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Truth in applicative theories

Reinhard Kahle

Abstract

We give a survey on truth theories for applicative theories. It com-
prises Frege structures, Universes for Frege structures, and a theory of
supervaluation. We present the proof-theoretic results for these the-
ories and show their syntactical expressive power. In particular, we
present as a novelty a syntactical interpretation of ID1 in a applicative
truth theory based on supervaluation.

1 Introduction

Applicative theories build the first order part of Feferman’s systems of ex-
plicit mathematics, [Fef75, Fef79]. They comprise type-free combinatory
logic, natural numbers, pairing and projection. A survey about the proof-
theoretic results in the applicative framework can be found in [JKS99].

In [Bee85], Beeson introduced a truth theory for applicative theories by
adding a truth predicate T and appropriate new constants. He showed that
such a truth theory is an axiomatic counterpart of Aczel’s Frege structures.
These were introduced semantically by Aczel to define a notion of set by
means of a partial truth predicate, [Acz80]. In his monograph [Can96] Can-
tini investigates truth theories on an applicative basis in a comprehensive
way.

In this paper we present the main features of truth theories over ap-
plicative theories, namely “no Gödelization” and “abstraction”. Moreover,
we will summarize the proof-theoretic results for these theories. We put
special emphasis on the syntactical expressiveness which is reflected in em-
beddings of fixed-point theories and theories of inductive definitions. This
will be described here not only for Frege structures, but also for an ex-
tension by universes which capture the idea of iterated truth predicates,
cf. [Kah97a, Kah0xb]. In addition, we refine a result of Cantini [Can96] by
giving a syntactical embedding of the theory ID1 in the theory SON, a truth
theory based on supervaluation.

The structure of the paper is as follows. In the following section, we give
a sketch of the background of truth theories in applicative theories. Then,
we introduce the applicative theory TON. In section 4, we define Frege
structures as a syntactical theory and restate the main results as they can
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be found in [Can96]. In the presentation, we essentially follow [Kah0xb].
This paper serves also as a reference for the next section about universes
over Frege structures. In section 6, we discuss the theory of supervaluation
as introduced in [Can96] and publish, for the first time, the embedding of
ID1, [Kah97a]. We finish the paper by giving concluding remarks, including
an overview of the proof-theoretic results.

2 Background

The background of truth theories for applicative theories is somehow two-
folded: On the one hand, they originate in Aczel’s Frege structures as their
syntactical counterpart. On the other hand, they come up as a very conve-
nient alternative to ordinary truth theories over Peano arithmetic.

Going back to the prior work of Scott [Sco75], Aczel has introduced
Frege structures as a semantical concept to introduce sets in terms of a par-
tial truth predicate, [Acz80]. Considering Frege’s well-known, inconsistent
formal system Grundgesetze der Arithmetik, usually, the unrestricted com-
prehension scheme is held responsible for the inconsistency. Thus, in most
of the later formal approaches, the comprehension scheme is restricted. In
contrast, Aczel still allows unrestricted comprehension, but the element re-
lation, which is defined in terms of the truth predicate, becomes partial.
In the formal definition, he defines proposition and truth simultaneously as
fixed points of appropriate operator forms.

In his monograph [Bee85], Beeson gave a syntactic characterization of
Frege structures based on applicative theories. Adding both predicates for
propositions and truth, one can give an axiomatization of Frege structures.
He showed that the resulting theory has the proof-theoretic strength of Fe-
ferman’s theory EM0 + J, which is equivalent with the fixed point theory
ÎD1. Flagg and Myhill have investigated Frege structures in a more general
perspective. In particular, they give up the primitive notion of proposition,
but define it in terms of truth, [FM87a, FM87b].

Cantini has studied the relation of this concept of truth and abstraction
in a very comprehensive way, [Can96]. His book serves as a general reference
for results, methods, and extensions in this field. An exposition of the central
results for Frege structures as presented here can already be found in his
article [Can93]. In particular, he showed that the fixed point theory ÎD1 can
be embedded into a truth theory over applicative theories. In general, based
on a defined notion of sets, Cantini can deal with (total versions of) theories
of explicit mathematics, like the theory EET of Feferman and Jäger [FJ96].
But the converse does not hold. In particular, it is not know whether it is
possible to give a syntactical interpretation of fixed point theories in explicit
mathematics.
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As further investigation about Frege structures, we would like to mention
the following: Jan Smith has even used a theory of Frege structures to give
a semantics for Martin-Löf’s type theory, [Smi78, Acz80, Smi84]. Hayashi
and Kobayashi have introduced a version of Frege structures which is tuned
up, in a way, to match up exactly with a version of Feferman’s explicit
mathematics [HK95].

Starting with Frege structures, there are two different ways to get stronger
theories with respect to the proof-theoretic strength. On the one hand, we
can define levels of truth as they are known from ordinary truth theories,
see below. On the other hand, we can replace the truth axioms for Frege
structures by truth axioms for supervaluation. It has a non compositional
concept of truth, introduced by van Fraassen [vF68, vF70]. Cantini has de-
fined such a theory over Peano Arithmetic with proof-theoretic strength of
ID1 in [Can90]. For applicative theories, he has given a corresponding theory
in [Can96]. Here, we present his theory and give a syntactical interpretation
of ID1 in this theory, as was proven in [Kah97a].

Ordinary truth theories are discussed at length, both from a philosophi-
cal point of view, as well as from a mathematical one, following the seminal
paper of Tarski [Tar35, Tar56]. In particular, Kripke’s general analysis of
truth in [Kri75] was highly influential. A very good overview of the com-
bination of different properties of formalized proof predicates over Peano
Arithmetic and its proof-theoretic implications can be found in Friedman
and Sheard [FS82]. Facing the well-known danger of paradoxes when dealing
with “negative truth”, a standard escape is the iteration of proof predicates,
which allows us to deal with negative truth of one level as positive truth in
the next level, cf. [Tar35, Tar56, Fef91, Hal96].

