
Artificial Intelligence and Law 5: 97–118, 1997. 97
c
 1997 Kluwer Academic Publishers. Printed in the Netherlands.

A Goal-Dependent Abstraction for Legal Reasoning
by Analogy

TOKUYASU KAKUTA
Department of Systems Science, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku,
Yokohama 226, Japan
E-mail: kaku@int.titech.ac.jp

MAKOTO HARAGUCHI and YOSHIAKI OKUBO
Division of Electronics and Information Engineering, Hokkaido University, N-13, W-8,
Sapporo 060, Japan
E-mail: fmakoto, yoshiakig@db.huee.hokudai.ac.jp

Abstract. This paper presents a new algorithm to find an appropriate similarity under which we
apply legal rules analogically. Since there may exist a lot of similarities between the premises of
rule and a case in inquiry, we have to select an appropriate similarity that is relevant to both the
legal rule and a top goal of our legal reasoning. For this purpose, a new criterion to distinguish
the appropriate similarities from the others is proposed and tested. The criterion is based on Goal-
Dependent Abstraction (GDA) to select a similarity such that an abstraction based on the similarity
never loses the necessary information to prove the ground (purpose of legislation) of the legal rule. In
order to cope with our huge space of similarities, our GDA algorithm uses some constraints to prune
useless similarities.

Key words: legal reasoning, analogy, similarity, order-sorted logic, taxonomic hierarchy, goal-
dependent abstraction

1. Introduction

Juristic judgments seem to depend on a large amount of common sense knowledge
and to use various kinds of criteria to decide which conclusion better suits for a case
in inquiry. Many legal reasoning systems in Japan have been designed and imple-
mented (Yoshino et al., 1993; Ohtake et al., 1994; Nitta et al., 1993; Haraguchi,
1995). Those systems have a special kind of knowledge, taxonomic hierarchy about
legal concepts, that has been used to draw legal conclusions deductively or ana-
logically. According to the type of information the taxonomy has, the reasoning
systems perform the deduction efficiently and handle hypotheses in analogical rea-
soning. In the studies (Ohtake et al., 1994; Haraguchi, 1995), for instance, analogy
is regarded as a combined process of generalization and deduction along the hier-
archy (for more details, see Appendix A). Thus, the taxonomic hierarchy plays a
very important role in the field of analogical legal reasoning.

J.K.; PIPS No.: 125713 MATHKAP
arti149.tex; 16/04/1997; 13:46; v.7; p.1

98 T. KAKUTA ET AL.

A taxonomic hierarchy can be viewed as a representation of similarities between
conceptual classes depending on our way to define the concepts. For example, if
we define the concept “boy” as a “man” whose age is young, then “boy” should be
placed under “man”. Moreover, every subconcept of “man” (including “boy”) will
share the properties of “man”, for they inherit all the properties of “man” from their
definition. The similarity thus originates in the definitional structure of concepts.
In this sense, such a similarity is said to be definitional.

Using the definitional similarities represented by our taxonomic hierarchy, some
reasoning systems have been designed to perform analogical interpretation of legal
rules (Haraguchi, 1995) and case-based reasoning (Ohtake et al., 1994). In general,
since the definitional similarities are standard and objective for most people, the
reasoning result produced by the systems would gain more credit.

However, the definitional similarities apart, we have various kinds of similarities
between concepts. This means that there might exist many interesting similarities
that are not represented by our standard taxonomic hierarchy. Our legal conclusion
will be affected by similarities we consider the most important and relevant, just as
the studies on legal case-based reasoning systems have already pointed out (Ashley,
1990). Since using only the standard taxonomic hierarchy would be too weak to
handle the variety of similarities, a reasoning system should have an ability to detect
non-definitional similarities. The purpose of this paper is to present a computer
program that can find such non-definitional similarities and apply either legal rules
or case rules based on the detected similarities.

Before showing the outline of our new approach, some related methodologies
(Rouveirol and Puget, 1990; Muggleton, 1990) should be discussed here. Since
a similarity can be considered as a set of shared properties between two or more
concepts, it is possible to find it by forward reasoning (Inoue et al., 1993; Fujita
and Hasegawa, 1991) from the concepts. For instance, a property “can contain”
will be derived from each of the premises “glass cup” and “aluminium cup”. Thus
they share the property “can contain”. However, it should be emphasized that:

Although the forward reasoning to infer the shared properties is theoretically
enough to obtain every possible similarity (including definitional ones), it
presents no direct way to reject inappropriate similarities. It is so important for
our reasoning system to have a mechanism to distinguish relevant similarities
from the inappropriate ones and to examine only relevant ones. This is indeed
necessary, since our space of similarities is very huge in general.

For instance, the property “can contain” is not relevant to another property “break-
able”. If we are talking about breakable things, “can contain” plays no role in
obtaining a useful consequence and, therefore, should be rejected as an inappro-
priate similarity. The previous studies of machine learning and non-monotonic
reasoning have introduced a set of integrity constraints to exclude such inappro-
priate ones. We can exclude inappropriate ones if our reasoning results based on
them violate the constraints. However, it is not certain whether we can succeed in
feeding a sufficient set of integrity constraints to our systems in order to exclude

arti149.tex; 16/04/1997; 13:46; v.7; p.2

A GOAL-DEPENDENT ABSTRACTION 99

the inappropriate ones. So we propose in this paper another approach based on
Goal-Dependent Abstraction (Okubo and Haraguchi, 1994b).

