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Abstract

Though some influentially critical objections have beamed during the ‘classical’ pre-
computational simulation philosophy of science (PCSPS) traditsuggesting a more nuanced
methodological category for experiment safe to say such critical objections have greatbyiferated
in philosophical studies dedicated to the role played by catipoél simulations in science. For
instance, Eric Winsberg (1999-2003) suggests that computelagions are methodologically unique in
the development of a theory’s modetsiggesting new epistemic notions of application. Thisse al
echoed in Jeffrey Ramsey's (1995) notions of “transformatduction,”—i.e., a notion of reduction of a
more highly constructive variefy. Computer simulations create a broadly continuous aremaegpay
normative and descriptive aspects of theory-articulation,néesled by the notion of transformation
reductions occupying a continuous region demarcated by Erngml'sNg1974) logical-explanatory
“domain-combining reduction” on the one hand, and Thomas NicK&RB73) heuristic “domain-
preserving reduction,” on the other.

I extend Winsberg's and Ramsey's points here, by arghatgri the field of computational fluid
dynamics (CFD) as well as in other branches of applied phyie computer plays a constitutively
experimentalrole—supplanting in many cases the more traditional expeatah methods such as flow-
visualization, etc. In this case, however CFD algorittats as substitutes, not supplements (as the
notions “simulation” suggests) when it comes to experimgmiattices. | bring up the constructive
example involving the Clifford-Algebraic algorithms for modelisgqngular phenomena (i.e., vortex
formation, etc.) in CFD by Gerik Scheuermann (2000) andeSt®ann & Alyn Rockwood (2003) who
demonstrate that their algorithms offer greater deseeipiind explanatory scope than the standard
Navier-Stokes approaches. The mathematical distinctionebatWavier-Stokes-based and Clifford-
Algebraic based CFD (i.e., NSCFD and CACFD) has esdlgnto do with theregularizationfeatures
(i.e., overcoming and conditioning singularities) exhibited faragreater extent by the latter, than the
former> Hence, CACFD indicate that the utilization of computaticeeahniques can be based on
principled reasons (i.e., the ability to characterize singular phenammenways that traditional
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2 These criticisms were raised both by philosophers irari986) as well as historians of science (Galison, 1997
Friedel, 2001). Granted, the latter two published in theadkx in which philosophical studies of computer
simulations were already in full sway, neverthelesdeem them “traditional” since the topic of computer
simulations does not occupy center stage, in theimgsti

% Broadly construed in a heuristic sense, as thoseeifictignitive turn” employ the term (Giere, 1988), as opgose
to the narrower logical, model-theoretic sense.

® This reason, among others, goes a long way to accoumthy Clifford algebra comprises a venerable researc
tradition in applied, mathematical, and theoreticalsptsy



experimental methodologies are too coarse-grained to meexplenatory demands suggested by CFD),
as opposed to merefyractical (i.e., that such computational procedures better fitbitiditerally!-in
terms of contingent resource allocation). CACFD henceb@éxdiinew generative role in the field of fluid
mechanics, by offering categories of experimental evidethzd are optimally descriptive and
explanatory—i.e.paceBatterman (2005) can be both ontologically and epistemittatigamental.

[. Introduction

In pre-computational simulation philosophy of science §PS), the analysis of scientific
methodology subdivides itself into three natural kirttie hypothesis/(ed)l to be tested, with
respect to the evidencé deemed relevant vis-a-vis. Moreover, the relevance criteria
characterizing the relationship Hfwith respect tde inevitably involves, to a certain extent, the
“background”B consisting of the vast repository of epistemic, sdimaand ontological factors
not directly entailed byH’s scope—whether logical or evidential. In this respegperiments
play a pivotal role in negotiating aspectsHhfE, B—as the traditional accounts go—in serving
an essential aim in (dis/)confirming. For example, in this regard, perhaps Thomas Kuhn
(1962) was the first to suggest such an essential methachdlogle entailed by experiments,
since his notion of paradigm suggested the aspects ofytraaplications, instrumentation, and
nomology, all mutually dynamically interacting in a uusly circular manner.

Nowadays, such facile global characterizations ofrtie played by experiments have been
supplanted by particularly nuanced treatments, teeming witfjgestions attempting to
characterize their evidential roles in (more or lessni-autonomous fashion. By and large,
much of this appears to involve, in some irreducible fashatser scrutiny of the role played by
values(as Kuhn (1977) already suggested in the case of theoigedh For instance, Helen
Longino (1992, 1998) attempts to characterize “scientificeabjity” in such a manner
essentially involving aspects of socialized epistemqglogy of which a objectivity would entail
a potential “transformational criticism” including aneducible admixture otognitive and

contextualvalues’ According to Longino, the complex interplay of cdiye and contextual

® Although it may prove difficult to establish firm datesre—since such notions were already suggested by Pierre
Duhem in the early twentieth century (Gillies, 1993)evéltheless, the logical empiricists (e.g., Hempel) @ind

their historically-motivated respondents (Hansen, Kukm) as well as those in the “cognitive turn” (Giehayve
presupposed thH, E, B subdivision by and large without question--suggesting a trarad spanning the early
1960s to the mid-1990s, at least in the Anglo-American traditio

" l.e., epistemic and methodological values internal $eientific disciplinary matrix or research progranrsus

the background epistemic values which are usually depictestnrs tof what Manson & O’Neill (2008) refer to as
epistemic responsibility-i.e., informing based on norms communicative transast{bke appropriate accuracy), as
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values is evident, for instance, in four possible wayspatigsidH may be evaluated in terms of
its putative evidenck:
» Evidentially Criticizing the quality ofE

» Conceptually (1)Questioning the nature ofHis “conceptual soundness”

» Conceptually (2):Questioning the nature &f s “consistency with accepted body of
theories.® (1998, 173)

» Conceptually (3):How relevantis E as a “support” tad ?

Indeed, it is thethird conceptual kind of appraisal which “amounts to questionimg t
background beliefs [of scientists] ...crucial for the probérobjectivity.” (ibid.)

The layers of evaluation di vis-a-visE, though for Longino comprising a project of
broader scope than that entailed by the study of expatation per se, appear especially
relevant in the case of some of the recent liteeaur computational simulatidn

In order to avoid the appearance of there being anythinggstrar paradoxical about a
practice [e.g., computer simulations] that straddlesdtraih between the theoretical and
the experimental, we need to recognize that while stulas, in the general sense, a
form of what we once naively called theorizing, ithe kind of theorizing that has only
recently begun to attract philosophical attention—constmucof local, representative,

models. (Winsberg (2003), 120)

The history of a simulation technique is very much like history of a scientific
instrument. It begins with a relatively crude and d$emgechnique for attacking a
relatively small set of problems. Over time, the inseatror technique is called upon to
attack a larger set of problems or to achieve a higheredegfr accuracy. In order to
achieve this, the technique needs to be improved upon, recadfjgamd ever radically
revised. In each case, the knowledge relied upon to devise and sanction the tool or
method can come from a wide variety of doma(l¥insberg (2003), 123-134, italics
added)

The points discussed above by Winsberg lends credenceaibhehdescribes as simulations
“having a life of their own” (1999, 2003) insofar as they (agh@ general case of model-

building) or “semiautonomous” insofar as although “[p]rifaeie they [simulations] are nothing

opposed to merelglisclosingsemantic content. O’Neill & Manson highlight such issirethe area of bioethics,
regarding particular issues centering on notions of inéal consent, etc.

8 Note the analogy with Kuhn'’s (1977) “external consistén@mong the five proposed values of theory-choice:
accuracy, broad explanatory scope, consistency (intandabdernal), fecundity, and accuracy.

® 4 use the term ‘simulation’ to refer to comprehemsiprocess of building, running, and inferring from
computational models.” (Winsberg, 2003, n. 3, p. 107)
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but applications of scientific theories to systems urithe theories’ domain,” (2003, 105)
nevertheless in their ‘theory-articulatioh™“there is no algorithm for reading models off a
theory.” (106) Undoubtedly, among other factors, the ptdged by simulations is emblematic
of the complex and multilayered means by which evidenag be evaluated in terms of its
counterpart theory or hypothesis, as suggested by Longicbé&na.

Reliability is the constitutive feature of simulations which is dedi both from the
credentials of its governing theory as well “the antentgestablished credentials of the model
building techniques developed over an extended tradition of gmplat,” (122) of which no
general algorithm can instantidte. Winsberg sounds a generally skeptical note regarding
making any inferences suggesting (in a fashion which wouldl ayegging the question) any
realist interpretation of the simulation (insofar taesm displaying any irreducible element of
bona fiderepresentational capacity), as levied in his critmsisof Hughes (1999) in his 2003
(113-116) as well as in his “counterexample that successesnputh” discussed in the case of
artificial viscosity (2006).

This is a rendition of Larry Laudan’s (1981, 1998) crititciagainst scientific realism
applied specifically to the case of simulatiSnCertainly attacks against realism are established
in the canonical “classical” literatufé,and little would be gained here from dredging up the
debatetout court** Nevertheless, as | argue below, there may be good reasoins entirely

19 |.e., Kuhn's view of the essence of “normal sciendetzzle-solving inevitable involve theory articulatio
Unificationists like Philip Kitcher (1989) consider thidigity as the hallmark of scientific explanation. Qftenes

this is equivocated with “theorizing” per se, “in noahpart because most commentators on science, edpecial
philosophers, have woefully underestimated the importanteeofy articulation, or model building.” (Winsberg,
2003, 119).

1 «Building testable models,...usually involves highly context-ckefmmt idealizing and approximating
assumptions, and often requires appealing to assumptions frametises incompatible theories.” (Frisch, 2005,
p. 10) In this respect, high-level abstractions, orthte®ry’s “laws,” should be thought of as “tools for mlede
building, rather than as representative of structuréseoivorld.”(11)

2 Characterized by Laudan as the fallacy of affirming tlonsequent: From the premise of a theBsytruth
entailing its success, obviously one cannot argu& fotruth based oi’s success alone.

13 Aside from the fallacy described in n. 12 above, manthefarguments against realism can also be generally be
subdivided into the following (distinct but not disjunct)sses (the list is by no means exhaustive): i.) Pedgimis
meta-induction arguments: If the historical arc of scgebends toward truth, to paraphrase Martin Luther King’s
metaphor, how does this normative claim square wighabvious historically factual claim that the history of
science is a vast graveyard of abandoned theoriesPraobjem of induction: Past success is no guarantee of future
success, etc., iii.) Methodological problems bedeviliagsimilitude, should some (like more recently in theeof
Kitcher (2001)) suggest some kind of epistemic convergence.

1t may be worth mentioning, in passing, that some of¢isponses against the stock arguments (alluded to in n.
13) above include Richard Boyd's (1985) realism based on hist@d methodological grounds (which may or
may not, depending on one’s views on the matter, geodi response to the pessimistic meta-induction claim).
Other relatively more recent responses against theenpistic meta-induction include Stathis Psillos’ (1986jide

4



abandon realist considerations, when considering theafaSéfford Algebraic computational
fluid mechanics (CACFD)—in particular, a realism suggestf both elements of Giere’s
(1988) and Hacking’s (1982, 1998) separate uses (and senses):dtterstructive realism*®

At best @’ la Sellars (1962)) | can only do this via some general inferentige best explanation
strategy which (at best) would offer reasons for suchaneced realism. However, even if the
reader remains unconvinced or agnostic, at the very leaish ko show herein that CACFD

represent a new class of experiments.
Il. Clifford Algebra: A Brief Overview

The Cambridge mathematician William Kingdon Clifford amigjly developed his algebfa
in the years 1878-1882 as a means to systematically develogtrx mdgebra representing

rotations and spin, generalized in amylimensional spaceR " :{(xl,...,xn)|xk DR;Lsksn}

(whereR are the real numbers). In keeping with Clifford’semtions, Hestenes (1984, 1986) and
others ascribed the term ‘geometric’ to such classedgebras to call attention to the primary
feature of this mathematical system, portraying thesct all possibleotations (and spins) in
n-dimensional space, which is an essentially geomettigamical property.

Geometric algebras can be fundamentally thought of @emsgsic collections oflirected
line segments (vectors), areas (bivectors), volumeg¢tors),...,n-dimensional hypervolumes

(n-vectors orn-blades) as bounded above by the dimensionaliby the algebra’s underlying

at impera claims—that componentsof a preceding theory (having some irreducibly ‘truticking’ or
representational capacity) shall survive into supengettieory, even when the formert@it courtfalsified. (The
analogy of ‘cannibalizing’ components of a junked car emgfinbe retro-fitted into another functioning car comes
to mind.)

15 For Giere, this has primarily to do with interpriins concerning the modal scope of models in a theBoy.
instance, a constructive realist (narrowly defined) @argue that a modéi articulated by a theorfy would agree
with the actualhistory of all (or most) an experimental syste#s variables (1985, 83). Broadly defined, a
constructive realist (narrowly defined) would argue Wadrticulated byl would agree wittall possiblehistories of

all (or most) an experimental syst&s variables. The constructive empiriciat [a Bas Van Fraassen (1980)) on
the other hand, according to Giere, would argue that aibhisthe variables explicitly specified M (e.g., position

x an momentunp for the case of an SHO —simple harmonic oscillator—)adeuld agree with those measure in
actual systens. | take on the issue of Giere’s (1988) constructive seatnd the “modal rationalism” David
Chalmers’ (2002) particular version of 2D semantics inf&lall(2010). Whereas lan Hacking’s (1982) use centers
itself specifically on the constructive charactecisdf the “autonomous” role that experiments can playhm t
epistemic and methodological aspects of representinghéer@dening. “We are completely convinced of theality

of electronswhen we ...build—and often succeedbnilding—new devices that use various well understood
causal properties of electrongo interfere in other more hypothetical parts of nature.” (Hagk{(1982, 1998)
1158.)

16 A vector space endowed with an associative productuFiber technical details, see Appendix below.



vector space. While the concept of a directed line sagjseems intuitive enough (partly due to
the historical success of the ‘rival’ vector algebraGalbbs), the concept of directed surfaces,
volumes, and hypervolumes may seem less so. Thepooicdirected area however survives,
for instance, in the geometric interpretation of a vectmss-product irR °. As a further
indication of its vestigial ancestry to Clifford, tlmeoss-product is actually an example of a
bivector, oraxial vector as it changes sign under reversal of parity ofdberdinate system
(from a left-handed to a right-handed system, andwacsa) while regular vectors do not.
Clifford algebras argraded their generators form a basis of linearly indepen&erdctors
(where 0< k < n), wheren is the dimensionality of the underlying vector space. éxample,
the Clifford algebra5(R®) over vector spack ® is generated by a total of 2 8 gradek elements
(where 0< k < 3): 1 grade-O element (the real scalars), 3 grade-1 eleng8ntinearly
independent vectors whose span is obviolg)ly 3 grade-2 elements (3 linearly independent
bivectors), and 1 grade-3 (trivector) element. In genel, any vector space/ of
dimensionalityn, its Clifford algebra is generated by a total bfjadek elements (where 8k <

n), the dimensionality of each Clifford subspace oifarm gradek is: C(n, k) = ey - Thatis
to say,C(n, k) :W(r?lTk)T linearly independent gradefor k-vector) elements generate the Clifford

subspaces of uniform gra#le In addition, the (associative) Clifford product cardeeomposed
into a grade-lowering (inner) product and a grade-raising (opteduct, from which the notions
of dot and cross products survive in the standard (Gibbs) rvalgebra ofR 3. For further
details, see Appendix below.