In the context of applicative theories we take over the idea of iterated
truth by introducing universes. Universes were first introduced by Martin-
Löf in his type theory [Mar84] as types closed under the usual type ex-
istence axioms. In a similar way they are investigated in the context of
explicit mathematics, [Fef82, Mar93, Mar94, Kah97b, Str99, JKS0x]. Here,
we introduce universes as classes or propositional functions closed under the
truth conditions. This approach is a modification of Cantini’s theory TLR
[Can95, Can96] and worked out in [Kah0xb].

We finish this section by defining the reference theories for the proof-
theoretic investigations, namely fixed point theories and theories of inductive
definition.

The well-known fixed point theory ÎD1 extends Peano arithmetic by (not
necessarily least) fixed points Pϕ of P -positive arithmetical operator forms
ϕ(P, x), i.e., an arithmetical formula in which the subformula P (t) occurs
only positively [Acz77]:

3



Definition 1 The language LID of ÎD1 is the language of PA extended by
new fixed point constants Pϕ for each P -positive arithmetical operator form
ϕ(P, x).

The axioms of ÎD1 are those of PA extended to the new language, plus
the following fixed point axiom for each fixed point constants Pϕ:

∀x.ϕ(Pϕ, x)↔ Pϕ(x).

In particular, induction on the natural numbers is available for all formulae
of the language LID.

In addition, we will consider the theory ID#
1 , which is essentially ÎD1 but

induction is restricted to formulae in which the new fixed point constants
occur only positively. For the proof-theoretic analysis of ID#

1 , we refer to
[JS96].

With respect to the proof-theoretic strength, we get, in terms of the
binary Veblen function ϕ:

Theorem 2 1. |ID#
1 | = ϕω0,

2. |ÎD1| = ϕε00.

When considering universes over Frege structures, we need iterated fixed
point theories. Finitely iterated fixed point theories were introduced and
studied by Feferman in [Fef82]. The transfinite case is analyzed by Jäger et.
al. in [JKSS99].

Here, we consider the theories ÎDα up to α < ε0. They are formulated
in a language which expands the language of Peano arithmetic by predicate
constants Pϕ for each inductive operator form ϕ(P,Q, x, y), i.e., a formula
of the language of PA, containing P (t) at most positively, while Q(s) is
allowed to occur positively and negatively. For the formal definition, we
need a primitive recursive pairing operation 〈·, ·〉 with projections (·)0 and
(·)1. Then, we write Pϕs (t) for Pϕ(〈t, s〉) and Pϕ≺s(t) for t = 〈(t)0, (t)1〉 ∧
(t)1 ≺ s ∧ Pϕ(t). Here, ≺ denotes a primitive recursive well-ordering of
order type ε0. One can understand the parameter s in Pϕs (t) as the level of
the fixed point definition. With Pϕ≺s(t), it is expressed that t belongs to the
disjoint union of fixed points with levels less than s.

Definition 3 The axiom schemas of ÎDα, for α an ordinal less than ε0,
are those of PA, together with induction on the natural numbers for the
extended language, plus the following fixed point axioms for each inductive
operator form ϕ(P,Q, x, y):

∀β ≺ α.∀x.Pϕβ (x)↔ ϕ(Pϕβ ,P
ϕ
≺β, x, β).

ÎD<α is the union of the theories ÎDβ, β < α ≤ ε0.
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The theories ÎDα are defined as the metapredicative counterparts to the
well-known impredicative theories of inductive definitions IDα.

The proof-theoretic analysis of ÎDα in [JKSS99] yields the following the-
orem about the proof-theoretic strength, in terms of the ternary Veblen
function ϕ. The ternary Veblen function is the generalization of the well-
known binary Veblen function, cf. [JKSS99]. In particular, ϕ100 is the
Feferman-Schütte ordinal Γ0. The first assertion of the theorem was proven
by Feferman in [Fef82].

Theorem 4 1. |ÎD<ω| = ϕ100 = Γ0,

2. |ÎD<ωω | = ϕ1ω0,

3. |ÎD<ε0 | = ϕ1ε00.

For the study of supervaluation, we need, in addition, the theory ID1. It
is formulated in the same language as ÎD1, but now we axiomatize not only
fixed points, but least fixed points.

Definition 5 The axioms of ID1 are those of PA extended to the new lan-
guage, plus the following two axioms for each fixed point constants Pϕ:

∀x.ϕ(Pϕ, x)→ Pϕ(x),
(∀y.ϕ(ψ, y)→ ψ(y))→ ∀x.Pϕ(x)→ ψ(x).

The proof-theoretic ordinal of ID1 is the Bachmann-Howard ordinal. In
terms of the notation system used in [Poh98], we have:

Theorem 6 |ID1| = ΨΩ(εΩ+1).

3 The theory TON

The theory TON (total theory of operations and numbers) is the total version
of BON (basic theory of operations and numbers), which is the first order
part of Feferman’s theories of explicit mathematics, [JS95]. While BON is
based on Beeson’s logic of partial terms, in TON, we work on the basis of
classical predicate logic with equality. In BON, we have a special existence
predicate t ↓ expressing “t is defined” or “t has a value”, and the quantifiers
range over defined objects only. Additionally, we have strictness, expressing
that the subterms of defined terms are defined and that all arguments of
predicates are defined, [Bee85, FJ93]. For our truth theory, we have chosen
the total version of applicative theories because of a problem with the truth
definition for negated existence. This problem, and possibilities to solve it,
are discussed at length in [Kah99].

TON is formulated in the language Lt which comprises:
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• individual variables: x, y, z, u, v, w, f, g, h, . . .

• individual constants

– k, s (combinators),

– p, p0, p1 (pairing and projection),

– 0, sN, pN (zero, successor and predecessor),

– dN (definition by cases),

• a binary function symbol · for term application, and

• the relation symbols = and N.

Terms (r, s, t, . . .) are built up from individual variables and individual
constants by term application.