Abstraction (Plaisted, 1981; Okubo and Haraguchi, 1994a) is a process for
obtaining a more general description about concepts by focusing on their important
aspects and disregarding any other aspects. In other words, only the important
aspects are extracted and preserved in the abstracted descriptions of the concepts.
This paper inherits the framework of theory abstraction proposed by Tenenberg
(1989). According to the framework, only a part of clauses in the original domain
theory describing concepts is abstracted along a given conceptual hierarchy. An
abstract theory is then defined as a collection of such abstracted clauses. The
remaining clauses are forgotten in the abstracted theory. Intuitively speaking, we
are allowed to abstract a clause C in our domain theory, if all clauses that are
similar to C under the hierarchy can logically be derived from the theory. For
example, let us assume that we have a conceptual hierarchy in which a concept cup
dominates both concepts glass cup and aluminum cup. Furthermore, assume our
domain theory consists of the following clauses:

“glass cup can be used to drink” (1)

“aluminum cup can be used to drink” (2)

“glass cup is breakable”. (3)

The clause 1 is abstracted into a clause

“cup can be used to drink”, (4)

since it can be derived from the domain theory that aluminum cup (that is similar to
glass cup under the hierarchy) can also be used to drink. Similarly, the clause 2 can
be abstracted into 4 as well. On the other hand, since it cannot be derived from the
theory that aluminum cup is breakable, we are not allowed to abstract the clause 3.

Goal-Dependent Abstraction (GDA for short), originally proposed by Okubo
and Haraguchi (1994b) and revised in this part, is based on Tenenberg’s abstraction.
Therefore, it has the same characterization as Tenenberg’s one we have just stated.

Assuming such a characterization of abstraction, we can now show our basic
idea to extract only appropriate (useful) similarities by GDA.

1.1. FINDING APPROPRIATE SIMILARITIES BY GDA: BASIC IDEA

We first assume that each similarity is encoded as a hierarchy of concepts. For
instance, if we assert the concepts “ceramic cup” and “glass bottle” are similar,
then we form a new super concept “�” of them. The intended meaning of “�”
would be containers made of delicate material. Such a hierarchy is considered to
be hypothetical in the sense that it may not be regarded as an appropriate one.
Technically speaking, we encode such a hypothetical hierarchy as a sort mapping,

arti149.tex; 16/04/1997; 13:46; v.7; p.3

100 T. KAKUTA ET AL.

as defined in the next section. For example, the above hierarchy is represented as a
sort mapping ' such that '(ceramic cup) = '(glass bottle) = �.

Given a hypothetical hierarchy and a domain theory, we examine whether the
similarity represented by the hierarchy is appropriate for a goal or not, according
to the following process:
1. We compute an abstract theory based on the framework of Tenenberg. Then

we classify the original theory into two groups. One group contains clauses
that are abstracted and, therefore, preserved in the abstraction. The other group
just contains clauses that are not abstracted and, therefore, forgotten in the
abstraction.

2. We postulate a criterion to distinguish appropriate and useful similarities from
the others. We consider that a similarity is appropriate for a goal G if an
explanation (proof) structure of G is preserved in the abstraction based on the
corresponding hypothetical hierarchy. Based on an appropriate similarity for
G, we can obtain an abstract theory from which the original proof of G can be
reconstructed. That is, the abstraction based on the similarity never loses the
information necessary to proveG. On the other hand, an unintended abstraction
based on another inappropriate hierarchy might lose some information. From
the observation, we postulate the condition for our appropriateness of hypo-
thetical hierarchy to preserve the explanation structure of a given goal. This is
the criterion we propose in this paper. Since an appropriate abstraction depends
on each given goal, we call our approach Goal-Dependent Abstraction: GDA.

Let us consider a similarity between s and s0. As explained previously, we are
allowed to abstract a clauseC if all clauses are similar toC can be derived from our
domain theory. Therefore, if an explanation structure of a goal G can be preserved
in the abstraction based on the similarity, the goalG can be derived for the cases of
both s and s0 in the same way (proof structure). From this viewpoint, we call the
above criterion for appropriateness Substitutability Condition.

We illustrate here the process for finding appropriate similarities with a simple
example. Assume that we have a domain theory consisting of the following clauses:

“glass cup has a handle” (5)

“aluminum cup has a handle” (6)

“ceramic cup has a handle” (7)

“glass cup is light” (8)

“aluminum cup is light” (9)

“ceramic cup is light” (10)

“glass cup is breakable” (11)

arti149.tex; 16/04/1997; 13:46; v.7; p.4

A GOAL-DEPENDENT ABSTRACTION 101

“ceramic cup is breakable” (12)

“if an object has a handle and is light, then it is liftable” (13)

“if an object is breakable, then it should be treated carefully”. (14)

Suppose that we are given a goal “we can lift glass cup”. For the goal, let us exam-
ine a hypothetical hierarchy '1 in which a concept � dominates aluminum cup,
ceramic cup and glass cup. An explanation (proof) of the goal consists of the claus-
es (5), (8) and (13). We can easily observe that the explanation can be preserved
in the abstraction based on the hierarchy '1. Therefore, '1 is appropriate for the
goal.

On the other hand, let us examine '1 for another goal we should treat ceram-
ic cup carefully. An explanation of the goal consists of the clauses (12) and (14).
The explanation is not preserved since we cannot be allowed to abstract the
clause (12). Therefore, '1 is not appropriate for the latter goal. The reader can
verify that a hypothetical hierarchy '2 in which a concept � dominates only both
ceramic cup and glass cup is appropriate for the latter goal.

Thus an appropriate hierarchy is altered depending on a goal we select. There-
fore, it is very important to prescribe what is regarded as a goal for our GDA.
This problem is concerned with the purposes of legal rules and our reasoning; the
analogical interpretation of rules. So we turn our discussion to the problem of rule
application.

1.2. GROUND OF LEGAL RULE: A GOAL FOR GDA

The legal rules we consider in this paper are supposed to have the following form,
for instance:

If a requirement A(x : s) is satisfied, then it must be X(x : s) or must

perform an action X(x : s),

where A and X are predicates, x is a variable ranging over individual objects that
are instances of a concept s. A symbol like s is also called a sort symbol. Thus
the expression x : s, that can read “x of s”, simply says that x is an instance
of s. Conversely, each concept is defined as a set of instances, according to the
extensional meaning of concepts. Thus, the following rule

if A(x : vehicle) then X(x), (15)

means that X holds for an individual vehicle x whenever A does for x, where the
sort vehicle is a set of individual vehicles.