After being eclipsed into relative obscurity for aimostemtury by Gibbs’ vector notatidh,
the Clifford algebraic mathematical formalism (asIvesl its associated algebraic substructures
like the Clifford groups) has enjoyed somewhat of a reaaise in the fields of physics (both
purely theoretical as well as applied) and engineerinpandst several decades. (Baugh 2003,
Baylis 1995, Bolinder 1987, Conte 1993-2000, Finkelstein 1999-2004, Doreasénby 2003,
Gallier 2005, Hestenes 1984 -1986, Khrenikov 2005, Lansenby, et. al. 200@ KeDannon
2000, Mann et. al. 2003, Nebe 1999-2000, Scheuermann 2000, Sloane 2001, Snyyni997,
den Nest, et. al. 2005, Vlasov 2000). All the authors lisbede (who comprise just a miniscule

sample of the enormous body of literature on the stibfeapplications of Clifford Algebra in

" As explained in the Appendix below, vestiges of Cliffordisation and algebra survive in the concept of Pauli
and Dirac spin matrices, as well as the notion ofctéovesross-product.



physics and engineering) either describe the matheméttdicadlism as especially appealing, due
to its providing a ‘unifying language’ in the field of matheivalt physics®, or apply the
formalism in key instances to make some interpretativat po the foundations of quantum
theory, no matter how speciticor generaf®

Clifford algebras can provide a complete notation facdbing certain phenomena in
physics that would otherwise require several diffensathematical formalisms. For instance, in
present-day quantum mechanics and field theory, a varfatifferent mathematical formalisms
are often introduced: 3 dimensional vector algebra, Hilbpaices methods, spinor algebra,
diffeomorphism algebra on smooth manifolds, etc. Thidue in part to the domain-specific
nature of the aforementioned, all tailored to apply paicularly specific context, but relatively
restricted in their power of generalization. In contrastshall be shown below, Clifford Algebra
provide a single and overarching formalism that can meetndezls of the mathematical
physicist working in the applied as well as in the foundeticdomains. In Kallfelz (2009b) |
argue thatq’' la Kuhn (1977)) the comparatively broader scope and simpliagié from the
technical consistency concerning semantic isomorphismsebat algebraic and geometric
concepts) yield non-trivial claims concerning issues irrtheoretic reduction, that are of

philosophical interest:
[ll. Navier Stokes and Clifford Algebraic Computational Fluid Dynamcs

In the field of computational fluid dynamics (CFD) aglwas in other branches of
applied physics, the computer plays a constitutiwgerimentalrole—supplanting in many
cases the more traditional experimental methods asctiow-visualization, etc. In this case,
however CFD algorithms act as substitutes, not supplenfastghe notions “simulation”
suggests) when it comes to experimental practices.nd) lup the constructive example below
involving the Clifford-Algebraic algorithms for modeling sirlgu phenomena (i.e., vortex
formation, etc.) in CFD by Gerik Scheuermann (2000) ange@téann & Alyn Rockwood
(2003) who demonstrate that their algorithms offer gredéscriptive and explanatory scope

18 E g., Finkelstein, Hestenes, Lasenby

9 E.g., Conte, Hogreve, Snygg

20 E g., Hiley, Khrenikov, Vlasov

2L Among other things, | seek to temper some of Robert Badies (2002, 2004, 2005) claims.



than the standard Navier-Stokes approaches. The matbahtistinction between Navier-
Stokes-based and Clifford-Algebraic based CFD (i.e., Nb&kd CACFD) has essentially to do
with the regularizationfeatures (i.e., overcoming and conditioning singulariteed)ibited to a
far greater extent by the latter, than the forfieHence, CACFD indicate that the utilization of
computational techniques can be basedooncipled reasons (i.e., the ability to characterize
singular phenomena in ways that traditional experimentgthodologies are too coarse-grained
to meet the explanatory demands suggested by CFD), as dgposerelypractical (i.e., that
such computational procedures better fit the bill-litgtah terms of contingent resource
allocation). CACFD hence exhibit a new generative ral the field of fluid mechanics, by
offering categories of experimental evidence that arenafly descriptive and explanatory—i.e.,
paceBatterman (2005) can be both ontologically and epistiyitundamental.

Prior to introducing the work Mann & Rockwood and Scheuernfaniil.8 below), |
make brief mention of some of the issues | discussmore detailed fashion in Kallfelz (2009b),
bearing relevance to my claims concerning a temperedtreaéspretation of these classes of
simulations. Aside from some of the arcane aspeetgdii the reader is welcome to skip these
(relatively free standing) sections below (lIl.1-11l.Bhould the topic of realism motivate not
prove itself to be a motivating factor.

l11.1: “Epistemic” and “Ontologically Fundamental” Aspects of Navier Stokes
Simulations (Batterman (2005)).

Robert Batterman (2005) distinguishes between “ontaddlgicfundamental” and
“epistemically fundamental” theories. The aim ofnfier is to “get the metaphysical nature of
the systems right,” (19) often at the expense of bexpdaaatorily inadequate. Fundamentally
explanatory issues involving the universal dynamical benaof critical phenomen® for
instance, cannot be accounted for by the ontologicallgefmental theory. The explanatory aim

of epistemologically fundamental theories, on the ottend, is an account for such universal

22 This reason, among others, goes a long way to accoumihfy Clifford algebra comprises a venerable research
tradition in applied, mathematical, and theoreticalsptsy

#3uch critical phenomena exhibiting universal dynamicaperties include, but are not limited to, examples
including fluids undergoing phase transitions under certaiditons favorable for modeling their behavior using

Renormalization Group methods, shock-wave propagation @oispncaustic surfaces occurring under study in the
field of catastrophe optics, quantum chaotic phenonetng,some of which | reviewed in Chapter 2 above.
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behavior at the expense of suppressing (if not outrigstepiesenting) a physical system’s
fundamentally ontological features.

In the case of critical phenomena such as dropletdtoom even in cases of more fine-
grained resolutions of the scaling similarity solution the Navier-Stokes equations (which
approximate a fluid as a continuum), “we must appeal tontdmeHumean similarity solution
(resulting from the singularity) of thiglealized continuum Navier-Stokes theory.” (20) In a
more general sense, though “nature abhors a singulariiyowt them one cannot characterize,
describe, and explain the emergence of new universal plegraoan different scales.” (19)

In other words, according to Batterman (2005) we need thaogically “false” but
epistemically fundamental theory to account for theolmgically true but epistemically lacking
fundamental theory. “[A] complete understanding (ofeast an attempt) of the drop breakup
problem requires essential use of a ‘nonfundamental’ [gpistemically fundamental]
theory...the continuum Navier-Stokes theory of fluid dyrearii(18)

Batterman advocates this necessary coexistence ddimgs of fundamental theories can
be viewed as a refinement of his more general themes frdsen(2002). As | discussed in
chapter 2 (Kallfelz (2009b)) he argues that in the casenefgent phenomena, explanation and
reduction part company. The superseded théorgan still play an essential role. The
superseding theory /, though ‘deeply containind ’ (in some non-reductive sense) cannot
adequately account for emergent and critical phenomenee,abind thus enlist¥ in some
essential manner. This produces a rift between reduatidrex@planation, and one is forced to
accommodate an admixture of differing ontologies chiaraed by the respectively superseding
and superseded theories. In his later work, Batterman (2888ms to imply that
epistemologically fundamental theories serve in alaity necessary capacity in terms of what
he explains the superseded theories do, in the caseecjemh phenomena (2002).

| have critiqued Batterman’s claims (2002, 2004) in my (20091g two-fold manner:
Batterman confuses a theory’'s mathematical conteitth ws ontological content. This
confusion, in turn, causes him to exaggerate the importainoertain notions of singularities in
the explanatory role they play in the superseded thelbaygue here that there exist methods of
regularization in geometric algebraic characterizatmimicrophysical phenomena, which can
provide a more reliable ontological account for what gmest the microlevel levedrecisely



becausdhey bypass singularities that would otherwise occur irernonventional mathematical

techniques not based on geometric algebraic expansion atrdatmn.

l1l.2 Methodological Fundamentalism

| characterize such a notion of ‘fundamental’ arisimg algebraic expansion and
contraction techniques as an example ofiethodologicafundamentalismwhich in principle
can offers a means of intertheoretic reduction ovemgitihe singular cases Batterman discusses
in (2002, 2004). In the case of fluid dynamics, mulitiindgelras like Clifford algebras have
been recently applied by Gerik Scheuermann (2000), and Manoc&wwod (2003) in their
work on computational fluid dynamics (CFD). The authglrsw that CFD methods imply that
methodological fundamentalism can, in the cases Badiennvestigates, provisionally sort out
and reconcile epistemically and ontologically fundataktheories. Hencgyace Batterman,
they need not act at cross purposes.

Robert Batterman explains the motivation for presgntia distinction between
ontological versus epistemically fundamental theories

| have tried to show that a complete understandingit(¢east an attempt...) of the drop
breakup problem requires essential use of a ‘nonfundameheadty...the continuum
Navier Stokes theory of fluid dynamics...[But] how can #sda(because idealized)
theory such as continuum fluid dynamicsdssentiaffor understanding the behaviors of
systems that fail completely to exhibit the princifesgture of that idealized theory? Such
systems [after all] are discrete in nature and nottimoous..! think the term
‘fundamental theory’ is ambiguougAn ontologically fundamental theory]...gets the
metaphysical nature of the system right. On the dthad...ontologically fundamental
theories are often explanatorily inadequate. Certaplaeatory questions...about the
emergence and reproducibility of patterns of behavior cameotanswered by the
ontologically fundamental theory. | think that thisosss...there is an epistemological
notion of ‘fundamental theory’ that fails to coincidath the ontological notion. (2005,
18-19, italics added)

On the other hand, epistemically fundamental the@isat a more comprehensive explanatory
account, often, however, at the price of introducingm®sal singularities. For example, in the
case of ‘universal classes’ of behavior of fluid-dynaahighenomena exhibiting patterns like
droplet formation:
Explanation of [such] universal patterns of behavior megoieans for eliminating details
that ontologically distinguish the different systeedibiting the same behaviorSuch

10



means are often provided by a blow-up or singularity in the epistdgicabre
fundamental theory that is related to the ontologically fundamental theorgnby Emit.
(ibid., italics added)

Obviously, any theory relying on a continuous topofbdyarbors the possibility of
exhibiting singular behavior, depending on its domain of applic4tion the case of droplet-
formation, for example, the (renormalized) solutibmshe continuous Navier-Stokes Equations
(NSE) exhibit singular behavior. These singularities playessentially explanatory role insofar
as such solutions in the singular limit exhibit ‘self-dami or universal behavicf. Only one
parameter essentially governs the behavior of solutiorthe NSEs in such a singular limit.
Specifically, only the fluid’shicknessgparameter (neck radidg governs the shape of the fluid
near break-upin the asymptotic solution to the NSE (2004, 15)

Figure Ill.1 ( Representation of the parameters governing droplet formation)

h(Z 1)
&

(2 , to) %
z
where:f(t) is a continuous (dimensionless) function expressingtithe-dependence of the
solution ¢'= t- tois the measured time after droplet breatgip

% |In chapter 2 (Kallfelz 2009b), | borrow Bishop’s (2002) usageyhich he distinguishes thantology i.e. the
primitive entities stipulated by a physical theorgnfritstopology or structure of its mathematical formalism.

% This is of course due to the rich structure of continismis themselves admitting such effects. Consider, for
example, the paradigmatic example(-c0, )™ ) given by the rule:f(x) = %, . This obviously produces an
essential singularity a¢= 0.

% “Batterman suggests that the similarities in behaiier, the universality] may be explained as a consequeince
the fact that the differences in realization at thgsfal level are irrelevant to the higher-order bébrain the same
way that the differences between diverse systems wimgphase transitions are irrelevant to the behawear the
critical temperature.” (Strevens 2002, 655)

2" For fluids of low viscosities see Batterman (2004), npl®5.

11



a ,Bare phenomenological constants to be determiddsla Haenkel functioff

One could understand the epistemically and ontologidatgamental theories as playing
analogous roles to Batterman’s (2002, 2003, 2004) previously ohazadt superseded and
superseding theorie3 &nd T/, respectively). Analogous to the case of the superdbeedyT,
the epistemically fundamental theory offers cruciaplanatory insight, at the expense of
mischaracterizing the underlying ontology of the phenonuewer study. Whereas, on the other
hand, analogous to the case of the superseding tfi€pthe ontologically fundamental theory
gives a more representative metaphysical charactenzaat the expense of losing its
explanatory efficacy.

For instance, in the case of the breaking water dropletontologically fundamental theory
would be the molecular-discrete one. But aside fronotjgad limitations posed by the sheer
intractability of the computational complexity of such a mjuative account, the discrete-
molecular theory, preciselyecauseit lacks the singular-asymptotic aspect, cannot depét th
(relatively) universal character presented in the asymgiotit of the (renormalized) solutions
to the NSE.

However, | argue here that there are theoreticalacharnzations whose formalisms can
regularize or remove singularities from some of tlkdftdynamical behavior in a sufficiently
abstract and general manner, as to call into question #®urpably essential distinctions
between epistemological and ontological fundamemtalis| call such formal approaches
“methodologically fundamentaf® because of thgeneralstrategy such approaches introduce,
in terms of offering a regularizing procedure. Adopting su@thodologically fundamental
procedures, whenever it is possible to dd’smggests that Batterman’s distinctions may not be
different theoreticakinds but function at best as differeaspectsof a unified methodological

strategy. This calls into question the explanatory pimeBatterman appears to be advocating.

[11.3: Belot’s Critiques Revisited

% |.e. belonging to a class of orthonormal special fonstioften appearing in solutions to PDEs describing
dynamics of boundary-value problems.

%9 Recall my specification mentioned in n. 5 above.

% The generality of the methods dwt imply that they are a panacea, riddiagy theory's formalism of
singularities.
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Gordon Belot's (2003) criticism of Batterman (2002) cossist indicating that a more
mathematically rigorous rendition of the supersedingheé /' presumably eliminates the
necessity of having to resort simultaneously to the rsgded theoryl to characterize some
critical phenomenon (or class of phenomeda) Like Belot, | also claim that geometric
algebraic techniques abound which can regularize the sinigadappearing in formalisms of
(or T'). Conversely, when representing such critical phenarflersingularities can occur i
(or T') when the latter are characterized by the more ajlpistandard field-theoretic or phase
space methods alone.

However, the mathematical content of the techniguasdstigate differs significantly from
those discussed by Belot (2003), who charactefiZesing the more general and abstract theory
of partial differential equations on differentiable nfahis. He demonstrates that in principle,
all of the necessary features of critical phenom@nean be so depicted by the mathematical
formalism of superseding theofly! alone (2003, 23). Because the manifold structure is
continuous, this can admit the possibility of depictgwgch critical phenomené through
complex and asymptotic singular behavior. In other wordslptBis not fundamentally
questioning the underlying theoretitapologiestypically associated witi andT’.3* Instead,
he is questioning the need to bring the two differentologies of the superseded and
superseding theories together, to adequately accoudt.foBelot is questioning the presumed
ontologicalpluralism that Batterman advanced in his notion ofeayrmptotic explanation’.