Formulae (ϕ,ψ, . . .) are built from the atomic formulae t = s and N(t)
by closure under negation (¬ϕ), conjunction (ϕ ∧ ψ) and univeral quantifi-
cation (∀x.ϕ).

We use the following conventions: s t stands for (s · t) with association
to the left. The connectives ∨, → and ∃ are defined as usual. We write
t 6= s for ¬(t = s) and quantifiers which are restricted to elements of N are
written in the form of ∀x : N.ϕ.

The logic of TON is first-order predicate logic with equality. The non-
logical axioms comprise:

I. Combinatory algebra.

(1) kx y = x,

(2) sx y z = x z (y z),

II. Pairing and projection.

(3) p0 (px y) = x ∧ p1 (px y) = y,

III. Natural numbers.

(4) N(0) ∧ ∀x.N(x)→ N(sN x),

(5) ∀x.N(x)→ sN x 6= 0 ∧ pN (sN x) = x,

(6) ∀x.N(x) ∧ x 6= 0→ N(pN x) ∧ sN (pN x) = x.

IV. Definition by cases on N.

(7) N(v) ∧ N(w) ∧ v = w → dN x y v w = x,

(8) N(v) ∧ N(w) ∧ v 6= w → dN x y v w = y.

λ abstraction can be introduced in the standard way. Also, because of
self-application, we can define a recursion operator rec in TON.
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Proposition 7 1. For every variable x and every term t of Lt, there
exists a term λx.t of Lt whose free variables are those of t, excluding
x, such that TON proves (λx.t)x = t.

2. There exists a term rec of Lt such that TON proves ∀x.recx = x (recx).

Of course, this proposition also holds for extensions of the language Lt, as
we will consider in the following sections.

The theory TON can be shown to be proof-theoretically equivalent with
Peano arithmetic PA if we add the schema of formulae induction on N for
arbitrary Lt formulae ϕ:

Formulae induction on N (Lt-IN)

ϕ(0) ∧ (∀x : N.ϕ(x)→ ϕ(sN x))→ ∀x : N.ϕ(x).

The lower bound follows from a straightforward interpretation of PA in
TON +(Lt-IN), where the natural numbers are interpreted as elements of N,
[JS95]. Models of TON can be found in Beeson [Bee85], Cantini [Can96] and
Strahm [JS95, Str96]. To some extent, we can consider the closed total term
model CT T as a standard model for TON. Roughly, it can be described as
follows: As the universe of CT T , we choose the set of all closed terms of the
language Lt, i.e., we interpret the constants by themselves and application
by juxtaposition. By use of a straightforward reduction relation % for the
constants of Lt, we can interpret equality of terms by the fact that they have
a common reduct with respect to arbitrary reductions on the basis of %. For
the verification of transitivity of equality, we need to prove the Church-
Rosser property. Finally, N(t) holds if t reduces to a numeral. A detailed
description of CT T , including the proof of the Church-Rosser property, can
be found in [JS95, Can96]. Since this model can be formalized in PA, we get
the proof-theoretic equivalence (for the notion of proof-theoretic equivalence
we refer to [Fef88, Fef00]):

Theorem 8 TON + (Lt-IN) ≡ PA.

4 Frege structures

For the definition of Frege structures, we extend the language Lt to the
new language LF by adding a new predicate T for truth and new individual
constants =̇, Ṅ, ¬̇, ∧̇, and ∀̇ for the representation of formulae by terms.

For the sake of readability, we will freely use an infix notation for terms
containing the dotted constants. For instance, x =̇ y has to be written for-
mally as =̇x y.

The theory FON (Frege structures over TON) consists of the axioms of
TON extended to the expanded language plus the following ones:
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I. Closure under prime formulae of TON

(1) x = y ↔ T(x =̇ y),

(2) ¬x = y ↔ T(¬̇ (x =̇ y)),

(3) N(x)↔ T(Ṅx),

(4) ¬N(x)↔ T(¬̇ (Ṅx)).

II. Closure under composed formulae

(5) T(x)↔ T(¬̇ (¬̇x)),

(6) T(x) ∧ T(y)↔ T(x ∧̇ y),

(7) T(¬̇x) ∨ T(¬̇ y)↔ T(¬̇ (x ∧̇ y)),

(8) (∀x.T(f x))↔ T(∀̇ f),

(9) (∃x.T(¬̇ (f x)))↔ T(¬̇ (∀̇ f)).

III. Consistency

(10) ∀x.¬(T(x) ∧ T(¬̇x)).

We will use the following abbreviations:

F(t) :⇔ T(¬̇ t),
P(t) :⇔ T(t) ∨ F(t),
C(t) :⇔ ∀x.P(t x).

T(t) can be read as “t is true”, F(t) as “t is false”, P(t) as “t is a proposition”,
and C(t) as “t is a class”. In the literature, C(t) is often characterized as a
propositional function.

By diagonalizing ¬̇, we get that the truth predicate is partial:

Lemma 9 FON ` ¬∀x.P(x).

Proof: If we set r := rec (λx.¬̇x), we have that T(r) is equivalent to
T(¬̇ r), i.e., F(r), which contradicts the axiom of consistency III.(10). �

This lemma shows that we cannot have a truth definition for the whole
language. In particular, we cannot add full self-reference. That means that
we are not allowed to add a term Ṫ such that ¬T(x)↔ T(¬̇ (Ṫx)). But we
can introduce a rather trivial version of self-reference just by defining Ṫ as
the identity function λx.x. With this, we get the following clauses:

Self-reference

T(x)↔ T(Ṫx),

T(¬̇x)↔ T(¬̇ (Ṫx)),
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In the context of Frege structures, we can consider at least three natural
forms of induction over N.

1. Class induction on N (C-IN)

C(f) ∧ T(f 0) ∧ (∀x : N.T(f x)→ T(f (sN x)))→ ∀x : N.T(f x).

2. Truth induction on N (T-IN)

T(f 0) ∧ (∀x : N.T(f x)→ T(f (sN x)))→ ∀x : N.T(f x).

