
LIMITWISE MONOTONIC FUNCTIONS, SETS, AND DEGREES
ON COMPUTABLE DOMAINS

ASHER M. KACH AND DANIEL TURETSKY

Abstract. We extend the notion of limitwise monotonic functions to include
arbitrary computable domains. We then study which sets and degrees are
support increasing (support strictly increasing) limitwise monotonic on various
computable domains.

As applications, we provide a characterization of the sets S with computable
increasing η-representations using support increasing limitwise monotonic sets
on Q and note relationships between the class of order-computable sets and the
class of support increasing (support strictly increasing) limitwise monotonic
sets on certain domains.

1. Introduction

Limitwise monotonic functions have become an increasingly prominent tool in
the literature, with applications in linear orders (see [1], [5], and [8]), computable
model theory (see [2], [6] and [10]), and computable algebra (see [7] and [9]), for
example. In all this work, the limit functions have domain ω and the approximation
functions have domain ω × ω.

In this paper, we make the natural extension of limitwise monotonic functions
to arbitrary computable domains. Though no new limitwise monotonic sets are
introduced (as any computable linear order has a presentation with universe ω),
additional structure is produced when certain natural properties are required of the
limit function.

After providing necessary background definitions (Section 2), we review known
results and demonstrate a basis result for limitwise monotonic sets (Section 3).
We show that new support increasing (support strictly increasing) limitwise mono-
tonic sets are introduced when transitioning from ωα to ωα+1 (Section 4.1), while
no new support increasing (support strictly increasing) limitwise monotonics sets
are introduced when transitioning from ω∗ · ω to Q (Section 4.2). We then study
which sets and degrees are support increasing (support strictly increasing) limitwise
monotonic on the rationals (Section 5) and on well-orders (Section 6). Lastly, as
applications, we provide a characterization of the sets with computable increasing η-
representations using support increasing limitwise monotonic sets on Q (Section 7)
and study the relationship between the order-computable sets and the support in-
creasing (support strictly increasing) limitwise monotonic sets on various domains
(Section 8). We finish with open questions (Section 9).

Key words and phrases. limitwise monotonic function, η-representation.
We thank the anonymous referee for his/her invaluable comments and suggestions. We also

thank Joseph Miller for insightful conversations and allowing us to include Theorem 3.5 and
Andrey Frolov and Maxim Zubkov for comments and corrections.

1

2 KACH AND TURETSKY

2. Background

We begin by introducing some requisite terminology.

Definition 2.1. Let D = (D :≺) be a linear order. If F : D → ω is any total
function, the set supp(F) = {x ∈ D : F (x) > 0} is the support of F .

A total function F : D → ω is support increasing (support strictly increasing)
if F satisfies F (x) ≤ F (y) (F (x) < F (y)) whenever x ≺ y and x, y ∈ supp(F), the
range of F is unbounded, and supp(F) has order type ω.

Definition 2.2. Let D = (D :≺) be a fixed computable presentation of a com-
putable linear order. A function F : D → ω is d-limitwise monotonic if there is a
total d-computable function f : D × ω → ω satisfying f(x, s) ≤ f(x, s + 1) such
that F (x) = lims f(x, s) exists for all x ∈ D.

A set S ⊆ ω is a (support increasing / support strictly increasing) d-limitwise
monotonic set on D if there is a (support increasing / support strictly increasing)
d-limitwise monotonic function F on D whose range is S ∪ {0}.

A degree a is a (support increasing / support strictly increasing) d-limitwise
monotonic degree on D if there is a set S ∈ a that is a (support increasing /
support strictly increasing) d-limitwise monotonic set on D.

The function f(x, s) is a (support increasing / support strictly increasing) d-
limitwise monotonic approximation on D for S.

Definition 2.3. Let D be a fixed computable presentation of a computable linear
order. Denote by LMd(D) the class of d-limitwise monotonic sets on D; denote
by SILMd(D) the class of support increasing d-limitwise monotonic sets on D;
and denote by SSILMd(D) the class of support strictly increasing d-limitwise
monotonic sets on D.

Definition 2.2 is a generalization of a definition introduced by Khisamiev in [7]
to an arbitrary domain rather than ω. For simplicity, we state and prove all re-
sults for the special case when d = 0; we also omit reference to the degree d.
This causes no harm as all of our results relativize in the obvious straightforward
manner. For notational clarity, we will maintain the convention of using uppercase
characters (i.e., F , G, Φ) for limit functions and lowercase characters (i.e., f , g, ϕ)
for approximation functions.

It is easy to see that the limitwise monotonic sets on an arbitrary computable
linear order D coincide exactly with the limitwise monotonic sets on ω. We thus
speak of limitwise monotonic sets rather than limitwise monotonic sets on D for
some D. This ambiguity is not possible, as we will show, when the requirement of
being support increasing or support strictly increasing is added.

If D is a linear order, we denote by D∗ the reverse linear order. Thus, for
example, ω∗ denotes the order type of the negative integers. If D1 and D2 are
linear orders, we denote by D1 · D2 the product of D1 and D2, i.e., D2 many copies
of D1 whose points are indexed by a pair (u, v), with u ∈ D2 giving the copy of D1

and v ∈ D1 giving the location within the copy of D1.

3. Limitwise Monotonic Sets and Degrees

Before our study of limitwise monotonic sets on computable linear orders, we
review literature results on limitwise monotonic sets and degrees and extend this
body of work. Previous work has noted various constraints can be placed on the

LIMITWISE MONOTONICS ON COMPUTABLE DOMAINS 3

limitwise monotonic function. For example, the following result of Harris gives that
any limitwise monotonic set has an injective limitwise monotonic function.

Theorem 3.1 ([5]). If A is an infinite limitwise monotonic set, then the witnessing
limitwise monotonic function can be chosen to be injective.

Another known result is that one can pass from a limitwise monotonic set to a
subset that is support strictly increasing limitwise monotonic on ω.

Theorem 3.2. If A is an infinite limitwise monotonic set, then some B ⊆ A is a
support strictly increasing limitwise monotonic set on ω.

Other results aim towards understanding which sets are limitwise monotonic.
Since every limitwise monotonic set is Σ0

2, the following two contrasting results
situate the limitwise monotonic sets within the Turing degrees.

Theorem 3.3 ([5]; [13]). Every Σ0
2 degree contains a limitwise monotonic set.

Theorem 3.4 ([10]). There is a ∆0
2 set that is not limitwise monotonic.

Beyond noting that the non-limitwise monotonic ∆0
2 set can be made low ([6]),

the interaction between limitwise monotonic sets and other complexity classes has
not been well-studied. Hirschfeldt, R. Miller, and Podzorov suggest that there are
1-random sets that are limitwise monotonic (see [6]). We demonstrate a much
stronger result that yields this as a corollary.

Theorem 3.5 (J. Miller). If P ⊆ 2ω is any Π0
1 class containing no finite sets,

then P contains a limitwise monotonic set.

Proof. We identify a subset of ω with its characteristic function and a characteristic
function with its path in 2ω. Letting {Ps}s∈ω be a computable sequence of clopen
sets such that P =

⋂
s∈ω Ps, we construct an infinite path σ in P using infinitely

many strategies. The (i + 1)st strategy at stage s will compute a finite approxima-
tion σi+1

s of σ extending σi
s by some non-zero length and will set the values of the

limitwise monotonic approximation on part of its domain.

Strategy i + 1: The action by Strategy i + 1 at stage s + 1 is as follows:
(1) Find the least k ≥ max

{∣∣σi
s+1

∣∣ ,
∣∣σi+1

s

∣∣} such that there exists τ ∈ Ps

properly extending σi
s+1 with |τ | = k + 1 and τ(k) = 1.

(2) Choose σi+1
s+1 as the lexicographically least of all such τ of length k + 1.

(3) If σi+1
s+1 = σi+1

s , define Ai
s+1 = Ai

s. Put f(x, s + 1) = f(x, s) for all x ∈
Ai

s ∪ {2(i + 1)}.
Otherwise, let {c0 < c1 < · · · < cn−1} be the set of all c such that

|σi
s+1| ≤ c < k and σi+1

s+1(c) = 1. Let {ai
0, a

i
1, . . . , a

i
n−1} consist of the

next n odd numbers not already in the support of F . Define Ai
s+1 =

Ai
s ∪ {ai

0, a
i
1, . . . , a

i
n−1}. Put f(x, s + 1) = k for all x ∈ Ai

s ∪ {2(i + 1)} and
put f(ai

j , s + 1) = cj for all 0 ≤ j < n.

Construction: At stage s, Strategy i runs for each i < s as described. When
Strategy i is first run, it is initialized with σi

s = ε and Ai
s = ∅, where ε is the empty

string.

Verification: Since Ps was clopen, the extension σi+1
s+1 must exist. A simple argu-

ment by induction demonstrates that σi+1 := lims σi+1
s exists. As σi (σi+1 and

4 KACH AND TURETSKY

σi ∈ P for all i, we have that σ := limi σi is an infinite path in P . Moreover, the
function F is a limitwise monotonic function for the characteristic function of this
path. �

As there are Π0
1 classes containing only 1-random sets or DNR2 sets, for example,

we immediately obtain the following corollaries.

Corollary 3.6. There is a 1-random set A that is limitwise monotonic.

Corollary 3.7. There is a DNR2 set A that is limitwise monotonic.

