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Abstract 

This paper examines the adequacy of causal graph theory as a tool for modeling biological 

phenomena and formalizing biological explanations. I point out that the causal graph 

approach reaches it limits when it comes to modeling biological phenomena that involve 

complex spatial and structural relations. Using a case study from molecular biology, DNA-

binding and -recognition of proteins, I argue that causal graph models fail to adequately 

represent and explain causal phenomena in this field. The inadequacy of these models is 

due to their failure to include relevant spatial and structural information in a way that does 

not render the model non-explanatory, unmanageable, or inconsistent with basic 

assumptions of causal graph theory. 

 



 
 

2 
 

1. Introduction 

In recent decades major advances have been made in formalizing causation and causal 

inference (Spirtes, Glymour, and Scheines 2000; Pearl 2000) and in using these formalisms 

to address traditional philosophical issues such as scientific discovery and the nature of 

scientific explanations (Woodward 2003, Hitchcock and Woodward 2003, Woodward and 

Hitchcock 2003). At the heart of these formal theories lie causal models that involve 

elements such as causal graphs, probability distributions, Bayesian nets, and structural 

equations which satisfy certain conditions, most prominently the Causal Markov Condition 

(more on this in Section 2). Causal models are appreciated because they allow for inferring 

causal relations from observed probabilistic correlations, for predicting the effects of 

manipulations and interventions, and because they can be used for representing and 

explaining causal relationships in very general, formal terms. 

Proponents of the causal modeling approach usually emphasize and exemplify the 

wide scope of this approach. In recent years several authors have, for instance, shown that 

the causal modeling approach can also be applied to mechanistic explanations in biology 

and medicine (Casini et al. 2011; Gebharter and Kaiser 2014; Clarke, Leuridan, and 

Williamson forthcoming; Gebharter forthcoming). Also Woodward’s interventionist theory 

of causation and causal explanation (2003) that makes extensive use of causal graphs is 

supposed to be applicable to a very wide range of causal relationships, including those in 

the biological sciences (2010, 2011, 2013). 

In this paper I agree that causal modeling is a powerful approach to formally 

represent, explain, and discover causal relations. However, I also think that its scope 
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should not be overestimated and that it is important to recognize also the limits of the 

causal modeling approach. This paper explicates one of these limits: the explanation of 

spatially and structurally complex biological phenomena.1 According to my line of 

criticism, formal causal models fail to offer adequate causal explanations of biological 

phenomena that essentially involve complex spatial and chemical-structural relations. This 

failure is due to the fact that causal graphs only provide causal difference-making 

information of the sort: A change in the value of X would under suitable conditions change 

the value (or probability distribution) of Y. The explanations of some biological 

phenomena, however, seem to be richer than this: these explanations do not only represent 

causal relations but also and prominently spatial relations and biochemical structures (such 

as the conformation and chemical structure of macromolecules, the spatial orientation and 

fitting of macromolecules to each other, and the complementarity of chemical structures). 

Based on the analysis of a case study from molecular biology, DNA recognition and 

binding by gene regulatory proteins, I show that the formal tools of causal graph theory are 

too impoverished to model biological processes that involve complex spatial-structural 

relations. 

Interestingly, Woodward (2011) has basically conceded this point, but he does not 

see this as a limitation of his causal modeling or interventionist approach to scientific 

explanation. Taking a relaxed stance, he argues that complex spatiotemporal information 

                                                       
1 Other limitations may be that causal models fail to account for the complex dynamics that 

biological phenomena such as biological clock mechanisms involve (Weber manuscript) 

and that causal models provide a confusing and ontologically inadequate view of the 

entities and activities involved in biological mechanisms (Gebharter and Kaiser 2014). 
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can just be added back to the backbone of causal difference-making information and can be 

used to “organize” (2011, 423) or “fine-tune” (2013, 55) causal difference-making 

information. This paper shows that things are not that easy. Some biological processes 

involve complex spatial and chemical-structural relations that are central to explaining 

these processes but that cannot be represented in causal graph models without rendering 

the model un-explanatory, unmanageable, or contradictory. 