Moreover, such an “is an instance of” relationship is extended, using a so called
inheritance procedure:

Suppose x is an instance of s and that s is a subclass of s1, then we can

conclude that x is also an instance of the superclass s1 of s.

arti149.tex; 16/04/1997; 13:46; v.7; p.5

102 T. KAKUTA ET AL.

For we consider the extensional meaning of concept, “is a subclass of” relationship
is understood as a subset relationship between the concepts as sets, and is formally
represented as a sort hierarchy, a partially ordered set of sort symbols. Using the
procedure, we can get X(x : tank) from A(x) provided it is derived from our sort
hierarchy that tank is a subclass of vehicle.

On the other hand, we cannot apply the rule (15) to an individual horse x of
horse, even if A(x) holds. This is because horse is never a vehicle.? In such a
case, our system tries to apply the rule analogically by seeking a similarity between
vehicle and horse. For this purpose, our GDA algorithm is invoked so that we can
find an appropriate hypothetical hierarchy containing some � having vehicle and
horse as its subconcepts. The question is what kinds of goals should be given to
our GDA algorithm to compute such a similarity (hierarchy) relevant to the legal
rule.

Now let us turn our discussion to the problem. In order to concretely discuss the
point, let us consider a legal rule “Vehicles are prohibited from being in a public
park” (Hart, 1958). Moreover, suppose a sort (conceptual) hierarchy such that car
and bus have the super sort vehicle, and horse and dog have the super sort animal.
This example hierarchy would be considered natural and objective for most people.
We can apply the rule to any individual belonging to car or bus, since we can know
that it is an individual of vehicle according to the standard hierarchy. On the other
hand, the rule cannot be applied to the individuals of horse, since horse is not a
kind of vehicle in the hierarchy. In usual legal reasoning, however, it would be
natural to apply the rule to the case of horse as well. In order to analyze the reason
why such an analogical application is natural, we have to take the reason why the
rule has been established into consideration.

Let us assume a situation where the legal rule is violated, that is, a vehicle enters
the park. Such a situation would be considered unpleasant for most people, as it
is dangerous, noisy and the air is polluted, etc. We consider that the legal rule has
been established to prevent these undesirable circumstances. We call the set of such
circumstances the ground of the legal rule and consider it as a goal given to our
GDA. That is, GDA tries to find a similarity for the undesirable circumstances.

As previously mentioned, if GDA finds an appropriate similarity between sorts
s1 and s2 for a goal G, it is implied that the goal G can be proved for the cases
of both s1 and s2. Therefore, a similarity between vehicle and horse for the
ground is found by GDA: horse would cause the same undesirable circumstances
as vehicle would do. In such a case, it would be natural to analogically apply the
legal rule to the case of horse, since the legal rule has been established to prevent
the circumstances.

? One might claim that a horse can be a means of transportation and is, therefore, a vehicle.
However, in our sort hierarchy based on which the inheritance procedure is working, we distinguish
“is an instance of” and “is a subclass of” from “can be viewed as” or “plays a role of” relation-
ships. It is indeed a subject of this paper to connect horse and vehicle based on a functional
similarity between them.

arti149.tex; 16/04/1997; 13:46; v.7; p.6

A GOAL-DEPENDENT ABSTRACTION 103

The process for identifying the ground of legal rule is precisely discussed later.

1.3. LEGAL REASONING BY ANALOGY BASED ON GDA

Now we can summarize the whole process of our legal reasoning by analogy. Our
legal reasoning is carried out according to the following four steps. Each step is
briefly illustrated with a simple example of the vehicle in the park problem.

(1) Detecting legal rule that causes unification failure
Proving the legal goal, our system detects a legal rule we fail to apply. Technically
speaking, such a failure of rule application is formalized as a unification failure,
as precisely described later. The detected legal rule is a subject of analogical
application.

Let us assume that we have a legal rule such that “a vehicle is prohibited from
being a park”. Moreover, assume that our legal goal is “a horse cannot be in the
park”. As previously discussed, since there is no “a subclass of” relation between
horse and vehicle in our conceptual hierarchy, we cannot apply the legal rule
to the case of horse. Namely, our legal goal cannot be proved without analogical
application of the rule. Therefore, the legal rule is considered as a subject of ana-
logical application and is handed to the next step.

(2) Identifying the ground of legal rule
We infer possible undesirable circumstances that are caused when the detected
legal rule is violated. The set of these circumstances is the ground of the legal rule.

Let us consider the ground of the legal rule in our example. In order to obtain
the ground, we try to observe what happens if a vehicle enters the park. Technically
speaking, the legal rule in our domain theory is replaced by its negation, and then
the logical consequences of the new theory are tried to obtain by forward reasoning.
As a result, we would observe some circumstances, for instance,

“the vehicle attracts notice”,

“many people consider the vehicle to be dangerous”,

“children are interested in the vehicle”, etc.

From such a set of various circumstances, we extract a collection of undesirable
ones. To distinguish undesirable ones from the others, we suppose that a set of
undesirable properties is given beforehand. According to such properties, we select
undesirable circumstances. In the example, if “dangerous” is registered, as an
undesirable property, the second one,

“many people consider the vehicle to be dangerous”,

would be extracted and is considered as the ground of the legal rule.

arti149.tex; 16/04/1997; 13:46; v.7; p.7

104 T. KAKUTA ET AL.

(3) Finding appropriate similarity to resolve the unification failure
Given the ground of the legal rules as a goal, GDA tries to find a hypothetical hier-
archy (an appropriate similarity) that makes the legal rule analogically applicable.
In a word, GDA tries to find all concepts such that for each of the concepts, an
explanation (proof) structure of the ground can be preserved. In this sense, these
concepts are considered to be similar to each other with respect to the ground.
Technically speaking, GDA finds a similarity that can resolve the unification fail-
ure detected at the first step. It should be noted here that there might exist a case
where GDA fails to find such a similarity. In such a case, we consider that an
analogical application of the legal rule would not be adequate for proving our legal
goal.

Let us consider an explanation of the ground in our example. Suppose our
domain theory contains the following knowledge:

“vehicles are bigger than human”,

“vehicles are movable”,

“a vehicle is in the park” and

“many people consider an object to be dangerous if the object is bigger than

human, movable and in the park”.