4. Domain Dependence

When studying support increasing (support strictly increasing) limitwise mono-
tonic functions on computable domains, the smallest non-trivial domain choice is ω.
At the opposite extreme are the rationals Q. In between, of course, are a myriad
of domain choices. Certain domain transitions introduce new sets whereas others
introduce no new sets. Before studying these transitions (Section 4.1 and Sec-
tion 4.2), we begin with propositions that apply in a much more general context.
As both are easy, we defer the proofs to the reader.

Proposition 4.1. Let D = (D :≺) be a computable linear order. Then there is
a computable enumeration {ϕi}i∈ω of total computable functions ϕi : D × ω → ω
containing an approximation to every limitwise monotonic function on D and with
the property that ϕi(d, s) ≤ ϕi(d, t) whenever s < t.

Moreover, if containing approximations to the support increasing (support strictly
increasing) limitwise monotonic functions is sufficient, the sequence can be chosen
so that ϕi satisfies ϕi(d, s) ≤ ϕi(d′, s) (ϕi(d, s) < ϕi(d′, s)) whenever d ≺ d′.

Proposition 4.2. Let D1 and D2 be computable linear orders such that D1 com-
putably embeds into D2. If S is a support increasing (support strictly increasing)
limitwise monotonic set on D1, then S is a support increasing (support strictly
increasing) limitwise monotonic set on D2.

We also show that the support increasing (support strictly increasing) limitwise
monotonic sets are a proper subset of the limitwise monotonic sets. The proof,
though injury-free, contains key ideas that will manifest themselves throughout the
paper.

Theorem 4.3. The classes SILM(Q) and LM satisfy SILM(Q) (LM.

Proof. We build an approximation function f : ω×ω → ω to a limitwise monotonic
set A that diagonalizes against all support increasing limitwise monotonic functions
on Q. We fix a computable enumeration {ϕi}i∈ω of total computable functions with
domain Q×ω as in Proposition 4.1, with the property ϕi(d, s) ≤ ϕi(d′, s) whenever
d ≺ d′.

We describe the general strategy to defeat an individual function ϕi, i.e., to
assure that ϕi is not a support increasing limitwise monotonic approximation on Q
for A.

Strategy i: The general strategy to ensure that A is not the range of Φi is as follows:
(1) Set a counter k = ki to zero.
(2) Put f(〈i, k〉 , s) = 2i.
(3) Wait for ϕi(q, s) = 2i for some q ∈ Q.

LIMITWISE MONOTONICS ON COMPUTABLE DOMAINS 5

(4) Put f(〈i, k〉 , s) = 2i + 1.
(5) Wait for ϕi(q, s) = 2i + 1.
(6) Increment the counter k and return to Step 2.

Construction: At stage 0, define f(x, s) = 0 for all x ∈ ω. At stage s + 1, start
working to satisfy Strategy s as described. Define the value of f(x, s + 1) to be
f(x, s) on any integer x for which the value of f(x, s+1) is not otherwise explicitly
defined by an active strategy.

Verification: Since there is no injury in the construction, it suffices to note that
every strategy succeeds. There are several possible outcomes for Strategy i.

(a) The strategy spends cofinitely many stages waiting at Step 3. Then 2i ∈ A
and 2i 6∈ range(Φi).

(b) The strategy spends cofinitely many stages waiting at Step 5. Then 2i 6∈ A
and 2i ∈ range(Φi).

(c) The strategy visits Step 6 infinitely often. Then Φi is not a support increas-
ing limitwise monotonic function on Q, as the rationals q found in Step 3
form an infinite decreasing sequence, and thus the support does not have
order type ω.

As Strategy i succeeds in all cases, we conclude that f(x, s) is a limitwise monotonic
set defeating every ϕi. Thus the range of F suffices to demonstrate the inclusion is
strict. �

By Proposition 4.2, it follows that the class of support increasing (support strictly
increasing) limitwise monotonic sets (on any domain) is a proper subset of the
limitwise monotonic sets.

4.1. Domain Transitions Increasing the Class of Sets. The well-orders in-
troduce new support increasing (support strictly increasing) limitwise monotonic
sets when transitioning from a well-order to a suitable larger well-order.

Theorem 4.4. For any computable ordinal α, there is a set A ∈ SSILM(ωα+1)
with A 6∈ SILM(ωα).

Proof. We build an approximation function f : ωα+1×ω → ω to a support strictly
increasing limitwise monotonic set A on ωα+1 that diagonalizes against all sup-
port increasing limitwise monotonic approximations on ωα. We fix a computable
enumeration {ϕi}i∈ω of partial computable functions with domain ωα × ω as in
Proposition 4.1.

We describe the general strategy to defeat an individual function ϕi, i.e., to
assure that ϕi is not a support increasing limitwise monotonic approximation on ωα

for A.

Strategy i: The general strategy to ensure that A is not the range of Φi is as follows:
(1) Choose x large, i.e., two greater than any number already used in the

construction. Put f(ωα(x + 1), s) = x.
(2) As s increases, search for an ordinal β0 such that ϕi(β0, s) = x.
(3) Upon finding an ordinal β0 such that ϕi(β0, s) = x, switch to putting

f(wα(x + 1), s) = x + 1.
(4) As s increases, wait for ϕi(β0, s) ≥ x + 1.
(5) Upon finding ϕi(β0, s) ≥ x + 1, put f(ωα(x) + β0 + 1, s) = x.

6 KACH AND TURETSKY

(6) As s increases, search for an ordinal β1 < β0 such that ϕi(β1, s) = x.
(7) Upon finding an ordinal β1 < β0 with ϕi(β1, s) = x, increase by one the

value of f(γ, s) for all ordinals γ > ωα(x) already in the support. Reset
Strategy j for all active j > i and return to Step 4 with β1 and ωα(x)+β0+1
assuming the role of β0 and ωα(x + 1), respectively.

Construction: At stage 0, define f(β, 0) = 0 for all β ∈ ωα+1. At stage s + 1, start
working to satisfy Strategy s as described. Define the value of f(β, s + 1) to be
f(β, s) on any ordinal β for which the value of f(β, s+1) is not otherwise explicitly
defined by an active strategy.

Verification: We verify the success of the construction in a sequence of claims.

Claim 4.4.1. Strategy i reaches Step 7 at most finitely often.

Proof. We assume Strategy j reaches Step 7 at most finitely often for all j < i
and show that Strategy i reaches Step 7 at most finitely often. From the inductive
hypothesis, we have Strategy j reaches Step 7 only finitely many times before the
last time it is itself reset; we therefore can assume it will never be reset again. The
claim then follows for if Step 7 were reached infinitely often, there would be an
infinite descending sequence in ωα, an impossibility. �

Claim 4.4.2. The function f is a support strictly increasing limitwise monotonic
approximation on ωα+1.

Proof. That f is a total, computable function is immediate. By construction, the
function f also satisfies f(β, s) ≤ f(β, s + 1) for all β ∈ ωα+1 and s ∈ ω. We
note that F (β) = lims f(β, s) exists for every ordinal β ∈ ωα+1 as a consequence
of Claim 4.4.1 together with the fact that if β is in the support of f at stage s,
then any strategy initialized after stage s will effect the value of f only at ordinals
β′ > β.

We argue by induction on s that f is support strictly increasing at every stage
by considering separately the cases when the value of f(γ, s) changes for some
ordinal γ. A new ordinal can appear in the support of f by Step 1 or Step 5; in
either case, the choice of x large assures that f is support strictly increasing at
stage s + 1 if it was at stage s. The value of f can increase by Step 3; the choice
of x large by other strategies again assures that f is support strictly increasing at
stage s+1 if it was at stage s. The value of f can increase by one at many ordinals
by Step 7, but since this happens on an end segment of the support, again f is
support strictly increasing at stage s + 1 if it was at stage s. �

Claim 4.4.3. Strategy i successfully defeats ϕi.

Proof. There are several possible outcomes for Strategy i, noting that Strategy i
cannot reach Step 7 infinitely often by Claim 4.4.1.

(a) The strategy waits at Step 2 forever. Then x ∈ A and x 6∈ range(Φi).
(b) The strategy waits at Step 4 forever. Then x 6∈ A and x ∈ range(Φi).
(c) The strategy waits at Step 6 forever. Then x ∈ A and either x 6∈ range(Φi)

or Φi is not a support increasing limitwise monotonic function on ωα.
As Strategy i succeeds in all cases, we conclude that ϕi cannot witness that S is a
support increasing limitwise monotonic set on ωα. �

LIMITWISE MONOTONICS ON COMPUTABLE DOMAINS 7

From the claims, we conclude that f(β, s) is a support strictly increasing limit-
wise monotonic approximation on ωα+1 defeating every ϕi. Thus taking A to be
the range of F suffices. �

Remark 4.5. If we only wish a set A ∈ SILM(ωα+1) with A 6∈ SILM(ωα), the
argument can be altered to be injury-free. Rather than increase the value of f(γ, s)
for appropriate γ, we simply have Strategy i operate with the values of 2i and 2i+1.

If we instead wish a set A ∈ SSILM(ωγ) with A 6∈ SILM(wα) for any α < γ, it
suffices to take the computable enumeration {ϕi}i∈ω to include all total computable
approximation functions on ωα × ω for all α < γ.

We state the latter part of the remark as a corollary, adding an additional ob-
servation as well.

Definition 4.6. If γ is a limit ordinal, let Dγ be the linear order

Dγ :=
∑

α<γ∗

ωα = · · ·+ ωα + · · ·+ ω2 + ω + 1.