3. Formulae induction on N (LF -IN)

ϕ(0) ∧ (∀x : N.ϕ(x)→ ϕ(sN x))→ ∀x : N.ϕ(x)

for arbitrary LF formulae ϕ.

Our theories FON,FON+(C-IN), FON+(T-IN), and FON+(LF -IN) are es-
sentially equivalent with the theories MF−, MFc, MFp, and MF, respectively,
of Cantini in [Can96].

For the proof-theoretic analysis given in [Can96], we have:

Theorem 10 1. FON + (C-IN) ≡ PA,

2. FON + (T-IN) ≡ ID#
1 ,

3. FON + (LF -IN) ≡ ÎD1.

Flagg and Myhill [FM87b] give a general model construction for Frege
structures by defining truth as a fixed point satisfying the corresponding
closure conditions (cf. also the original definition in [Acz80]). These models
can be directly formalized in ID1, but the leastness condition is essential
to verify the axiom of consistency. In contrast, Cantini proves the upper
bounds of FON by pure proof-theoretic methods.

In the following, we will give the essential features of Frege structures,
namely, representation of formulae by terms without Gödelization, abstrac-
tion and the syntactical embedding of ÎD1.

In a straightforward way, we can associate a term with every formula in
FON.

Definition 11 By induction of the build up of an LF formula, we define:

˙︷ ︸︸ ︷
t = s ≡ t =̇ s

˙︷︸︸︷
N(t) ≡ Ṅ t
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˙︷︸︸︷
T(t) ≡ Ṫ t ≡ t

˙︷︸︸︷¬ϕ ≡ ¬̇ ϕ̇
˙︷ ︸︸ ︷

ϕ ∧ ψ ≡ ϕ̇ ∧̇ ψ̇
˙︷︸︸︷
∀x.ϕ ≡ ∀̇ (λx.ϕ̇)

Since we work in classical logic, we can introduce abbreviations for the other
connectives on the term level in the usual way:

(t ∨̇ s) := ¬̇ (¬̇ t ∧̇ ¬̇ s), (t →̇ s) := ¬̇ t ∨̇ s, and (∃̇x.t) := ¬̇ (∀̇x.¬̇ t).
In the following, we have to pay special attention to formulae in which

the truth predicate occurs only positively. The formal definition of T-
positiveness is given simultaneously with T-negativeness:

Definition 12

1. t = s, N(t), ¬t = s and ¬N(t) are T-positive as well as T-negative.

2. T(t) is T-positive; ¬T(t) is T-negative.

3. If ϕ is T-positive (T-negative), then ¬ϕ is T-negative (T-positive).

4. If ϕ and ψ are T-positive (T-negative), then so is ϕ ∧ ψ.

5. If ϕ is T-positive (T-negative), then so is ∀x.ϕ.

Now, we can prove by straightforward induction that FON provides a
truth definition for T-positive formulae [Can96, Th. 8.8.]:

Proposition 13 If ϕ is a T-positive formulae of LF , then we have:

FON ` T(ϕ̇)↔ ϕ.

This proposition is the essential tool to introduce a notion of set and an
element relation on the basis of the truth predicate, cf. [Sco75].

Definition 14 Given two LF terms t and s and an LF formula ϕ, we define:

{x|ϕ} := λx.ϕ̇,

t ∈ s :⇔ T(s t).

Since the term {x|ϕ} is defined for arbitrary formulae ϕ, we can say that
Frege structures allow full or unrestricted comprehension. But it is clear that
the element relation has its intended meaning for T-positive formulae only.
From proposition 13, we get as a corollary:
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Corollary 15 If ϕ is a T-positive formulae of LF , then we have:

FON ` x ∈ {x|ϕ} ↔ ϕ.

In analogy to ÎD1, we define the notion of positive operator form in FON
as a T-positive formulae ϕ(R, x) which contains the (unary) relation variable
R only positively. Now, we can use proposition 13 to define fixed points of
such operator forms within FON, cf. [Can96]. The proof makes essential use
of the possibility to define fixed points on the term level.

Proposition 16 Let ϕ(R, x) be a positive operator form. Then there exists
a term tϕ of LF such that

FON ` ∀x.T(tϕ x)↔ ϕ(T(tϕ ·), x).

Proof: We define tϕ := rec (λy, x.
˙︷ ︸︸ ︷

ϕ(T(y ·), x)). Thus, we get with the
recursion theorem and the T-positiveness of ϕ:

T(tϕ x) ↔ T(
˙︷ ︸︸ ︷

ϕ(T(tϕ ·), x))
↔ ϕ(T(tϕ ·), x).

�

By proposition 13, we can reduce induction for T free formulae in FON
to (C-IN). Thus, the standard translation ·N of Peano Arithmetic in TON +
(Lt-IN) [JS95] carries over to FON + (C-IN). Using the previous proposition,
we can easily extend this interpretation to the fixed points constants of ID#

1

and ÎD1. So we get:

Proposition 17 There exists a translation ·N from the language of PA or
LID, respectively, into the language LF such that

1. PA ` ϕ ⇒ FON + (C-IN) ` ϕN ,

2. ID#
1 ` ϕ ⇒ FON + (T-IN) ` ϕN ,

3. ÎD1 ` ϕ ⇒ FON + (LF -IN) ` ϕN .

Please note that the recursion theorem in applicative theories does not
help to define least fixed points (for a discussion of possibilities of least fixed
point operators in the applicative framework, we refer to [KS0x]). For this
reason, there is no possibility to define a truth theory based on applicative
theories which allows an embedding of ID1 in the same manner. However,
later, we will define a truth theory based on supervaluation which allows a
syntactical embedding of ID1.
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5 Universes over Frege structures

The concept of universes goes back to Martin-Löf who introduced it in his
type theory, cf. [Mar84]. In the framework of explicit mathematics, it was
first studied by Feferman, [Fef82]. The introduction of universes in explicit
mathematics by use of a (non-uniform) limit axiom goes back to Marzetta
[Mar93, Mar94]. The uniform version is studied in [Kah97b, Str99, JKS0x].
Here, we discuss a notion of universes over Frege structures. On the one
hand, it is motivated by the concept in explicit mathematics, and on the
other hand, it captures the idea of iterated truth predicates. From the latter
point of view, it can be seen as an adaptation of Cantini’s theory TLR of
reflective truth with levels [Can96] which allows a uniform definition of truth
levels within the applicative framework.

