Fix computable presentations B1 and B2 of computable Boolean algebras
such that B1 classically embeds into B2. The manner in which we construct the
computable presentation B′2 depends on whether B2 is superatomic or not.

If B2 is superatomic, then B1 is superatomic as it classically embeds into B2.
There are therefore computable ordinals α1 and α2 and positive integers m1 and m2

such that B1
∼= IntAlg(α1 ·m1) and B2

∼= IntAlg(α2 ·m2). If α1 = α2, it suffices to
take B′2 to be the join of B1 with (m2−m1)-many additional α1-atoms. If α1 < α2,
it suffices to take B′2 to be B1 ⊕ B2. Of course, as B1 classically embeds into B2, it
is impossible to have α1 > α2 or α1 = α2 and m1 > m2.

If B2 is not superatomic, then either B2
∼= IntAlg(ωCK1 · (1 + η)) or there is a

computable ordinal µ such that B2
∼= B2 ⊕ IntAlg(ωµ · (1 + η)). This follows from

aspects of Ketonen invariants for countable Boolean algebras. Specifically, it is a
direct consequence of the fact that the measure σ for B2 has a minimal ordinal µ
in its range (see [5] or [7] for significant background on measures and why this is
the case) and that µ ≤ ωCK1 as B2 is computable. In the former case, it suffices to
take B′2 to be a presentation of IntAlg((ωCK1 ·(1+η))·(1+η)) where the outer (1+η)
is nicely presented. In the latter case, it suffices to take B′2 to be a presentation
where IntAlg(ωµ · (1 + η)) is nicely presented. Here, by nicely we mean a copy
into which the computable atomless algebra computably embeds. For both cases
this suffices as B1 computably embeds into the countable atomless algebra and the
countable atomless algebra computably embeds into B′2. �

Proposition 6.2. The class of computable Boolean algebras fails to have the weak
domain embedding property.

Proof. It suffices to take the countable atomless algebra for B1 and the standard
computable presentation of the Harrison algebra for B2. More specifically, with L a
computably copy of the Harrison ordering ωCK1 ·(1+η) having no infinite computable
descending sequences, take B2 to be the computable presentation obtained from

EMBEDDINGS OF COMPUTABLE STRUCTURES 11

IntAlg(L). If there were a computable embedding α : B1 → B2 (note that B1 is
computably categorical so the choice of presentation does not matter), then there
would necessarily be a computable descending chain in L. We reason as follows.

We argue that a computable descending chain {yi}i≥1 ⊆ L can be constructed
from a computable embedding α. With some abuse of notation, we use y0 to
denote ∞ within L. Fix a nonzero element a0 ∈ B1. Then, fix a nonzero element
b0 ∈ B1 with b0 <B1 a0. Because B2 was constructed as the interval algebra of L, it
is possible to effectively pass from α(b0) and α(a0−b0) to the associated finite union
of clopen intervals. For y1, take the rightmost element y ∈ L such that y <L y0
and [x, y) appears as a clopen interval in the decomposition of α(b0) or α(a0 − b0).
Note that both α(b0) and α(a0 − b0) must be considered as it might be the case,
for example, that α(b0) is representing the interval [x0, y0) for some x0 ∈ L. Note
also that the rightmost element y ∈ L must be taken as it might be the case, for
example, that [x, y) ⊆ α(b) for all b < b0. If so, the induction would be prevented
from continuing.

For the next step, let a1 be b0 if [x, y) was a clopen interval in α(b0) and let a1

be a0 − b0 if [x, y) was a clopen interval in α(a0 − b0). Then, fix a nonzero element
b1 ∈ B1 with b1 <B1 a1. For y2, taken the rightmost element y ∈ L such that
y <L y1 and [x, y) appears as a clopen interval in the decomposition of α(b1) or
α(a1 − b1).

Continuing in this fashion, we can inductively define the sequence {yi}i≥1. �

7. A Class of Linear Orders

Here we demonstrate the existence of a class of computable algebraic structures
having the weak domain embedding property (and so the weak embedding property)
but not the weak range embedding property (and so not the strong embedding
property). The class will consist of all computable presentations of the linear order
isomorphism types ω + ω∗ and ω + 1 + ω∗.

Theorem 7.1. There is a class of computable algebraic structures having the weak
domain embedding property but not the weak range embedding property.

Proof. It suffices to consider the class of all computable presentations of the order
types ω+ω∗ and ω+1+ω∗. We verify it has the weak domain embedding property
but not the weak range embedding property.

For the weak domain embedding property, the only nontrivial case to verify is
when L1 is a computable copy of ω+ω∗ and L2 is a computable copy of ω+1+ω∗.
Take L′1 to be a decidable copy of ω+ω∗. By (nonuniformly) fixing the limit point x
in L2, it is possible to computably embed the ω portion of L1 to the left of x and
the ω∗ portion of L1 to the right of x.

For the failure of the weak range embedding property, it suffices to take for L1

any computable copy of ω + ω∗ in which neither the ω nor the ω∗ is a computable
subset of the universe and to take for L2 any computable copy of ω+1+ω∗. If there
were a computable copy L′2 of ω+1+ω∗ and a computable embedding α : L1 → L′2,
then an element a ∈ L1 would belong to the ω part if α(a) <L2 x and belong to
the ω∗ part if x <L2 α(a) (again x is the nonuniformly fixed limit point in L′2).
This would contradict that neither ω nor ω∗ was computable in L1. �

12 KACH, LEVIN, AND SOLOMON

8. Algebraically Closed Fields

Here we demonstrate that the class of algebraically closed fields has the weak
range embedding property and the weak domain embedding property (and so the
weak embedding property) but not the strong embedding property.