Batterman responds:

| suspect that one intuition behind Belot’s ...objection idappear to be] saying that for
genuine explanation we need [to] appesdentiallyto an idealization [i.e., the ontology
of the superseded theorf.] ...In speaking of this idealization as essential for
explanation, they take me to be reifyinjg ontology].. It is this last claim only that |
reject. | believe that in many instances our explanatory phygiactice demands that
we appeal essentially to (infinite) idealizations. Bdon't believe that this involves the
reification of the idealized structures.” (2003, 7)

It is, of course, precisely the latter claim “that ve@peal essentially to (infinite)
idealizations” that | take issue with here, accordingwioat the regularization procedures
indicate. Batterman, however, cryptically and subsefjueemarks that: “In arguing that an
account that appeals to the mathematical idealizasisaperior to a theory that does not invoke

31.e., differential equations on phase space, charadikittaough the theory of differential manifolds.
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the idealizations, | am not reifying the mathematics...| @daiming that the ‘fundamental’
theory that fails to take seriously the idealized fastotic] ‘boundary’ is less explanatorily
adequate.” (8) In short, it seems that in his overagcleimphasis in what he considers to be
novel accounts of scientific explanation (namely, hef asymptotic variety) he oftdsiurs the
distinctions, andshifts emphasibetween a theory’s ontology and its topology. Ipiiscisely
this sort of equivocation, as | discussed in chapter Zeghihat causes him to inadvertently
uphold mathematical notions like “infinite idealizationg% acting like some explanatory
standard. To put it another way, since it is safe smrae that the actual critical phenomena
Batterman discusses are ultimately metaphysicallytefinprecisely how can one ‘appeal
essentially to (infinite) idealizationgiithoutinadvertently ‘reifying the mathematics?’

I, on the other hangyaceBelot (2003) and Batterman (2002-2005) present an alternative to
the mathematical formalisms that both authors appeavhimh rely so centrally on continuous
topological structure¥. | show how discretely graded, and ultimately finite-gimsional multi-
linear geometric (Clifford) algebras can provide accoumts Jome of thesame critical

phenomenap in aregularizableor a singularity-free fashion.

l1l.4: Disclaimer Concerning the General Applicability of Clifford Algebra in
Characterizing Critical Phenomena

Prior to describing the specific details of how to impdatthe strategy in the case of critical
phenomena exhibited in fluid dynamics, however, I make folewing disclaimer: | am
definitely not arguing that the discrete, graded, multilinear Cliffolgkhraic methods share such
a degree of universal applicability that they shosigpplant the continuous, phase-space,
infinite-dimensional differentiable manifold structurenstituting the general formalism of the
theory of differential equations, whether ordinary ortiphr Nor do Ihaveto make a general
claim here in this chapter, but merely offer a countearga for the case of the critical
phenomenon of breaking droplets that Batterman (2005) asalyFesearch in geometric
algebra is ongoing and burgeoning, both in the fields ofldorental as well as in applied
physics. (Baugh et. al. (2003), Baylis (1995), Bolinder (1987), Cr&83-2000), Finkelstein

2 Of course, in the case of Batterman, continuous strsctomprise as well thentology of the epistemically
fundamental theory: Navier-Stokes treats fluids as continoahe case of Belot, the theory of partial differal
equations he presents relies fundamentally on continubfisyentiable manifolds, characterizing the “formal
ontology” of the theory of fluid mechanics (to use Ralfrk notions, as discussed in 1.2 above).
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(1999-2004), Gallier (2005), Hestenes (1984, 1986), Khrenikov (2005), Lanstnhi/, (2000),
Levine & Dannon (2000), Mann et. al. (2003), Nebe (1999, 2000), Schaaerf®000), Sloane
(2001), Snygg (1997), Van den Nest, al. (2005), Vlasov (2000)). All the authors listed above
(who comprise just a miniscule sample of the enormmdy of literature on the subject of
applications of Clifford Algebra in physics and engineeriagher describe the mathematical
formalism as especially appealing, due to its providing a yurgf language’ in the field of
mathematical physid§ or apply the formalism in key instances to make somterpretative
point in the foundations of quantum theory, no mattev bpecifi¢* or generaf®

Certainly the empirical content of a specific probldomaindetermines which is the ‘best’
mathematical structure to implement in any theory aheraatical physics. By and large, such
criteria are often determined essentially by practioatdtions of computational complexity.

No danger of the aforementioned sort of equivocatiah Batterman seems to commit, as
have argued above, is encountered so long as one cémlgatistinguish the epistemological,
ontological, and methodological issues vis-a-vis ouricehof mathematical formalism(s) (i.e.
distinguishing aspects,©, ~I(. as discussed in chapter 1, Kallfelz 2009b). If the cghas
primarily motivated by practical issues of computatioraaility, we can hopefully resist the
temptation to reify our mathematical maneuvering, wkioluld confuse the ‘approximate’ with
the ‘fundamental'— let alone confusing ontological, epigitogical, and methodologicaknses
of the latter notiori® Even Batterman admits that “nature abhors singigarit(2005, 20) So, |
argue, should we. The entire paradigm behind regulanzatiocedures is driven by the notion
that a singularity, far from being an “infinite idealima we must appeal to” (Batterman 2003,
7), is a signal that the underlying formalism of theorthes pathological cause, resulting in the
theory's failure to provide reliable information in tan critical cases.

Far from conceding to some class of “asymptotic-expiangt’ lending a picture of the
world of critical phenomena as somehow carved atjdahgs of asymptotic singularities, we
must instead search for regularizable procedures. Thi@sply why such an approach is

3 E.g., Finkelstein, Hestenes, Lasenby

3 E.g., Conte, Hogreve, Snygg

% E.g., Hiley, Khrenikov, Vlasov

3| am, of coursenot saying that there does not exist any connection wenaésdetween a theory’s computational
efficacy and its ability to represent certain fundaraiypbntological features of the phenomena of inter&ghat
that connection ultimatelis (whether empirical, or some complex and indirect logabahd thereof) | remain an
agnostic. | do not take simplicity as evidence of ehtdggree of verisimilitude, in a manner similar to van
Fraassen’s (1980) “agnosticism” concerning the corngdeatial consequences of a theory and its “truth.”
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methodologically fundamental: regularization impliesme (weak) form of intertheoretic
reduction, as | shall argue below.

l11.5: Some Proposed Necessary Conditions for a Methodologicgll Fundamental
Procedure

In this section, | summarize aspects of methods purating algebraic structures
frequently used in mathematical physics, leading up to aetuding the regularization
procedures latent in applications of Clifford AlgebraBecause this material involves some
technical notions of varying degrees of specialty, | haveiged for the interested reader an
Appendix at the end of this essay supplying all the necedsdinjtions and brief explanations
thereon.

| review here a few basic techniques involving (abstrdgébaaic) expansionand
contraction Consider the situation in which the superceding thdotyis capable of being
characterized, in principle, by aamlgebra®’ Algebraic expansion denotes the process of
extending out from algebraically characteriZEdto someT'* (denotedT' ' - T'*) whereA
is some fundamental parameter characterizing tpebedic expansion. The inverse procedure:
lim, ,T*=T" is contraction.

The question becomes: how to regularize? In otleeds, whichT'* should one choose to
guarantee a regular (i.e., non-singular) limit gty A in the greatest possible generality?
Answer: expanding into an algebraic structure wheadativity group, i.e., the group of all its
dynamical symmetrie¥ is simple implies that the Lie algebra depicting its infastmal
transformations istable®® This in turn entails greater reciprocffii.e., “reciprocal couplings in

% That is to say, a vector space with an associativ@upto For further details, see Appendix A.2 below.

3 Recall the discussion in chapter 2, §4 above. In ativeds, the group of all actions in leaving thigirm of
dynamical laws invariant (in the active view) oethroup of all ‘coordinate transformations’ preserving ténsor
character of the dynamical laws (in the ‘passive ViewAlso, see Defn. A.2.2 in Appendix A.2 below for a
description of simple groups.

39 For a brief description of stable Lie algebras, seadtscussion following Defn A.2.4, section A.2, Appedix.

“0 For example, in the case of the Lorenz group, whickirigple, it is maximally reciprocal in terms of its
fundamental parametexsandt. That is to say, the form of Lorenz transformati¢gisiplified in one dimensional
motion along thec-axes of the inertial framé andF’ ) becomex’ = x'(x,t) = y(x — V&) andt’ =t' (xt) = y(t — VX/)
(wherey = (1V%c®*?). Hence both spaceand timet couple when transforming between inertial frafigB’, as
their respective transformations involve each oth@n the other hand, the Galilean groupnat simple, as it
contains an invariant subgroup of boosts. The Galileasfyemations are not maximally reciprocalxas x’(x,t)
=x-Vthutt =t. xis a cyclic coordinate with respect to transformationrhus, when transforming between
framesx couples with respect tdut not vice versa.
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the theory...reactions for every action.” (Finkelst&02,10, Baugh, et. al., 2003). This is an
instance of amethodologically fundamentgdrocedure, which | summarize by the following

general necessary conditions:

* Ansatz la: If a procedureP for formulating a theoryl in mathematical physics is
methodologically fundamentalthen there exists some algebraically characterized
expansionT'* of T's algebraic characterization (denoted Bf) and some expansion
parameteA such that: T' 7 - T'*. Then, trivially, T'* is regularizable with respect
to T/ sincelim, ,T*=T' is well-defined (via the inverse procedure ofehigic
contraction).

« Ansatz Ib: If T'* is an expansion of/, thenT'*’s relativity group issimple which
results in astableLie algebradT'*, and whose set of observablesTii* is maximally
reciprocal.

The Segal Doctrine (Baugh, et. al. 2003) descrdm®gd algebraic formalization of a theory
obeying what | depict above, according to Ansatz db “fundamental.” | insert here the
adjective “methodological,” since such a procedamanprises a method of regularization
(viewed from the standpoint of the ‘inverse’ progeslof contraction) and so provides a formal,
methodological means of reducing a supersedingryhiEainto its superseded theofy when
characterized by algebras.

In the following subsection, | summarize in detenlv such a methodologically fundamental
procedure, characterized by the Ansaetze above, bba® developed by Baugh (2003),
Finkelstein (2001-2004a) and Shiri-Garakhani (20048 a means to derive continuous
structures, encountered in general relativity, frdms discrete geometrical algebraic basis.
Because of the specificity and technicality of sahéhe details, the reader may skip this section
without loss of any of the conceptual insights préed in this chapter. | nevertheless present
the section below as part of the chapter, rathemn #s a separate section to the Appendix below,
to illustrate to the interested reader in a comcfashion some of the successful developments of
Clifford algebraic methods in some of the most deugnareas of theoretical physics involving
the complex interplay between discrete-based amtintum-based theories as constitutive of
guantum topology. Such applications in my opiniemforce the claims made by numerous

researchers regarding the promise of such methods ispecifically robust regularizability
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which presents itself as a viable alternative to the noommon continuum-based methods

typically constitutive of field theory (whether quantunctassical)*!

l11.6: Example: Deriving a (Continuous) Field Theory from a Discrete Graded Clifford
Representation.

Baugh, et. al. (2003), Finkelstein (1996, 2001, 2004a-c) presentsfieatiom of field
theories (quantum and classical) and space-time theasedb fundamentally orfinite
dimensional Clifford algebraic structures. The regmédion procedure fundamentally involves
group-theoretic simplification. The choice of theifétd algebrd® is motivated by two
fundamental reasons:

1. The typically abstract (adjoint-based) algebraic charaettions of quantum dynamics
(whether C*, Heisenberg, etc.) represents how actions can be codlfineseries,
parallel, or reversed) but omits space-time fine streéfur On the other hand, a
Clifford algebra can express a quantum space-time. (2001, 5)

2. Clifford statistic&* for chronons adequately expresses the distinguisthyabflievents
as well as the existence of half-integer spin. (2001, 7)

The first reason entails that the prime variableas the space-time field, as Einstein
stipulated, but rather the dynamical law. That is tg, Sthe dynamical law [is] the only
dependent variable, on which all others depend.” (2001, 6) “dtbenic” quantum dynamical

unit (represented by a generatpf of a Clifford algebra) is thehronon x, with the closest

classical analogue being the tangent or cotangent veotoniig an 8-dimensional manifold)
andnot the space-time point (forming a 4-dimensional manifold).
Applying Clifford statistics to dynamics is achieved via tbatégory) functofS ENDO,

SQ which map the mode spd€ex of the chronony, to its operator algebra (the algebra of

*1 Of which renormalization group methods are the mosiritots, as | explain in Kallfelz 2005a.

2 The associated multiplicative groups embedded in Cliffdgetmas obey the simplicity criterion (Ansatz Ib,
subsection 1 above). Hence Clifford algebras (or geoenetigebras) remain an attractive candidate for
algebraicizing any theory in mathematical physicsuiaisg the Clifford product and sum can be appropriately
operationally interpreted in the thedry. For definitions and further discussion thereon, see Belrb, Appendix
A.2.

*3 The space-time structure must are supplied by classinatiges, prior to the definition of the dynamicajefira.
(2001, 5)

*4.e., the simplest statistics supporting a 2-valued septation of & the symmetry group on N objects.

5 See Defn. A.1.2, Appendix A.1
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endomorphisnt€ A on X) and to its spinor spac® (the statistical composite of all chronons
transpiring in some experimental region.) (2001, 10). Theraof ENDO, SQ producing the
Clifford algebraCLIFF, representing the global dynamics of the chronon ensemstepicted in

the following commutative diagram:

ENDO
X » A=ENDOX)

Fig. 3.2: Commutative diagram representing the action of derivin@ statistics of quantum
spacetime based on Clifford algebra

Analogous to H.S. Green’s (2000) embedding of space-time d¢son&o a
paraferminionic algebra of qubits, Finkelstein shows tha€lifford statistical ensemble of
chronons can factor as a Maxwell-Boltzmann ensembl€liéford subalgebras. This in turn
becomes a Bose-Einstein aggregate in\the oo limit (whereN is the number of factors). This
Bose-Einstein aggregate condenses into an 8-dimensionabtdavii, which is isomorphic to
the tangent bundle of space-time. MoreoWris aClifford manifold i.e. a manifold provided
with a Clifford ring: C(M)=C,(M)OC,(M)0...0C, (M) (where:Co(M), Ci(M),...,Cn(M)
represent the scalars, vectors N-vectors on the manifold). For any tangent vecis, )/(X)
on (Lie algebralM) then:

V() - Y =9
where:- is the scalar product. (2004a, 43) Hence the space-timeatadasifa singular limit of

the Clifford algebra representing the global dynamioshodnons in an experimental region.

6 The mode space is a kinematic notion, describing thef st possible modes for a chrongnthe way a state
sPace describe the set of all possible states fatejsin ordinary quantum mechanics.

“"|.e, the set of surjective (onto) algebraic structuesgrving maps (those preserving the action of the raligeb
‘product’ or ‘sum’ between two algebrds A’). In other wordsgp is an endomorphism oK, i.e. ®: X - X iff: [
X,y X: d(x+y) = d(X)+ P(y), where + is vector addition. FurthermabéX) =X: i.e. for anyz [0 X: O x 0 X such
thatd(x) =y. For a more general discussion on the abstract algetntons, see A.2, Appendix.
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Observable consequences of the theory are discussed moithel of the oscillator
(2004c). Since the dynamical oscillator undergirds mucthefframework of contemporary
guantum theory, especially quantum field theory, the (gdéimed) model oscillator constructed
via group simplification and regularization is isomorptoca dipole rotator in the orthogonal
group O(N) (where:N =I(l + 1) >> 1). In other words, fanite quantum mechanical oscillator
results, bypassing the ultraviolet and infrared divergeregsadccur in the case of the standard
(infinite dimensional) oscillator applied to quantumdi¢heory. In place of these divergences
are “soft” and “hard” cases, respectively representiagimum potential energy unable to excite
one quantum of momentum, and maximum kinetic energy haiagle to excite one quantum of
position. “These [cases]...resemble [and] extend thanatiggnes by which Planck obtained a
finite thermal distribution of cavity radiation. Evére 0-point energy of a similarly regularized
field theory will be finite, and can therefore be phgtic(2004c, 12)

In addition, such potentially observable extreme casedifyndiigh and low energy
physics, as “the simplest regularization leads to aut@yns between the previously uncoupled
excitation quanta of the oscillator...strongly attractfee soft or hard quanta.” (2004c, 19)
Since the oscillator model quantizes and unifies timmergy, space, and momentum, on the
scale of the Planck power CLV), time and energy can be interconverfed.

l1l.7: What Makes Multilinear Algebraic Expansion Methodologically Fundamental.