As for FON, the syntactical expressiveness of theories of universes over
Frege structures can be shown by a syntactical embedding of (transfinitely)
iterated fixed point theories ÎDα.

For the definition of universes we need an ordering relation which allows
us to reflect the usual order relation of truth predicates on the term level.

Definition 18

t @ s :⇔ ∀x.(T(t x)→ T(s (t x))) ∧ (T(¬̇ (t x))→ T(s (¬̇ (t x)))).

For t @ s, we can say that s reflects the truth-course-of-value of t, i.e., in
short: s reflects t.

As intended, t @ s allows us to handle negative statements with respect
to truth at level t as positive statements at level s.

We formulate the theory FSU (Frege structures with universes) in the
language LU , which expands LF by the additional relation symbol U and
the additional individual constant `.

As axioms of FSU, we have those of TON extended to the expanded
language and the following:

I. Basic axioms

(1) U(u)→ C(u),

(2) U(u)→ ∀x.T(ux)→ T(x).

II. Closure under prime formulae of TON

(3) U(u)→ ∀x, y.x = y ↔ T(u (x =̇ y)),

(4) U(u)→ ∀x, y.x 6= y ↔ T(u (¬̇ (x =̇ y))),

(5) U(u)→ ∀x.N(x)↔ T(u (Ṅx)),

(6) U(u)→ ∀x.¬N(x)↔ T(u (¬̇ (Ṅx))).
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III. Closure under composed formulae

(7) U(u)→ ∀x.T(ux)↔ T(u (¬̇ (¬̇x))),
(8) U(u)→ ∀x, y.T(ux) ∧ T(u y)↔ T(u (x ∧̇ y)),
(9) U(u)→ ∀x, y.T(u (¬̇x)) ∨ T(u (¬̇ y))↔ T(u (¬̇ (x ∧̇ y))),

(10) U(u)→ ((∀x.T(u (f x)))↔ T(u (∀̇ f))),
(11) U(u)→ ((∃x.T(u (¬̇ (f x))))↔ T(u (¬̇ (∀̇ f)))).

IV. Order structure

(12) U(u) ∧ U(v) ∧ T(v (u t))→ T(v t),

V. Local consistency

(13) U(u)→ ∀x.¬(x ∈ u ∧ ¬̇x ∈ u),

VI. Limit axiom

(14) ∀f.C(f)→ U(` f) ∧ f @ ` f .

Remark 19 With respect to our notion of set, it is maybe more convenient
to read the closure conditions in terms of the element relation. For instance,
we have

I.(2) U(u)→ ∀x.x ∈ u→ T(x),

III.(7) U(u)→ ∀x.x ∈ u↔ ¬̇ (¬̇x) ∈ u,

IV.(12) U(u) ∧ U(v) ∧
˙︷ ︸︸ ︷

(t ∈ u) ∈ v → t ∈ v.

This reading shows the “Janus face” of the truth predicates which provides
us with an element relation, too. From this point of view, the closure con-
ditions can be considered as set theoretical ones.

The axioms express that universes are classes, collecting true elements
only, and that they are closed under the usual truth conditions. The theory
is formulated over TON and not FON, but the axioms of FON are derivable in
FSU. Thus, the closure conditions also hold for the “global” truth predicate.
First, we show that global truth is equivalent with truth in a universe:

Lemma 20 FSU ` T(x)↔ ∃u.U(u) ∧ T(ux).

Proof: The direction from the right to the left is axiom I.(2). For the
other direction, it follows from T(x) that the constant function λy.x is a
class. By applying the limit axiom, we get ∃u.U(u) ∧ λy.x @ u. The
definition of @ yields ∀z.T((λy.x)z) → T(u ((λy.x)z)). So we have T(x) →
T(ux) and, from the assumption, we get T(ux). �

From the order relation axiom, it follows that universes are inclusive and
linearly ordered with respect to the defined order relation, cf. [Kah0xb].
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Lemma 21

1. FSU ` U(u) ∧ U(v) ∧ u @ v ∧ x ∈ u→ x ∈ v,

2. FSU ` U(u)→ ¬u @ u,

3. FSU ` U(u) ∧ U(v) ∧ U(w) ∧ u @ v ∧ v @ w → u @ w.

As a corollary, we can prove the axioms of FON in FSU. The proof is
straightforward by induction of the length of the derivation of ϕ in FON and
by use of lemma 20. Only the verification of closure for universal quantifica-
tion needs an extra application of the limit axiom in the direction from left
to right. The axiom of consistency follows from local consistency, cf. [Can96,
lemma 37.7.(i)].

Corollary 22 FON ` ϕ ⇒ FSU ` ϕ.

The existence of universes is guaranteed by the limit axiom: Each class
is reflected by a universe. In particular, these universes are built uniformly.
This uniformity allows us to build a hierarchy of universes into the transfinite
case, depending on the induction principle. As for FON, we consider class
induction (C-IN), truth induction (T-IN) and formulae induction (LU -IN)
which is now, of course, a scheme for arbitrary LU formulae.

For the proof theory of FSU, we get the following equivalences, cf. [Kah0xb]:

Theorem 23

1. FSU + (C-IN) ≡ ÎD<ω,

2. FSU + (T-IN) ≡ ÎD<ωω ,

3. FSU + (LU -IN) ≡ ÎD<ε0 .

For the syntactical embedding of the fixed point theories in FSU, we first
introduce the notion of a hierarchy of universes. Therefore, we assume that
we have a standard wellordering ≺ of ordertype ε0 in FSU. We say that a
theory T proves the existence of a hierarchy of universes of length α if there
is term t such that:

T ` ∀β ≺ α.U(t β) ∧ ∀γ ≺ β.t γ @ t β.