Corollary 4.7. If γ is a computable limit ordinal, then

∪α<γSILM(ωα) = SILM(Dγ) (SILM(ωγ)

and

∪α<γSSILM(ωα) = SSILM(Dγ) (SSILM(ωγ).

Proof. The equalities follow from Proposition 4.2 and the fact that any support
increasing (support strictly increasing) function on Dγ has support on an ordinal
less than ωγ . The proper containments follow similarly with the comments in
Remark 4.5. �

4.2. Domain Transitions Not Increasing the Class of Sets. Having shown
that new support increasing (support strictly increasing) limitwise monotonic sets
are introduced when transitioning from well-orders to sufficiently larger well-orders,
we turn to demonstrating that there is no need to transition to Q to obtain all
support increasing (support strictly increasing) limitwise monotonic sets on a com-
putable domain.

Theorem 4.8. The equalities

SILM(ω∗ · ω) = SILM(Q) and SSILM(ω∗ · ω) = SSILM(Q)

hold.

Proof. The forward inclusions follows from Proposition 4.2. For the reverse in-
clusions, let f(r, s) be a support increasing (support strictly increasing) limit-
wise monotonic approximation on Q for S. We will define a computable function
g : (ω∗ · ω)× ω → ω that will be a support increasing (support strictly increasing)
limitwise monotonic approximation on ω∗ · ω for S.

We view the domain ω∗ · ω of G as being ω many copies of ω∗ whose points are
indexed by a pair (u, v), with u ∈ Z≥0 giving the copy of ω∗ and v ∈ Z≤0 giving
the location within the copy of ω∗.

The idea is to approximate the support of F . When a rational r ∈ Q appears
in the support, we assign it to a point in (ω∗ · ω) in an order-preserving manner.
More specifically, if the rational number r appearing in the support is greater than

8 KACH AND TURETSKY

all rationals already known to be in the support, we pick a large number u and
assign r to (u, 0); otherwise r < r′ for some rational r′ already known to be in the
support. We assign r to the pair immediately to the left of the point to which r′

was assigned, sliding assignments to the left if there are any conflicts.
In order to keep track of the assignments between rationals q and pairs (u, v),

we construct partial functions hs : Q → (ω∗ · ω) with domain Ts at stage s.

Construction: Fix an effective enumeration Q = {rn}n∈ω of the rational numbers.
At stage 0, we define T0 = ∅ and h0 : T0 → (ω∗ · ω) as the empty function. At

stage s+1, we consider the set Ts+1 = {rn : n ≤ s and f(rn, s) > 0}. If Ts+1 = Ts,
we let hs+1 = hs.

Otherwise, we let Ts+1\Ts = {ri1 < ri2 < · · · < rin}. In n substages, one for each
rational rij , we extend the domain of hs to include rij by making use of temporary
auxiliary functions hj

s+1. We let h0
s+1 = hs. At substage j for 1 ≤ j ≤ n, we define

a function hj
s+1 with domain Ts ∪ {ri1 , . . . , rij}.

(1) If rij > r for every rational r in the domain of hj−1
s+1, we let u be largest such

that (u, v) is in the range of hj−1
s+1 for some v. We then define hj

s+1(rij) =
(u + 1, 0) and hj

s+1(r) = hj−1
s+1(r) otherwise.

(2) Otherwise, we let r′ be least so that rij < r′ ∈ dom(hj−1
s+1), say hj−1

s+1(r
′) =

(u, v). We define hj
s+1(rij) = (u, v − 1); then, for each v′′ ≤ v − 1 where

hj−1
s+1(r

′′) = (u, v′′) has been defined for some rational r′′ ∈ dom(hj−1
s+1),

we let hj
s+1(r

′′) = (u, v′′ − 1). Since hj−1
s+1 has finite domain, this process

terminates. For all other r ∈ dom(hj−1
s+1), we let hj

s+1(r) = hj−1
s+1(r).

After the n substages are complete, we define hs+1 = hn
s+1. Note that hs+1 is

order-preserving and dom(hs) ⊆ dom(hs+1). For each rational r ∈ Ts+1, we define
g(hs+1(r), s+1) = max{f(r, s+1), g(hs+1(r), s)}; on all other rationals r, we define
g(r, s + 1) = 0.

Verification: We begin by noting that, assuming G((u, v)) exists for all (u, v), the
function g((u, v), s) is a limitwise monotonic approximation on ω∗ · ω and that
each hs is order-preserving by construction. We consider the set T =

⋃
Ts.

Claim 4.8.1. For any rational r ∈ T , lims hs(r) exists. Moreover, for each (u, v) ∈
ω∗ · ω, there exist at most finitely many rationals r with hs(r) = (u, v) for some s.

Proof. We show that hs(r) and hs+1(r) cannot differ more than finitely often. We
note that if hs(r) = (u, 0) for some u, then ht(r) = (u, 0) for all t ≥ s, and
so lims hs(r) exists. We therefore assume that hs(r) = (u, v) with v 6= 0 and
suppose hs(r) 6= hs+1(r). In order for this to be the case, there must be a rational
q ∈ Ts+1\Ts with r < q < h−1

s ((u, 0)) in the support of F . Since F is support
increasing, the set {r ∈ Q : r < q and r ∈ supp(F)} is finite for each q ∈ Q. Thus
lims hs(r) exists.

By a similar argument, for each (u, v) ∈ ω∗ ·ω, there exist at most finitely many
rationals r with hs(r) = (u, v) for some s. �

As a consequence of Claim 4.8.1 and F being support increasing, we can de-
fine h(r) = lims hs(r) and G(x) = lims g(x, s), with these limits existing for all
rationals r and pairs (u, v) ∈ ω∗ · ω.

We continue with a claim asserting that G ◦ h = F on the domain of h.

LIMITWISE MONOTONICS ON COMPUTABLE DOMAINS 9

Claim 4.8.2. For any rational r ∈ T , we have G(h(r)) = F (r).

Proof. Fixing a rational r ∈ T , by Claim 4.8.1, there is a least stage ŝ satisfying
hŝ(r) = h(r). We note it follows that hs(r) = h(r) for all s ≥ ŝ; denote this common
value by (u, v). As a consequence of the definition of g((u, v), s), it suffices to show
the inequality g((u, v), ŝ−1) ≤ F (r). If (u, v) ∈ range(hŝ−1), then g((u, v), ŝ−1) is
f(q, t) for some q < r and t ≤ ŝ. As f(q, t) ≤ F (q) since f is increasing in the second
coordinate and F (q) ≤ F (r) since F is support increasing and F (r) 6∈ {0, 1}, we
have the desired inequality. If instead (u, v) 6∈ range(hŝ−1), then g((u, v), ŝ−1) = 0
and the desired inequality holds. Thus g((u, v), ŝ − 1) ≤ F (r), and so G(r) =
G((u, v)) = F (r). �

As g(x, s) = 0, and therefore G(x) = 0, whenever x 6∈ range(h), we conclude
that g is a support increasing (support strictly increasing) limitwise monotonic
approximation on ω∗ · ω for S. �

Though unnecessary for Theorem 4.8, we make the observation that the com-
putable embedding of ω∗ · ω into the rationals Q can be made to be cofinal in Q,
yielding the following as a corollary.

Corollary 4.9. If S ⊆ ω is a support increasing (support strictly increasing) lim-
itwise monotonic set on Q, then there is a support increasing (support strictly in-
creasing) limitwise monotonic set on Q whose support is cofinal in Q.

Finally, as a corollary to Theorem 4.8, we have that ω∗ ·ω is a minimal domain D
with the property that SILM(D) = SILM(Q) or SSILM(D) = SSILM(Q). We
recall that linear orders D1 and D2 are equimorphic if D1 order embeds into D2

and D2 order embeds into D1.

Theorem 4.10. Let D be a computable linear order which order embeds into ω∗ ·ω.
If SILM(D) = SILM(Q) or SSILM(D) = SSILM(Q), then D is equimorphic
with ω∗ · ω.

Proof. If D order embeds into ω∗ · ω, then D is of one of the following forms: m,
m + ω∗ · n, m + ω∗ · n + ω, or m + ω∗ · ω, where m and n are integers. The first
and second have no increasing ω sequence, and thus admit no support increasing
(support strictly increasing) functions. For the third, all but finitely much of the
support of any support increasing (support strictly increasing) function must live in
the ω, and thus SILM(D) = SILM(ω) 6= SILM(Q) (SSILM(D) = SSILM(ω) 6=
SSILM(Q)). Finally, any linear order of the form m + ω∗ · ω is equimorphic with
ω∗ · ω. �

5. Limitwise Monotonic Functions on Q

Having compared the class of support increasing (support strictly increasing)
limitwise monotonic sets for various domains, we turn to studying these classes
for specific domains, beginning with Q. The support increasing limitwise mono-
tonic sets and degrees on Q and the support strictly increasing limitwise monotonic
sets and degrees on Q behave very differently. The former is closed under unions
and joins, but the latter is not. Every ∆0

2 degree is support increasing limitwise
monotonic on Q, but not every ∆0

2 degree is support strictly increasing limitwise
monotonic on Q.

Theorem 5.1. The class SILM(Q) is closed under finite unions and finite joins.

10 KACH AND TURETSKY

Proof. Let A and B be support increasing limitwise monotonic sets on Q with limit
approximation functions fA and fB , respectively. We define a support increasing
limitwise monotonic approximation fA∪B on Q for A ∪ B to show closure under
(finite) union; for (finite) join, it suffices to observe that the sets 2A = {2a : a ∈ A}
and 2B + 1 = {2b + 1 : b ∈ B} are support increasing limitwise monotonic sets
on Q, and thus so is A⊕B = 2A ∪ (2B + 1).

