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Abstract 

 

I argue that the distinctions Robert Batterman (2004) presents between 

‘epistemically fundamental’ versus ‘ontologically fundamental’ theoretical 

approaches can be subsumed by methodologically fundamental procedures.  I 

characterize precisely what is meant by a methodologically fundamental 

procedure, which involves, among other things, the use of multilinear graded 

algebras in a theory’s formalism.  For example, one such class of algebras I 

discuss are the Clifford (or Geometric) algebras.  Aside from their being touted by 

many as a “unified mathematical language for physics,” (Hestenes (1984, 1986) 

Lasenby, et. al. (2000)) Finkelstein (2001, 2004) and others have demonstrated 

that the techniques of multilinear algebraic ‘expansion and contraction’ exhibit a 

robust regularizablilty.  That is to say, such regularization has been demonstrated 

to remove singularities, which would otherwise appear in standard field-theoretic, 

mathematical characterizations of a physical theory.  I claim that the existence of 

such methodologically fundamental procedures calls into question one of 

Batterman’s central points, that “our explanatory physical practice demands that 

we appeal essentially to (infinite) idealizations” (2003, 7) exhibited, for example, 

by singularities in the case of modeling critical phenomena, like fluid droplet 

formation.  By way of counterexample, in the field of computational fluid 

dynamics (CFD), I discuss the work of Mann & Rockwood (2003) and Gerik 

Scheuermann, (2002).  In the concluding section, I sketch a methodologically 

fundamental procedure potentially applicable to more general classes of critical 

phenomena appearing in fluid dynamics. 
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I. Introduction 

 

  

Robert Batterman (2005) distinguishes between “ontologically fundamental” and 

“epistemically fundamental” theories.  The aim of former is to “get the metaphysical 

nature of the systems right,” (19) often at the expense of being explanatorily inadequate.  

Fundamentally explanatory issues involving the universal dynamical behavior of critical 

phenomena,
2
 for instance, cannot be dealt with by the ontologically fundamental theory.  

Epistemologically fundamental theories, on the other hand, seek to achieve such an 

explanatory aim accounting for such universal behavior, at the expense of suppressing (if 

not outright misrepresenting) a physical system’s fundamentally ontological features.   

In the case of critical phenomena such as drop formation,
3
 even in accounts of 

more fine-grained resolutions of the scaling similarity solution for the Navier-Stokes 

equations (which approximate a fluid as a continuum), “we must appeal to the non-

Humean similarity solution (resulting from the singularity) of the idealized continuum 

Navier-Stokes theory.” (20)  In a more general sense, though “nature abhors a 

singularity…without them one cannot characterize, describe, and explain the emergence 

of new universal phenomena at different scales.” (19)   

In other words, we need the ontologically “false” but epistemically fundamental 

theory to account for the ontologically true but epistemically lacking fundamental theory.  

“[A] complete understanding (or at least an attempt) of the drop breakup problem 

                                                 
2
Such critical phenomena exhibiting universal dynamical properties include, but are not limited to, 

examples including fluids undergoing phase transitions under certain conditions favorable for modeling 

their behavior using Renormalization Group methods, shock-wave propagation (phonons), caustic surfaces 

occurring under study in the field of catastrophe optics, quantum chaotic phenomena, etc.  
3
 applied to the nanoscale jets analyzed by Landman & Mosely. 
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requires essential use of a ‘nonfundamental’ [i.e. epistemically fundamental] theory…the 

continuum Navier-Stokes theory of fluid dynamics.” (18) 

Batterman advocates this necessary coexistence of two kinds of fundamental 

theories, which in my opinion, can be viewed as a refinement of his more general themes 

presented in (2002).  There, he argues that in the case of emergent phenomena, 

explanation and reduction part company: the superseded theory T can still play an 

essential role.  That is to say, the superseding theory T
/
, though ‘deeply containing T ’ (in 

some non-reductive sense) cannot adequately account for emergent and critical 

phenomena alone, and thus enlists T in some essential manner.  According to Batterman, 

this produces a rift between reduction and explanation, insofar as one is forced to 

accommodate an admixture of differing ontologies characterized by the respectively 

superseding and superseded theories.  In his later work, Batterman (2005) seems to imply 

that epistemologically fundamental theories serve in a similarly necessary capacity in 

terms of what he explains the superseded theories do, in the case of emergent phenomena 

(2002). 