We say that T proves the existence of hierarchies of universes of length < α
if it proves the existence of hierarchies of universes of length β for every β
less than α.

In analogy with the usual proofs of transfinite induction in arithmetic
[Sch77, Can89, JS96], we can show the following proposition in FSU. Here,
TI(α, ϕ) expresses transfinite induction up to α for the formula ϕ.
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Proposition 24

1. For ordinals α less than ωω, we have:

FSU + (T-IN) ` TI(α,T(f ·)).

2. For ordinals α less than ε0 and each LU formula ϕ, it holds that:

FSU + (LU -IN) ` TI(α, ϕ).

By use of these induction principles, we can prove [Kah0xb]:

Proposition 25

1. FSU + (C-IN) proves the existence of hierarchies of universes of length
< ω.

2. FSU + (T-IN) proves the existence of hierarchies of universes of length
< ωω.

3. FSU+(LU -IN) proves the existence of hierarchies of universes of length
< ε0.

The proof uses the following universe operation, which is defined by
recursion on the ordinals less then ε0.

1. univ 0 = ` (λy.0=̇0),

2. univ (α+ 1) = ` (univα),

3. univ Λ = ` (λy.
˙︷ ︸︸ ︷

∃x ≺ Λ.y ∈ univ x), Λ is a limit ordinal.

Its definition is similiar to that used for a corresponding theory in explicit
mathematics, cf. [Str99].

Now, hierarchies of universes can be used to define iterated fixed points.
As for ÎDα, we call an LU formula ϕ(P,Q, x, y) an inductive operator form
if it is T-positive and contains the relation variable P only positively (while
Q is allowed to occur positively and negatively). Also, we will use the usual
short hand notation for pairing and projection, i.e., (t, s) for (p t s), (t)0 for
(p0 t), and (t)1 for (p1 t). Let tβ s be an abbreviation for t (s, β) and t≺β r
for ((t r) ∈̇ univ (r)1) ∧̇ ((r)1 ≺̇β).

Proposition 26 Let ϕ(P,Q, x, y) be an inductive operator form. Then
there exists a term tϕ of LU such that

FSU + TI(α,T(f ·)) ` ∀β ≺ α.∀x.T(tϕβ x)↔ ϕ(T(tϕβ ·),T(tϕ≺β ·), x, β).
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The (rather technical) proof of this proposition, cf. [Kah0xb], makes
essential use of the fact that the universe which plays the role for P can
reflect the universes which play the role for Q.

By the use of propostions 24 – 26, we can easily extend the standard
interpretation ·N of PA in TON to get the embedding of the iterated fixed
point theories:

Proposition 27 There exists a translation ·N from the language of ÎDα into
the language LU such that

1. ÎD<ω ` ϕ ⇒ FSU + (C-IN) ` ϕN ,

2. ÎD<ωω ` ϕ ⇒ FSU + (T-IN) ` ϕN ,

3. ÎD<ε0 ` ϕ ⇒ FSU + (LU -IN) ` ϕN .

All three embeddings preserve arithmetical sentences.

6 Supervaluation

In [Can96, Ch. 12], Cantini has introduced an impredicative truth theory
for applicative theories. Here, the truth axioms of Frege structures are
replaced by axioms for supervaluation. The idea of supervaluation is due
to van Fraassen [vF68, vF70]. It expresses that formulae which follow by
pure logic are true independently of the logical complexity and syntactical

structure of their subformulae, cf. [Can90]. For example, we have T(
˙︷ ︸︸ ︷

ϕ→ ϕ)
for arbitrary formulae ϕ. It is easy to observe that this is, in general, not
provable for T negative formulae in Frege structures.

In [Can90], Cantini has already presented a truth theory over Peano
arithmetic which is proof-theoretically equivalent to ID1. Here, we present
his axiomatization of such a theory over applicative theories in [Can96],
called VFp. In both cases, Cantini shows the proof-theoretic lower bound by
an embedding of ID1(acc), the theory of accessibility elementary inductive
definitions, [BFPS81]. The upper bound is shown by a provability interpre-
tation in the theory KPu, a version of Kripke Platek set theory equivalent
with ID1 introduced and studied by Jäger [Jäg82]. After presenting the
theory SON, we will refine Cantini’s result by giving an syntactical interpre-
tation of ID1 instead of ID1(acc), [Kah97a]. As for the embedding of ÎD1 in
Frege structures, this result shows the special syntactical expressiveness of
truth theories over applicative theories.

We define the theory SON (supervaluation over theories of operation and
numbers), which corresponds to the theory VF− of Cantini in [Can96, § 59].
The language LS of SON is the same as LF . As in definition 11, we can
associate with every formula ϕ a term ϕ̇.
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The axioms of SON are those of TON extended to the new language,
plus the following ones:

I. T-out

(1) T(ϕ̇)→ ϕ.

II. T-elem

(2) x = y → T(x =̇ y),

(3) ¬x = y → T(¬̇ (x =̇ y)),

(4) N(x)→ T(Ṅx),

(5) ¬N(x)→ T(¬̇ (Ṅx)).

III. T-imp

(6) T(ϕ̇ →̇ ψ̇)→ (T(ϕ̇)→ T(ψ̇)).

IV. T-univ

(7) (∀x.T(ϕ̇))→ T(∀̇ (λx.ϕ̇)).

V. T-log.

(8) T(ϕ̇), if ϕ is a logical axiom.

As for FON, we leave out (trivial) self-reference, but define Ṫ as λx.x.

By T-log, we have T(ϕ̇) as an axiom of SON whenever ϕ is a LS for-
mula which is an instantiation of an axiom of predicate logic with equality.
Moreover, in the following, we study LS formulae ϕ which are provable by
use of pure logic only, i.e., by use of axioms and rules of predicate logic with
equality. In this case, we write

PL ` ϕ.