The idea when defining fA∪B is to add a new rational qk in the support of
FA∪B in an order-preserving manner whenever a new rational qi is found in the
support of FA. Then, at all future stages, we will have qk associated with qi so that
fA∪B(qk, s) = fA(qi, s). When a new rational qj is found in the support of FB , a
new rational qk is added in the support of FA∪B in an order-preserving manner and
associated with qj . However if the approximation fB(qj , s) increases too quickly or
too slowly, the rational qk becomes associated with some element qi in the support
of FA and a new rational qk is added to the support of FA∪B and associated with qj .

As preparation, fix effective enumerations of the rationals numbers QA = {qi}i∈ω,
QB = {qj}j∈ω, and QA∪B = {qk}k∈ω. Note that we view the domains QA

of fA, QB of fB , and QA∪B of fA∪B as disjoint. For notational convenience, we
define fZ(q, s) to be fA(q, s) if q ∈ QA and fB(q, s) if q ∈ QB . We denote the
sets {qi ∈ QA : fA(qi, s) > 0 and i ≤ s}, {qj ∈ QB : fB(qj , s) > 0 and j ≤ s},
and {qk ∈ QA∪B : fA∪B(qk, s) > 0 and k ≤ s} by supp(fA, s), supp(fB , s), and
supp(fA∪B , s), respectively, and assume that at any stage s, these sets are finite.

In order to keep track of the association between rationals in the support of FA, FB ,
and FA∪B , auxiliary functions hs for s ∈ ω are used.

Construction: At stage 0, we define fA∪B(qk, 0) = 0 for all qk ∈ QA∪B and h0 as
the empty function.

At stage s+1, we act to define fA∪B(qk, s+1) for qk ∈ supp(fA∪B , s) and to add
rationals q to supp(fA∪B) to represent rationals qi ∈ supp(fA, s + 1)\supp(fA, s)
and qj ∈ supp(fB , s + 1)\supp(fB , s).

Begin by considering all qk ∈ supp(fA∪B , s) such that hs(qk) ∈ QA. For each
such qk, put fA∪B(qk, s + 1) = fA(hs(qk), s + 1) and define hs+1(qk) = hs(qk).

For each qk ∈ supp(fA∪B , s) such that hs(qk) ∈ QB , do the following:

• If there is a q` ∈ supp(fA∪B , s) with hs(q`) ∈ QA, q` < qk, and fA(hs(q`), s+
1) > fB(hs(qk), s+1), let q0 be the greatest such q`. Put fA∪B(qk, s+1) =
fA(hs(q0), s + 1) and define hs+1(qk) = hs(q0). Choose m least such that
qm 6∈ supp(fA∪B , s), m has not been chosen by some other qk this stage, and
putting fA∪B(qm, s + 1) = fB(hs(qk), s + 1) keeps fA∪B order-preserving;
put fA∪B(qm, s + 1) = fB(hs(qk), s + 1), and define hs+1(qm) = hs(qk).

• If there is a q` ∈ supp(fA∪B , s) with hs(q`) ∈ QA, q` > qk, and fA(hs(q`), s+
1) < fB(hs(qk), s + 1), let q0 be the least such q`. Put fA∪B(qk, s + 1) =
fA(hs(q0), s + 1) and define hs+1(qk) = hs(q0). Choose m least such that
qm 6∈ supp(fA∪B , s), m has not been chosen by some other qk this stage, and
putting fA∪B(qm, s + 1) = fB(hs(qk), s + 1) keeps fA∪B order-preserving;
put fA∪B(qm, s + 1) = fB(hs(qk), s + 1), and define hs+1(qm) = hs(qk).

• Otherwise, put fA∪B(qk, s + 1) = fB(hs(qk), s + 1) and define hs+1(qk) =
hs(qk).

LIMITWISE MONOTONICS ON COMPUTABLE DOMAINS 11

Towards representing rationals qi ∈ supp(fA, s+1)\supp(fA, s) and qj ∈ supp(fB , s+
1)\supp(fB , s), add a new element for each in the support of FA∪B . More specif-
ically, for each such qi or qj (hereout termed q), choose k least so that qk 6∈
supp(fA∪B , s) and putting fA∪B(qk, s+1) = fZ(q, s+1) keeps fA∪B order-preserving;
put fA∪B(qk, s + 1) = fZ(q, s + 1) and define hs+1(qk) = q.

Finally, for all qk ∈ QA∪B for which fA∪B(qk, s+1) has not already been defined,
put fA∪B(qk, s + 1) = 0.

Verification: We demonstrate that fA∪B is a support increasing limitwise monotonic
approximation on Q for A∪B. By construction, the approximation function fA∪B

is support increasing; its range at stage s is also the union of the ranges of fA

and fB at stage s.
Also note that hs(qk) can only change from an element of QB to an element of QA,

and thus can change at most once. Thus lims hs(qk) exists for all qk ∈ QA∪B , and
thus since FA(qi) and FB(qk) exist by hypothesis, FA∪B(qk) = lims fA∪B(qk, s) =
lims fZ(hs(qk), s) exists for all qk.

So FA∪B is total and its range is contained in A∪B. All that remains to show is
that the reverse inclusion holds. For elements in A, this is clear. For qj ∈ supp(FB)
with FB(qj) ∈ B\A, let a0 be the greatest element of A less than FB(qj) (if there is
one), and a1 be the least element of A greater than FB(qj). Choose s0 sufficiently
large such that fA(a0, s0) = FA(a0), fA(a1, s0) = FA(a1) and qj ∈ supp(fA, s0).
Then there is some qk such that hs0(qk) = qj , and for all s > s0, hs(qk) = qj (any
element that forced a change in hs would violate fA being order preserving). Thus
FA∪B(qk) = FB(qj). �

Unlike SILM(Q), the class SSILM(Q) is not closed under unions or joins.

Theorem 5.2. The class SSILM(Q) is not closed under unions or joins.

Proof. We construct support strictly increasing limitwise monotonic approxima-
tions fA and fB on ω for sets A and B so that A ∪ B 6∈ SSILM(Q), yielding a
stronger result than stated. As the construction will have A ⊆ {2n : n ∈ ω} and
B ⊆ {2n + 1 : n ∈ ω}, this also establishes the lack of closure of SSILM(Q) under
joins.

The construction will diagonalize against all candidate support strictly increasing
limitwise monotonic functions Φi on Q for A ∪ B. The basic idea is to choose an
element in the support of ϕi with current value in A and use an element of B to
force ϕi to increase its approximation. After ϕi matches this challenge by taking a
value in B, an element in A is used to further force ϕi to increase its approximation.
In this manner, the approximation value will be forced to infinity.

Strategy i will work to defeat Φi. The choice of the witness x used to do this
requires discussion. For a given x chosen for this role, it is possible, by examining
the currently active strategies and their work so far, to determine an upper bound m
on the size of the supports of FA and FB below x. Basically, every element of the
support of FA gives rise to at most i many elements in the support of FB when
Strategy i encounters it, and vice versa. Where these new elements will appear
depends on the arrangement of the elements of A and B. This process terminates
as sufficiently many will appear above x.

The combinatorial specifics are unimportant, but the key observation is that m
will not depend on x, and thus we can use m to influence our choice of x. In

12 KACH AND TURETSKY

particular, we choose x ≥ 2m, and whenever we need a new element between two
existing elements of the support, we choose a point midway between them. In this
way, we need never worry about running out of points in the domain of fA and fB .

Further, for a given y, fA(y, ·) and fB(y, ·) will assume at most two nonzero
values, while for the above x, fA(x, ·) will assume only one nonzero value. Thus 2m
is an upper bound on the number of values of A ∪ B beneath FA(x). So if we set
FA(x) ≥ x2 ≥ 22m, we can similarly never worry about running out of values in
the range.

Strategy i: The action taken by Strategy i is as follows:
(1) Choose a large witness x. Let u = x and a ≥ x2 be even, and set fA(u, s) =

a.
(2) Wait for a rational z to appear with ϕi(z, s) = a.
(3) Let {b0 < b1 < · · · < bn} = B � a. Choose v and an odd b with bn < b < a,

such that fB(v, s+1) = b will not violate support strictly increasing. Define
fB(v, s + 1) = b.

(4) Protect B on the interval [b, a] while waiting for the range of ϕi(·, s) to
agree with A ∪B on [b, a].

(5) Let b′ be the least element of B greater than a. Let a′ be the greatest
element of A less than b′. Choose an odd c between a′ and b′, and set
fB(v, s + 1) = c.

(6) Protect A∪B on [b, a] while waiting for ϕi(z, s) = fA(w, s) for some w > u
or ϕi(z, s) = fB(w, s) for some w > v.

(7) If ϕi(z, s) = fA(w, s), return to Step 3 using u = w and a = fA(w, s). If
ϕi(z, s) = fB(w, s), proceed to Step 8 using v = w and b = fB(w, s).

(8) Let {a0 < a1 < · · · < an} = A � b. Choose u and an even a with an < a < b,
such that fA(u, s+1) = a will not violate support strictly increasing. Define
fA(u, s + 1) = a.

(9) Protect A on [a, b] while waiting for the range of ϕi(·, s) to agree with A∪B
on [a, b].

(10) Let a′ be the least element of A greater than b. Let b′ be the greatest
element of B less than a′. Choose an even c between b′ and a′, and set
fA(u, s + 1) = c.