I have critiqued (Kallfelz (2005b)) Batterman’s claims (2002, 2004) in a two-fold 

manner: Batterman confuses a theory’s (mathematical) topology with its (metaphysical) 

ontology.  This confusion, in turn, causes him to reify unnecessarily certain notions of 

singularities, in the explanatory role they play in the superseded theory.  I argue here that 

there exist methods of regularization in multilinear algebraic characterizations of 

microphysical phenomena employed by theoretical physicists (Finkelstein (2002-2005), 

Green (2000)) which seem to provide a truer ontological account for what goes on at the 
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microlevel, and bypass singularities that would otherwise occur in more conventional 

mathematical techniques (not based on multilinear algebras). 

I characterize such a notion of ‘fundamental’ arising in algebraic expansion and 

contraction techniques as an example of a methodological fundamentalism: for it offers a 

means of intertheoretic reduction which overcomes the singular cases Batterman seems to 

reify  (2002, 2004).  In the case of fluid dynamics, mulitilinear algebras like Clifford 

algebras have been recently applied by Gerik Scheuermann (2000), Mann & Rockwood 

(2003), in their work on computational fluid dynamics (CFD).  The authors show that 

CFD methods involving the Clifford algebraic techniques are often applicable in the same 

contexts as the Navier-Stokes treatment –minus the singularities.  Such results imply that 

methodological fundamentalism can, in the cases Batterman investigates, provisionally 

sort out and reconcile epistemically and ontologically fundamental theories.  Hence, pace 

Batterman, they need not act in cross purposes. 

 

II. Epistemological Versus Ontological Fundamentalism (Batterman, 2005)  

Robert Batterman explains the motivation for presenting a distinction between 

ontological versus epistemically fundamental theories: 

 

I have tried to show that a complete understanding (or at least an attempt…) of 

the drop breakup problem requires essential use of a ‘nonfundamental’ 

theory…the continuum Navier Stokes theory of fluid dynamics…[But] how can a 

false (because idealized) theory such as continuum fluid dynamics be essential for 

understanding the behaviors of systems that fail completely to exhibit the 

principal feature of that idealized theory?  Such systems [after all] are discrete in 

nature and not continuous…I think the term ‘fundamental theory’ is 

ambiguous…[An ontologically fundamental theory]…gets the metaphysical 

nature of the system right.  On the other hand…ontologically fundamental 

theories are often explanatorily inadequate.  Certain explanatory questions…about 

the emergence and reproducibility of patterns of behavior cannot be answered by 
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the ontologically fundamental theory.  I think that this shows…there is an 

epistemological notion of ‘fundamental theory’ that fails to coincide with the 

ontological notion. (2005, 18-19, italics added) 

 

On the other hand, epistemically fundamental theories aim at a more comprehensive 

explanatory account, often, however, at the price of introducing essential singularities.  

For example, in the case of ‘universal classes’ of behavior of fluid-dynamical phenomena 

exhibiting patterns like droplet formation: 

Explanation of [such] universal patterns of behavior require means for eliminating 

details that ontologically distinguish the different systems exhibiting the same 

behavior.  Such means are often provided by a blow-up or singularity in the 

epistemically more fundamental theory that is related to the ontologically 

fundamental theory by some limit. (ibid., italics added) 

 

 Obviously, any theory relying on a continuous topology
4
 harbors the possibility of 

exhibiting singular behavior, depending on its domain of application.
5
  In the case of 

droplet-formation, for example, the (renormalized) solutions to the (continuous) Navier-

Stokes Equations (NSE) exhibit singular behavior.  Such singularities play an essential 

explanatory role insofar as such solutions in the singular limit exhibit ‘self-similar,’ or 

universal behavior, to the extent that only one parameter essentially governs the behavior 

of the solutions to the NSEs in such a singular limit.  Specifically, only the fluid’s 

thickness parameter (neck radius h) governs the shape of the fluid near break-up,
6
 in the 

asymptotic solution to the NSE (2004, 15): 

 

 

                                                 
4
 I am borrowing from Batterman’s (2002) usage, in which he distinguishes the ontology, i.e. the primitive 

entities stipulated by a physical theory, from its topology, or structure of its mathematical formalism. 
5
 This is of course due to the rich structure of continuous sets themselves admitting such effects.  Consider, 

for example, the paradigmatic example: f ∈(-∞, ∞)
(-∞, ∞)

  given by the rule:  f(x) = 
1
/x . This obviously 

produces an essential singularity at x = 0.  
6
 For fluids of low viscosities see Batterman (2004), n 12, p.16. 
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where: f(t
/
) is a continuous (dimensionless) function expressing the time-dependence of 

the solution (t
/
= t- t0 is the measured time after droplet breakup t0). 