Before turning to the example involving applying Clifford dggc characterization of
critical phenomena in fluid mechanics, | shall giveralfiand brief recapitulation concerning the
reasons why one should consider such methods descried$methodologically fundamental.
For starters, the previous two Ansatze that | have @m&gpdin subsection 1 above) act as
necessary conditions for what may constitute a metbgaally fundamental procedure.
Phrasing them in their contrapositive form (l.a*, l.b*dve) also tell us what formalization

“8 In such extreme cases, equipartition and Heisenberg Uintgitaviolated. The uncertainty relation for
the soft and hard oscillators read, respectively:

2
(AL1)2 (AL2 )2 2 %<L3>2\ L2=0) = 0= ApAQ << %
h? A

(ALl )2 (ALz )2 2 7< L3>2\ L=0) = 0= ApAq << 5

20



schemes for theories in mathematical phys@annot be considered methodologically

fundamental:

« Ansatz (la*): If T'* is singular with respect tol / , in the sense that the behavior of
T'* intheA - O limit doesnot converge to the theoy’ at the A = 0 limit (for any such
contraction parametet), this entails that the procedupe for formulating a theoryl in
mathematical physicscannot be methodologically fundamentaland is therefore
methodologically approximate.

* Ansatz (Ib*): If the relativity group ofT'* is not simple, its Lie algebra is subsequently
unstable. Thereford'* cannotact as an effective algebraic expansionrofin the
sense of guaranteeing that the inverse contraction guozes non-singular.

Certainly Ansatz la* is just a re-statement (in algebit@rms) of Batterman’s more
general discussion (2002) of critical phenomena, evincinlgigncase-studies a singularity or
inability for the superseding theory to reduce to the supealstd®ry. However this need not
entail that we must preserve a notion of ‘asymptotmamnations,” as Batterman would invite us
to do, which would somehow inextricably involve the sepded and the superseding theories.
Instead, as Ansatz |.a* states, this simply tells ustttmmathematical scheme of the respective
theory (or theories) isiot methodologically fundamental, so we have a signal sckefor
methodologically fundamental procedures in the partiquiablem-domain, if they exiét.

Ansatz |.b* gives us further insight into criteria filigy out methodologically
fundamental procedures. Finkelstein, et. al. (2001) denasedtratall field theories exhibit, at
root, an underlying fiber-bundle topolodyand cannot have any relativity groups that are
simple. This excludes a vast class of mathematicatdbsms:all-field theoretic formalisms,
whether classical or quantum.

However, as informally discussed in the precedingi@&cif any class of mathematical
formalisms is methodologically approximate, this wouldt no itself entail that the
computational efficacy or empirical adequacy of any tyélb constituted by such a class is
somehow diminished. If a formalism is found to behudblogically approximate, this should

“9In a practical sense, of course, the existence afepires entail staying within the strict bounds determibyed
what is computationally feasible.

%0 |.e., for Hausdorf (separable) spages, F, and mamp: X - B, defined as a bundle projection (with fifey if
there exists a homeomorphism (topologically continuoap)rdefined on every neighborhoddfor any pointblB
such that: p(g<b,f>) = b for anyf OF. Onp™(U) = {xOX | p(x) O U}, then p acts as a projection map bhxF

- F. A fiber bundle consists is described ByF , (subject to other topological constraints (Brendon (20D09;

107)) whereB acts as the set base pointgb| b0B [ X } and F the associated fibregp™(b) = {x0X | p(x) = b} at
eachb.
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simply act as a caveat against laying excessive empagsise theory’s ontology, until such a
theory can be characterized by a methodologically fonestéal procedure.

A methodologically fundamental strategy does more tsiamply remove undesirable
singularities. As discussed above in subsection 1fitite number of degrees of freedom
(represented by the maximum gralNeof the particular Clifford algebra) positively infosm
certain ontologically fundamental notions regarding outapieysical intuitions concerning the
ultimately discrete characteristics of the entifiesdamentally constituting the phenomenon of
interest®® On the other hand, the regularization techniques Ipgme=Batterman, epistemically
fundamental consequences that are positive.

In closing, one can ask how likely is it that methoda@ally fundamental multilinear
algebraic strategies can be applied to any complex phem@mnder study, such as critical
behavior? The serious questions deal with practicatdiions of computational complexity:
asymptotic methods can yield simple and elegantly powezullis, which would undoubtedly
otherwise prove far more laborious to establish by disareiltilinear structures, no matter how
methodologically fundamental the latter turn out &0 tNevertheless, the ever-burgeoning field
of computational physics gives us an extra degree addrago handle, to a certain extent, the
risk of combinatorial explosion that such multilinedgedraic techniques may present, when
applied to a given domain of complex phenom®&na.examine one case below, regarding the
utilization of Clifford algebraic techniques in computatiofiaid dynamics (CFD), in modeling

critical phenomena.

[11.8 Summary of CACFD

Gerik Scheuermann (2000), as well as Mann & Rockwood (2003), enliffgrd
algebras to develop topological vector field visualizaioof critical phenomena in fluid

*1 Recall the discussion of ontological levels in 1.3 labove. This is relative, of course, to the levelcales we
wish to begin, in terms of characterizing the thebpasological primitives. For instance, should onslwto begin

at the level of quarks, the question of whether or reit fandamental properties are discrete or continuous keEom
a murky issue. Though quantum mechanics is often understoddradaanentally ‘discrete’ theory, the continuum
nevertheless appears in a subtle manner, when considemtaggled modes, which are based on particular
superpositions of ‘non-factorizable’ products.

2 To be precise, so long as the algorithms implementieh multilinear algebraic procedures are ‘polytime,’ i.e
grow in polynomial complexity, over time.
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mechanics. Visualizations and CFD simulations fornespectable and epistemically robust
way of characterizing critical phenomena, down torthroscale. (Lenhard (2004)) “The goal is
not theory-based insight as it is [typically] elakedhin the philosophical literature about
scientific explanation. Rathethe goal is[for instance]to find stable design-rules that might
even be sufficient to build a stable nano-deVi€¢2004, 99, italics added) Simulations offer
potential for intervention, challenging the “receivedtecra for what may count as adequate
guantitative understanding.” (ibid.)

Thus, Lenhard’'s above remarks appear as a rather strotgrsement for an
epistemically fundamental procedure: The heuristicskD®ased phenomenogical approaches
lend a quasi-empirical character to this kind of rese¥rcBFD techniques can produce robust
characterizations of critical phenomena where ti@aktl ‘[Navier-Stokes] theory-based
insights’ often cannot. Moreover, aside from theiplaratory power, CFD visualizations can
present more accurate depictions of what occurs anitmlevel, insofar as the numerical and
modeling algorithms can support a more detailed depictioyredrdical processes occurring on
the microlevel. Hence there appears to be no inheession here: Clifford-algebraic CFD

procedures are epistemically as well ontologically fureteal®® Of course, | claim that what

>3 The topic of computer simulations has received recemtsaphical attention. Eric Winsberg (2003) makes the
case that they enjoy ‘a life of their own’ (124) betwélee categories of activity such as theory-articutatba the
one end, and laboratory experiments on the other.y {8} semiautonomy of a simulation model, one rdfetae
fact that it starts from theory but one modifies ithwextensive approximations, idealizations, falsifioas,
auxiliary information, and the blood, sweat, and tearsnath trial and error.” (109) In other words, stated
negatively, the simulation cannot be derived in argigittforward algorithmic procedure from its ‘parent’ theory
Stated positively, simulation activity inevitably ilves an essential aspect of abductive reasoning. Thouthe
same token, argues Winsberg, to conflate computer sionukadtivity with standard laboratory activity would loe t
confuse paintings with mirrors, as being equally reptteser of human posture (borrowing from Wittgenstein’s
analogy used in a critique of Ramsey’s theory of ident{iyl 6)

If in our analysis of simulation we take it to be a mdtlibat essentially begins with an algorithm
antecedently taken to accurately mimic the system intigngghen the question has been begged as to
whether and how simulations can, and often do, providwiths genuinely new, previously unknown
knowledge about the system being simulated. It would beyaterious as if we could use portraits in
order to learn new facts about the postures of our bodibe way that Wittgenstein describes. (ibid.)

A fuller account of Clifford-algebraic CFD methods in thght of some of the recent philosophical work on
computer simulations is a topic clearly worthy of aeotstudy, above and beyond the scope of this essayefli/b
remark on such implications in chapter 4 below.

>* Which is not to say, of course, that the applicatifr@lifford algebras in CFD contain no inherent tensioifhe
trade-off, or tension, however, is of @actical nature: that between computational complexity and accurate
representation of microlevel details. Lest this appeas though playing into the hands of Batterman’s
epistemically versus ontologically ‘fundamental’ distiogs, it is important to keep in mind that the trade-®ffine

of a practical and contingent issue involving computatioesburces. Indeed, in the ideal limit of unconstrained
computational power and resources, the trade-off disappeerssan model the underlying microlevel phenomena
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guarantees this reconciliation is precisely the undeglynethodologically fundamenté&tature
of applying Clifford algebras in these instances.

[11.8.a: An Overview of Scheuermann’s Results

Scheuermann, Mann & Rockwood are primarily motivated bythetical aim of achieving
accurately representative (i.e. ontologically fundat@@ CFD models of fluid singularities
giving equally reliable (i.e. epistemically fundamentakdgctions and visualizations covering
all sorts of states of affairs.

For example, Scheuermann (2000) points out that standartbda@d methods in CFD,
using bilinear and piecewise linear interpolation approximgasolutions to the Navier-Stokes
equation, fail to detect critical points or regions of ligbrder (i.e. order greater than 1). To
spell this out, the following definitions are needed:

Definition 1 (Vector Field): A 2D or 3Dvector fieldis a continuous function

V: M - R"whereM is a manifold® M O R", wheren = 2 or 3 (for the 2Dand 3D cases,

respectively) andR"= Rx.(n times)..xR = {(X,..., X| % 0 R,1 < k < n}, i.e. n-dimensional

Euclidean space (where= 2 or 3.§°

Definition 2 (Critical points/region): A critical poinf’ x. 0 MO R" or region

U O M 0O R" for the vector fieldv is one in which Y{(xc)|| = 0 or ¥(X)|| =0

Ox0 U, respectively®

to an arbitrary degree of accuracy. On the other hHRatlerman seems to be arguing that some philosophically
important explanatory distinction exists between ontoldgicd epistemic fundamentalism.

5 A manifold (2D or 3D) is a Hausdorff (i.e. simply conretitspace in which each neighborhood of each one of it
points is homeomorphic (topologically continuous) wittegion in the plang?or space’’, respectively. For more
information concerning topological spaces, see Table AApgendix A.1.

%% | retain the characterization above to indicate tigtidr-dimensional generalizations are applicablefa¢t, one

of the chief advantages of the Clifford algebraic foratiohs is their automatic applicability and generail@ato
higher-dimensional spaces. This is in contrast to nstgpevalent in vector algebra, in which some nofitke the
case of the cross-product, are only definable for spzcasximum dimension 3. See A.2 for further details.

>" For simplicity, as long as no ambiguity appears, a pointann —dimensional manifold is depicted in the same
manner as that of a scalar quarttityHowever, it's important to keep in mind thah the former case refers to an
—dimensional position vector.

8 Note: || || is simply the Euclidean norm. In the ciise2D vector field, for exampley(k,y)|| =

Wi + vl = [Ud(x.y) + VA(x,)]Y2 whereu andv arex and y are thex,y components o¥/ , described as
continuous functions, aridj are orthonormal vectors parallel to thandy axis, respectively.
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A higher-order critical point (or family of points) maygnal, for instance, the presence of a
saddle point (or suddle curve) in the case of the veat lbeing a gradient field of a scalar
potential ®(x) in R?® 3 je. V(x) = OP(x). “Higher-order critical points cannot exist in
piecewise linear or bilinear interpolations. This thgsiesents an algorithm based on a new
theoretical relation between analytical field desaviptin Clifford Algebra and topology.”
(Scheuermann (2000), 1)

The essence of Scheuermann’s approach, of which he wairks aetail examples iR* and
its associated Clifford Algebr&L(R? of maximal gradeN = dimR? = 2 consisting of 2= 4
fundamental generatot$jnvolves constructing iICL(R?) a coordinate-independent differential

operatord: R>~ CL(R?). Here:c’)V(x)ng"%v—(X) whereg the grade-1 generators, or two

2
k 1
k=1 g

. . ov o o
(non-zero, non-collinear) vectors which hence sIB%x,randa—k are the directional derivatives

of V with respect ta. For example, iff*, g? are orthonormal vecto@l,éz), then:oV = (V)1

+ (OOV)i , wherel, andi are the respective identity and unit pseudoscafL(R?). *° For

example, in the matrix algebra,(R), i.e. the algebra of real-valued 2x2 matrices:

L (1O _aac[0 1
“lo 1 B B

Armed with this analytical notion of a coordinated differential operator, as well as
adopting conformal mappings froRf into the space of Complex numbers (which the Iditten
a grade-1 Clifford algebra) Scheuermann developspalogical algorithm obtaining estimates
for higher-order critical points as well as deterimg more efficient routines:

We can simplify the structure of the vector fieftlasimplify the analysis by the scientist and
engineer...some topological features may be missed figcewise linear interpolation [i.e.,
in the standard approach]. This problem is sufckgsattacked by using locally higher-

order polynomial approximations [of the vector dielising conformal maps]...[which] are

based on the possible local topological structureghe vector field and the results of
analyzing plane vector fields by Clifford algebradanalysis. (ibid (2000), 7)

%9 For details concerning these features of Clifford algs, see Defn A.2.5 and the brief ensuing discussioh
€0 compare this expression with the Clifford product in Defd.3, A.2
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[11.8.b: An Overview of Mann and Rockwood’s Results

Mann and Rockwood (2003) show how adopting Clifford algebragtigremplifies the
procedure for calculating the index (or order) of critjpaints or curves in a 2D or 3D vector
field. Normally (without Clifford algebra) the index @resented in terms of an unwieldy
integral formula involving the necessity of evaluatingmalr curvature around a closed contour,
as well the differential of an even more diffictétm, known as the Gauss map, which acts as the
measure of integration. In short, even obtaining a rowgherical estimate for the index using
standard vector calculus and differential geometrycisraputationally costly procedure.

On the other hand, the index formula takes on a faerafegant form when characterized in
a Clifford algebra:

(x)= C f vV CdV

7 J Blx) n
R '

where:n = dimR" (wheren = 2 or 3)

ind

(IV.1)

Xc-a critical point, or point in a critical region.
C :a normalization constant.
| : the unit pseudoscalar 6L(R").

[: the exterior (Grassmann) prod€rtt.