(11) Protect A∪B on [a, b] while waiting for ϕi(z, s) = fA(w, s) for some w > u
or ϕi(z, s) = fB(w, s) for some w > v.

(12) If ϕi(z, s) = fA(w, s), return to Step 3 using u = w and a = fA(w, s). If
ϕi(z, s) = fB(w, s), return to Step 8 using v = w and b = fB(w, s).

Strategy i can have several possible outcomes:
w2: Wait forever at Step 2. Then a ∈ A ∪B, while a 6∈ range Φi.
w4: Wait forever at Step 4. Then (A ∪B) � [b, a] 6= range Φi � [b, a].
w6: Wait forever at Step 6. If Φi(z) = a, then (A ∪ B) � [b, a] contains fewer

elements than range Φi � [b, a]. If Φi(z) 6= a, then Φi(z) 6∈ A ∪B.
w9: Wait forever at Step 9. Then (A ∪B) � [a, b] 6= range Φi � [a, b].

w11: Wait forever at Step 11. If Φi(z) = b, then (A ∪ B) � [a, b] contains fewer
elements than range Φi � [a, b]. If Φi(z) 6= b, then Φi(z) 6∈ A ∪B.

∞: Return infinitely often to Steps 7 or 12. Then Φi(z) ↑.
Unfortunately, there are several ways that strategies can injure each other. If

strategy i wishes to add a value to an interval protected by a strategy j < i,

LIMITWISE MONOTONICS ON COMPUTABLE DOMAINS 13

strategy i is temporarily injured. It begins again with a new large x. If the interval
in question ever becomes unprotected, it discards this latter attempt and returns
to the current one.

If a Strategy i is attempting to protect an interval via Step 6, note that the
protected interval will contain no elements of B. So no other strategy will feel
compelled to add an element. Thus this protection results in no injuries. Similarly
the protection at Step 11.

If a Strategy i is attempting to protect an interval via Step 4, note that the only
steps at which another strategy might attempt to add an element to B are Steps 3
and 5. Because the only element of B in the interval is the left end-point, Step 5
can always choose an element outside the interval. Thus the only possible violation
comes from another strategy at Step 3.

If a Strategy j < i wishes to add an element to the interval via Step 3, strategy i
is temporarily injured. It begins again with a new large x. If Strategy j ever reaches
Step 5, we require that the c chosen be outside the protected interval, thus allowing
strategy i to discard the latter attempt and return to the current one.

This requirement, however, can result in further injury. Suppose the interval
[b, a] is being protected by Strategy i, and Strategies j0 < j1 < · · · < jn have
placed elements b0, b1, . . . , bn into the interval. When Strategy jk reaches Step 5,
if bk is the rightmost element of B in the interval, it can proceed as normal, and
the result will be that the new c will be chosen outside the interval.

If it is not the rightmost element of B, then what we do next depends on if there
is an l < k with bk < bl. If so, Strategy k is injured until such time as there is not,
beginning again with a new large x. If all the bl > bk come from Strategies jl > jk,
then they are pushed out of the way. Each such jl is forced to choose a cl outside
the interval and set fB(vl, s + 1) = cl. Strategy jk then proceeds with Step 5, and
then the affected jl return to Step 3 (which may result in immediate injury to them,
as jk is now protecting an interval).

Verification: Observe that any injury to Strategy i that is not eventually resolved
can only be the result of some Strategy j < i attaining one of w4, w6, w9 or w11. So
once all Strategies j < i which are going to attain a finite win do so, some instance
of i will be able to act infinitely often, and thus will reach one of the outcomes.
Thus Φi will be defeated. �

Having shown that the classes SILM(Q) and SSILM(Q) behave differently with
respect to closure under unions and joins, we turn to showing that they also behave
differently with respect to representing the ∆0

2 degrees.

Theorem 5.3. Every ∆0
2 degree contains a support increasing limitwise monotonic

set on Q.

Proof. The idea, just as in the proof that every ∆0
2 degree contains a limitwise

monotonic set on ω (see [5] and [13]), is to show that S ⊕ω is a support increasing
limitwise monotonic set on Q for any S in a ∆0

2 degree. Towards this end, fix a
∆0

2 degree d, a set S ∈ d, and a ∆0
2 approximation {Ss}s∈ω to S with S0 = ∅ and

|Ss| < ∞ for all s.
We define a function f : Q × ω → ω that will serve as a support increasing

limitwise monotonic approximation on Q for the set S ⊕ ω ∈ d. The idea will be
to use a sequence of rational numbers (of order type ω) to put 2n + 1 in the range

14 KACH AND TURETSKY

of F for all n and to use the intervals in between these rationals to put 2n in the
range of F if n appears to be in S. When n appears to leave S, we remove 2n from
the range by increasing the value of f to 2n + 1.

Construction: We construct a support increasing limitwise monotonic approxima-
tion on Q in ω many stages by defining f(q, s) for all rationals q at stage s. As
preparation, fix a computable enumeration {qi}i∈ω of Q\N. Let dqie denote the
least non-negative integer greater than qi.

At stage 0, we set f(n, 0) = 2n + 1 for all n ∈ N and f(q, 0) = 0 for all q ∈ Q\N.
At stage s+1, we set f(n, s+1) = 2n+1 for all n ∈ N. The definition of f(qi, s+1)
for qi ∈ Q\N depends on the values of Ss(dqie) and Ss+1(dqie).

(1) If Ss+1(dqie) = 0, we set f(qi, s + 1) = 2dqie+ 1 if qi is in the support of f
and f(qi, s + 1) = 0 otherwise.

(2) If Ss+1(dqie) = 1 and Ss(dqie) = 1, we set f(qi, s + 1) = f(qi, s).
(3) If Ss+1(dqie) = 1 but Ss(dqie) = 0, we set f(qi, s + 1) = 2dqie if i is the

minimal integer j with dqje = dqie and qj not in the support of f ; otherwise,
we set f(qi, s + 1) = f(qi, s).

This completes the construction.

Verification: We note that by construction, we have F (n) = 2n + 1 for all n ∈ N
and f(qi, s) ≤ f(qi, s + 1) and f(qi, s) ∈ {0, 2dqie, 2dqie + 1} for all qi ∈ Q\N. We
therefore need only verify that the range of F is S⊕ω and that every proper initial
segment of the support is finite. Towards showing the former, we note that ∅⊕ω is
a subset of the range of F since F (n) = 2n + 1 for all n ∈ N. Also S⊕∅ is a subset
of the range of F . For if n ∈ S, there is a stage t such that n 6∈ St but n ∈ Ss for
all s > t. At stage t+1, Case 3 will set f(qi, t+1) = 2n for some rational qi. Then
F (qi) = 2n since we will never be in Case 1 again. If instead n 6∈ S, there is a least
stage t such that n 6∈ Ss for all s ≥ t. If t = 0, then 2n is not in the range of F as
we never reach Case 3; if t > 0, then 2n is not in the range of F as we will execute
Case 1 at stage t and never execute Case 3 thereafter.

Finally, every proper initial segment of the support is finite as a consequence of
S(n) = lims Ss(n) existing for all n ∈ ω. More specifically, exactly one new rational
qi ∈ Q\N enters the support of F below an integer k ∈ N exactly when Ss+1(`) = 1
but Ss(`) = 0 for some ` ≤ k. However, there are only finitely many pairs (`, s)
with this property since {Ss}s∈ω was a ∆0

2 approximation. �

In contrast, not every ∆0
2 degree contains a support strictly increasing limitwise

monotonic set on Q.

Theorem 5.4. There is a ∆0
2 degree that is not support strictly increasing limitwise

monotonic on Q.

Proof. We build a ∆0
2 set A such that B 6∈ SSILM(Q) for any set B with 0 <T

B ≤T A. The construction will define a sequence of strings σk,s, with A being given
by

⋃
k σk and σk = lims σk,s. We fix a computable enumeration {ϕe}e∈ω of total

computable functions with domain Q × ω as in Proposition 4.1 and a computable
enumeration {Θi}i∈ω of all Turing functionals.

It suffices for A to satisfying the following requirements.

Requirement Re,i: If B := ΘA
i >T 0, then B 6= range(Φe).

LIMITWISE MONOTONICS ON COMPUTABLE DOMAINS 15

Requirement Pj : That A 6= Θ∅
j .

The strategy to meet Requirement Pj is standard: choose a large witness z, wait
for Θ∅

j (z) to converge, and then define A so that A(z) 6= Θ∅
j (z). The strategy to meet

Requirement Re,i is more complex. Indeed, we use infinitely many Strategies Re,i,m

to assure its satisfaction. The idea is to repeatedly add and remove an element
from B. Each time this is done, the approximation ϕi(x, s) will need to increase
for all x on which Φi is at least the given element, else it will cease to enumerate B.
In this fashion we force Φi(x) to diverge for some x. Requirement Re,i,m will be
responsible for driving Φi(x) up by some amount. Splitting Re,i into the Re,i,m

allows us to assure that A is ∆0
2.

Since we don’t have direct control over the set B, the strategy Re,i searches for
n ∈ ω and σa, σb ⊃ σ such that n ∈ Θσa

i and n 6∈ Θσb
i . If B is noncomputable,

infinitely many n will have such σs. We can then add and remove n from B by
changing the initial segment of A between σa and σb.

Strategy Re,i,m: More specifically, given an initial segment σ of A, the strategy acts
as follows:

(1) Search for σa and σb properly extending σ and n ∈ ω such that Θσa
i (n) ↓= 1

and Θσb
i (n) ↓= 0.