 α ,β are phenomenological constants to be determined. 

 H is a Haenkel function.
7
 

 

One could understand the epistemically and ontologically fundamental theories as 

playing analogous roles to Batterman’s (2002, 2003, 2004) previously characterized 

superseded and superseding theories (T
 
and T 

/
, respectively).  Like in the case of the 

superseded theory T, the epistemically fundamental theory offers crucial explanatory 

insight, at the expense of mischaracterizing the underlying ontology of the phenomena 

under study.  Whereas, on the other hand, analogous to the case of the superseding theory 

T 
/
, the ontologically fundamental theory gives a more representative metaphysical 

characterization, at the expense of losing its explanatory efficacy.
8
   

                                                 
7
 I.e. belonging to a class of orthonormal special functions often appearing in solutions to PDEs describing 

dynamics of boundary-value problems. 
8
 For instance, in the case of the breaking water droplet, the ontologically fundamental theory would be the 

molecular-discrete one.  But aside from practical limitations posed by the sheer intractability of the 

computational complexity of such a quantitative account, the discrete-molecular theory, precisely because 

it lacks the singular-asymptotic aspect, cannot depict the (relatively) universal character presented in the 

asymptotic limit of the (renormalized) solutions to the NSE.   
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However, I argue that there are theoretical characterizations whose formalisms 

can regularize or remove singularities from some of the fluid-dynamical behavior in a 

sufficiently abstract and general manner, as to call into question the presumably essential 

distinctions between epistemological and ontological fundamentalism.  I call such formal 

approaches “methodologically fundamental,” because of the general strategy such 

approaches introduce, in terms of offering a regularizing procedure.
9
  Adopting such 

methodologically fundamental procedures, whenever it is possible to do so,
10

 suggests 

that Batterman’s distinctions may not be different theoretical kinds, but function at best as 

different aspects of a unified methodological strategy.  This calls into question the 

explanatory pluralism Batterman appears to be advocating. 

Similar to Gordon Belot’s (2003) criticism, I am also arguing that extending the 

breadth and scope of theories in mathematical physics applied to the domains of critical 

phenomena Batterman calls our attention to, goes a long way to qualify and diminish the 

distinctions he makes.  Belot argues that a richer and more mathematically rigorous 

rendition of the superseding theory T 
/
 eliminates the necessity of one having to resort 

simultaneously to the superseded theory T to characterize some critical phenomenon (or 

class of phenomena) Φ.  Like Belot, I also claim that multilinear algebraic techniques 

abound which can regularize the singularities appearing in formalisms of T  (or T 
/ 
).  

Conversely, when representing such critical phenomena Φ, singularities can occur in T  

                                                 
9
 In other words, this strategy should not be conceived of as a merely souped-up version of an ontologically 

fundamental theory.  The latter, according to Batterman, are stuck at the level of giving very detailed 

accounts involving the particular features of the phenomena at the expense of accounting for generally 

significant universal dynamical features shared, across the board, of many fundamentally distinct material 

kinds (like in the case of different kinds of fluids exhibiting universally self-similar behavior, during critical 

phase transitions.)   
10

 The generality of the methods do not imply that they are a panacea, ridding any theory’s formalism of 

singularities. 



 8 

(or T 
/ 
) when the latter are characterized by the more typically standard field-theoretic or 

phase space methods alone.     

However, the mathematical content of the techniques I investigate differs 

significantly from those discussed by Belot (2003), who characterizes T 
/
 using the more 

general and abstract theory of differentiable manifolds.  He demonstrates that in 

principle, all of the necessary features of critical phenomena Φ can be so depicted by the 

mathematical formalism of superseding theory T 
/
  alone (2003, 23).  Because the 

manifold structure is continuous, this can (and does) admit the possibility of depicting 

such critical phenomena Φ through complex and asymptotic singular behavior.  In other 

words, Belot is not fundamentally questioning the underlying theoretical topologies 

typically associated with T and T 
/
.
11

   Instead, he is questioning the need to bring the two 

different ontologies of the superseded and superseding theories together, to adequately 

account for Φ.  Belot is questioning the presumed ontological pluralism that Batterman 

advanced in his notion of an ‘asymptotic explanation’.
12

       