Proposition 8.1. The class of computable algebraically closed fields has the weak
range embedding property and the weak domain embedding property.

Proof. Fix computable presentations F1 and F2 of computable algebraically closed
fields such that F1 classically embeds into F2. Let F be the common prime subfield
of F1 and F2 (so F is either Q or Zp for a prime p). The choice of F ′1 (for the weak
domain embedding property) and F ′2 (for the weak range embedding property)
depends on the transcendence degree of F1.

If the transcendence degree of F1 is infinite, then F1 and F2 are isomorphic.
Thus if we let F ′1 = F2, the identity map α : F ′1 → F2 witnesses that the weak
domain embedding property holds. Alternatively, if we let F ′2 = F1, the identity
map α : F1 → F ′2 witnesses that the weak range embedding property holds.

Now suppose the transcendence degree of F1 is n < ∞. To establish the weak
range embedding property, it suffices to take F ′2 to be the computable algebraic
closure of the field generated by adjoining an appropriate number of transcenden-
tal elements to F1. For the weak domain embedding property, we take for F ′1
a presentation of F1 in which E = F(x0, . . . , xn−1) is a computable subset. We
define a computable embedding α : F ′1 → F2. Nonuniformly pick n algebraically
independent elements y0, . . . , yn−1 of F2 and define α(xi) = yi for 0 ≤ i ≤ n − 1.
Note that this choice determines α on E . What is more, for any element x ∈ E,
we can compute α(x) by expressing x in terms of x0, . . . , xn−1 and elements of F
and then finding the corresponding expression in F2. In general, the process for
computing α(u) for u ∈ F ′1 proceeds as follows. First, find the minimal polynomial
p(t) for u over E . This is possible as E has an effective splitting algorithm. Next,
find all the roots of p(t) in F ′1 and all the roots of the corresponding polynomial
p̂(t) in F2. Define α(u) to be any root of p̂(t) not already in the range of α. As F2 is
algebraically closed, there will always be a suitable root for α(u), so in this fashion,
we can define α on all of F ′1. �

The failure of the strong embedding property within the class of computable
algebraically closed fields is a special case of a result of Metakides and Nerode
(see Theorem 4.1 of [6]).

Proposition 8.2. The class of computable algebraically closed fields fails to have
the strong embedding property.

Proof. It suffices to take for F1 the natural copy of the algebraic closure of Q(xi)i∈ω
and for F2 a copy of the same having no infinite computably enumerable set of
algebraically independent elements (such exist by Theorem 3.1 of [6]). Then there
cannot be a computable embedding α : F1 → F2 as else the hypotheses on F2

would be violated. �

9. Other Examples and Open Questions

The classes of computable algebraic structures already discussed served to demon-
strate that no nontrivial implications hold between the strong embedding property,

EMBEDDINGS OF COMPUTABLE STRUCTURES 13

the weak embedding property, the weak domain embedding property, and the weak
range embedding property. There are many other examples that could have been
used to make some of these separations. We state additional examples here, none
of which are deep.

Proposition 9.1. If S is a computably categorical structure, then the class of
computable presentations of S has the strong embedding property.

The class of computable presentations of the order type ω has the weak domain
embedding property and the weak range embedding property (and so the weak em-
bedding property) but not the strong embedding property.

Unfortunately, the classes in Section 4 and Section 7 are not as natural as one
might hope. We therefore ask:

Question 9.2. Is there a natural class of computable structures C having the weak
domain embedding property (and so the weak embedding property) but not the
weak range embedding property (and so not the strong embedding property)?

Is there a natural class of computable structures C having the weak embedding
property but neither the weak domain embedding property nor the weak range
embedding property (and so not the strong embedding property)?

References

[1] Stephen Binns, Bjorn Kjos-Hanssen, Manuel Lerman, James H. Schmerl, and Reed Solomon.

Self embeddings of computable trees. Trans. Amer. Math. Soc., 49:1–37, 2008.
[2] Wesley Calvert, Douglas Cenzer, Valentina Harizanov, and Andrei Morozov. Effective cate-

goricity of equivalence structures. Ann. Pure Appl. Logic, 141(1-2):61–78, 2006.

[3] Denis R. Hirschfeldt, Bakhadyr Khoussainov, Richard A. Shore, and Arkadii M. Slinko. Degree
spectra and computable dimensions in algebraic structures. Ann. Pure Appl. Logic, 115(1-

3):71–113, 2002.
[4] Asher M. Kach and Joseph S. Miller. Embeddings of computable linear orders. In preparation.

[5] Jussi Ketonen. The structure of countable Boolean algebras. Ann. of Math. (2), 108(1):41–89,

1978.
[6] G. Metakides and A. Nerode. Effective content of field theory. Ann. Math. Logic, 17(3):289–

320, 1979.

[7] R. S. Pierce. Countable Boolean algebras. In Handbook of Boolean algebras, Vol. 3, pages
775–876. North-Holland, Amsterdam, 1989.

[8] Reed Solomon. Π0
1 classes and orderable groups. Ann. Pure Appl. Logic, 115(1-3):279–302,

2002.

School of Mathematics, Statistics, and Operations Research, Victoria University of
Wellington, Wellington 6140, NEW ZEALAND

E-mail address: asher.kach@msor.vuw.ac.nz

Department of Mathematics and Statistics, Coastal Carolina University, Conway,

SC 29526, USA
E-mail address: olevin@coastal.edu

Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA
E-mail address: solomon@math.uconn.edu