I proceed as follows. In Section 2 I briefly review the core notions and assumptions 

made in the causal modeling literature such as the notion of a causal graph, a probability 

distribution, and the Causal Markov Condition. In Section 3 I introduce the case study on 

which my analysis relies by explaining the three kinds of fit that are involved in DNA-

protein recognition and binding (Section 3.1) and by specifying what exactly the 

phenomenon is that biologists seek to explain and which constraints on the adequacy of 

modeling this phenomenon follows from this (Section 3.2). In Section 4 I construct a 

causal graph model of DNA-protein recognition and then point out the shortcomings it has 

(Section 5). To elaborate my argumentation I discuss two possible objections that a causal 

modeler could raise: first, one might argue that the proposed causal graph model it not 

good enough, but that it is possible to construct an alternative model that does include the 

relevant spatial-structural information and is adequate (Section 5.1), second, one might 

object that I am not making an interesting or novel point as the explanation of DNA-

protein recognition is non-causal and causal graph theory was not intended to model non-

causal explanations (Section 5.2). 
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2. Causal Modeling 

The most frequently used causal models can be grouped into two kinds: causal Bayesian 

networks and structural equation models (which are distinct but closely related, cf. Spirtes 

2010). In this paper I focus on causal Bayesian networks (which can also be called causal 

graph models) and leave structural equations aside. Causal graph models combine 

mathematics and philosophy: the mathematical elements are directed acyclic graphs 

(DAGs) and probability theory (with focus on conditional independence); the philosophical 

elements are assumptions about the relationship between causation and probability 

(Spirtes, Glymour, and Scheines 2000).  

A directed acyclic graph (DAG, also called G) is an ordered pair G = V, E, where 

V is a set of variables and E is a set of directed edges (that are graphically represented by 

arrows) that have the variables in V as their vertices. A variable can be binary, its values 

representing for instance the instantiation or non-instantiation of some property, or 

variables can have multiple values or even be continuous. Here is an example of a DAG: 

 

 

Fig. 1: An example of a directed acyclic graph (DAG) 

 

Besides the DAG, a causal model consists of a probability distribution P over the variable 

set V that assigns a value to every variable in V such that the sum of all assigned variables 

in V equals 1. The pair of DAG G and probability distribution P over V is referred to as a 
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Bayesian network if and only if G and P satisfy the Markov Condition.2 A DAG becomes a 

causal graph as soon as its edges are interpreted causally: an edge leading for instance 

from variable X2 to variable X5 (see Figure 1) is interpreted such that X2 is a direct cause of 

X5. When DAGs are interpreted causally the Markov condition (and d-separation) are 

assumed to be the correct connection between causal structure and probabilistic 

independence. This assumption is called the Causal Markov Condition and it can be 

formulated as follows: 

Causal Markov Condition (CMC) 

G and P satisfy the Causal Markov Condition if and only if for every variable X in V, 

INDEPPr(X, N-Des(X) | Pa(X)). 

 

In words, a directed acyclic graph G and a probability distribution P over variable set V 

satisfy the Causal Markov Condition iff every variable X in V is probabilistically 

independent of X’s non-descendants (N-Des(X)) given X’s parents (Pa(X)). For example, 

X2 is probabilistically independent from its non-descendants (i.e. X3, X4, and X6) given X1. 

CMC captures the intuition that conditioning on all common causes (e.g., X1) and on 

intermediate causes breaks down the probabilistic influence between two formerly 

correlated variables (e.g., X2 and X3). Since causal models satisfy CMC they allow, for 

instance, for probabilistic prediction and manipulation. 

                                                       
2 In DAGs the Markov Condition turns out to be equivalent to a more generally useful 

graphical relation: d-separation (Pearl 1988). 
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In the remaining sections of this paper I apply these formal tools of causal graph 

theory to a paradigmatic example of a biological explanation: the explanation of how gene 

regulatory proteins recognize and bind to a specific DNA region. My analysis will show 

that the causal modeling approach reaches its limits when it comes to representing and 

explaining spatially-structurally complex biological phenomena.3 

 

3. DNA-Recognition and -Binding by Proteins 

The regulation of the expression of genes is an important process in living beings. 