The ground, “many people consider the vehicle to be dangerous”, can be explained
from the knowledge. Furthermore, suppose the following knowledge is also con-
tained in our theory:

“horses are bigger than human”,

“horses are movable” and

“a horse is in the park”.

We can easily see that the explanation structure of the ground is preserved for the
concept horse. That is, “many people consider the horse to be dangerous” can be
explained in the same way. Therefore, we consider that horse and vehicle are
similar to each other.

(4) Applying the legal rule based on the appropriate similarity
Based on the appropriate similarity found by GDA, our system analogically applies
the rule in order to prove our legal goal according to the framework of Sorted-
Generalization (Haraguchi, 1995).

In our example, since the similarity between horse and vehicle is found out by
GDA, we analogically apply the original legal rule to the case of horse. As a result,
we obtain the legal conclusion “the horse is prohibited from being in the park”.

arti149.tex; 16/04/1997; 13:46; v.7; p.8

A GOAL-DEPENDENT ABSTRACTION 105

In this paper, we especially focus on the first three steps (the last step has been
precisely investigated in the literature (Haraguchi, 1995)). The technical aspects
will be described in the following sections with a simple illustration.

This paper is organized as follows. Since our underlying language to describe
abstraction and to present our GDA algorithm is an order-sorted first order lan-
guage, we present fundamental terminology and definitions in Section 2. In Sec-
tion 3, our approach is precisely discussed. We illustrate with a simple example how
our GDA algorithm behaves and what constraint GDA uses to prune useless simi-
larities in our huge search space. In Section 4, we report our experimental results.
In the final section, we discuss the future researches based on the experimentation.

2. Terminology and definitions

In this section, we present some fundamental definitions to describe our GDA.

2.1. ORDER-SORTED LANGUAGE

First we introduce a function-free order-sorted language. As we have mentioned in
the previous section, our methodology concerns a conceptual hierarchy. According
to an order-sorted representation, a concept and a conceptual hierarchy are coded as
a sort symbol s 2 S and a partially ordered set (S;�) of sort symbols, respectively,
whereS is the set of all sort symbols. Moreover, the partial orders1 � s2 means that
the concept denoted by s1 is a subconcept of s2. Each sort s can be understood as a
set of possible instances a1; a2; : : : of s. Assuming such an order-sorted signature,
our domain theory is defined as a collection of order-sorted clauses of the form

A B1; : : : ; Bk;

where A and Bj are positive literals of the form p(t1; : : : ; tm). Each term tj is a
variable or an instance both of which are typed by some sort.

2.2. SORT MAPPING

In addition to our sort hierarchy, we have to handle a hypothetical hierarchy rep-
resenting our similarities. It is defined as a sort mapping ': S ! S0, where S0 is
a set of new sort symbols not appearing in S. Two sorts s1 and s2 is said to be
similar under ' if '(s1) = '(s2). Thus we consider that the hierarchy represents
a similarity. In what follows, the terms “similarity”, “hypothetical hierarchy” and
“sort mapping” are used alternatively. A sort mapping ' is easily extended to a
mapping over a set of clauses as follows:

'(p(x : s)) = p(x : '(s))

'(A B1; : : : ; Bn) = '(A) '(B1); : : : ; '(Bn):

arti149.tex; 16/04/1997; 13:46; v.7; p.9

106 T. KAKUTA ET AL.

2.3. ABSTRACTION BASED ON SORT MAPPING

As we have discussed before, our GDA inherits the characterization from the
abstraction framework of Tenenberg (1989). So we introduce here the abstrac-
tion framework. Exactly speaking, an order-sorted version of the framework is
presented.

Given a sort mapping ': L 7! L0 and an order-sorted theory T in L, we can
transform T into an abstract theory in L0 according to the following definition:

DEFINITION 1 (SortAbs). SortAbs'(T) defined as follows is called the abstract
clause set of T based on ':

SortAbs'(T) = fC
0 j 8C C 2 '�1(C 0)! T ` Cg;

where a clause C is said to be an instance of C 0 if '(C) = C 0, and '�1(C 0) is
defined as the set of instances of C 0, that is, '�1(C 0) = fC j '(C) = C 0g. 2

Intuitively speaking, SortAbs'(T) consists of only clauses such that every possible
instance can be proved from T . For instance, suppose we have a sort mapping

' : fcar, bus, bicycleg 7! f�g:

A clause

movable(: car) : –true (16)

is an instance of

movable(: �) : –true: (17)

Moreover, the clause (17) is contained in SortAbs'(T) if T can prove the following
two clauses in addition to the clause (16):

movable(: bus) : –true: (18)

movable(: bicycle) : –true: (19)

It should be noted here that, if we add a new sort mountain, for which

movable(: mountain) : –true: (20)

is not provable, to the similarity class

' : fcar, bus, bicycle, mountaing 7! f�g;

then the clause (17) is no longer contained in SortAbs'(T), since an instance (20)
of (17) is provable from T . As a result, the clauses (16), (18), (19) are forgotten by
the abstraction based on the mapping '. In other words, they cannot be preserved
in the abstract theory.

arti149.tex; 16/04/1997; 13:46; v.7; p.10

A GOAL-DEPENDENT ABSTRACTION 107

Figure 1. Example of sort hierarchy and legal domain theory.

3. Finding appropriate similarity for legal reasoning by analogy

In this section, we precisely discuss our process for finding appropriate similarities
based on which our legal reasoning by analogy is carried out. Throughout this
section, a simple example shown in Figure 1 is used for the illustration.

The example is a description of the legal knowledge and a case for the “vehicle
in the park” problem with which we deal in this paper. The representation of clauses
is Prolog-like. Each clause of the form A : –Bn can be interpreted as A B1, : : : ,
Bn. Our legal rule is represented as a clause with rule: in the figure. The rule
says that if a vehicle X moves from a place Z to a park Y, the vehicle X should not
enter the park Y. Our case is represented as the last clause move(horse1, stable1,

central park) : –true. It denotes a situation in which a horse horse1 moves from
a place stable1 to a park central park. Furthermore, cf([: : :]) represents the

arti149.tex; 16/04/1997; 13:46; v.7; p.11

108 T. KAKUTA ET AL.

set of CF-predicates denoting undesirable circumstances. With this example, we
examine whether horse can enter park or not.