The authors present various relatively straightforwalgbrithms for calculating the index of
critical points using (IV.1) above. “[W]e found the usé Glifford algebra to be a
straightforward blueprint in coding the algorithm...the...compatetiof Geometric [Clifford]
algebra automatically handle some of the geometriclgetaimplifying the programming job.”
(ibid., 6)

The most significant geometric details here of courselve critical surfacesarising in
droplet-formation, which produce singularities in the stashddavier-Stokes continuum-based
theory. Though Mann and Rockwood (2003) do not handle thegomnobf modeling droplet-
formation using Clifford-algebraic CFD per se, they despne an algorithm for the computation

of surface singularities:

51 For definitions and brief discussions of these teresBefnA.2.5, A.2
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To compute a surface singularity, we essentially use dhee sdea as for computing

curve singularities...though the test for whether a surfaikrity passes through the
edge [of an idealized test cube used as the basis odédderative algorithm, i.e. the 3D

equivalent of a dichotomization procedure using squaregilha plane] is simpler than

in the case of curve singularities. No outer produgsnaeded—if the projected vectors
along an edge [of the cube] change orientation/sign,ttieze is a [surface] singularity in

the projected vector field. (ibid., 4)

[11.8.c: Assessment of Some Strengths and Shortcomings ing Approaches

Shortcomings, however, include the procedure’s inabilitydétermine the index for
curve and surface singularities. “Our approach here dhmeilconsidered a first attempt....in
finding curve and surface singularities...[our] heuristics sangple, and more work remains to
improve them.” (7)

Nevertheless, what is of interest here is the mdgnwhich a Clifford algebraic CFD
algorithm cardetermine the existenad curve and surface singularities, and track their lonati
in R® given a vector fieldV: M —~ R®. The authors demonstrate their results using various
constructed examples. Based on the fact that evenyesit in a Clifford algebra is invertibig,

the authors ran cases such as determining the line singgldoit vector fields such as:

V(x,y,z)= (uw’l)u + 2 (IV.2)

u(x, y) = 8 + 8,
where:

wx, y) =" +y?&
and(é,,&,,8,) are the unit orthonormal vectors spanriig

An example like this would prove impossible to construehgistandard vector calculus on
manifolds, since the ‘inverse’ or quotient operation is €indd in the case of ordinary vectors.
Hence the rich geometric and algebraic structure dfo@li algebras admits constructions and
cases for fields that would prove inadmissible using stdnalaproaches. The algorithm works
also forsampledvector fields. “Regardless of the interpolation moet, our method would find
the singularities within the interpolated sampled fie{thid., 5)

2 See A.2, in the discussion following Defn A.2.5, for fertdetails.
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The Clifford algebraic CFD algorithms developed by thehenst yield some of the

following results:

1. A means for determining higher-order singularities, otheevaff-limits in standard
CFD topology.

2. A means for locating surface and curve singularities donputed as well as sampled
vector fields. Moreover, in the former case, theemibility of Clifford elements
produces constructions of vector fields subject to anatysgsvould otherwise prove
inadmissible in standard vector field based formalisms.

3. A far more elegant and computationally efficient mensalculating the indices of

singularities.

Clifford algebraic CFD procedures that would refine Mann Bodkwood’s algorithms
(described in 82 in this chapter) by determining for instaheeartdices of surface singularities,
as well as being computationally more efficient, arecipedy the cases that will serve as
effective responses against Batterman’s claims. Ferettvould exist formalisms rivaling, in
their expressive power, the standard Navier-Stokes approBah.such CFD research relies
exclusively on finite-dimensional Clifford algebraic beeques, and would not appeal to the
asymptotic singularities in the standard Navier-Stokes fatioum in any meaningful way.
Certainly the “first attempt” by Mann and Rockwood in cletgaizing surface singularities is an
impressive one, in what appears to be the onset ofyapremising and compelling research
program.

IV. Concluding Remarks: A Case for Constructive Realism?

In Kallfelz (2009b) I show how a Clifford Algebraic appeh finds a natural home in
elements of structuralist philosophy of science. Inrotherds, as physicist and philosopher
Fritz Rohrlich has demonstrated: it is perfectly cdesisfor a physicist to accommodate an
ontological pluralism in a particular class of theawyrhation, but at the same time remain
methodologically monist. Moreover, such methodologitanism is best characterized in a
mode and manner that does not hearken back to rendifitogiaal empiricism based on strong
claims of logical reductionism (shown, as | do beldw,be largely irrelevant if not outright
hindering the progress of the development of theory foomati The school of thought that

28



Rohrlich implicitly ascribes to as well as some of &ssociates like Diedrik Aertz and Juergen
Ehlers explicitly advocate structuralism a highly mathematical version of the semantic view
of theories enjoying ongoing and active innovation by Européasicists and philosophers of

the likes of Erhard Scheibe (1997-1989)Structuralists like Rohrlich ascribe to realism, tas i
best underwrites notions such as domains of validitiyplogical strata, etc., that any mature
mathematically based theory exhibits. | summarize soihés claims below:

IV.1. Elements of Structuralism

The ‘internal’ structure of certain aspects of a nowvetlgping (i.e., accepted, mature, or
established) theor¥ includes:

* Anontology® (T)

* A set of centraterms(T), with an accompanyingemantics(T).
» Set(s) ofprinciplesli(T)

* A mathematical structure/( (T)

* A domain of validity»(T)

In Rohrlich (1988, 302) the list of aspects is presentedsirbtly different mannet: In terms of
theory-reduction, one should deal only with mature calished theories, whose characteristic

components include:

83 “Structuralism” is also a term that appears often drtain branches of the philosophy of mathematics (e.g.,
Charles Chihara (1990, 2003)). Certainly, structuralisthénphilosophy of mathematics share metaphysically
resonant themes with those mentioned above, as bathlsdf thought assent to a generalyistructivistposition

(as opposed to a Platonic “essentialism”) concernin@tit@ogical status of theoretical entities. Neverhs] the
projects’ motivations differ. Mathematical structistd are primarily concerned with resolving issuesear@ng on
ontological status, while structuralists in the pholasy of science are typically motivated more by episteanid
methodological concerns. Aside from the issue of ppirachement” of methods in philosophy of science vis-a-vis
philosophy of mathematics | briefly discuss, a larger gamative and contrastive analysis concerning these t
structuralist traditions lies beyond the scope of éssay.

% As mentioned above the list of aspects is by no measenimo be exhaustive, which reflects the anti-
reductionism of structuralism in the sense of its repiofisof the attempt to reduce the semantic and syntactic
content of scientific theories to formal axiomatistems (recall n. 62 above). Hence no single listratsiral
aspects sufficiently constitutes a theory, let aldnsuch aspects were characterized in closed axiorfatic.
Rorhlich and Hardin (1983) are even more explicitly ada@nagainst axiomatic reductionism, which they are quick
to mention isnot what is implied by their model of inter-theoretic redamt Scientists, they argue, should in
general avoid axiomatization as the scheme “is diffiaotd in general equivocal.” (605) (They proceed to mentio
the numerous schemes of attempts at axiomatizing quantulranies, all of which by nature are rather different,
some even opposed). Instead they go on to say thatistsiersemathematical structuresf two or more theories,
seeking to establish a ‘conceptual dictionary’ among nsticonveyed by such mathematical structures which
appear similar. (605) In yet another article, Aert®Ré&hrlich (1998, 27) describe three kinds of reduction: a.)
logical (i.e. reducing to some axiomatic framework),theory reduction (‘semantic reduction’), and c.) reductive
explanation (‘explanatory reduction’). They proceed tcestaat their paper wilhot cover logical reduction, since:
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* AnonticcomponentO

* An epistemiccomponent

* A language and conceptual contetdmponent/, which includes formal and informal
language, and a subset of central tenfis

» Set(s) ofprinciplesli(T)

« A mathematical-logical structureomponent(®°

* A domain of validity»(T)

Rohrlich succinctly states that Nagel's (1974) model of redlnas mentioned briefly in
the preceding subsection above) holds between (mahe®ie¢sT andT’ whenever there exists
a mapping®: { T') = 7( T), i.e. the central terms @fmust be functions of those ®f.®” On
the other hand (recalling Nickles (1975)) physicists are giyentuitive about the issue of
inter-theoretic reduction, typically deriving just thathematical structureBom one theory to
another. Moreover, in this more pedestrian but reptasesa case, the physicists:

...pay little attention to whether the concepts resultingh the physical interpretation of
the symbols permit such a functional relation [aNkgel]... The mathematical structure
or framework of the theory is considered to be primand ¢e central terms (the
meaning of certain central symbols) can be later derfinea the applications of that
framework to actual situations. (1988, 303)

“Logical reduction is a formal procedure that can be usedstiemtific theory onlyost facto after the theory has
been formulated based on empirical information.no known case does axiomatization of a theory help to
elucidate the scientific problems one encountéfgerts & Rohrlich (1998) 28, italics added)

% One recognizes this as a slightly more refined desonifif the set of centraérms 7(T), with an accompanying
semantice(T) mentioned in Rohrlich (1994).

% The essential importance of this component for matcientific theories cannot be over-emphasized. Asiate f

its obvious feature including deriving the central equationa tifieory, quantitative explanatory and predictive
power:

[ can probe where] human intuition fails...when the theofgrseto those aspects of nature which lie
outside our direct experience, the mathematical strudtecemes the backbone of the scenario, [the
model] which characterizes this indirect knowledge. [Moegpv.[tlhe conceptual model associated with
a theory is largely derived by confronting/( with empirical evidence and with neighboring theories
(testing and coherence)...involv[ing] informal languagel as not the result of logical-mathematical
deduction. (Rohrlich (1988), 301)

As mentioned in n. 80 above, so this above passage likdistggguishes a structuralist’s approach to mathematical
structure and their use from a logical reductionist,eaislenced in the implication of abductive reasoning
“involv[ing] informal language....not the result of ...deductibn

®7 If the mapping is surjective (onto, i®[7(T’)] = #«(T) ) then the reduction is homogeneous. Otherwise ifiteg
mapping is strictlynto: ®[7(T')] O «(T) ) the reduction is heterogeneous.
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The above point is used, for instance, to reconcile Fbgaths (1963) theoretical
pluralism (and its associated incommensurability issued)as the same time ensuring a well-
defined logical-mathematical linkage between two thedFiesd T/ by recognizing that such
two theories can refer to different cognitive (or &msic) levels: In other words the fact that a
reduction relation may hold betweem((T) and=1{(T ') does not guarantee that such a relation
exists betweer’(T) and2(T '), O(T) andO(T '), or £T) and=(T '), etc.: “The mathematical
framework of [I] is rigorously derived from that off[] (a derivation which involves limiting
procedures); but the interpretation and the ensuing otigslgof T and T /] are in general not so
related.®® (1988, 303)

a.) The epistemic Component
Recall the distinction between developing versus mahgeries as discussed above. In

an insightful commentary on Rohrlich, Ryszard Wojc({d098) writes:

Rather than treating a theory which has reached the matage as a partially adequate
description of the external world, Rohrlich (if I convey lpigsition correctly) treats it as a
cognitive counterpart of.ontological levels or perhaps | should say ‘ontological regions of
reality.’ (38)

In other words, what distinguishes a mature theorydatnctively stable reciprocal dynamics
between its cognitive (or epistemic) and ontologi@lels. Such a stable correspondence
implies (within its domain of validity) that one cansasiate a distinctive cognitive level
associated with a robust ontological level:

The existence of different concepts on different eveistifies one’s talking about

gualitative differences between levels...It thus follows that oeeel does not make

another level superfluous. Both are needed; which thedhe suitable one depends on
the domain of parameters...[tlhe concepts we employ,gtlestions we ask, and the
answers we are prepared to accept will be controlled dyddimain of discourse—the

ontological level—which we intend. (Rohrlich & Hardit983), 610)

% Feyerabend of course may brush this aside as a red hesrirag just a re-statement of the problem of
incommensurability. Recall in n. 75 Feyerabend’s yaiint was just what Rohrlich (1988) seems to be re-iteyat

a mathematical reduction will not guarantee a semantc However, if one accepts the structuralist madfim
theory being composed of a plurality apectsincluding semantic, mathematical, ontological componehtn
Rohrlich’s points make good sense: one can guarantedicedirc one aspect but not in others. Only if on&lhe
fast to some reductionism claiming that tbemantic contenis what is essential to a theory (i.e., #sO, £
components) does the incommensurability issue themizeanore serious concern.
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So the ontological component, the epistemic comporaer the validity domain of a
mature theory®, £,>) all mutually co-refer in important ways. Yet eadpect or component
has its distinct features as well, so they can (tertain extent) be considered independently of
each other. In the case Of | will mention in passing that it forms such a cruciat bf my
discussion as to deserve its own major section (sdwe®4v), because it remains inextricably
tied to notions like verisimilitude and representatiome Validity domairi>, on the other hand,
depends crucially on extensions of Nickel's (1975) ‘domaies@mving’ reduction, that
Batterman (2007) extended in ldshema R(discussed in the previous subsection above).

The issue of the epistemic aspect of a mature th€osg hooking into a coherent and
consistent ontological aspett is best illustrated by way of a counter-instance, ast wioald
occur in the case of @evelopingor immature theory. Developing theories do not yesess a
stable ontological aspeceh, hence their epistemic component is volatile. To eaome
contemporary instance: consider the case of String Thedhys developing theory’s greatest
strength is also its chief weakness: String Theory gsssea richly mathematical componefit
at the expense of its epistemic and ontological commseneEfforts to ‘interpret’ the theory
range from some extremely dubious version of Plato{i&man Greene) in which an ontology is
imposed in a ham-fisted manner relegating most of theylseessential terms to unobservable
abstractions, devoid of any operational confént. Other interpretations verge on the
instrumentalist, regarding some of its mathematicallt®s®s empirically adequate at best, but
the essential terms are devoid of ontological coraeiate from predictive value. A similar case
can be made for developing versions of Ptolemaic astrpmointiquity (as opposed to the late
Middle Ages), despite its mathematical sophistication.

On the other hand, in the case of mature theor@gitive levels occur irf due to
“cognitive (or epistemic) emergence.”(Rohrlich (1988) 3) Rohrlich’s notion of cognitive
emergence is similar to the notion of ‘epistemic \yaace’ discussed in Humphreys (1997),
Silberstein & McGeever’s (1999), and in Kronz & Tiehen (20B2)hat the notion spells no
ontological difficulties: Cognitive emergencecisntextualinsofar as it is entirely constituted by
the relationship our cognitive apparatus has with its neferén apparent emergence of new

%9 See Finkelstein (1996, 2001, 2604 2007) for criticism of this developing theory.
| discuss the issue of emergence in greater detail ipt&h2 below. See also Kallfelz (2009).
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objects (atoms, stars, organisms, etc.) having certain upicpperties identified by humans’
cognitive apparatus:

suggest. something qualitatively netas evolved...[only] because it differs perceptively
from anything that there was at the earlier stagescfsimic evolution]; there is a
recognition of this fact that is sudden despite the zaiadin that nothing discontinuous
has happened. (Rohrlich (1988), 298)

In other words, such ‘new’ objects are characterizachwidealization “their detailed structure
has become unimportant. Characterization@ppgoximations..beyond a certain observational
precision they become empirically inadequate.” (298-299)is l& short step to realize the
ubiquitous and unremarkable fact of epistemically emergeghitive levels once one accepts
the truism that “it is only through idealizations, andatvhwe can think of as their alter-ego—
inexact truths—that we have access to the wdrdPaul Teller (2004b) 447)

b.) The Ontological Component©

As described above, the epistemic component of maturgiebecorresponds with a
robust ontology in a stably reciprocal manner, underwritye the inevitably idealizing activity
of both: For instance in the epistemic componerntlagsical mechanics the emergent cognitive
level of ‘massive bodies subjected to macroscopic #rcerresponds to the ontological
component of the theory containing ‘fallible veragitfé like ‘point mass,’ ‘frictionless planes,’
etc., rendered possible only through an idealizing activitgrigg details of the massive bodies’
constituents at the molecular, or atomic, or nuckeasub-nuclear, or Planck scales, etc.