(2a) If m = 0, wait for an x ∈ Q to appear such that ϕe(x, s) = n.
(2b) If m 6= 0, let x be the x used by Strategy Re,i,0. Wait until ϕe(x, s) ≥ n.
(3) Wait for ϕe(x, s) to increase beyond n.
(4) Wait until some Re,i,m+1 node directly descended from the current node is

waiting at Step 2b.
(5) Wait for some y < x to appear with ϕe(y, s) = n.
(6) Wait for ϕe(y, s) to increase beyond n.
(7) Return to Step 4.

Strategy Re,i,m will have the following temporary outcomes.
σa0: The strategy is searching at Step 1.

σa: The strategy is waiting at Step 2a, Step 2b, or Step 5.
σb: The strategy is waiting at Step 3, Step 4, or Step 6.

Strategy Pj will have the following temporary outcomes.

σa0: The strategy is waiting for Θ∅
j (z) to converge, or Θ∅

j (z) ↓= 1.
σa1: Θ∅

j (z) ↓= 0.

Construction: Arrange the strategies on a tree in the usual fashion. If α is a node
at level k of the tree which is active at stage s, let σk,s be the current outcome of α.

Verification: We verify the success of the construction by establishing that a true
path exists and that every requirement is met.

Claim 5.4.1. Every strategy which acts infinitely often spends cofinitely many
stages at some step.

Proof. Since the claim is clear for Strategies Pj , it suffices to consider Strategies
Re,i,m. For a fixed Re,i,m strategy α, let N be the greatest n chosen by an Re,i,m+1

strategy lower on the tree. Every time α reaches Step 7, some new y < x has

16 KACH AND TURETSKY

appeared with ϕe(y, s) ∈ (n, N]. This can happen at most N − n times before
ϕe(x, s) is necessarily greater than N , at which point α will never leave Step 4.
Thus α eventually settles. �

Since a true path exists, for a strategy α along the true path, we can define the
final outcome of α to be whatever temporary outcome it has cofinitely often. It
follows that if α is at level k in the tree, for cofinitely many s the string σk,s will
be set by α. Thus σk = lims σk,s exists.

Claim 5.4.2. Every requirement is met.

Proof. Again the claim is clear for Requirements Pj , so it suffices to consider Re-
quirements Re,i. For a given e and i, if every Re,i,m strategy along the true path
waits forever at Step 4, then lims ϕe(x, s) = ∞ for the x chosen by the Strategy
Re,i,0.

Otherwise, let α be the earliest Re,i,m strategy along the true path not waiting
forever at Step 4. It cannot be waiting forever at Step 2b, as then the Re,i,m−1

strategy would be waiting at some step other than Step 4. If α waits forever
at Step 1, then either ΘA

i is partial or it can be computed from σ, and thus is
computable. If α waits forever at Step 2a or Step 5, then n ∈ ΘA

i , but n 6∈
range(Φe). If α waits forever at Step 3 or Step 6, then n ∈ range(Φe), but n 6∈
ΘA

i . �

Since the P requirements ensure that A is non-computable, the degree of A is
our desired ∆0

2 degree. �

6. Limitwise Monotonic Functions on Well-Orders

Though the inclusions SILM(ωα) (SILM(Q) and SSILM(ωα) (SSILM(Q)
are strict, the classes SILM(ωα) and SSILM(ωα) share some of the properties of
the classes SILM(Q) and SSILM(Q). For example, the class SILM(ωα) is closed
under unions and joins for at least some ordinals α, whereas the class SSILM(ωα)
is never closed under unions and joins. The major difference is that there are ∆0

2

degrees that are not SILM(ωα).

Theorem 6.1. The class SILM(ωγ) is closed under unions and joins if γ is a
computable ordinal satisfying (∀λ < ωγ)[λ2 < ωγ].

By way of illustration, note that the ordinals 1 and ω have this property while
the ordinal 2 does not.

Proof. Let γ be such a computable ordinal, and let A,B ∈ SILM(ωγ) have limit
approximation functions fA and fB . As in Theorem 5.1, we construct a limit
approximation function fA∪B : ωγ × ω → ω for A ∪B. Again the idea is the same,
though the implementation is more complicated. Ordinals in the support of FA are
placed in the support of FA∪B sufficiently spread apart so that there is room to
insert the elements of B in an appropriate place.

As preparation, let {αi}i∈ω and {βi}i∈ω be computable strictly increasing se-
quences of ordinals in the support of FA and FB , respectively. Note that these
sequences are necessarily cofinal in the support. Let ci = min{FA(αi), FB(βi)}.
The definition of fA∪B will be controlled by infinitely many strategies, with Strat-
egy i ensuring that the range of FA∪B is correct on the interval [ci, ci+1].

LIMITWISE MONOTONICS ON COMPUTABLE DOMAINS 17

Strategy i will claim the interval (δi, δi+1] upon which to work, where δ0 = 0 and
δi+1 = δi + εi(εi + 1) + 1 with εi = max{αi, βi}. Note that the assumption on γ
implies δi < ωγ for all i. Strategy i works by placing each element of A at least εi

apart, thus leaving sufficient room for elements of B.

Strategy i: At stage s + 1, the ith strategy defines fA∪B(ξ, s + 1) for every ordinal
ξ ∈ (δi, δi+1] as follows:

(1) If ξ = δi+1, define fA∪B(δi+1, s+1) = ci+1,s+1, where ci+1,s+1 = min{fA(αi+1, s+
1), fB(βi+1, s + 1)} is the current guess for the value of ci+1.

(2) If ξ = δi + εi(α + 1) for some α and fA(α, s + 1) ∈ (ci,s+1, ci+1,s+1), define
fA∪B(ξ, s + 1) = fA(α, s + 1).

(3) If fB(β, s + 1) ∈ (ci,s+1, ci+1,s+1), let α be least such that fA(α, s + 1) ≥
fB(β, s + 1). Note that α ≤ αi+1. Define fA∪B(δi + εi(α) + β + 1, s + 1) =
fB(β, s + 1).

(4) If fA∪B(ξ, s) = 0 and fA∪B(ξ, s + 1) has not been defined by one of the
previous cases, let fA∪B(ξ, s + 1) = 0.

(5) If fA∪B(ξ, s) 6= 0, but fA∪B(ξ, s + 1) has not been defined by one of the
previous cases, let t < s be the last stage at which fA∪B(ξ, t) 6= 0 was
defined by one of the previous cases. Note that this definition was by
Case 2 or Case 3.
(a) If fA∪B(ξ, t) was defined by Case 2, and fA(α, s + 1) is too small (i.e.,

if fA(α, s + 1) ≤ ci,s+1), define fA∪B(ξ, s + 1) = ci,s+1.
(b) If fA∪B(ξ, t) was defined by Case 2, and fA(α, s + 1) is too big (i.e.,

fA(α, s + 1) ≥ ci+1,s+1), define fA∪B(ξ, s + 1) = ci+1,s+1.
(c) If fA∪B(ξ, t) was defined by Case 3 (so ξ = δi + εi(α) + β + 1) and

fB(β, s + 1) is too big (i.e., fB(β, s + 1) ≥ ci+1,s+1 or fB(β, s + 1) >
fA(α, s + 1)), then define fA∪B(ξ, s + 1) = fA∪B(δi + εi(α + 1), s + 1).

(d) If fA∪B(ξ, t) was defined by Case 3 (so ξ = δi + εi(α) + β + 1) and
fB(β, s + 1) is too small (fB(β, s + 1) ≤ ci,s+1 or fB(β, s + 1) ≤
fA(α′, s + 1) for some α′ < α), choose the greatest α′ < α such
that fA∪B(ξ, s) ≤ fA(α′, s + 1) and ci,s+1 < fA(α′, s + 1), and de-
fine fA∪B(ξ, s + 1) = fA(α′, s + 1). If there is no such α, define
fA∪B(ξ, s + 1) = ci,s+1.

Construction: At stage s + 1, each Strategy i for i ≤ s acts as described above to
define fA∪B(ξ, s + 1) for all ξ ∈ (δi, δi+1]. Define fA∪B(ξ, s + 1) = 0 for all ordinals
ξ > δs+1.

Verification: We argue that fA∪B is a support increasing limitwise monotonic ap-
proximation on ωγ for A ∪ B. The construction assures that the approximation
fA∪B satisfies fA∪B(ξ, s) ≤ fA∪B(ξ, s + 1) for all ξ and s and that, if the limit
function exists everywhere, it is support increasing.

In order to show FA∪B(ξ) exists for all ξ ∈ (δi, δi+1], we show fA∪B(ξ, s) is
cofinitely often defined by the same case, from which the result is immediate. If
ξ = δi+1, then f(ξ, s) is defined by Case 1 for all s. If ξ = δi + εi(α + 1) and
FA(α) ∈ (ci, ci+1), then there exists t such that fA(α, s) ∈ (ci,s, ci+1,s) for all s > t.
Thus fA∪B(ξ, s) is defined by Case 2 for all s > t. The other cases proceed similarly.

Thus FA∪B ∈ SILM(ωγ). It remains to show its range is A∪B. The containment
range(FA∪B) ⊆ A ∪ B is immediate from the construction as fA∪B(ξ, s) ∈ A ∪ B

18 KACH AND TURETSKY

for all ξ and s. For the reverse containment, consider an arbitrary a ∈ A. If
a = ci for some i, then a will be in the range of FA∪B by some Case 1. Otherwise,
there is some α such that FA(α) = a and some i such that a ∈ (ci, ci+1). Then
fA∪B(δi + εi(α + 1), s) is eventually always defined by Case 2 to equal a, and thus
FA∪B(δi + εi(α + 1)) = a. Showing an arbitrary b ∈ B is in the range proceeds
similarly. �

Some results about the class SSILM(ωα) transfer immediately from results
about the class SSILM(Q).