3.1. DETECTING LEGAL RULE CAUSING UNIFICATION FAILURE

In this subsection, we describe a process for detecting a legal rule that is a subject
of analogical application.

3.1.1. Unification failure as a trigger of GDA

As we have mentioned previously, we suppose a situation in which some legal rule
is not applicable to a case represented by a set of facts. Since we describe every
rule and fact in terms of order-sorted signature, such an application failure would
be a type error in many cases. To illustrate the point, suppose we have the following
legal rule and a legal goal, respectively:

not in(X : vehicle, Y : park)

 not in(Z : horse, Y : park):

If we have a sort hierarchy in which horse� vehicle, then we can apply the rule to
the goal. This is because we can deduce not in(X : horse, Y : park) from
not in(X : vehicle, Y : park) according to the type information stored in
the sort hierarchy. On the other hand, if we classify horse as a special kind of
animal, the rule is not applicable to the goal, for our horse is not regarded as a
vehicle according to the classification. In other words, the rule is bound to the type
vehicle, while the goal is concerned with another type horse. So the application
of rule to the case of horse results in a type violation. We call such a phenomenon
a unification failure and record it in a set of sorts fhorse, vehicleg. It should
be noted that in order to analogically apply the legal rule later, we have to find a
similarity by GDA that resolves the unification failure. In this example, suppose we
succeed in finding an appropriate similarity ' such that '(horse) = '(vehicle).
Our legal rule bound to vehicle is now generalized to a hypothetical rule bound
to a new sort � dominating both horse and vehicle. The hypothetical rule is
clearly applicable to the case of horse. This kind of generalization is called Sorted
Generalization (Haraguchi, 1995). For more details, see the literature.

Generally speaking, we may have several unification failures fSjg for some set
Sj of sorts. Therefore, a resolution of unification failures is defined as follows:

DEFINITION 2 (Resolution of Unification Failure). For a familyS = fSjg of sort
setSj , a sort mapping' is said to resolveSj if '(Sj) is a singleton set for each j.2

Given some unification failures represented by fSjg, GDA has to find a sort
mapping that can resolve every Sj . It will work as a constraint for our possible
similarities.

arti149.tex; 16/04/1997; 13:46; v.7; p.12

A GOAL-DEPENDENT ABSTRACTION 109

We illustrate the process for detecting a legal rule causing a unification failure
with the example shown in Figure 1. Let us assume that we have a legal goal

not in(X : horse, Y):

We can easily see that the goal cannot be proved in the sense of order-sorted logic.
The failure is due to the legal rule

not in(X : vehicle, Y : park) : �move(X, Z : place, Y):

Since the order-sorted unification of horse and vehicle is failed, we cannot unify
the goal with the head of the rule. Therefore, we obtain a unification failure fhorse,
vehicleg and should find a similarity (hypothetical hierarchy) that resolves it.

Thus, by tracing the inference process, we can detect a legal rule that causes a
unification failure.

3.2. IDENTIFYING GROUND OF LEGAL RULE

Here we describe the process for identifying the ground of legal rule detected at
the previous step. The ground is considered as a goal for our GDA. Intuitively
speaking, the ground is a set of undesirable circumstances for most people. We
consider that the legal rule has been established to prevent these circumstances.

Let us assume that a legal rule r : A B1; : : : ; Bn was detected as a subject to
analogical application. In order to identify the ground of r, we add the negation of r
to our domain theory T0. It is equivalent to adding the premise B1; : : : ; Bn and the
negation of the conclusion :A. Intuitively speaking, this addition corresponds to
imaginarily produce a situation in which the legal rule r is violated. After that, we
try to infer undesirable circumstances from the extended domain theory by forward
reasoning. That is, we examine what undesirable circumstances happen if the legal
rule is violated. It would be considered that the purpose of legislation of the legal
rule is to prevent these undesirable circumstances. For such a reasoning, our system
is given a set of CF-predicates denoting undesirable circumstances. If our system
succeeds in finding some CF-predicates in the space of possible consequences of
the extended theory, the set of such CF-predicates is considered as the ground of
the legal rule. That is, the ground of legal rule r, denoted by ground(r), is formally
defined as follows:

ground(r) = fg j g is a CF-predicate and T0 � frg [f:rg ` gg:

We illustrate the process of identifying the ground of the legal rule

not in(X : vehicle, Y : park) : �move(X, Z : place, Y)

that is detected at the previous step with our example. The negation of the rule is

:not in(c1, c2) ^ move(c1, c3, c2);

arti149.tex; 16/04/1997; 13:46; v.7; p.13

110 T. KAKUTA ET AL.

where c1, c2, c3 are Skolem constants belonging to vehicle, park and place,
respectively. It should be noted that we transform the negation of not in into in

based on a user defined data since our current system supports only definite clauses.
Adding the negated rule

in(c1, c2) ^ move(c1, c3, c2)

to the domain theory, we can derive only one CF-predicate danger(c1). Therefore,
the ground of the legal rule is fdanger(c1)g.

3.3. FINDING APPROPRIATE SIMILARITY BY GDA

At this step, our GDA computes an appropriate similarity (hypothetical hierarchy)
' with respect to the ground of a given legal rule. This subsection presents our
GDA algorithm precisely.