Differential gene expression is for instance the basis for cell differentiation during 

development. In eukaryotes, gene expression is regulated at different steps, for instance, a 

cell controls when and how often genes are transcribed (transcriptional control). The most 

important elements in regulating gene transcription are gene regulatory proteins (also 

called transcription factors). These proteins can recognize and bind to specific nucleotide 

sequences without having to open the double helix. This is due to the fact that the surface 

                                                       
3 One might object that even in biological fields where spatially and structurally complex 

phenomena are studied (e.g., in protein folding and interaction research) graphical models 

turn out to be useful (cf. Balakrishnan et al. 2010, Thomas et al. 2009). I don’t think, 

however, that cases like these are counterexamples to my thesis. First, the applied 

graphical models are undirected probabilistic graphical models, not direct causal graph 

models of the kind I discuss here. Second, in these studies graphical models are not used to 

directly represent or to explain phenomena such as protein folding or protein-protein 

interaction. Rather, they are used as techniques or tools, for instance, to guide the design of 

new protein sequences. Hence, graphical models might be useful in that domain, but not 

for the purposes I discuss in this paper. 
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of the DNA (in particular, its major grooves) presents a distinctive pattern of hydrogen 

bond donors and acceptors, and hydrophobic patches. A gene regulatory protein recognizes 

a specific DNA sequence because its surface is extensively complementary to the special 

surface features of the major groove of DNA. In other words, the protein fits well to a 

certain region of the DNA. 

 

3.1 Three Kinds of Fit 

This fitting of a gene regulatory protein to a specific DNA binding site can be interpreted 

as involving three interwoven aspects: a spatial aspect, a structural aspect, and a causal 

aspect. The spatial fit refers to the fact that the spatial conformation of the protein is such 

that it allows certain parts of the protein being placed in the major groove of the DNA 

double helix, at the DNA backbone, or in its minor groove. The structural fit means that 

the protein exhibits particular amino acid residues at certain places such that they are 

complementary to the functional groups that the nucleotide bases of the DNA exhibits at 

certain places. The spatial and the structural fit give rise to a causal fit. That is, the spatial 

orientation and the structural complementarity of the protein and the DNA enable that 

certain causal interactions between the function groups of the protein and those of the 

DNA take place and certain chemical bindings between them are established. These three 

kinds of fit can be summarized as follows: 

(1) Spatial fit: The spatial conformation of the gene regulatory protein matches the 

double helix conformation of the DNA. 
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(2) Structural fit: The chemical structure of the protein (i.e., the sequence and 

location of its amino acids) is complementary to the nucleotide sequence of the 

DNA binding site. 

(3) Causal fit: Certain amino acid residues causally interact with/make contact with 

certain nucleotide bases. 

Consider the example of DNA recognition and binding by a zinc finger (ZnF). Zinc 

finger proteins are specific gene regulatory proteins that use zinc finger motifs to bind to 

DNA. The three zinc fingers of the Zif268 protein in mice, for instance, are arranged in a 

semicircular, C-shaped structure so that the α-helix of each zinc finger fits directly into the 

major groove of the DNA double strand (Pavletich and Pabo 1991). Figure 2 illustrates this 

spatial fit.  

 

Fig. 2: Spatial fit between Zif268 and the DNA. (Pavletich/Pabo 1991, 811, Fig. 2.) 
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The cylinders and ribbons mark the α-helical and β-sheet regions of each finger. The shape 

of the Zif268 protein is such that it wraps round the DNA and the three α-helices (the 

cylinders) fit into the major groove. 

The second kind of fit, the structural fit, is due to the fact that the chemical structure 

of the three zinc fingers is complementary to the nucleotide sequence of the DNA binding 

site. This means that the zinc finger protein possesses the “right” amino acids at the “right” 

places. For instance, the twenty forth amino acid of Zif268 protein is arginine, which has a 

positively charged residue. If the protein collides with the DNA binding site (in the right 

orientation) arginine is close to the nucleotide guanine, with which is can form hydrogen 

bonds (see Figure 3.b). Hence, the spatial and structural match between the zinc finger 

protein and its DNA binding region enables that the two also causally match: given that 

Zif268 collides with the DNA in the right orientation its three zinc fingers form extensive, 

characteristic contacts with the nucleotide bases (primarily along the guanine-rich DNA 

strand). Each finger has a similar relation to the DNA and makes its primary contacts in a 

three-base pair subsite. A summary of the critical base contacts is depicted in Figure 3a.  



 
 

11 
 

b

                     

Fig. 3: Base contacts made by Zif268. (a: Summary of all critical base contacts; b: 

Arginine-guanine interaction that is present in finger 1 and 3; Pavletich and Pabo 1991, 

812, Fig. 3.) 

 

An example for such a contact between an amino acid residue of the zinc finger protein 

and a nucleotide base of the DNA is the Arginine-guanine contact (see Figure 3b). 

Arginine-guanine interactions seem to be responsible for much of the specificity in the zinc 

finger complex (Pavletich and Pabo 1991, 816). 