                                                 
11

 I.e., differential equations on phase space, characterizable through the theory of differential manifolds. 
12

 Batterman (2003) responds:  

 

I suspect that one intuition behind Belot’s …objection is…I [appear to be] saying that for genuine 

explanation we need [to] appeal essentially to an idealization [i.e., the ontology of the superseded 

theory T.]  …In speaking of this idealization as essential for explanation, they take me to be 

reifying [T’s ontology]…It is this last claim only that I reject.  I believe that in many instances our 

explanatory physical practice demands that we appeal essentially to (infinite) idealizations.  But I 

don’t believe that this involves the reification of the idealized structures.” (7) 

 

It is, of course, precisely the latter claim “that we appeal essentially to (infinite) idealizations” that I take 

issue with here, according to what the regularization procedures indicate.   Batterman, however, cryptically 

and subsequently remarks that: “In arguing that an account that appeals to the mathematical idealization is 

superior to a theory that does not invoke the idealizations, I am not reifying the mathematics…I am 

claiming that the ‘fundamental’ theory that fails to take seriously the idealized [asymptotic] ‘boundary’ is 

less explanatorily adequate.” (8)  In short, it seems that in his overarching emphasis of his interest in what 

he considers to be novel accounts of scientific explanation (namely, of the asymptotic variety) he often 

blurs the distinctions, and shifts emphasis between a theory’s ontology and its topology.  It is precisely this 

sort of equivocation, I maintain, that causes him to inadvertently reify mathematical notions like ‘infinite 

idealizations.’  To put it another way, since it is safe to assume that the actual critical phenomena 
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I, on the other hand, pace Belot (2003) and Batterman (2002-2005) present an 

alternative to the mathematical formalisms that both authors appeal to, which rely so 

centrally on continuous topological structures.
13

  I show how discretely graded, and 

ultimately finite-dimensional multi-linear geometric (Clifford) algebras can provide 

accounts for some of the same critical phenomena Φ in a regularizable (singularity-free) 

fashion.   

Prior to describing the specific details of how to implement the strategy in the 

case of critical phenomena exhibited in fluid dynamics, however, I make the following 

disclaimer:  I am definitely not arguing that the discrete, graded, multilinear Clifford-

algebraic methods share such a degree of universal applicability that they should supplant 

the continuous, phase-space, infinite-dimensional differentiable manifold structure 

constituting the general formalism of the theory of differential equations, whether 

ordinary or partial.  Certainly the empirical content of a specific problem domain 

determines which is the ‘best’ mathematical structure to implement in any theory of 

mathematical physics.  By and large, such criteria are often determined essentially by 

practical limitations of computational complexity.   

We run into no danger, so long as we can carefully distinguish the 

epistemological, ontological, and methodological issues vis-à-vis our choice of 

mathematical formalism(s).  If the choice is primarily motivated by practical issues of 

computational facility, we can hopefully resist the temptation to reify our mathematical 

maneuvering which would confuse the ‘approximate’ with the ‘fundamental’-- let alone 

                                                                                                                                                 
Batterman discusses are ultimately metaphysically finite, precisely how can one ‘appeal essentially to 

(infinite) idealizations’ without inadvertently ‘reifying the mathematics?’  
13

 Of course, in the case of Batterman, continuous structures comprise as well the ontology of the 

epistemically fundamental theory: Navier-Stokes treats fluids as continua.  In the case of Belot, the theory 

of partial differential equations he presents relies fundamentally on continuous, differentiable manifolds.  
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confusing ontological, epistemological, and methodological senses of the latter notion.
14

  

Even Batterman admits that “nature abhors singularities.” (2005, 20)  So, I argue, should 

we.  The entire paradigm behind regularization procedures is driven by the notion that a 

singularity, far from being an “infinite idealization we must appeal to” (Batterman 2003, 

7), is a signal that the underlying formalism of theory is the pathological cause, resulting 

in theory’s failure to provide information, in certain critical cases.   

Far from conceding to some class of “asymptotic-explanations,” lending a picture 

of the world of critical phenomena as somehow carved at the joints of asymptotic 

singularities, we must instead search for regularizable procedures.  This is precisely why 

such an approach is methodologically fundamental: regularization implies some (weak) 

form of intertheoretic reduction, as I shall argue below.   