First of all, we have to define our appropriateness of similarity. Assume that
we are given the ground of a legal rule r, ground(r). Firstly, from our extended
domain theory T = T0 � frg [f:rg, we collect clauses that are used for a proof
of the CF-predicates in ground(r). Let us denote the set of collected clauses by
Proof(ground(r)). An appropriateness of similarity is defined as follows:

DEFINITION 3 (Appropriate Similarity). We say that a sort mapping ' is an
appropriate similarity w.r.t. ground(r), if the following two conditions are satisfied:
� Substitutability Condition
'(Proof(ground(r))) � SortAbs'(T)
� Similarity Inheritance Condition
'(s1) = '(s) whenever s1 � s2 and '(s2) = '(s), where � is the ordering
on sorts assumed in our standard sort hierarchy (S;�). 2

Let us assume that a similarity ' such that '(s) = '(s0) is appropriate w.r.t. a
groundG. From the definition of SortAbs, it is ensured by Substitutability Condition
that the ground G can be proved for the cases of both s and s0. In other words, we
can arbitrarily replace any sort appearing in Proof(G) with a similar sort under '.
Such a replacement never affects proving G.

Similarity Inheritance Condition (SI-Condition for short) asserts that, if we
observe some similarity between s and s1, we should also have the same similarity
between s and any subconcept of s1. For instance, if car � vehicle and vehicle

is similar to ship, then car should be similar to ship as well. Generally speaking,
similarities satisfying SI-Condition preserve the following property: if a is similar
to b and a0 is a subconcept of a, then a0 inherits this similarity relation from its
super concept a, namely, a0 is also similar to b. Therefore, such a property is
called Similarity Inheritance. We propose adopting SI-Condition based on this
property as a requirement for our appropriate similarities. We should notice that

arti149.tex; 16/04/1997; 13:46; v.7; p.14

A GOAL-DEPENDENT ABSTRACTION 111

Figure 2. Possible partitions.

since we represent “x is also similar to y” by '(x) = '(y), we can directly prove
SI-Condition from the property above.

Based on the definition of appropriateness, we can examine whether a given
sort mapping is appropriate for the ground or not. Therefore, our GDA tries to find
appropriate similarities adopting a generate-and-testing strategy. Candidate sort
mappings are generated and then tested for their appropriateness. Each candidate
can be viewed as a partition of the set of sorts S. For example, let us consider a set
of sorts fa, b, c, dg. A partition of the set

ffa, bg; fc, dgg

corresponds to a sort mapping ' such that '(a) = '(b) and '(c) = '(d). That is,
each element of the partition (called a cell) denotes a class of similar sorts under
the mapping. As the image for each cell, we can arbitrarily assign a new sort not
appearing in S.

In general, however, there are a huge number of partitions (candidate mappings)
generated from S. Since it is not practical to test all candidates, it is necessary to
prune useless candidate generations in order to find appropriate similarities effi-
ciently. We present a property based on which we can obtain such a pruning. To
state the property, we need to introduce an ordering on partitions (i.e. similarities).

arti149.tex; 16/04/1997; 13:46; v.7; p.15

112 T. KAKUTA ET AL.

DEFINITION 4 (Ordering on Partitions). For any partitions P and P 0 of a non-
empty set, P � P 0 and P is called a refinement of P 0 iff for any cell c of P , there
exists a cell c0 of P 0 such that c � c0. 2

It should be noted that the possible partitions of a non-empty set form a lattice under
the ordering. Figure 2 shows the lattice formed by the partitions of fa, b, c, dg.

Based on the ordering, we have the following property that is useful in pruning
useless candidate generations.

PROPOSITION 1. Let ' be a similarity. If ' is not appropriate w.r.t. the ground of
a legal rule, then each similarity '0 such that ' � '0 is not appropriate w.r.t. the
ground. 2

Proof. The proposition can be proved in a similar way found in (Okubo and
Haraguchi, 1994b). 2

The property implies that if we found that a similarity ' is not appropriate, then
we do not have to generate any similarity preceded by ' since the similarity is not
appropriate as well. In order to obtain as much pruning of candidate generations
as possible, GDA firstly generates the minimum candidate and tests it. Then, its
immediate successors are generated and then tested. Only for appropriate candi-
dates, GDA generates their immediate successors. Such a process is iterated until
no candidate is generated.

In addition, we can prune candidate generations based on the following two
facts:
� Since our purpose is to find similarities that can resolve a unification failure

to prove our legal goal analogically, we can focus on only cells that is relevant
to the unification failure. Therefore, any cell irrelevant to the failure can be
ignored when partitions are generated.
� Although SI-Condition is a part of the definition of appropriateness, we do not

examine in our test-step whether the condition is satisfied or not. Instead we
use SI-Condition as a constraint on our candidate generations in fact. That is,
we generate only candidates satisfying the condition.

Our GDA algorithm is shown in Figure 3 (for further details, see Appendix B).
We can illustrate the process of finding appropriate similarities with the previous

example. Recall that the ground of the detected legal rule is fdanger(c1)g. The set
of clauses Proof(fdanger(c1)g) in T0 used for a proof of danger(c1) is

frest(: man, : park) : �true.

gather(X : man, Y : place) : �rest(X, Y).

in(c1 : vehicle, c2 : park) : �true.

movable(: vehicle) : �true.

big(: vehicle) : �true.

arti149.tex; 16/04/1997; 13:46; v.7; p.16

A GOAL-DEPENDENT ABSTRACTION 113

Figure 3. Overview of GDA algorithm.

danger(X : object) : �

big(X), movable(X), in(X, Z : place), gather(Y : man, Z).g:

Based on the set, we examine whether a similarity satisfies Substitutability Condi-
tion in Definition 3.

arti149.tex; 16/04/1997; 13:46; v.7; p.17

114 T. KAKUTA ET AL.

Let us actually examine several similarities. Candidate similarities are generated
from the set of sort symbols

fvehicle, object, park, place, man, horse, elephant, mountain,

zoo, car, ship, animalg:

Recall that the similarities we are interested in are the ones each of which has a cell
containing vehicle and horse to resolve the unification failure. In each candidate
similarity below, it is assumed that any cell not represented explicitly is a singleton
set.