 

3.2 Constraints on an Adequate Model of DNA-Protein Recognition 

In this section I point out the implications that the biological literature has for the 

conditions under which an explanatory causal model of DNA-protein recognition is 

adequate. For this purpose I, at first, specify what exactly the phenomenon to be modeled 

a 
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and to be explained in this case study is. Then I identify the different sorts of information 

that biologist treat as relevant to explaining this phenomenon. The underlying 

methodological assumption is that how biologists actually study and reason about DNA-

protein recognition tells us which information is relevant to explaining this phenomenon 

and which information thus must be included in an adequate causal model. 

In the biochemical literature the phenomenon is generally characterized as “DNA 

recognition by proteins” (Pavletich and Pabo 1991; Somers and Phillips 1992; Klemm et 

al. 1994) or as “protein-DNA interaction” (Luisi 1991). The target of these biochemical 

studies is to reveal why and how a particular gene regulatory protein (such as the zinc 

finger protein ZiF268 in mice) recognizes and binds to a specific DNA region.4  

It seems to me that the phenomenon of DNA-protein recognition has (at least) two 

major characteristics, both of which must be captured by any adequate model of this 

phenomenon. First, a model of DNA-protein recognition must account for the regular 

changes from unbound proteins to DNA-bound proteins that take place under certain 

conditions. These regular changes include certain sub-processes, as the process of diffusion 

(of the protein and the DNA strand), the process of collision of the protein and the DNA, 

the process of recognition, and the process of binding of the protein to the DNA. Second, 

an adequate model of this phenomenon requires that one accounts for the specificity of the 

binding process. That is, a model must elucidate why a certain gene regulatory protein 

                                                       
4 In mechanistic terms one could say that they seek to uncover the mechanism for DNA-

protein recognition and binding. 
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recognizes and binds to a specific DNA region, rather than to a different region with a 

different nucleotide sequence.  

The biochemical literature reveals further constraints on how DNA-protein 

recognition is adequately modeled. In Section 3.1 I have argued that biochemists provide 

three kinds of information when they explain how a certain gene regulatory protein 

recognizes and binds to a specific DNA region: first, they disclose the three-dimensional 

structure of the gene regulatory protein (which α helices and which β sheets it has and how 

they are located to each other) and its spatial orientation on the double helix when it is 

bound to the DNA. This amounts to showing that there is a spatial fit between the protein 

and its DNA binding region. Second, they reveal the chemical structure of the involved 

macromolecules and show that the chemical structure of the protein surface is 

complementary to the chemical features of the DNA sequence, that is, that there is a 

structural fit between protein and DNA binding site. Finally, biochemists point out which 

functional groups of the amino acid residues causally interact with which functional groups 

of the nucleotide bases and what the chemical nature of these interactions is (whether they 

are hydrogen bonds, van der Waals interactions, salt bridges, etc.). Modeling DNA-protein 

recognition typically involves providing a complete list of the contacts that are made 

between protein and DNA (e.g., Luisi et al. 1991, 502f; Pavletich and Pabo 1991, 812-814; 

Klemm et al. 1994, 23-25). This contact list specifies the causal fit between gene 

regulatory protein and DNA binding site.  

All three kinds of information are necessary parts of an adequate causal model that 

provides an understanding and explanation of how a gene regulatory protein recognizes 
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and binds to a specific DNA region. Neglecting some of these relevant kinds of 

information renders the model inadequate. At least such a model would be incomplete in a 

way that is disastrous for its explanatory power. If one for instance ignores complex spatial 

and structural information and represents only the causal interactions between the 

functional groups of protein and DNA, the regular changes from unbound proteins to 

DNA-bound proteins and the specificity of the binding process will remain obscure.  

 

4. How to Model DNA-Protein Recognition by Causal Graphs 

How can we construct a formal causal model of the binding of a gene regulatory protein 

(e.g., Zif268) to a specific DNA binding site? The framework of causal graph theory 

(recall Section 2; for an introduction see, e.g., Spirtes et al. 2000) seems to be a promising 

tool. One possibility to model DNA-protein recognition by causal graphs (and probability 

distributions) is to conceive this phenomenon as a chain of causal events that leads to the 

binding of the gene regulatory protein Zif268 to the corresponding DNA binding site. The 

preceding causal events would then be the diffusion of Zif268 into the nucleus, which 

leads to (or allows for) the collision between Zif268 and the DNA at the corresponding 

binding site, which in turn causes the binding of Zif268 to the DNA. This chain of causal 

events can be represented by the following causal graph model (let us call it M1):  

 

Fig. 4: Causal graph model M1 for DNA-protein recognition. 