 

III. Clifford Algebraic Regularization Procedure: A Brief Overview 

 

 In this section, I summarize aspects of methods incorporating algebraic structures 

frequently used in mathematical physics, leading up to and including the regularization 

procedures latent in applications of Clifford Algebras.  Because this material involves 

some technical notions of varying degrees of specialty, I have provided for the interested 

reader an Appendix at the end of this essay supplying all the necessary definitions and 

brief explanations thereon.  

                                                 
14

 I am, of course, not saying that there does not exist any connection whatsoever between a theory’s 

computational efficacy and its ability to represent certain fundamentally ontological features of the 

phenomena of interest.  What that connection ultimately is (whether empirical, or some complex and 

indirect logical blend thereof) I remain an agnostic. 
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I review here a few basic techniques involving (abstract algebraic) expansion and 

contraction.
15

  Consider the situation in which the superceding theory T
 /
 is capable of 

being characterized, in principle, by an algebra.
16

  Algebraic expansion denotes the 

process of extending out from algebraically characterized T ′  to some *T ′  (denoted: 

*TT ′→′ λ ) where λ is some fundamental parameter characterizing the algebraic 

expansion (Finkelstein (2002) 4-8).  The inverse procedure: TT ′=′→ *lim 0λ  is 

contraction.   

The question becomes: how to regularize?  In other words, which *T ′  should one 

choose to guarantee a regular (i.e., non-singular) limit for any λ  in the greatest possible 

generality?   Answer: expanding into an algebraic structure whose relativity group, i.e., 

the group of all its dynamical symmetries,
17

 is simple implies the Lie algebra depicting its 

infinitesimal transformations is stable.
18

  This in turn entails greater reciprocity,
19

 i.e., 

“reciprocal couplings in the theory…reactions for every action.” (Finkelstein, 2002,10).  

This is an instance of a methodologically fundamental procedure, which I summarize by 

the following general necessary conditions: 

                                                 
15

  For a concrete summary of Wigner’s (1952) analysis of algebraic expansion from the Galilean to the 

Lorentz groups, for example, see Kallfelz (2005b), 16-17.  
16

 That is to say, a vector space with an associative product.  For further details, see A.2 of the Appendix   
17

 In other words, the group of all actions in leaving their form of dynamical laws invariant (in the active 

view) or the group of all ‘coordinate transformations’ preserving the tensor character of the dynamical laws 

(in the ‘passive view.’)  Also, see Defn. A.2.2 (Appendix A.2) for a description of simple groups. 
18

 For a brief description of stable Lie algebras, see the discussion following Defn A.2.4, section A.2, 

Appedix.  
19

 For example, in the case of the Lorenz group, which is simple, it is maximally reciprocal in terms of its 

fundamental parameters x, and t.  That is to say, the form of Lorenz transformations (simplified in one 

dimensional motion along the x-axes of the inertial frame F and F’ ) become x’ = x’(x,t) = γ(x – Vt) and t’ = 

t’(x,t) = γ(t – Vx/c
2
) (where γ = (1-V

2
/c

2
)

-1/2
 ).   Hence both space x and time t couple when transforming 

between inertial frames F, F’, as their respective transformations involve each other.  On the other hand, 

the Galilean group is not simple, as it contains an invariant subgroup of boosts.  The Galilean 

transformations are not maximally reciprocal, as x’ = x’(x,t) = x - Vt but t’ = t.  x is a cyclic coordinate with 

repect to transformation t’. Thus, when transforming between frames, x couples with respect to t but not 

vice versa.   
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• Ansatz IIIa: If a procedure P for formulating a theory T  in mathematical 

physics is methodologically fundamental, then there exists some algebraically 

characterized expansion *T ′   of T’s algebraic characterization (denoted by T 
/
) 

and some expansion parameter λ such that:  *TT ′→′ λ .  Then, trivially, *T ′  is 

regularizable with respect to T 
/
 since TT ′=′→ *lim 0λ   is well-defined (via the 

inverse procedure of algebraic contraction).  

• Ansatz IIIb: If  *T ′  is an expansion of T 
/
, then *T ′ ’s relativity group is simple, 

which results in a stable Lie algebra d *T ′ , and whose set of observables in *T ′  

is maximally reciprocal.  

 

   

Segal (1951) described any algebraic formalization of a theory obeying what I  

depict above according to Ansatz IIIb as “fundamental.”  I insert here the adjective 

“methodological,” since such a procedure comprises a method of regularization (viewed 

from the standpoint of the ‘inverse’ procedure of contraction) and so a formal means of 

reducing a superseding theory T
/
 into its superseded theory T, when characterized by 

algebras. 