Corollary 6.2. For every computable ordinal α, the class SSILM(ωα) is not closed
under unions or joins.

Corollary 6.3. There is a ∆0
2 degree that is not support strictly increasing limitwise

monotonic on ωα for any computable ordinal α.

Breaking the pattern, a weakened version of the above also holds of SILM(wα).

Theorem 6.4. For any computable ordinal α, there is a ∆0
2 degree that is not

support increasing limitwise monotonic on ωα.

Proof. Theorem 5.4 demonstrated the existence of a ∆0
2 degree that is not support

strictly increasing limitwise monotonic on Q. It was not important that the domain
was Q. However it was important that we were only attempting to defeat the
support strictly increasing approximations, specifically in the proof of Claim 5.4.1.
With support increasing limitwise monontonic functions on ωα, we are assured a
bound exists on the number of times the strategy can reach Step 6 as the y found
at each Step 5 form a strictly decreasing sequence, which must necessarily be finite.
Thus the same construction suffices, modifying the verification only slightly. �

In fact, a simpler construction for Theorem 6.4 suffices that uses only one strategy
for Re,i.

7. Increasing η-Representations

We continue our study of support increasing (support strictly increasing) limit-
wise monotonic functions on Q with an application to linear orders.

Definition 7.1. For an infinite set S = {a0 < a1 < a2 < . . . } of natural numbers,
a weak η-representation of S is a linear order of the form

η + aF (0) + η + aF (1) + η + aF (2) + η + . . .

for some surjective function F : ω → ω. If F is bijective, then the linear order is a
unique η-representation of S; if F is the identity, then the linear order is a strong
η-representation of S. If F is increasing (i.e., non-decreasing), then the linear order
is an increasing η-representation.

We refer the reader to [5], [11], and [12] for background, history, and various
results about these encodings (all but the last have been previously studied) and
to [3] for a general reference on linear orders in computability theory. We mention
that in [5], it was shown that the sets S ⊆ ω with computable weak (unique)
η-representations are exactly the 0′-limitwise monotonic sets.

Since η ∼= η + 1 + η, it is undesirable to allow F to take on the value 1. We
therefore introduce the following convention.

LIMITWISE MONOTONICS ON COMPUTABLE DOMAINS 19

Convention 7.2. Throughout this section, we assume any limitwise monotonic
function satisfies F (x) 6= 1 for all x. Moreover, without loss of generality, we
assume that any limitwise monotonic approximation satisfies f(x, s) 6= 1 for all x
and s.

The following notion is related to limitwise monotonic sets and simplifies the
results for increasing η-representations.

Definition 7.3. Let D = (D :≺) be a computable linear order. A function F :
D → ω is d-limit infimum if there is a total d-computable function f : D × ω → ω
such that F (x) = lim infs f(x, s) exists for all x ∈ D.

A set S ⊆ ω is a (support increasing / support strictly increasing) d-limit infimum
set on D if there is a (support increasing / support strictly increasing) d-limit
infimum function F on D whose range is S ∪ {0}.

A degree a is a (support increasing / support strictly increasing) d-limit infimum
degree on D if there is a set S ∈ a that is a (support increasing / support strictly
increasing) d-limit infimum set on D.

The function f(x, s) is said to be a (support increasing / support strictly increas-
ing) d-limit infimum approximation on D for S.

Definition 7.3 is a generalization of a definition introduced independently by
Harris in [5] and Kach in [8] to an arbitrary domain rather than ω. In both [5]
and [8], it was shown that the 0′-limitwise monotonic sets and the limit infimum
sets coincide. Extracting the uniformity present from the proof of this equivalence,
we obtain the following proposition.

Proposition 7.4. Let D = (D :≺) be a computable linear order and let d be
any degree. A set S ⊆ ω is a (support increasing / support strictly increasing)
d′-limitwise monotonic set on D if and only if it is a (support increasing / support
strictly increasing) d-limit infimum set on D.

Moreover, uniformly in an index for a d′-computable function f(x, t), there is an
index for a d-computable function g(x, s) satisfying lim infs g(x, s) = limt f(x, t) for
all x. Also, uniformly in an index for a d-computable function g(x, s), there is an
index for a d′-computable function f(x, t) satisfying limt f(x, t) = lim infs g(x, s)
for all x.

Theorem 7.5. For sets S ⊆ ω, the following are equivalent:
(1) There is a computable increasing η-representation of S.
(2) The set S is a support increasing 0′-limitwise monotonic set on Q.
(3) The set S is a support increasing limit infimum set on Q.

By Proposition 7.4, it suffices to show (1) =⇒ (2) and (3) =⇒ (1). Before
showing these implications, we introduce some terminology.

Definition 7.6. If L = (L :≺) is a linear order and X ⊆ L is finite, a maximal
block in X is an ordered collection (with n > 0) of points 〈xi0 , . . . , xin〉 ⊆ X
maximal with respect to the property that xij and xij+1 are adjacent in L for all
0 ≤ j ≤ n− 1.

Points x, y ∈ L are adjacent in L if ¬(∃z) [x ≺ z ≺ y].

Proof of (1) =⇒ (2). Let L = (L :≺) be a computable copy of an increasing η-
representation of S with L = {xn : n ∈ ω}. Working in the presence of a 0′ oracle,

20 KACH AND TURETSKY

we will define a 0′-computable function f : Q× ω → ω with the intent that f(r, s)
will be a 0′-limitwise monotonic approximation on Q for S.

We note that 0′ suffices to determine whether two elements xi and xj are adjacent
in L, and thus whether an ordered collection 〈xi0 , . . . , xin〉 ⊆ X is a maximal block
in X. The idea will be to track these adjacencies by associating a rational number r
to each maximal block Br in Xs = {x0, . . . , xs} in an order preserving manner. The
value of f(r, s) will then be the size of the maximal block Br in the set Xs. As
the sizes of the maximal blocks in Xs are not larger than the sizes of the maximal
blocks in Xs+1, the function f(r, s) will be increasing in s.

By extending Xs = {x0, . . . , xs} to Xs+1 = {x0, . . . , xs, xs+1}, several scenarios
can occur. We may see a new maximal block of adjacencies, in which case we will
add a new rational r to the support of F . We may see an existing maximal block
of adjacencies Br grow, in which case we increase the value of f(r, s) appropriately.
We may see two maximal blocks of adjacencies Br1 and Br2 merge, in which case
we associate the merged maximal block with both the rationals r1 and r2.

Construction: At stage 0, we define f(r, 0) = 0 for all rationals r. At stage s + 1,
we consider the set Xs+1 = {x0, . . . , xs, xs+1}. Several possibilities exist.

(1) If the maximal blocks in Xs+1 are the same as the maximal blocks in Xs,
we set f(r, s + 1) = f(r, s) for all r ∈ Q.

(2) If a new maximal block appears in Xs+1, we choose a rational r′ ∈ Q not
yet in the support of F in an order preserving manner. We set f(r, s+1) =
f(r, s) for all r 6= r′ and set f(r′, s + 1) to be the size of the new maximal
block Br′ in Xs+1.

(3) If a maximal block Br′ in Xs is a subset of a maximal block in Xs+1, we
set f(r, s+1) = f(r, s) for all r 6= r′ and set f(r′, s+1) to be the size of Br′

in Xs+1.
(4) If two maximal blocks Br1 and Br2 in Xs merge into a single maximal block

(with xs+1) in Xs+1, we associate both rationals r1 and r2 with this merged
maximal block. We set f(r1, s + 1) and f(r2, s + 1) to be the size of this
new merged maximal block.

Verification: We verify that f(r, s) is a support increasing 0′-limitwise monotonic
approximation on Q for S. From the construction we have that f(r, s) is computable
in 0′ and that f(r, s) ≤ f(r, s + 1) for all r and s. As the maximal blocks in L
are associated with rationals in an order-preserving manner, the function F (r) will
be support increasing. As L was an increasing η-representation, it will have no
infinite maximal blocks, and thus F is total. Moreover F will enumerate S as each
maximal block will be assigned to a rational r. �

We finish proving Theorem 7.5 by demonstrating (3) =⇒ (1). As its proof
mirrors the associated result for weak η-representations (see [5]), we leave it to a
sketch.

Proof of (3) =⇒ (1) (Sketch). Let f(r, s) be a support increasing limit infimum
approximation on Q for S whose support is cofinal in Q, which we may assume
without loss of generality by Corollary 4.9. We construct a computable copy of an
increasing η-representation of S in ω many stages s using f(r, s).

LIMITWISE MONOTONICS ON COMPUTABLE DOMAINS 21

The idea will be to build at the rational r at stage s the suborder η + f(r, s)+ η.
The suborder will be composed of three segments: a left dense segment, a center
discrete segment, and a right dense segment.

If f(r, s+1) > f(r, s), then an appropriate number (namely f(r, s+1)− f(r, s))
of points are added at the right end of the center discrete segment already built
for the rational r. If f(r, s + 1) < f(r, s), then the appropriate number of extra
points (namely f(r, s) − f(r, s + 1)) at the right end of the discrete segment get
permanently associated with the right dense segment. Regardless of the relative
values of f(r, s+1) and f(r, s), the left dense segment and right dense segment are
built towards a copy of η.