 

++ D  C  B 
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D, C, and B are binary variables. D stands for the diffusion of Zif268 into the nucleus, C 

for the collision between Zif268 and the DNA at a certain region, and B for the binding of 

Zif268 to a certain DNA region. Each of the three variables can take one of the two values 

“taking place” and “not taking place”. D is a direct cause of C, which is a direct cause of B 

(represented by the arrows). The “+” stands for a positive causal influence: raising the 

probability that C takes the value “taking place” raises the probability that B takes the 

value “taking place”. Hence, the causal graph model allows for making predictions and 

testing them by interventions. For instance, the causal dependency relation between C and 

B can be tested by lowering the probability of the collision of proteins and DNA strands by 

dilution. According to the causal model the consequence of this intervention should be that 

also the probability for the binding of the protein to the DNA decreases. 

A possible objection to M1 is that it does not account for the causal fit between the 

gene regulatory protein Zif268 and the DNA binding site (not to mention the spatial and 

the structural fit). In the model there is only a single variable B that stands for the binding 

of Zif268 to a certain DNA region. No further information about which causal interactions 

between which amino acid residues and nucleotide bases take place and bring about the 

binding is included in the model. But this information seems to be crucial for an 

understanding of the causal fit between Zif268 and the DNA binding site. This objection 

can be avoided by choosing a larger number of more fine-grained variables. Instead of 

representing the collision of the entire protein with the entire DNA binding site by a single 

variable (C) this event is broken down to into various sub-events (e.g., amino acid residue 

x1 collides with nucleotide base y1, amino acid residue x2 collides with nucleotide base y2, 
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etc.), each of which is then represented by a distinct variable (C1, C2, etc.). Likewise, not 

the binding of the protein to the binding site in general is represented (by a single variable 

B). Rather, different variables (B1, B2, etc.) represent the binding of different amino acid 

residues to different nucleotide bases.5 The resulting causal graph model M2 is the 

following: 

 

Fig. 5: Causal graph model M2 for DNA-protein recognition. 

 

C1, …, Cn and B1, …, Bn are binary variables. Each of them can take one of the two values 

“taking place” and “not taking place”. C1, …, Cn stand for the collision (or spatial 

proximity) of a certain amino acid residue of Zif268 with a certain nucleotide base, and B1, 

…, Bn for the formation of a certain set of bonds/interactions between residues and bases. 

                                                       
5 One might claim that these variables (C1, C2, C3, B1, B2, and B3) are not only more fine-

grained, but also lower-level variables (i.e., variables that represent entities that are located 

on a lower organizational level than the entities represented by the former variables C and 

B). An even more “fine-grained” model would distinguish also among the different 

contacts that are made between one amino acid and one nucleotide. 

+

+

+

+

+ 

+ 

+ D  C1 
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B2 

B3 
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The arrows between the variables represent that D is a direct cause of C1, C2, and C3, 

which are direct causes of B1, B2, and B3. Since the binding of a particular amino acid 

residue to a particular nucleotide base may raise the probability that another binding 

between the protein and the DNA is established the causal graph model also contains 

arrows between the B-variables (such as the arrow between B1 and B2).6 

 

5. Where the Limits of Causal Graph Models Lie 

In Section 3.2 I have argued that three kinds of information are crucial to adequately 

explaining why and how gene regulatory proteins, such as Zif268, specifically and 

regularly recognize and bind to certain DNA regions: information about the spatial fit, 

about the structural fit, and about the causal fit between protein and DNA. M2 is superior to 

M1 since it succeeds in representing the causal fit, that is, M2 includes information about 

which amino acid residues causally interact with and establish chemical bindings to which 

nucleotide bases. However, M2 fails to provide an understanding of the spatial fit as well as 

of the structural fit between Zif268 and DNA. It entails no information about the 

conformation of Zif268 and about how it matches the double helix shape of the DNA 

(spatial fit). It also does not represent the complementarity of the chemical structure of the 

protein (i.e., the sequence and location of its amino acids) to the nucleotide sequence of the 

DNA binding site (structural fit). M2 includes information about which amino acids 

causally interact with which nucleotides (contained in the variables B1,…Bn). But this is, as 

such, no direct or complete information about the structural fit between protein and DNA: 

                                                       
6 The same might be true regarding the C-variables. 
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The fact that protein and DNA causally fit allows only inferences about the 

complementarity of their chemical structures and it sheds light on only some parts of the 

chemical structure of DNA and protein. The causal graph model M2 is thus inadequate 

because it leaves out spatial and structural information that is crucial for explaining why 

and how the zinc finger protein specifically and regularly recognizes and binds to DNA.  