� '1 : f: : : ; fvehicle, horse, parkg; : : :g

Let us assign a new sort � as the image of vehicle, horse and park under
'1. A clause '1(movable(: vehicle) :-true) in '(Proof(fdanger(c1)g))
(that is, movable(: �) : –true) cannot be contained in ShortAbs'1(T).
Because an instance of the clause, movable(: park) : –true, is not provable
from our domain theory. That is, '1 cannot satisfy Substitutability Condi-
tion and is, therefore, not appropriate. According to Proposition 1, GDA does
not generate any candidate mapping '0 such that '1 � '0. For example,
f: : : ; fvehicle, horse, park, elephantg; : : :g is out of generation.

� '2 : f: : : ; fvehicle, horse, elephantg; : : :g

Although the similarity satisfies Substitutability Condition, it violates SI-
Condition. Therefore, '2 is considered to be not appropriate. To satisfy SI-
Condition, the cell has to contain car. It should be noted that as previously
mentioned, our GDA in fact does not generate such a candidate violating SI-
Condition.

We can obtain the following similarity as an appropriate one:

ffvehicle, horse, elephant, carg; fobjectg; fparkg; fplaceg; fmang;

fmountaing; fzoog; fshipg; fanimalgg:

It should be emphasized here that our GDA can find a similarity not only between
vehicle and horse but also between vehicle and elephant. Although our original
legal goal is not in(X : horse, Y), we can also analogically derive another legal
goal not in(X : elephant, Y) based on the similarity.

4. Experimental results

Based on the above discussions, we have implemented a system by SICStus Prolog
3 on SparcStation 20 and PC/AT (486DX2-80MHz). Since our system has currently
been under improvement, its domain theory is restricted to be a set of function-free

arti149.tex; 16/04/1997; 13:46; v.7; p.18

A GOAL-DEPENDENT ABSTRACTION 115

definite Horn-clauses. The system uses a meta-interpreter on Prolog as refutation-
mechanism in each step, and is based on GDA algorithm presented in Section 3.3.
In this section, we show our experimental results by the system.

The domain theory shown in Figure 1 and a legal goal not in(X : horse, Y)

has been given to the system. In the theory, we have 12 sort symbols. For a N -
elements set, the number of possible partitions of the set is given as

BN =
NX
i=1

�
N � 1
i� 1

�
BN�i; where B0 = 1:

Therefore, the number of possible partitions (candidate mappings) in the example is
4,213,597 (about 4�106). However, with the help of the properties to prune useless
candidate generations stated in the previous section, the number of partitions we
actually tested is only 18. Thus, we can reduce the search space drastically.

We have got the following four appropriate similarities:

f: : : ; fhorse, vehicle, carg; : : :g

f: : : ; fhorse, vehicle, car, elephantg; : : :g

f: : : ; fhorse, vehicle, car, shipg; : : :g

f: : : ; fhorse, vehicle, car, elephant, shipg; : : :g:

Our intended similarities would be

f: : : ; fhorse, vehicle, carg; : : :g

f: : : ; fhorse, vehicle, car, elephantg; : : :g:

The other two similarities that would be out of our intention are obtained since
our domain theory is incomplete. The total computation time is 360 msec on
SparcStation 20 and 1978 msec on PC/AT.

5. Concluding Remarks

There still remain many problems to be solved. Among them, two major problems
are discussed briefly in this section.

5.1. KNOWLEDGE REPRESENTATION

The language we use in this paper is too much restricted, for it is function-free.
It is necessary to extend our GDA algorithm so that it can cope with a class
of similarities concerning not only is a subclass relationships but also role-filler
constraints (Nebel, 1990). The latter kind of constraint will be necessary to describe
complex legal sentences and is useful to obtain a new syntactic rule to specify what
similarities we must find. In fact, such a new GDA taking role-filler relations into
account is now under developing.

arti149.tex; 16/04/1997; 13:46; v.7; p.19

116 T. KAKUTA ET AL.

5.2. PREFERENCE RELATION ON SIMILARITIES

A function to measure the distance of concepts would be also needed even for our
approach. GDA algorithm might fail to find intended similarities when our domain
theory does not have a good knowledge to distinguish important similarities from
the other. To cope with the incompleteness problem of our knowledge base, it
seems desirable for our reasoning system to measure the distance of concepts
approximately. Such a measure will introduce a preference relation over possible
similarities, and is also useful for our GDA algorithm to approach the intended
similarities more quickly.

Appendix A: Analogical reasoning by generalization and deduction

We present here a simple example of analogy as a combined process of general-
ization and deduction (Haraguchi, 1995).

Let us assume that we have a taxonomic hierarchy in which concepts s1 and
s2 have the same super concept s0. In such a case, we consider that s1 and s2 are
similar to each other. The hierarchy means that any individual belonging to s1 or s2

is also an individual of s0. Moreover, assume we have a domain theory consisting
of a fact q(a : s1) and a rule p(x : s2) q(x : s2). The fact says that an individual
a of s1 has a property q. The rule means that if an individual of s2 has the property
q, then it also has another property p.

Let us try to prove a goal p(a : s1) from the domain theory. However, the goal
cannot be proved. Since a is not an individual of s2 we cannot apply the rule to the
case of a. In such a case, we expand the applicability of the rule by generalizing
s2 into s0 along the hierarchy. That is, we obtain a new rule p(x : s0) q(x : s0)
saying that if any individual of s0 (i.e. ones of s1 and s2) has the property q, then it
has the property p as well. Although the original rule is applicable only to the case
of s2, the new rule is applicable also to the case of s1 that is similar to s2. Namely,
an analogical application of the original rule can be realized by the generalization.
By using the generalized rule, we can deductively derive the original goal p(a : s1).
Thus analogical reasoning can be viewed as a combined process of generalization
and deduction.

Appendix B: GDA algorithm for legal reasoning by analogy

<Given>
� = (S;�) :

S : a set of sorts
� : a partial order on S

Id : a bijective mapping defined as follows:

Id :

�
S 7! positive-integers, for any sorts
2S 7! negative-integers; for any cells

(The value of Id(s) is called ID of s.)
T : a set of all order-sorted clauses defined as domain knowledge
R : a set of resolution sort sets (i.e. a set of cells)

arti149.tex; 16/04/1997; 13:46; v.7; p.20

A GOAL-DEPENDENT ABSTRACTION 117

Pf : a set of all clauses in a proof
<Find>

Ans : a set of partitions
<Procedures>

GDA-MAIN:
1. generate initial partitions.