The following lemma collects the elementary facts which we need about
SON, [Can96]. In particular, the first one, provable by induction on the
length of the derivation, is crucial.

Lemma 28 1. For LS formulae ϕ for which PL ` ϕ holds, we have:
SON ` T(ϕ̇).

2. SON ` (∀x.T(ϕ̇))↔ T(∀̇ (λx.ϕ̇)),

3. SON ` T(ϕ̇) ∧ T(ψ̇)↔ T(ϕ̇ ∧̇ ψ̇),

4. SON ` (∃x.T(ϕ))→ T(∃̇ (λx.ϕ̇)),
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5. SON ` T(ϕ̇) ∨ T(ψ̇)→ T(ϕ̇ ∨̇ ψ̇).

Note that we have equivalences in the case of conjunction and universal
quantification, while for disjunction and existential quantification only one
direction holds.

Concerning induction principles, we are mainly interested in truth in-
duction (T-IN) because in SON, it is equivalent with the scheme of formulae
induction (LS-IN), i.e., induction over N for arbitrary LS formulae.

Proposition 29 (T-IN) and (LS-IN) are equivalent over SON.

Proof: Of course, we have to show the derivation of (LS-IN) from (T-IN)
only. The proof is a part of the proof of theorem 59.6 in [Can96], and runs
as follows: We set

ClosN(ψ) :⇔ ψ(0) ∧ ∀x : N.ψ(x)→ ψ(sN x),
ψ′(x) :⇔ ClosN(ψ)→ ψ(x).

It follows that PL ` ClosN(ψ′). From this, we get by lemma 28.1 that SON

proves T(
˙︷ ︸︸ ︷

ClosN(ψ′)). Writing ClosN(ψ′) out in full and applying lemma 28.3
yields the premise of (T-IN) for ψ′. Thus, we get by this induction principle

∀x : N.T(
˙︷ ︸︸ ︷

ψ′(x)). The axiom T-out yields ∀x : N.ψ′(x) which is, writing ϕ′(x)
out in full, (LS-IN) for the formula ψ. Since ψ was arbitrary, the proof is
finished. �

From [Can96], we get the proof-theoretic equivalence of ID1 and SON +
(T-IN), which is essentially his theory VFp. Together with the previous
proposition, we have:

Theorem 30 SON + (T-IN) ≡ SON + (LS-IN) ≡ ID1.

For completeness, we will mention the maybe surprising fact that the re-
striction to class induction (C-IN) will not exceed the proof-theoretic strength
of Peano arithmetic, cf. [Can96].

Theorem 31 SON + (C-IN) ≡ PA.

In addition to Cantini’s result, we will show in the following that SON +
(T-IN) (and (LS-IN)) also admits a syntactical embedding of ID1 itself. In
contrast to ID1(acc), the syntactic power of ID1 is much bigger by allowing
the definition of fixed points of arbitrary positive operator forms. The steps
of the proof follow essentially Cantini’s proof of the embedding of ID1(acc)
[Can96, theorem 59.4], which has to be generalized from binary relations to
arbitrary positive operator forms.

Let the positive operator form ϕ(R, x) be defined, as for FON, as a
T-positive formulae which contains the relation variable R only positively.
Then, we have:
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Lemma 32 If ϕ(R, x) is a positive operator form and ψ(x) and χ(x) are
arbitrary LS-formula with the one free variable x, we have:

1. PL ` ϕ(ψ, x) ∧ (∀x.ψ(x)→ χ(x))→ ϕ(χ, x).

2. SON ` ϕ(T(
˙︷︸︸︷

ψ(·)), x)→ T(
˙︷ ︸︸ ︷

ϕ(ψ, x)).

The proof is straightforward by induction of the build up of ϕ and, for
the second claim, by use of lemma 28.

In the following, we will use as abbreviations:

Closϕ(ψ) :⇔ ∀x.ϕ(ψ, x)→ ψ(x),
ψ′(x) :⇔ Closϕ(ψ)→ ψ(x).

In close analogy to the proof of proposition 29, we can show the ϕ-closure
of ψ′ by use of pure logic only. From that, we get the ϕ-closure of T(ψ̇′) in
SON.

Lemma 33 If ϕ(R, x) is a positive operator form and ψ(x) an arbitrary
LS-formula with the one free variable x, we have:

1. PL ` Closϕ(ψ′(·)).

2. SON ` Closϕ(T(
˙︷︸︸︷

ψ′(·))).

Proof: We have to show ∀x.ϕ(ψ′, x) → ψ′(x) by use of pure logic only,
i.e., PL ` ∀x.ϕ(ψ′, x)→ (Closϕ(ψ′)→ ψ(x)).

Let us assume ϕ(ψ′, x) and Closϕ(ψ). By definition of ψ′, we get ∀y.ψ′(y)→
ψ(y) from the latter. Lemma 32.1 yields ϕ(ψ, x), which is the premise of
Closϕ(ψ). Thus, we get ψ(x). Since this proof uses pure logic only, we have
shown the first assertion.

By lemma 28.1, we get from the first assertion that T(
˙︷ ︸︸ ︷

Closϕ(ψ′)) holds
in SON. By lemma 28.2, axiom III.(6), and lemma 32.2, we can move the
truth predicate inside the formula and get Closϕ(T(ψ̇′)). �

Now, we can define least fixed points for positive operator forms in SON.

Proposition 34 Let ϕ(R, x) be a positive operator form. Then there exists
a LS formula Pϕ(x) such that for all LS formulae ψ, the following holds:

SON ` ∀x.ϕ(Pϕ, x)→ Pϕ(x),
SON ` (∀y.ϕ(ψ, y)→ ψ(y))→ ∀x.Pϕ(x)→ ψ(x).
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Proof: We set

Pϕ(x) :⇔ ∀z.Closϕ(T(z ·))→ T(z x).