A central metaphysical point that Rohrlich makes friiv@ above is his advocating a
pluralist ontology constituted by substantial monism

" Paul Teller’s (2005) argument is certainly not some emduest of idealism of sense-data characteristic oficert
elements of British empiricism from the™To the 28 centuries: “The British empiricists thought that thirki
consists in having a stream of ‘ideas’ [representatjarg] concluded mistakenly that all we ever thabloutare
our own ideas.” (Alan Musgrave (1985), in Curd & Cover (1998R,n1223-1224) Teller's claim comes as a
concluding statement of his argument against quantitatvesimilitude, i.e., that there exists some context-
independent way of determining ‘closeness to truth’ of bepties. Teller argues that ‘closeness to truthhis a
inevitably contextual notion and recognizing this entdibst the distinction between a ‘foundational theoryd an
‘phenomenological theory’ is likewise context-relatit@undational theories distort, approximate, and ideakze
much as ‘phenomenological’ theories do. Converseljhdlgh] | accept that foundational theories do tell us a
great deal about how the world really is. | note afsd many ‘phenomenological’ theories [however] ...tell us
about the world in the same kind of way that the fouodati theories do.” (Teller (2004b), 446) | will discuss
Teller’s insights in greater detail in 84 below.

2 A term Teller (2004b) suggests one should use in lieu ofulifiefions.” “[Ijmperfect characterizations [still]
genuinely inform...just calling them ‘fiction’ thus misleadsBut we do want to acknowledge that these
characterizations are not simply true.” (445)
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[I]t is our cognitive capacity, our ability to perceive, riecall, to recognize, and to draw
analogies [all inevitably idealizing activities] that is.spensible for this pluralistic
nature of our ontology. We...encounter it in tleegnitive emergenceof new
objects...[nevertheless the standpoint of] cosmic evolusian support of the notion of
the unity of nature (substantive monisth)(1988, 297)

There is nevertheless a substantial monism as emit@ge continuously (or quasi-continuously
in the case of quantum mechanfygunfold[ing] into increasing complexity.” (298)

The idealization underwriting the conceptual levelstltd epistemic as well as the
associated ontological components of a mature theomesponds taa level of coarseness
(determined by the extent of the idealization and sfioption) for the basic level of the domain
of scientific inquiry. “l prefer the terms ‘coarseand ‘finer’ level of theory [rather than]...terms
such as ‘more fundamental’, ‘superseding’, ‘supervenirggijary’, etc. [as the latter notions]
prejudice the cas€” (299) Hence in this context, the convention | have beptang for
preceding and superseding theorig&saad T/, respectively) apply equally well to Rohrlich’s
‘coarser’ and ‘finer’ theories; i.e., theorigs and T/, with the former whose ontologicall
componentO (T) is coarser relative to the lattets (T’ ). Moreover, though most physical
theories have an ontological component at a certaiel lef coarseness, some ‘framework
theories’ like mechanics (whether classical, staastior quantum) have ontological components
containing several levels of coarsen®ss.

c.) The Validity Domain >

3 The notion of cognitive emergence (vis-a-vis subshohity in cosmic evolution) is resonant with some Af

N. Whitehead’s (1929/1978) ideas:Prbcess and Realitglivides actual entities/occasions into four grades of
ascending complexity...[which] is not a fundamental divisaectording to kind or essence, but a qualitative
classification by complexity, and a coarse one at"tffainkelstein & Kallfelz (1997), 289). For a review @értain
contemporary notions of emergence with respect tantpked substantial monism of Whitehead, see also &allf
(2009)

" “The discontinuities in quantum mechanics do not prevesdtigability but they restore it to a probabilisticech
(Rohrlich (1988), n.1 298)

S Note however, such terms apply just to the physidehses, where the size of an object is a determinirtgrfac
“[Flor other scientific levels qualitative distinctiommay dominate over quantitative ones.” (299) It is this
distinction of coarse versus fine that Batterman (2002) gassing mention to.

% In the case of mechanics: the distinction betwesatigbe and rigid body dynamics. The latter correspdnds
finer ontological level relative to the former sin@zaunting for torques, angular momenta and rotationalanent
the body necessitates thaté@nnotbe modeled as a single point particle. In the castatitical mechanics, the
science “interpolates between levels of the microsvarid the macroworld.” (1988, n. 2, 299) Also in the cése o
guantum mechanics (non-relativistic and relativistic)aitgological component is not restricted to one level of
coarseness either, ranging from the nucleonic to maggiasicothe case of Bose condensations.
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The reduction of a coarser thedrto a finer theoryT ! requires=1((T’) to converge to
~M(T) whenever the validity domain af' , i.e (T"), is restricted to that ¢b(T). Echoing
Nickles’ (1975) domain preserving notion of intertheory reduwctithe above necessarily
involves a limiting process.(303) This limiting process invelaeparametep which must be
dimensionless (recall n. 77 above) as well as haveutieidénal formp = f(x,X ) where:X is a
quantity or array of quantities in =11(T’) andx is a quantity or an array of quantities-iti(T).
“Given the finer theory [alone], it is not obvious whhé tcharacteristic parameteactually is.

It becomes evident only when the coarser theory isvkrio(304) For example, in the previous

example mentioned above involving momentum in finer thediSpecial Relativistic Dynamics

(SRD) vis-a-vis the coarser one of classical partigieamics (CPD) a natural choiceﬁ&é.
C

A

In the case of the reduction of electromagnetism (EMjeometric optics (GO) = = whereA

is the wavelength of the EM wavefront, ahdis the slit width. In the case of the Bohr

Correspondence Principle between non-relativistic quantwohanics (NRQM) and classical

mechanics (CM),pzﬁ, wheref is some analytic functidh of # with range values

expressed in length dimension, @i the average radius of the spatial redfon.

Hence borrowing from Batterman’Schema R notation, one can characterize the
reductions as: lilg .o =M(T N = (T ) whenevern(T ) is restricted ta»(T). However,
whenever such a reduction holds, it doesfollow that there exists some mappifg (T )

- M(T ), which would signal a stronger case of semantic remlu¢ad’ la Nagel) (302). Also,
the reduction need not be unique: There can exist seveaah@gTP; , P2, ...such that: lim. _o
M(TY) ==U(Ty),

lim . _o=M(T") ==U(T>), etc!®(305)

"|.e. a ‘smooth’ or continuously differentiable (tb @iders) functiorf(x) (real or complex-valued. In the complex
case, every differentiable function is automatically ligi@ Every analytic function can be expressed as a
convergent power series, hence its limit behavieveywhere well-defined.

8 Note however in other cases of reduction of NRQM to, ik could also choose the more elemerpas(# of
guanta) in thg — co limit.

™ For an interesting case, see Finkelstein et. al. (200b) aevelop several Clifford algebraic contraction
parameters in their general Clifford algebraic quantpace-time formalism, and proceed to show how their
Clifford commutation relations converge to the claasisgymplectic algebra in the limit of one of their tawction
parameters, versus the former converging to the Hatsgralgebra for another contraction parameter.
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The parametep is naturally interpreted as establishing a validity doraaiof a theory.
“A validity limit is thus equivalent to a specification of the error maygle@sing the lower level
[coarser theoryl] instead of the higher level theory Ij (Rohrlich & Hardin (1983), 607)
Hence in terms of / any prediction made by should be multiplied by the factor 1p). For

instance, in the case of NM predicting the motion & Harth vis-a-vis SRD, the former is

2
subject to measurement errgr:‘LZ, wherev is the average speed of the Earth relative to the
C

Sun, hence the predictions of NM are accurate to within 1@°%). This establishes of course a
measure of the reliability of NM’s predictions, hensevialidity domairi>(NM). Validity limits
characterize theories as approximate (in the lightef finer counterparts), however “[ijn most
cases the approximation involvedgeidremelygood.” (Rohrlich & Hardin (1983), 608)

The validity domain’s connection with the ontologicalmponent® is apparent in the
following sense: an ontological level naturally cepends to a case in whiphis negligible to a
sufficiently good approximation.

Sincep either is or is not negligible, there is no interméel situation. But what makes
this definition of ontological level...is the largezsiof the domains of validity of
theories: it spaces ontological levels far apart. (609)

Regarding the aforementioned issue of conceptual emergence

[T]here is in many cases no simple relation betweenctmeepts of theories on two
different [ontological] levels. The limiting procedutet relates
[T/]...to [T] can in fact createewconcepts...not present in the higher level theory. (ibid)

By way of an elementary calculus example (reminiscéi@atterman’s (2007) example
of £x% + x — 9 = 0) Rohrlich & Hardin demonstrate this in termsanfarclength of a circular

sectords=rd 6, compared to the length of its inscribed secknt

di ds=rd@

Fig. 4.1. Representation of the secant-tangent relation irRohrlich’s illustration concerning

epistemic emergence and ontological levels of coarseness
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Now in the limit:r - oo , thends — dl, henceds assumes the property ‘straight’. “The property
‘straight’ did not exist on the circle but was produdsdthe limiting procedure.” (609) In an
emblematically physical example of the same concepind| kn theN - O limit (whereN is
the number of bodies of appreciable mass) in a locaksfime regiorM, g“'(x) — A**, where
g""(x) is the variable metric of general relativity (GR)aaspace-time pointCIM, and A is the
constant Lorentz metric characterizing flat Minkowski cgséime in special relativity (SR).
Various space-time symmetries occur in such a manner exhiBidmgare’ Group invariance in
SR dynamics, but this property doesn’t manifest in thgeztband dynamical space-time of GR.
(610)

Last of all, despite this seemingly facile charaztgron of the limit:
limp oo =M(T N =ou(T ) intheory it remains a delicate and complicated procedure to attempt
to carry it out inpractice®:

The limiting process involved can be very complicated e & very subtle. Some of the
limiting processes have so far not been carried oatnmathematically satisfactory way, but
for enough to satisfy the intuitive expectations of phesicist. (Rohrlich & Hardin (1983),
n.3, 605)

The reduction of the symmetry properties ef((T ] to those of F1(T)] plays a very
significant role...[flrom a technical point of view, it skis that the limiting process is highly
nontrivial and must be carried out very carefully: thmsetry reduction may be the result
of group contraction, and the limit can only be caroedl in suitable group representations.
But we shall not pursue these mathematical mattees (iRohrlich (1988) 304)

IV.2: In Closing: A Case for a Realist Interpretation of CACFD

In “top-down” fashion | have summarized elements dcdss further in Kallfelz (2009b)
concerning “methodological fundamentalism” and Rohrliagidsion echoed in his claims for an
“ontological pluralism and methodological monism” withihe framework of any mature
mathematical theory. Certainly CFD is an exampérdbf: One can, depending on the relative
coarse or fine-graining, move among the stable ontologit@ta characterized either by

8 A noteworthy example is Ehlers (1986) who, inspired by R#h& Hardin, constructed two concrete case
studies rigorously demonstrating the reduction of Loremtariant scattering theory to Galilean invariant scatte
theory (390-396), as well as a partial reduction of GR tathi@ian gravitation (396-400). The technical rigor and
mathematical sophistication should prove itself to Gevincing enough of the inherent challenges regarding the
attempt to carry out the limiting procedure in practice.
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continuous flow (Navier-Stokes) or by the relatively mdireer grained and ontologically
nuanced Clifford-Algebraic simulations.

As suggested above, a realist interpretation naturaifygests itself, insofar as it best
underwrites in a rigorous and systematic manner a meacisacdcterizingverisimilitudé®, as
suggested above in the notion of a theory’s “domains ldity@” From the bottom-up, such a
framework provides good reasgrace Winsberg (2003, 2006) of Hughes’ realist interpretation
of simulations: “[Clomputer ‘experiments’ reveal infornost about actual, possible, or
impossible worlds.” (Winsberg, 2003, 115). Indeed, this is a peasplof Giere’s “constructive
realism”, as mentioned in n. 15 above. Winsberg persupsivgues that computer simulations
are an instance of the model-building activity in theanyculation, so the question of realism
versus constructive empiricism (Van Frassen (1980)) and mi$tances of anti-realism reduces
to how much stock one is willing to invest in terms of tireadth of a modelsodal scope.
Add to that, aspects of Hacking’s notion suggest themsedveglh as the case can be plausibly
advanced (within the general structuralist framework) thitimvthe domain of validity as set by
the “simulationists[] and experimenters[]...need to engagerror management,” (Winsberg
2003, 120) a case can be made that this is an instamealiaftiorf” (Norton & Suppe (2000))
of CACFD vis-a-vis the states of the actual fluid.

Appendices

Appendix A.: A Brief Synopsis of the Relevant AlgebraicStructures

A.1: Category Algebra and Category Theory

As authors like Hestenes (1984, 1986), Snygg (1997), Lasenby, @0@D) promote Clifford
Algebra as a unified mathematical language for physics, amak (1990), Mikhalev & Pilz (2000) and
many others similarly claim that Category Theory likewisems a unifying basis for all branches of
mathematics. There are also mathematical physidigt&Rlobert Geroch (1985) who seem to bridge these

two presumably unifying languages by building up a mathematizdthest comprising most of the

81| expand upon these points in Kallfelz (2009b), pp. 30-40, alumtirtes of semantic issues as well, in which |
discuss aspects of Yablo & Gallois (1998).

82 Any systemS, realizessystemS; if there exists aontomapping®: S, — S, which is behavior-preserving of the
states of5, onto the states &;. (Winsberg, 2003, 114-115). One might add that this nofitioebavior-
preservation” can be leant greater precision regartimgaotion of an algebraic isomorphism (product strectur
preserving map) from the “product” (composition of fares;) to the (Clifford) product of CACFI3,.
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salient algebraic and topological structures for the wakadathematical physicist from a Category-
theoretic basis.

A categoryis defined as follows:

o Defn. A1l.1: A categoryC =(Q, MOR(Q),-) is the ordered triple where:
a.) Qs the class of's objects.
b.) MOR(Q) is the set omorphismslefined orQ2. Graphically, this can be depicted (wherel
MOR(Q), ALQ, BOQ): A - B

c.) The elements of MORY) are connected by throduct- which obeys the law of composition:

For AQ, B JQ, C Q: if ¢ is the morphism frond to B, and if ¢ is a morphism froniB to C,

then ¢ ¢ is a morphism from A to C, denoted graphically:

A - BoBI¥- C=AO04" - C. Furthermore:
c.1) -is associativeFor any morphismg, ¢ , ¢ with product defined in as in c.) above,
then: (Yo g)op=yo(peg)=yopop.
c.2) Every morphism is equipped with a left and a rigleintity. That is, ife is any
morphism fromA to B, (whereA andB are any two objects) then there exists the (right)
identity morphism orA (denoted, ) such thaty - /o = (. Furthermore, for any object
C, if ¢ is any morphism fronC to A, then there exists the (leftjentity morphism orA
(1a) such that: 1a- ¢ = ¢ . Graphically, the left (or right) identity morphisman be
depicted asoops.

A simpler way to define a category is in terms opacs&l kind ofsemigroup(i.e. a set closed
under an associative product). Since identities are defflanezl/ery object, one can in principle identify
each object with its associated (left/right) identifyhat is to say, for any morphisgnfrom A to B, with
associated left/right identitieg 7, identify: /s = A, 14 = p . Hence condition c2) above can be re-stated as
c? ): “For every ¢ there exist X, o) such thatA- ¢ = ¢, and g - p = @.” With this apparent
identification, Defnl.1 is coextensive with that of arfsgroup with enough identities.

Category theory provides a unique insight into the generalrayabr universal features of the
construction process that practically all mathematicslesys share, in one way or another. Set theory
can be embedded into category theory, but not vice venseh Ifsic universal features involved in the
construction of mathematical systems, which category yhgeneralizes and systematizes, include, at

base, the following:
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Feature Underlying Notion

Objects The collection of primitive, or stipulated, eesti of the

mathematical system.