In the next two subsections I elaborate on my argument by addressing two possible 

objections that the causal modeler could raise. First, one might admit that M2 is inadequate, 

but argue that it is possible to construct an alternative causal graph model that accounts for 

the spatial and structural fit between Zif268 and DNA and thus is adequate (Section 5.1). 

Second, one might agree that causal graph theory is not the appropriate tool to model 

spatially and structurally complex phenomena, but object that this is neither an interesting 

nor innovative insight as the explanations in these cases are non-causal and causal graph 

theory was not intended to model non-causal explanations (Section 5.2). 

 

5.1 Shortcomings of Alternative Modeling Strategies 

The first objection says that even if the causal graph model M2 is inadequate it is possible 

to revise M2 in a way that renders it adequate. In other words, an opponent might argue 

that it is possible to construct an alternative causal graph model that includes all the 

complex spatial and structural information that is relevant to explaining DNA-protein 

recognition into M2. But how could that be done? I see two different ways one could go.  

One option is to include information about the spatial conformation of Zif268 into 

the characterization of the variables C1, …, Cn or B1, …, Bn. For instance, one could 
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characterize B2 not as the “formation of a certain set of contacts between amino acid 

residue x2 and nucleotide base y2” but as the “formation of a certain set of contacts 

between amino acid residue x2 and nucleotide base y2, where x2 is covalently bound to x1 

and x3, forms a salt bridge to x14, has a close distance also to bases y3 and y9, and so on”.  

But this strategy encounters several problems. First, storing complex spatial and 

structural information into the characterization of the variables renders M2 unmanageable 

because the measurement of the values of the variables becomes very complicated or even 

unfeasible.7 Second, this strategy results in a causal model in which the spatial and 

structural information is highly fragmented because information about the spatial 

conformation of Zif268 and of the DNA binding site, about their spatial orientation to each 

other, about the chemical structures of protein and DNA, and about the complementarity of 

these structures is distributed over the many variables C1, …, Cn and B1, …, Bn. This 

fragmentation is devastating for the explanatory power of the causal model since the 

resulting model fails to elucidate why and how Zif268 spatially and structurally fits to the 

DNA bind site (e.g. that the whole protein Zif268 has a C-shaped structure so that the α-

helix of each zinc finger fits directly into the major groove of the DNA double strand). 

Third, this strategy of storing complex spatial and structural information into M2 gives rise 

to a causal model in which a great deal of the explanatorily relevant information is 

contained in the characterization of the variables, not in the represented causal dependency 

relations. This suggests that the causal dependency relations are less informative and bear 

                                                       
7 One might even argue that spatial and structural information is so complex that adding 

them to the causal model is not feasible in practice, but merely possible in principle. 
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+
+ 

less explanatory weight than the characterization of the variables. But this seems to conflict 

with the typical way of how causal graph models are conceived and reinforces the 

impression that one tries to add something that does not really fit. 

A second option is to add one or more variables to the causal model that are 

supposed to represent the spatial and structural fit between protein and DNA. One could, 

for instance, add the variable S that stands for the protein Zif268 having a certain 

conformation and chemical structure, the DNA having a certain shape and chemical 

structure, Zif268 being oriented towards the DNA binding site in a certain way, and the 

structures of protein and DNA being complementary.8 In its simplest form S would be a 

binary variable, which can take one of the two values “being realized” and “not being 

realized”. The resulting causal model M3 would look as follows: 

 

Fig. 6: Causal graph model M3 for DNA-protein recognition. 

 

                                                       
8 This option implies that one accepts that the conformations of, spatial relations between, 

and chemical structures of protein and DNA are difference makers with respect to their 

binding and that – given an interventionist, counterfactual theory of causation – 

information about the spatial and structural fit also is causal information (see Section 5.2). 
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M3 accounts for the fact that whether or not a certain amino acid base makes contact to a 

certain nucleotide base depends not only on whether protein and DNA collide, but also on 

whether they spatially and structurally fit (i.e. on whether the amino acid base and the 

nucleotide base are complementary and whether they are proximate enough).  