For the first assertion, let us assume ϕ(Pϕ, x). We have to show Pϕ(x),
i.e. ∀z.Closϕ(T(z ·)) → T(z x). So we assume, additionally, Closϕ(T(z ·)).
From the definition of Pϕ(x), we get from this that ∀y.Pϕ(y)→ T(z y) holds.
Now, we apply lemma 32.1 and get from the first assumption ϕ(T(z ·), x).
Using the second assumption again, we finally have T(z x).

For the second assertion, we assume Pϕ(x), i.e., ∀z.Closϕ(T(z ·)) →

T(z x). By substituting λx.
˙︷ ︸︸ ︷

ψ′(x) for z, we get Closϕ(T(
˙︷︸︸︷

ψ′(·))) → T(
˙︷ ︸︸ ︷

ψ′(x)).

Lemma 33.2 yields T(
˙︷ ︸︸ ︷

ψ′(x)) and with axiom T-out, we get ψ′(x), i.e., Closϕ(ψ)→
ψ(x), or, in other words,

(∀y.ϕ(ψ, y)→ ψ(y))→ ψ(x).

Thus, the second assertion is shown. �

By use of this proposition, we can easily extend the translation ·N of
the language of Peano Arithmetic in Lp to a translation of LID in LS which
verifies the fixed point axioms. Induction on the natural number of ID1 is
obviously included in (LS-IN) and, by proposition 29, also in (T-IN). Thus,
we have:

Theorem 35 There exists a translation ·N of LID in LS such that

ID1 ` ϕ ⇒ SON + (T-IN) ` ϕN .

7 Concluding remarks

Truth theories for applicative theories distinguish themselves by the possi-
bility of representing formulae by terms without any form of Gödelization.
In contrast, we can extend the language. The possibility to extend the lan-
guage in a systematic and controlled, or generic, way is an essential feature of
applicative theories. In particular, for truth theories, this seems to be much
more natural than the use of a technical coding machinery. For this reason,
Frege structures are also used in linguistics, e.g., to model nominalisations,
cf. Hamm [Ham99].

From a mathematical point of view, the possibility to define a concept
of sets based on the truth predicate is crucial. Using this “Janus face” of
the truth predicate, our theories can serve as alternatives for theories which
formalize sets directly, like Feferman’s theories of explicit mathematics. In
addition, the structure provided by the truth predicate is more flexible and,
as we have shown, extends the syntactical expressive power.

20



Thus, truth theories over applicative theories perfectly fit into the land-
scape of proof theory, cf. [Kah0xa]. Here we give a snapshot of this land-
scape, placing the truth theories next to theories of explicit mathematics
and fixed point theories or theories of inductive definitions together with
the proof-theoretic ordinals.

PRA+ Applicative theories ÎD
TI(α,X) Truth Expl. math. ID

ε0 FON + (C-IN) BON + (Lp-IN) PA

ϕω0 FON + (T-IN) ID#
1

ϕε00 FON + (LF -IN) EM0 + J ÎD1

Γ0 = ϕ100 FSU + (C-IN) EMU|̀ ÎD<ω

ϕ1ω0 FSU + (T-IN) ÎD<ωω

ϕ1ε00 FSU + (LU -IN) EMU ÎD<ε0

ΨΩ(εΩ+1) SON + (LS-IN) NEM ID1

As theories of explicit mathematics, we have in addition to BON with
the induction principle (Lp-IN) for arbitrary formulae of the language Lp of
BON, the following ones: EM0 + J: Explicit mathematics plus join, [Bee85].
EMU: Explicit mathematics with universes, [Str99], where EMU|̀ denotes
the theory with induction restricted to types. NEM: Name induction in
explicit mathematics, [KS00].

As references for the proof-theoretic investigations, we refer to the follow-
ing papers: For truth in applicative theories: [Can96, Kah0xb], for explicit
mathematics, [Bee85, Str99, KS00], for theories of fixed points and inductive
definitions, [JS96, Acz77, Fef82, JKSS99, BFPS81].

We will finish with two suggestion to extend the approach of truth in
applicative theories further on in the impredicative world.

First, one can consider universes for supervaluation in analogy to Frege
structures, hoping to get theories which allow syntactical embeddings of
iterated inductive definition IDα. Such theories have not been studied yet
but, again, Cantini has presented a framework which is very closely related
which admits embeddings of finite constructive number classes IDn+1(O),
cf. [Can91].

Secondly, one can think of a strengthening of Frege structures by adding
an induction principle for the truth predicate. Maybe such a principle yields
a uniform step to impredicative theories for the basic theory, as well as for
the theories with universes. A similiar step is possible in the context of
explicit mathematics by adding a induction principle for the naming relation
<, [KS00, JKS0x].
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[JS96] Gerhard Jäger and Thomas Strahm. Some theories with positive
induction of ordinal strength ϕω0. Journal of Symbolic Logic,
61(3):818–842, September 1996.

[Kah97a] Reinhard Kahle. Applikative Theorien und Frege-Strukturen. PhD
thesis, Institut für Informatik und angewandte Mathematik, Uni-
versität Bern, 1997.

[Kah97b] Reinhard Kahle. Uniform limit in explicit mathematics with uni-
verses. Technical Report IAM-97-002, IAM, Universität Bern,
März 1997.

[Kah99] Reinhard Kahle. Frege structures for partial applicative theories.
Journal of Logic and Computation, 9(5):683–700, October 1999.

[Kah0xa] Reinhard Kahle. Mathematical proof theory in the light of ordinal
analysis. Synthese, 200x. To appear.

[Kah0xb] Reinhard Kahle. Universes over Frege structures. 200x. Submit-
ted.

[Kri75] Saul Kripke. Outline of a theory of truth. Journal of Philosophy,
72:690–716, 1975.

[KS00] Reinhard Kahle and Thomas Studer. A theory of explicit math-
ematics equivalent with ID1. In P. Clote and H. Schwichten-
berg, editors, CSL 2000, volume 1862 of LNCS, pages 356–370.
Springer, 2000.

24



[KS0x] Reinhard Kahle and Thomas Studer. Formalizing non-termina-
tion of recursive programs. 200x. Submitted.
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