Product How to ‘concatenate and combine,” in a natural manner, o fo
new objects or entities in the mathematical systerpeatig the
properties of what are characterized by the systenipwlated

objects.

Morphsim How to ‘morph’ from one object to another.

Isomorphism | How all such objects, relative to the system, are understobe
(structural equivalent.

equivalence)

Table A.1.1

For an informal demonstration of how such general aspeesabstracted from three different

mathematical systems (sets, groups, and topologicalpatar instance, see Table A.1.2 below.

(by Principle of Extension$, = {Xx | ®(x) } for some propertyb

l.a) Set
I.b) Cartesian For any two set¥X, Y: Xx Y ={(x,y)|x O X, yO Y}
Product
I.c) Mapping For any two setX, Y, wheref O Xx Y, f is a mappingfrom X to Y

(denotedf : X - Y)iff for x,00 X, vy Y ,yO Y, if (Xq, y1)O f (denotedy;
=f(X 1) (X, y2)O f theny; =y,

I.d) Bijection (set| For any two setX, Y, wheref : X - Y is a mapping, thehis a bijection

8 Such systems, of course, are not conceptually disjtombiogical spaces and groups are of course defined in
terms of sets. The additional element of structurepeming the concept of group includes the notion of a binary
operation (which itself can be defined set-theordtidal terms of amapping sharing the algebraic property of
associativity. The structural element distinguishingplogical space is also described set-theoretically &ytis
notions of ‘open’ sets. Moreover, groups and topoldgipaces can conceptually overlap as well in the nofien o
topologicalgroup. So in an obvious sense, set theory remains a getlasaification language for mathematical
systems as well. However, thgpressive powesf set theory pales in comparison to that of catedwgry. To put

it another way, if category theory and set theorycareceived of as deductive systems (Lewis), it could Heear
that category theory exhibits a better combination“stfength and simplicity” than does naive set theory.
Admittedly, however, this is not a point which can bsiky resolved as far as the simplicity issue goes bedhes
very concept of a category is usually cashed out in tefhree fundamental notions (objects, morphisms,
associative composition), whereas, at least in tise o& ‘naive’ set theory (NST), we have fundamentally tw
notions: a) of membership defined by extension, and b) the hierarchtypes(i.e., for any seX, X 0 X, butX 00 X

. Or to put more generally, [1 W is a meaningful expression, though it may be false, gedvifor any sefX: Z

00 ®(x) andwoO € *(X), wherek is any non-negative integer, afnti®(X) defines thekth-level power-set
operation, i.e.01™(X) =0 (O (...k times...K)) .)
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equivalence)

iff: @) f is onto (surjective), i.€(X) =Y (i.e., for anyyllY there exists a

XX such thatf(x) =y, b) fis 1-1 (injective)ff for x,00 X, y,00Y yaY, if
(%1, y)UO f (denotedy; =1f(x1)) (X, y2)I f theny; =vy..

Il.a) Group

l.e., a grougG, -) is a sets with a binary operationon G such that: a.)
is closedwith respect taG, i.e.:0(x, y) OG: (X-y)=z0OG (i.e.,-is a
mappinginto Gor-:Gx G - G,or-(Gx G) [0G)). b.) -isassociative
with respect td5,: (X, y, 2 OG: (X-y)-Z=X-(Yy:2 =X-Y-27 C.)

There (uniquely) exists a (left/right) identity elemeat] G : O (xO G)

O (edG):xe=x=ex d.) Foreverxthere exists amverse elemen
of x, i.e.;0(x0G) OK OG): x- X =e=X -x.

I1.b) Direct product

For any two group§, H, theirdirect product(denoteds O H) is a group,
with underlying set i$&5 x H and whose binary operation * is defined
for any @, )0 G x H, (g2, h) D Gx H:

(91, h)* (92, ) = (@1 hy), (g2 ¢hy)), where- « are the respective bina

operations folG,andH.

Il.c)

homomorphism

Group

Any structure-preserving mapping from two groupss andH. l.e.¢: G
- His a homomorphisnif for anyg,d G, @UG : ¢(9:- 92) = #(91) *@(92)

where. ¢ are the respective binary operationsGandH.

I1.d)

Isomorphism

Group

(group equivalence)

Any structure-preserving bijectiog from two groupsG andH. lLe. ¢:
G - His an isomorphisriif for anyg;:[1 G, UG : ¢/ (g 92) = ¢ (Q1)* ¢
(g2) (where-, » are the respective binary operations@andH ) and ¢/ is
abijection (see |.d above) between group-elemé&tndH. Two groups
areisomorphic(algebraically equivalent, denoted: [1H ) iff there exists

an isomorphism connecting thagn G - H.)

ll.a)
Space

Topological

Any setX endowed with a collectiomy of its subsets (i.etrx 00O (X),
wheré] (X) is X's power-set, such that: I)Or , X7k 2) For anyy,
U'Or« , then: U nU'Drx . 3) For any index (discrete or continuoys

belonging to index-sét: if U, Ok, then: UUy Or, - X is then denote(

yaaor
as atopological spaceand ry is itstopology ElementdJ belonging to

Ix are denoted agpensets. Hence 1), 2), 3) say that the empty set

y

and

all of X are always open, and finite intersections of open a&topen,
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while arbitrary unions of open sets are always openrede@r: 1) Any
collection of subsetgl of X is abasisfor X's topologyiff for anyU 7y,
then for any index (discrete or continuoyd)elonging to index-sdt: if

B, 00, then: U B, =U 07, (i.e., arbitrary unions of basis elements
yoADr

open sets.) 2) Any collection of subsef®of X is a subbasisif for any

N
{S,..., S0 2, then ﬂsk =B0Oo (l.e. finite intersections of sub-bag

k=1

elements are basis elementsX& topology.)

are

is

lll.b) Topological

product

For any two topological spac¥s Y, theirtopological producidenotedy
O rv ) is defined by takingas a sub-basjghe collection: {U,V)| UOrx ,
VOr }. le., 1x X1y is a subbasis fory [ 1, This is immediately
apparent since, fdd; andU, open inX, andV; andV, open inY : since:

U, xU, nV,xV, = (Ul mVl)x(U2 mVZ) this indeed forms a basis.

lll.c) Continuous

mapping

Any mapping from two topological spaces andY, preserving opennes
l.e.f: X = Yis continuousff for anyUlr: f(U) =V Ory

192}

[11.d)
Homeomorphism
(topological space

equivalence)

Any continous bijection firom two topological spacesandY. l.e.h: X
- Y is a homeomorphsinif : a) h is continuous (see lll.c), i) is a
bijection (See I.d). Two spaces X avidretopologically equivalen(i.e.,
homeomorphic, denoted:

X 0OY) iff there exists a homeomorphism connecting thenh i.X - Y

Table A.1.2

Now the classes of mathematical objects exhibited ahleT A.1.2 comprising sets, groups, and

topological spaces, all exhibit certain common features:

* The concept oproduct(l.b, Il.b, 1ll.b) (or concatenating, in ‘natural mannproperty-

preserving structures.) For instance, the Cartesian ficbyluct preserves the ‘set-ness’

property for chains of objects formed from the classaif, the direct product (11.b)

preserves the ‘group-ness’ property under concatenation, etc.

* The concept of ‘morphing’ (l.c, Il.c, lll.c) from one cta®f objects to another, in a

property-preserving manner.

For instance, the continuous map (kspects what

makes spaceX andY ‘topological,” when morphing from one to another. The

homomorphism respects the group properties shar&ldnydH, when ‘morphing’ from

one to another, etc.

42



* The concept of ‘equivalence in form’ (isomorphism) dlll.d, 1ll.d) defined via
conditions placed on ‘how’ one should ‘morph,” which fundmantallyuthde in an
invertible manner. One universally necessary condition for this to, li®lthat such a
manner is modeled as a bijection. The other necessary cosditi course involve the

particular property structure-respecting conditions placedicim siorphisms.

Similar to naive set theory (NST) Category theory alssgnves its form and structure on any level
or category ‘type.” That is to say, any two (or myarategorieC, D can be part of the set of structured
objects of ameta-categoryX whose morphisms (functors) respect the categoricatctetes of its
argumentsC, D. Thatis to say:

» Defn Al.2. Given two categorie€ = (Q, MOR(Q),- ), D =(Q’, MOR(Q"),* ), a categorical

functor® is a morphism in theneta-category from objectsC to D assigning eacf-object (in

Q) aD-object (inQ’") and eachC-morphism (in MORQ)) aD-morphism (in MORQ'’)) such that:

a.) ® preserves the ‘product’ (compositional) structure of the ¢ategories, i.e., for any [
MOR(Q), ¢ 0 MOR(Q): ®(@ - ¢)) =P(@P ) D(Y)=¢ ¢ (whereg' ¢y are theb-images
in D of the functorsp in C.

b.) @ preserves identity structure across all categories. iBhad say, for anyAUQ, /4 U
MOR(Q), ®(/a) =7 on =1 » WhereA' is the D-object (inQ’) assigned byp. (l.e.,A’ =
®(A)

Examples of functors include the ‘forgetful funct&lOR: C- SET (where SET is the category of
all sets) which has the effect of ‘stripping off’ any exdteucture in a mathematical syst€ndown to its
‘bare-bones’ set-structure only. That is to say, for @mobject ALQ, FOR(A) = Sa (WhereSy is A's

underlying set), and for anglIMOR(Q): FOR() =f is just the mapping (or functional) property (af
Robert Geroch (1985, p. 132, p. 248), for example, builds up theh&stl of the most important
mathematical structures applied in physics, via a combimatif (partially forgetfl) and (free
construction functors.) Part of this toolchest, for examigl suggested in the diagram below. The boxed
items represent the categories (of sets, groups, Ab@liaommutative groups, etc.), the solid arrows are
the (partially) forgetful functors, and the dashed arnepsesent the free construction

functors.

. _ | Abelian _ _
8 ‘partially forgetful’ in the sense that the actig collapse the structure entirelly tmits

set-base, just to the ‘nearmost’ (simpler) struct| (commutative)

43



SET [« GrRp [/

etc.. - v T
<—— Complex vector '
o) - ---- Real vector spaces

spaces

Figure Al.1: Hierarchy of Categories Bound by Free Constiction Functors and Forgetful
Functors

A.2 Clifford Algebras and Other Algebraic Structures

| proceed here by simply defining the necessary algeliraictwres in an increasing hierarchy of
complexity:

Defn A2.1: (Group) A group{(G, -) is a setG with a binary operationonG such that:

a.) -is closedwith respect t@s, i.e.:(0(x, y) UG : (x-y)=z[G (i.e.,-is amappinginto Gor- :
GxG - G,oro(GxG) 0G)).

b.) -is associativewith respect tas,: [(x, Y, 2 OG: (X-y)-zZ=X: (Y2 =EX-Yy-Z

c.) There (uniquely) exists a (left/right) identity elemmee G : O (xUG) I (e G) : xe=Xx=
ex.

d.) For everyx there exists aimverse elemertfx, i.e.:0 (xJ G) O(X 0 G): x- X =e=X -x.

In terms of categories, Defn A2.1 is coextensive with ¢at monoid endowed with property A.2.1.d.).

A monoid is a category in which all of its left and rigtemtities coincide to one unique element. For

example, the integers Z form a monoid under integer multimicdsince,[In0J Z [1 1[0 Z such thatrl =

n = 1n), but not a group, since their multiplicative inverse canatoktlosure. Whereas, the non-zero

rational number®* ={"/,, |n# 0,m# 0} form an Abelian (i.e. commutative) group under multigtion.
Defn A2.2: (Subgroups, Normal Subgroups, Simple Groups)

i) Let(G, -) be a group. Then, for amyyJ G, H is asubgroupof G (denotedH 0 G) if for
anyx, y OH, thenxoy’D H. In other wordsH is closed under e H, and if x O H then
x'TOH. IfH 0 G, andH[ G, thenH is aproper subgroupgenotedH [0 G. Moreover,
if denoted:J O H, thenH is non-trivial.

ii.) H is anormal (or invariant) subgroup d& (denoted:H < G) if its left and right cosets

agree, for angl] G. Thatisto sayH <« G iff 0 g0 G:
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gH = {gh| hz0 H}= Hg = {kg| kLJ H}.

iii.) G is simpleif G contains no proper, non-trivial, normal subgroups.

Defn A2.3: (Vector Space)A vector spaceis to a structurgV, F, - , ) endowed with a

(commutative) operation (i.él(x,y){0 V : xy = y:X, denoted, by convention, by the “+” symbol,

though not necessarily to be understood as addition on thaeurebkrs) such that:

i) (V, «) is a commutative (or Abelian) group.

i) Given a fiel® of scalarsF the scalar multiplicationmapping intoV [0: F x V — V obeys
distributivity (in the following two senses):

i) (e, OF OOV : (a+P)p= (alp) + (alp)

iv)  U(¢, 90V UylF yUg+ 9= (vig) + (v

Defn A2.4: (Algebra) An algebraA, then, is defined as\aector spacgV, F, -, [# ) endowed with an
associative binary mappinginto A (i.e.,* : Ax A- A, suchthati(¢, ¢, @ OG: (¢ @) p=(

@ @ = Y- ¢ @ denoted, by convention, by the™ symbol, though not necessarily to be
understood as ordinary multiplication on the real numbedng dan be re-stated by saying thé#,

*) forms asemigroup(i.e. a setd closed under the binary associative prodgcivhile (4, *) forms

an Abelian group.

Examples of algebras include the classLe algebras, i.e. aalgebra dAwhose ‘product’s is

defined by an (associative) Lie product (denoted [, ] Jobeyiegacobi IdentityZl(¢,&,{)0 dA : [[¢,€],{]
+ [[£,20,q] + [[,¢),&] = 0. The structure of classes of infinitesimal genesaitormany applications often
form a Lie algebra. Lie algebras, in addition, are oftearacterized by the behavior of thsiructure
constant<C. For any elements of a Lie algelaaé, characterized by their covariant (or contravariant —if
placed above) indiceg( V), then astructure constanis the indicial functiorC(A)°,,, such that, for any,

N
OdA: [Cﬂ,fv] = ZC”W ()I)ZJ , whereN is the dimension adA, andA is the Lie Algebra’sontraction

o=1
parameter. A Lie algebra istablewhenever:

limy _.won .0 C(A)%, is well-defined for any structure consta@{A)’,, and contraction parametir

8 |.e. a an algebraic structu¢eF, + , x ) endowed with two binary operations such tft+) and(F, x) form
commutative groups and +x, are connected by left (and right, because of commutatidistributivity, i.e.,

O(a.B) OF - ax(B+)) = (axp) + (ax.
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Defn A2.5: (Clifford Algebra) . A Clifford Algebra is agradedalgebra endowed with the (non-

commutative) Clifford product. That is to say:

i) For any two element&, B in a Clifford algebraCL, their Clifford product is defined byB =
A+B + A[B, whereAsB is their (commutative and associatiu@)er product, and\[B is their
anti-commutative, i.eAlB = -B[JA, and associativeexterior (or Grassmann) product. This
naturally makes the Clifford product associati#d¢BC) = (AB)C = ABC. Less obviously,
however, for reasons that will be discussed below, is howstiséence of amverseA™ for
every (nonzero) Clifford elemen arises from the Clifford product, i.eA"A = = AAY,
wherel is theunit pseudoscalaof CL.

ii.) CL is equipped with an adjointand grade operator < ¥where < > is defined as isolating
therth grade of a Clifford eleme) such that, for any Clifford elements B: <AB >', =

(102 <B'A" > (where: C(,2) ="l 2y =)

Hence a general Clifford element (or multivectdrpf Clifford algebraCL of maximal gradeN =
dimV (i.e the dimension of the underlying vector space structutiee Clifford algebra) is expressed by
the linear combination:

A=dO%+ adYA; + dPA+ ...+ aVAy (A.3.1)

where: {d | 1< k< N} are the elements of the scalar field (expansion coeffis) while f | 1<

k< N } are thepure Clifford elements, i.e. A> = Acwhenevek =1, and &> =0 otherwise, while

for a general multivector (A.3.1) A2 = oA , for

1<I<N

Hence, the pure Clifford elements live in their associatesed Clifford subspaceésly, of gradek, i.e.
CL=Cl O ClLy0...0CLy, .