As the left dense segment and right dense segment are built towards η at cofinitely
many stages, in the limit they will have order type η. As only lim infs f(r, s) many
points will remain identified with the center discrete segment for infinitely many
stages, in the limit the center discrete segment will have order type F (r).

We finish by noting that the isomorphism type of L is an increasing η-representation
for S. As f(r, s) was a support increasing limit infimum approximation on Q for S,
the support of F has order type ω. Excepting the rationals in the support of F ,
every rational will have the suborder η + 0 + η ∼= η built for it. At a rational r in
the support of F , the suborder η + F (r) + η is built for it. As F was assumed to
enumerate S in increasing order on its support, the isomorphism type of L will be
an increasing η-representation of S, noting that η + η ∼= η and η · η ∼= η. �

Theorem 7.5 then follows. Unfortunately, we leave open the characterization of
the sets S ⊆ ω possessing a computable strong η-representation. We do make sev-
eral observations about the applicability of support strictly increasing 0′-limitwise
monotonic approximations on Q to strong η-representations, however.

Noting that if the function f in the proof (3) =⇒ (1) of Theorem 7.5 is
support strictly increasing, then the resulting computable linear order is a strong
η-representation of S, we obtain the following.

Proposition 7.7. A set S ⊆ ω has a computable strong η-representation if S ∈
SSILM0′

(Q).

It might be hoped that the converse of Proposition 7.7 could be proved by appro-
priately modifying the proof (1) =⇒ (2) of Theorem 7.5. For example, when two
blocks merge in the proof of (1) =⇒ (2), we can associate the merged block with
the rational previously associated with the left block, and slide the associations
of all the blocks to the right of this block one to the left to fill in the hole. This
leaves an abandoned rational on the far right, but (as S was assumed to be infinite)
another block can be found which can be associated with it in an order-preserving
manner. Although it is not difficult to see that every block will eventually settle
down to a fixed rational, it is possible that a rational won’t have a fixed block settle
down to it. On such a rational, lims f(r, s) = ∞. As a consequence of the following
proposition, any attempt to fix this must rely on the uniqueness of each block size.

Proposition 7.8. There is a set S ⊆ ω with a computable increasing η-representation
but no computable strong η-representation.1

Proof. Relativizing Theorem 5.3 to 0′, any set of the form S ⊕ ω suffices, where S
is a set in any ∆0

3 degree not having a computable strong η-representation. The

1Andrey Frolov and Maxim Zubkov have independently announced this result (see [4]).

22 KACH AND TURETSKY

existence of such degrees can be found in [5] or follows from relativizing Theorem 5.4
to 0′ with slight modifications. �

8. Order-Computable Sets

In addition to the connection between limitwise monotonic sets and η-representations,
there is a connection between limitwise monotonic sets and order-computable sets
(see [6]).

Definition 8.1. A set A ⊆ ω is order-computable if there is a computable copy of
the structure (ω :<,A) in the language of linear orders with an additional unary
predicate.

Denote by OC the class of order-computable sets.

We demonstrate that the support increasing limitwise monotonic sets on a well-
order do not contain all the order-computable sets, yet the support strictly increas-
ing limitwise monotonic sets on Q contain all the order-computable sets.

Proposition 8.2. For any computable ordinal α, there is a set A ∈ OC with
A 6∈ SILM(ωα).

Proof. We build an order-computable set A that diagonalizes against all support
increasing limitwise monotonic approximations on ωα. We fix a computable enu-
meration {ϕi}i∈ω of total computable functions with domain ωα × ω as in Propo-
sition 4.1.

We describe the general strategy to defeat an individual approximation func-
tion ϕi, i.e., to assure that ϕi is not a support increasing limitwise monotonic
approximation on ωα for A.

Strategy i: The general strategy to ensure that A is not the range of Φi is as follows:
(1) Choose a large witness x.
(2) Wait for ϕi to match A up to x.
(3) Insert x into A by adding a new element to the underlying order at the

appropriate location and declaring that the predicate holds on it. Reset
Strategy j for all j > i.

(4) Wait for x to enter the range of ϕi.
(5) Remove x from A and insert x + 1 into A by adding a new element to the

underlying order at the appropriate place and declaring that the predicate
fails on it. Reset Strategy j for all j > i.

(6) Wait for ϕi to match A by increasing the column with value x to x + 1.
(7) Put x into A and reset Strategy j for all j > i, and return to Step 4,

Construction: At stage 0, we As = ∅. At stage s + 1, we start working to satisfy
Strategy s as described.

Verification: It suffices to argue that each strategy spends cofinitely many stages
waiting. For if every strategy spends cofinitely many stages waiting, each strategy
successfully diagonalizes against Φi. Consequently, the set A is order-computable.

Assume each Strategy j for j < i spends cofinitely many stages waiting. Then
Strategy i is reset at most finitely often. Therefore Strategy i can only reach Step 4
finitely often as ωα is well-ordered, and each new occurrence of x is to the left of the

LIMITWISE MONOTONICS ON COMPUTABLE DOMAINS 23

previous one (see Proposition 4.1). It follows that Strategy i also spends cofinitely
many stages waiting.

By construction, the set A is order-computable. �

Proposition 8.3. The containment OC (SSILM(Q) holds and is proper.

Proof. The containment follows from the fact that a support strictly increasing
limitwise monotonic approximation on Q can be defined for any order-computable
set by putting a new element in the range of Q whenever the order-computable
predicate holds on a new element. The approximation value is the number of
predecessors on which the order-computable predicate holds.

The containment being proper follows from the existence of computably enumer-
able sets that are not order-computable (see [6]). Yet every computably enumerable
set is easily seen to be support strictly increasing limitwise monotonic on Q. �

As a consequence, results on order-computable sets (see [6]) can yield results
about limitwise monotonic functions.

Corollary 8.4. Every ω-c.e. degree is support strictly increasing limitwise mono-
tonic on Q.

9. Open Questions

Many natural questions about support increasing (support strictly increasing)
limitwise monotonic sets and degrees remain. Several of these stem from results in
this paper.

Question 9.1. Is it the case that SILM(Q) = ∪α<ωCK
1

SILM(ωα) or SSILM(Q) =
∪α<ωCK

1
SSILM(ωα)?

Question 9.2. Are the elements of SSILM(Q) exactly the sets with computable
strong η-representations?

Question 9.3. Is there an ordinal α such that the class SILM(ωα) is not closed
under unions or joins?

Other questions were not addressed in this paper.

Question 9.4. Are the classes SILM(Q), SSILM(Q), SILM(ωα), or SSILM(ωα)
closed under intersection?

Question 9.5. Are the SILM(ωα) degrees the same as the SILM(ωα+1) degrees?

Question 9.6. Are there computable linear orders D1 and D2 such that nei-
ther SILM(D1) 6⊆ SILM(D2) nor SILM(D2) 6⊆ SILM(D1)? Such that neither
SSILM(D1) 6⊆ SSILM(D2) nor SSILM(D2) 6⊆ SSILM(D1)?

References

[1] Richard J. Coles, Rod Downey, and Bakhadyr Khoussainov. On initial segments of com-
putable linear orders. Order, 14(2):107–124, 1997/98.

[2] Barbara F. Csima, Denis R. Hirschfeldt, Julia F. Knight, and Robert I. Soare. Bounding
prime models. J. Symbolic Logic, 69(4):1117–1142, 2004.

[3] R. G. Downey. Computability theory and linear orderings. In Handbook of recursive mathe-
matics, Vol. 2, volume 139 of Studies in Logic and the Foundations of Mathematics, pages
823–976. North-Holland, Amsterdam, 1998.

[4] Andrey N. Frolov and Maxim V. Zubkov. Increasing η-representable degrees. Submitted.

24 KACH AND TURETSKY

[5] Kenneth Harris. η-representations of sets and degrees. J. Symbolic Logic, to appear.
[6] Denis Hirschfeldt, Russell Miller, and Sergei Podzorov. Order-computable sets. Notre Dame

J. Formal Logic, 48(3):317–347 (electronic), 2007.
[7] N. G. Hisamiev. Criterion for constructivizability of a direct sum of cyclic p-groups. Izv. Akad.

Nauk Kazakh. SSR Ser. Fiz.-Mat., (1):51–55, 86, 1981.
[8] Asher M. Kach. Computable shuffle sums of ordinals. Archive for Mathematical Logic,

47(3):211–219, 2008.
[9] N. G. Khisamiev. Constructive abelian groups. In Handbook of recursive mathematics, Vol. 2,

volume 139 of Stud. Logic Found. Math., pages 1177–1231. North-Holland, Amsterdam, 1998.
[10] Bakhadyr Khoussainov, Andre Nies, and Richard A. Shore. Computable models of theories

with few models. Notre Dame J. Formal Logic, 38(2):165–178, 1997.
[11] Manuel Lerman. On recursive linear orderings. In Logic Year 1979–80 (Proc. Seminars and

Conf. Math. Logic, Univ. Connecticut, Storrs, Conn., 1979/80), volume 859 of Lecture Notes
in Math., pages 132–142. Springer, Berlin, 1981.

[12] Joseph G. Rosenstein. Linear orderings, volume 98 of Pure and Applied Mathematics. Aca-
demic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1982.

[13] Maxim Zubkov. On η-representable sets. In Computation and logic in the real world, pages
364–366. 2007.

Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA
E-mail address: kach@math.uconn.edu

Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA
E-mail address: turetsky@math.wisc.edu