The revised causal model M3, however, is still not satisfactory. First, it has the feel 

of putting the missing relevant spatial and structural information in “by hand”:9 something 

that does not smoothly, automatically fit must be added under additional, atypical efforts. 

What reinforces this feeling is that all different elements of the spatial and of the structural 

fit are represented by a single variable S. It would be more adequate to add different 

variables (S1, …, Sn) each for protein conformation, DNA shape, spatial orientation of 

protein towards DNA, amino acid sequence of Zif268, chemical structure of the DNA 

binding site, and for the complementarity of protein and DNA structure. These different 

variables could then also be quantitative variables (rather than binary ones), which might 

represent, for instance, relative distances among sets of  protein molecules and sets of 

DNA molecules and possible combinations of proteins with a certain sequence binding to 

DNA molecules with a certain sequence. But this strategy encounters the problem that the 

variables are no longer conceptually independent from each other (e.g., a specific protein 

conformation requires a specific amino acid sequence, or the complementarity of protein 

and DNA binding site means that certain kinds of causal interactions can take place), 

which violates a central requirement of causal graph theory. Finally, even if we could add 

different variables for each element of spatial and structural fit the characterization of the 

                                                       
9 Thanks to an anonymous referee for pointing this out. 
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variables would be very complex. For instance, the variable that stands for the 

complementarity of protein and DNA structure would have to be characterized in a way 

that shows not only that the protein structure is complementary to the structure of the DNA 

binding site, but that also illuminates why they are complementary and what this amounts 

to. This requires storing detailed information about which functional groups of which 

amino acid residues fit (for which reasons) to which functional groups of which nucleotide 

bases into the characterization of variables. The second option of including complex spatial 

and structural information into the causal graph model thus encounters the same objections 

as the first option: storing complex information into the characterization of the variables 

renders the causal model unmanageable and it contradicts the basic assumption of causal 

graph theory that causal dependency relations between variables are a central element of 

causal models (i.e. that they are not less informative and bear less explanatory weight than 

the variables themselves).  

To conclude, even if it might be in principle or technically possible to include 

information about complex spatial relations and chemical structures into a causal graph 

model, this can only be done at the expense of the adequacy of the causal model as it 

renders the causal model non-explanatory (because the information gets highly 

fragmented), unmanageable, and entails inconsistencies with basic assumptions of causal 

graph theory (e.g. that variables must be conceptually independent and that causal 
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dependency relations are central). Hence, the causal graph approach reaches its limits when 

it comes to explaining spatially and structurally complex biological phenomena.10 

 

5.2 Just a Matter of Non-causal Explanations? 

A second line of criticism agrees with me that biological phenomena that involve complex 

spatial relations and chemical structures cannot be adequately modeled by the tools of 

causal graph theory, but argues that this is neither an interesting nor novel insight. 

Everybody agrees, so the criticism goes, that there are non-causal explanations in science 

such as the explanation of DNA-protein recognition and that causal graph theory is not the 

appropriate tool for representing such non-causal explanations. So what is the big news?  

I agree that if the explanation of DNA-protein recognition were non-causal it would 

be weird to investigate why causal graph theory fails to adequately represent this non-

causal explanation. But I think the process of DNA-protein recognition clearly is a causal 

process, which involves causal interactions between the functional groups of the protein 

and of the DNA binding site, and that this process must be explained causally, too.11 What 

is interesting about this explanation is that, besides causal relations, it also and prominently 

                                                       
10 Jantzen and Danks (2008) have recently argued that topological properties of complex 

molecules can be represented by graphical models. One might suggest that this challenges 

the argument that I provide in this paper. Note, however, that the graph models I discuss 

are very different from the ones that Jantzen and Danks propose. They use undirected 

graphs to represent topological properties of molecules, whereas I use directed, causal 

graphs to represent processes of DNA-protein binding. 
11 I regard explanations as causal if they explicitly (but not necessarily only) represent 

causal relations. 
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represents relations that are non-causal (or at least not directly causal): the shape of the 

gene regulatory protein Zif268, how Zif268 is spatially oriented to the DNA double helix 

(i.e. their spatial fit), the chemical structures of Zif268 and DNA binding site (i.e. the 

sequence of amino acids and nucleotides), and the complementarity of their chemical 

structures. The question of whether these kinds of non-causal information can be 

adequately represented in causal graph model or whether they constitute a limit of the 

applicability of the causal modeling approach is neither uninteresting nor has it already 

been sufficiently addressed.12 

One might question whether information about the spatial and structural fit between 

DNA and protein is in fact non-causal as both kinds of fit make a difference to the binding 

of DNA and protein (in other words, the binding counterfactually depends on there being a 

spatial and structural fit). Assuming a counterfactual view of causation one could then 

argue that (besides the collision) the spatial and structural fit between DNA and protein 

cause their binding. It is important to note that my analysis of the limits of causal graph 

theory is compatible with such an interpretation. Characterizing complex spatial and 

structural information as causal makes it even more urgent and interesting to analyze 

whether these kinds of information can be included in causal models. 