1.1 encode S, R by Id-mapping.
S0:= (all leaf sorts 2 S) � (all sorts 2 R).

1.2 P0:= make minimum partition from S0.
1.3 encode each cell c 2 R to ID as the value of Id(c).
1.4 R0:=f g.
1.5 convert each cell c 2 R to fId(c)g, push fId(c)g to R0.
1.6 P :=f g, p:=P0.
1.7 FOR any cell c 2 R0,

p:=fcg [p:
IF c == fID0g such that ID0 is our minimum integer THEN mark
c 2 p.

push p to P .
1.8 remove failure partitions by ABS-CHECK from P .
1.9 OutStack:=f g,

push all elements in P to OutStack,
FOR any p 2 P ,

CALL SI-GENERATION(p).
2. generate immediate successors.

2.1 IF P == f g GOTO 5.
2.2 NewStack:=f g.
2.3 FOR any p 2 P ,

get marked cell c0 2 p,
FOR any cell c 2 p (c 6= c0),

IF MaxId(c0) 6= MinId(c)
THEN

NewCell:=c0 [c,
NewP :=p� c0 � c+ NewCell
mark NewCell 2 NewP ,
push NewP to NewStack.

3. test SortAbs.
3.1 FOR any p 2 NewStack,

CALL ABS-CHECK(p),
IF ABS-CHECK is success
THEN

push p to OutStack,
CALL SI-GENERATION(p).

ELSE remove p from NewStack.
3.2 P :=NewStack.

4. GOTO 2.
5. output.

5.1 FOR any P 2 OutStack,
FOR any c 2 P ,

FOR any ID 2 c,
decode ID to the original sort by Id�1.

normalize c.
normalize P ,
Ans:=P .

5.2 output Ans.
ABS-CHECK(p): check p based on SortAbs of Definitions 1 and 3.

arti149.tex; 16/04/1997; 13:46; v.7; p.21

118 T. KAKUTA ET AL.

SI-GENERATION(p0):
1. compose p combining focused cells (i.e. non-singleton cells) in p0 and

non-leaf sorts such that for each cell c 2 p except to singleton cells,

8 2 c 8y � x y 2 c.

2. FOR any p,
CALL ABS-CHECK(p),
IF ABS-CHECK is success THEN push p to OutStack.

References

Ashley, K. D. (1990). Modelling Legal Argument: Reasoning with Cases and Hypotheticals. MIT
Press: Cambridge, MA.

Beierle, C. et al. (1992). An Order-Sorted Logic for Knowledge Representation Systems. Artificial
Intelligence 55:149–191.

Fujita, H. & Hasegawa, R. (1991). A Model Generation Theorem Prover in KL1 Using a Ramified-
Shack Algorithm. In Logic Programming. Proceedings of the Eight International Conference,
535–548. MIT Press: Cambridge, MA.

Haraguchi, M. (1995). A Reasoning System for Legal Analogy. Machine Intelligence 14: 323–346.
Hart, H. L. A. (1958). Positivism and the Separation of Law and Mortals. Harvard Law Review 71:

593–629.
Inoue, K., Ohta, Y., Hasegawa, R. & Nakashima, M. (1993). Bottom-Up Abduction by Model Gen-

eration. In IJCAI-93. Proceedings of the Thirteenth International Joint Conference on Artificial
Intelligence, 1: 102–108. Morgan Kaufmann: San Mateo, CA.

Muggleton, S. (1988). A Strategy for Constructing New Predicates in First Order Logic. In EWSL 88.
Proceedings of the Third European Working Session on Learning, 123–130. Pitman Publishing:
London.

Muggleton, S. (1990). Inductive Logic Programming. In Arikawa, S. (ed.) Algorithmic Learning
Theory, 42–62. Springer-Verlag: Berlin.

Nebel, B. (1990). Reasoning and Revision in Hybrid Representation Systems, LNAI 422. Springer-
Verlag: Berlin.

Nitta, K., Wong, S. & Ohtake, Y. (1993). A Computational Model for Trial Reasoning. In Proceedings
of the Fourth International Conference on Artificial Intelligence and Law, 20–29. Association
for Computing Machinery: New York.

Ohtake, Y., Nitta, K., Maeda, S., Ono, M., Osaki, H. & Sakane, K. (1994). Legal Reasoning System
HELIC-II. Transactions of Information Processing Society of Japan 35(6): 986–996.

Okubo, Y. & Haraguchi, M. (1994a). Planning with Abstraction Based on Partial Predicate Mappings.
New Generation Computing – An International Journal 12(4): 409–437.

Okubo, Y. & Haraguchi, M. (1994b). Constructing Predicate Mappings for Goal-Dependent Abstrac-
tion. In Arikawa, S. (ed.) Algorithmic Learning Theory ’94, LNAI 872, 516–531. Springer-Verlag:
Berlin.

Plaisted, D. A. (1981). Theorem Proving with Abstraction. Artificial Intelligence 16: 47–108.
Rouveirol, C. & Puget, J. F. (1990). Beyond Inversion of Resolution. In Machine Learning: Pro-

ceedings of the Seventh International Conference, 122–130. Morgan Kaufmann: San Mateo,
CA.

Tenenberg, J. D. (1989). Abstracting First-Order Theories. In Change of Representation and Inductive
Bias, 67–69. Kluwer Academic Publishers: Dordrecht, the Netherlands.

Walter, C. (1988). Many-Sorted Unification. Journal of the Association for Computing Machinery
35(1): 1–17.

Yoshino, H., Haraguchi, M., Sakurai, S. & Kagayama, S. (1993). Towards a Legal Analogical Rea-
soning System. In Proceedings of the Fourth International Conference on Artificial Intelligence
and Law, 110–116. Association for Computing Machinery: New York.

arti149.tex; 16/04/1997; 13:46; v.7; p.22