Consider the following example: Lat = R®, i.e. the underlying vector space f6L is a 3
dimensional Euclidean spa&® = {F =(xy,2) | xO R, YO R, z0 R}. Then the maximum grade for
Clifford Algebra overR? , i.e.CL(R% is N = dimR® = 3. Hence:

CL(R® =Cl 0 CLyyO Cly OCLs where:Cl (the Clifford subspace of grade 0) is (algebraically)
isomorphic to the real numbeRs® CL (the Clifford subspace of grade 1) is algebraically isqinior

% Since the real numbers ardield, they're obviously describable as an algebra, in wifiefr underlying ‘vector
space’ structure is identical to their field of scalals other words, scalar multiplication is the saradhee ‘vector’
producte.
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to the Complex number€. CL; (the Clifford subspace of grade 2) is algebraically isqimorthe
Quaterniondd. CL (the Clifford subspace of grade 3) is algebraically mquhic to the Octonion®.

To understanavhy the Clifford algebra oveR® would invariably involve closed subspaces with
elements related to the unit imaginary=V-1 (and some of its derivative notions thereon, in the chse o
the Quaternions and Octonions) entails a closer study oatheerof the Clifford product. Defn. A.2.4 i)
deliberately leaves the Grassman product under-specifieabw fill in the details here. First, it is
important to note thail is agrade-raisingoperation: for any pure Clifford elemeAg (wherek < N =
dimV) andB,, then AB;> =k + 1. It is for this reason that pure Clifford elemeoftgradek are often
calledmultivectors Conversely, the inner producis agrade-loweringoperation: for any pure Clifford
elementA, (wherek <N = dimV) andB,, then &+B;> =k - 1. (Hence the inner product is often referred
to as acontractior).

The reason for the grade-raising, anti-commutative eattithe Grassman product is historically

attributed to Grassman’s geometric notions of (directedg Isegments, (rays) areas, volumes,

hypervolumes, etc. For example, in the case of two mao@oé , their associated directed area

segmentsA [l I§, B [ Aare illustrated below:

Fig. A.2.1: Directed Areas

The notion of directed area, volume, hypervolume segmentsdsteeives, to a certain limited sense, in
the vector-algebraic notion of ‘cross-product.” For exantple magnitude of the cross-produ@tx B is

precisely the area of the parallelogram spannedﬁbﬁ as depicted in Fig. A.2.1. The difference,

however, lies in the fixity of grade in the case A B, in the sense that the anti-commutativity is
geometrically attributed to the directionality of thectorAx B (of positive sign in the case of right-

handed coordinate system) perpendicular to the plane spannédlgby This limits the notion of the

vector cross-product, as it can only be defined for spdcemximum dimensionality 3. On the other
hand, the Grassmann product of multivectors interpretedeget! areas, volumes, and hypervolumes is

unrestricted by the dimensionality of the vector space.

87 “IT]he vector algebraof Gibbs...was effectively the end of the search fandying mathematical language and

the beginning of a proliferation of novel algebraic systeonsated as and when they were needed; for example,
spinor algebra, matrix and tensor algebra, differergrah§, etc.” (Lansenby, et. al. (2000), 21)
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The connection with the algebraic behavior iof=V-1 lies in the inherently anti-commutative
aspect (i.e. the Grassmann component) of the Clifford ptodsaiscussed above. To see this, consider

the even simpler case Wf= R? (as discussed, for example, in Lasenby, et. al. (2000), 26T48n;N =

dimR? = 2. MoreoverR®= <(élé2)> where(...) denotes thepanand (él,éz) are the ordered pair of

orthonormal vectors (parallel, for example, to theand y axes.) Hence:él2 =é22 =1 and

A A

66 =6+6=0. So: €é,=6,+8 +§ e =¢ e =-6 [ =-68. Hence:
Ee.) =(6e)ee)=8(0) = -6 (68)e. =68 )ee)=~(&)e)=-1 (using the ant:
commutativity and associativity of the Clifford producttjence, the multivecto€ €, is algebraically

A A

isomorphic toi =v-1. Moreover, (6&,)8 =—€, and (6&,)e, =&, by the same simple algebraic
maneuvering. Geometrically, then, the multivecdgg, when multiplying on the left has the effect of a

clockwise’/, —rotation. Represented then in the matrix algebsgtRMthe algebra of real-valued 2x2

matrices):

0 where'“=1“=0
%% =11 o) 0271

Moreover, forCL(R?) the multivector€ &,is theunit pseudoscalari,e. the element of maximal
grade. In general, for any Clifford Algeb@ (V), where dinV = N, andV ={(yy, V2 ..., \)), where the
basis elements aren’t necessarily orthonormal, the unidpsealarl of CL(V) is: | = yiyo... . In
general, for grad& (where 1< k < N) the closed subspac€&i  of gradek in CL(V) = CL U CLy
0...0CLwy have dimensionality ®(K) = "/ iy, i.€ are spanned by BK) ="/ -y multivectors
of degreek. Hence the total number of Clifford basis elements rgeéee by the Clifford product acting
on the basis elements of the underlying vector spac@'is= ZN:C(N,k). The unit pseudoscalar is

k=0
therefore the (one) multivector (only one there ar&, Y =1 of them, modulo sign or order of
mutliplication) spanning the closed Clifford subspace of malxgradeN.

For example, in the case GL(R®) =Cl 0 ClLyy 0 ClyOCLg , where:

R3:<(éué2’é3)> : CI—(0) = <1> O R’CI-(l) = <(el,€2,63)>,CL(2) = <(q2,q3,e23)>,CL(3) = <| > = <3123>
(where the abbreviatiog = éI ...ék is adopted). As demonstrated in the cas@LcQRZ) the multivector,

the unit psuedoscalérshouldnot be interpreted as a multiplicative identity, i.esitertainlynot the case
that for anyAl] CL(V), Al = A =1A. Rather, the unit pseudoscalar is adopted to defineearert of dual
gradeA* : for any pure Clifford elemerfy (where & k <N) : the grade oA\l (or A*) is N- k and vice
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versa. Thus an inverse elemédtcan in principle be constructed, for every nonz&rbCL(V). So the
linear equatiorAX = B has the formal solutioX = A'B in CL(V). “Much of the power of geometric

(Clifford) algebra lies in this property of invertibility(Lasenby, et. al. (2000), 25)

Appendix B: The Case of Spinors (Hestenes)

Clifford algebras can provide a complete notation for desuyicertain phenomena in physics that
would otherwise require several different mathematmahélisms. For instance, in present-day quantum
mechanics and field theory, a variety of different mathigcal formalisms are often introduced: 3
dimensional vector algebra, Hilbert space methods, spigebra, diffeomorphism algebra on smooth
manifolds, etc. This is due in part to the domain-speaiiture of the aforementioned, all tailored to
apply to a particularly specific context, but relativelgtrieted in their power of generalization.

For example, consider the simplest case of the three-dionehsector algebra originally developed
by Gibbs. The notion of cross-product cannot be generalizquhtees above a dimensionality 3, yet the
Clifford multivector describing directed area, volumes] &dgpervolumes applies to amydimensional
space® According to Hestenes the aforementioned restrictiorhefcross-product to 3 dimensions

introduces unnecessary redundancies in the depiction of spirgiesidard quantum mechanics:

Physicists generally regard tbe[Pauli spin matrices] as three components of a single vecsbtead

3
of an orthonormal frame of three vectors...Consequently, thee: 5-\7:zakvk ...and to
k=1
facilitate manipulation they employ the identity:
(GeV)(TeW)=VeW+ide (\7><\Tv)... a good example of the redundancy in the language of physics
which complicates the manipulations and obscures the meaningsegsaely. (1986, 323)

The redundancy in the above ident{ig s V)(T* W) =Ve W+id (\7><\Tv) is due to its ‘overlapping

geometric content’: The (vector) dot and cross products ofseocomprise the binary operations of

standard (Gibbs’) vector algebra Ri, while the Pauli spin matricess(= (0,,0,,0,)) acting as the

‘vector coefficients’ belong to the spinor algelt3 i.e. the X2 matrix algebra consisting of complex-

valued entrie§? The geometric contents & and C* can be unified, however, when one instead

8 For further details, see Appendix
8 As shown in the AppendigGZis algebraically isomorphic to a Clifford Algebra of dea2.
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considersgg as generators of a Clifford algebra, thereby “elimimgf[iall redundancy incorporating both
languages into a single coherent language.”

So in a narrow sense, Clifford or geometric algebrasyuhi# geometric content of mathematical
formulations of physical theories, as Hestenes (1984, 1986)thacs have demonstrated in the case of
guantum theory and field theory. But this also impéelsroader notion of unification. Using the same
reasoning as demonstrated above in the case of the Paudilggliima, Hestenes (1986) likewise shows
how the 4«4 matrix algebraC* of Dirac spinorgy,’ is algebraically isomorphic to the Clifford algelta
or the Clifford algebra generated by 4-dimensional veetittscomplex coefficients. In several steps he
proceeds to show how this Clifford algebra is projectivelgmorphic to the Minkowski spacetime
algebraR, 3 or the Clifford algebra generated by four linearly indepetdetation matrices in the

Minkowski spacetimd®, % Writes Hestenes:

The relation of the Dirac theory [of spinors] to claasi electrodynamics is not well
understood...[with the projective extension iRg; however] it is more intimate than originally
thought. This intimate relation between ...the Dirac theamy trajectories of the classical theory
[shown in theR;3 reformulation] provides a much more detailed correspondencecéetihe
classical and quantum theories than the conventional approsiog expectation values and
Ehrenfest's theorem...[T]he basic idea...we have been exploitiogides a general geometrical
approach to the interpretation of the Dirac theory a®vall..any solutiony =¢(x) of the Dirac
Equation of formy = (o) "?R [where p, is a probability densityR is a spinor representation of a
Lorentz transformatioi, andgis an arbitrary phase factor] determines a field tsffamrormal frames
e, =¢e,(X)...at each spacetime point there’s a streamiine(7)” with tangentv = v(x(7)). [Then]e, =
e,(x(7) is to be regarded as a ‘comoving frame’, on the stiieanwheree, , e, rotate about the ‘spin
axis’ e; . (332-333)

3
% Ibid. To see this, simply write for any 3-vect@r= szUk , then the above identity with its (otherwise
k=1
geometrically overlapping content) now simply is repnéseg as:VW =V e W+ V [ W. But this is just precisely
the definition of the Clifford product of two 3-vectoisbr further details, see Appendix.

%1 Dirac introduced suchx4 matrices as the ‘coefficients’ of his equatjfid, -eA) ¥ = m¥ which linearizes the
Klein-Gordon equation (KGE). The latter was the firdempt to make the Schroedinger equation Lorentz-
covariant, though its non-linearity (being, as in tlasec of the Schroedinger equation,"a @der differential
equation) introduced solutions with indefinite (negative \@lygobabilities in Minkowski spacetini&, ; (the 4
dimensional spacetime with metric signature (1,3)). sTikiremedied by linearizing the KGE in the case of
developing the Dirac equation, but only at the expense oflintiog such 4x4 complex valued into the equation’s
coefficient ring.

92 Hestenes (1986), 325-326. Borrowing from Luonesto (1981, 721)shdws that every complex Clifford algebra
of dimension (or grade)r2is algebraically isomorphic to the Clifford algebrangeted by the+q dimensional
(real) spacer, q of signature [§,q), where:p+q = 2n+1. HenceC,0Rs0R, O Ry 1 (Where O means: ‘is algebraic
isomorphic to’). One can then set up a projective ndeptifying the Clifford algebra over Minkowski spacetime
Ry swith the even subalgebRy ;" of Ry ;.
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From the classical solution of the Dirac Equation, Hestdeases the resultR 2% = o FR, or

the (electron’s proper time) rate of chang&kdthe spinor representation of the Lorentz transformaltion

in the solution of canonical formy = (0€”)Y?R ) as proportional to the product of the electron’s charge
with R and the magnitude of the electromagnetic flefl Hestenes interpretR =4R=2FR asan

expression of thprecessiorof the comoving frame, = e, (x(7)), with an additional rotation determined
by a gauge factor. “It should be of genuine physical@steto identify and analyze any deviations from
this classical rotation which QM might imply.” (333) Hasés (1985, 13) for instance suggests that such
expressions of precession provide adequate models for the sugjttsdwegungnechanism of a free
electron.

The upshot of all this, concludes Hestenes, runs as follows:

My objective...has been to explicate the geometric struattiihie Dirac theory and its physical
significance. My approach may seem radical at figgttsibut...it [is] ultimately conservative...by
restricting my mathematical language to spacetime algebrdtfe Clifford algebra over Minkowski
spaceR, g | allow nothing in my formulation of physical theory withoan interpretation of

spacetime geometry...[though] | am not opposed to investigptsgibilities for unifying physical

theory by extending spacetime geometry to higher dimensions..ilingase a lot to learn about the
physical implications of conventional spacetime struct8#dé)

Hence, in the broader sense of unification, Clifford or geam algebras can unify thentological
content of mathematical formulations of physical theori@&avid Hestenes suggests this in so many
words, in his Clifford-algebraic characterization ouifand Dirac spinors, as briefly summarized above,
as well as in his Clifford algebraic characterizatdrihe Weinberg-Salamtmodel which generalizes the
electromagnetic gauge group to include the theory of weakaatiens. (1986, 334-342) Now in the
standard (non-Clifford) formulations of quantum theory, ititerpretation of Dirac spinors in quantum
field theory remains obscure. Hestenes’ Clifford algebreformulation of the Dirac theory simplified
and clarified its ontology, by indicating its interconnectiith classical EM theory, vis-a-vis the
intricate algebra of spins and rotations in Minkowski spametrepresented by the Clifford algebra over
R, 3. Hestenes concludes:

The most important thing...from the [Clifford algebraic] oehulation [of the Dirac theory] is

that the imaginaryi =+/—1ld [whereld is the identity operator] has definite geometrical and
physical meaning...represent[ing] the generator of rotatioasspacelike plane associated with

spin...i = J-1Id can be identified with the spin bivect& = i7 0 ...[This identification] has far
reaching consequences...[for instance] when the Schroedingetioaqus derived as an
approximation to the Dirac equation...[this] implies that gesherate representation of the spin
direction by the unit imaginary has been implicit in Schnogeli equation all along. (331)

% In 4-vector notationf = 0 C A, where/Zis the D’Alembertian, and is the 4-vector potential.
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He is proposing a reduction involving the conceptually problenmatiare of the role played by
the unit imaginary in quantum theory to ontological claims concernioationsin R (in the case of
Pauli spinors) and in Minkowski spacetirRg; (in the case of the Dirac theory). As mentioned in the
previous sections, geometric algebras present a far moreasband systematic way of mathematically
representing all possible rotational transformationspaces involving any dimensionality than standard
vector method8! Such physical implications include the ontology of allsilule rotational dynamics in
spacetime. Clifford algebras provide a natural means afth@matically representing such
transformations. That was none other than W. K. Chiffooriginal intention, when he developed his

geometric algebras.
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