The discussion about the allegedly non-causal character of the explanation of DNA-

protein recognition points to another important issue: in explanations of spatially and 

                                                       
12 This question has already been discussed with regard to constitutive or part-whole 

relations (e.g., Casini et al. 2013; Gebharter and Kaiser 2014). This paper extends the 

discussion to spatial and structural relations. 
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structurally complex biological phenomena causal and non-causal information often cannot 

be easily separated, but rather are interwoven and highly integrated. For example, in my 

case study the structural fit between a gene regulatory protein and the DNA binding site is 

specified by referring to non-causal information such as information about the sequence of 

amino acids and nucleotides and to information about the complementarity of protein and 

DNA structures, which seem to be implicitly causal or to be closely connected to causal 

information. The complementarity of protein and DNA can be spelled out either 

dispositionally or counterfactually: to say that protein and DNA are complementary means 

to say that protein and DNA have the disposition to causally interact/form certain kinds of 

bounds (if they collide or are proximate enough) or that if protein and DNA collided or 

were proximate enough they would form certain kinds of bounds. Both explications refer 

to causal information about the formation of bounds between protein and DNA (i.e. 

information about the causal fit). Furthermore, the causal part of the explanation of DNA-

protein recognition seems to rely on its non-causal part because to understand the causal fit 

between protein and DNA binding site requires understanding how they spatially fit 

together and that their structures match. Hence, even if it is possible to entangle three 

respects how a gene regulatory protein fits to a specific DNA binding site (recall Section 

3.1) in fact these three kinds of fit and the causal and non-causal information they invoke 

are interwoven.  

This entanglement of causal (difference-making) information with non-causal 

(spatial-structural) information poses a challenge to Woodward’s argument that spatial 

information can simply be added to the backbone of causal difference-making information 
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and can be used to fine-tune causal information (2011, 2013). His argument requires that 

causal difference-making information and spatial-structural information are easily 

separable. But biological practice shows that in some cases information about causal and 

non-causal relations is closely related and interwoven in such complex ways that it is not 

possible to clearly tell them apart.  

 

6. Conclusions 

I agree that causal modeling is central to scientific practice and that formal theories of 

causal modeling and explanation, such as causal graph theory, are powerful. However, I 

think that their significance is not universal and that it is important to notice also the limits 

of causal graph theory. In this paper I have used an example from molecular biology to 

reveal one of these limitations: spatially-structurally complex phenomena. I have shown 

that causal graph models fail to provide explanations of biological processes that involve 

complex spatial-structural relations (such as DNA-protein recognition). 

The goal of this paper has not been to argue that there exist kinds of explanation in 

the biological sciences that are non-causal. The process of how a gene regulatory protein 

regularly recognizes and binds to a specific DNA region clearly is a causal process. But 

these causal relations are not the only kind of relations that is relevant to understanding and 

explaining the phenomenon of DNA-protein recognition. Besides causal difference making 

information, any adequate causal model of this phenomenon must also and prominently 

include spatial and structural information (i.e. information about protein and DNA 

conformation and chemical structure, about how they spatially fit, about why their 
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structures are complementary). This non-causal (spatial and structural) information is often 

entangled with causal difference making information. But exactly this is, as I have argued, 

the point at which the limits of causal graph models become apparent. 

My central argument in this paper has been that the formal tools of causal graph 

theory are inappropriate to model and to explain spatially and structurally complex 

biological phenomena (e.g. DNA-protein recognition) because they result in causal models 

which either ignore the importance of spatial and structural relations all together (such as 

M1 and M2) or which try to include the relevant spatial and structural information but, in so 

doing, render the causal graph models non-explanatory, unmanageable, or inadequate 

because they conflict with basic assumptions of causal graph theory (such as M3). This 

argument does not erode the significance of formal approaches to causal modeling, but it 

demonstrates that their scope is limited. 
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