III.a) An Example of a Methodologically Fundamental Procedure: Deriving a 

Continuous Space-Time Field Theory as an Asymptotic Approximation of a Finite 

Dimensional  Clifford Algebraic Characterization of Spatiotemporal Quantum 

Topology (Finkelstein (1996, 2001, 2002-2004)
20

. 

 

Motivated by the work of Inonou & Wigner (1952) and Segal (1951) on group 

regularization, Finkelstein (1996, 2001, 2004a-c) presents a unification of field theories 

(quantum and classical) and space-time theory based fundamentally on finite dimensional 

Clifford algebraic structures.  The regularization procedure fundamentally involves 

group-theoretic simplification.  The choice of the Clifford algebra
21

 is motivated by two 

fundamental reasons: 

                                                 
20

 This is somewhat of a more technical discussion and optional for the reader looking for a basic 

application of Clifford algebraic techniques in fluid mechanics alone. 
21

 The associated multiplicative groups embedded in Clifford algebras obey the simplicity criterion (Ansatz 

IIIb).  Hence Clifford algebras (or geometric algebras) remain an attractive candidate for algebraicizing any 

theory in mathematical physics (assuming the Clifford product and sum can be appropriately operationally 

interpreted in the theory T). For definitions and further discussion thereon, see Defn A.2.5, Appendix A.2. 
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1. The typically abstract (adjoint-based) algebraic characterizations of quantum 

dynamics (whether C*, Heisenberg, etc.) just represent how actions can be 

combined (in series, parallel, or reversed) but omit space-time fine structure.
22

  

On the other hand, a Clifford algebra can express a quantum space-time. (2001, 

5)    

 

2. Clifford statistics
23

 for chronons adequately expresses the distinguishability of 

events as well as the existence of half-integer spin. (2001, 7) 

 

The first reason entails that the prime variable is not the space-time field, as 

Einstein stipulated, but rather the dynamical law.  That is to say, “the dynamical law [is] 

the only dependent variable, on which all others depend.” (2001, 6)  The “atomic” 

quantum dynamical unit (represented by a generator αγ  of a Clifford algebra) is the 

chronon χ, with a closest classical analogue being the tangent or cotangent vector, 

(forming an 8-dimensional manifold) and not the space-time point (forming a 4-

dimensional manifold).    

Applying Clifford statistics to dynamics is achieved via the (category) functors
24

 

ENDO, SQ which map the mode space
25

 Χ of the chronon χ, to its operator algebra (the 

algebra of endomorphisms
26

 A on X) and to its spinor space S (the statistical composite of 

all chronons transpiring in some experimental region.) (2001, 10).  The action of  ENDO, 

SQ producing the Clifford algebra CLIFF, representing the global dynamics of the chronon 

ensemble is depicted in the following commutative diagram: 

                                                 
22

 The space-time structure must are supplied by classical structures, prior to the definition of the dynamical 

algebra. (2001, 5) 
23

 I.e., the simplest statistics supporting a 2-valued representation of  SN, the symmetry group on N objects. 
24

 See Defn. A.1.2, Appendix A.1 
25

 The mode space is a kinematic notion, describing the set of all possible modes for a chronon χ, the way a 

state space describe the set of all possible states for a state ϕ in ordinary quantum mechanics. 
26

 I.e, the set of surjective (onto) algebraic structure-preserving maps (those preserving the action of the 

algebraic ‘product’ or ‘sum’ between two algebras A, A’).  In other words, Φ is an endomorphism on X, i.e. 

Φ: X → X  iff: ∀ x,y∈ X: Φ(x+y) = Φ(x)+ Φ(y), where + is vector addition.  Furthermore Φ(X) =X: i.e. for 

any z ∈ X: ∃ x ∈ X such that Φ(x) = y.  For a more general discussion on the abstract algebraic notions, see 

A.2, Appendix. 
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   ENDO 

X   A = ENDO(X) 
    SQ        SQ   

   S 
ENDO

  CLIFF  Fig. III.a.1 

 

  

 Analogous to H.S. Green’s (2000) embedding of the space-time geometry into a 

paraferminionic algebra of qubits, Finkelstein shows that a Clifford statistical ensemble 

of chronons can factor as a Maxwell-Boltzmann ensemble of Clifford subalgebras.  This 

in turn becomes a Bose-Einstein aggregate in the N → ∞ limit (where N is the number of 

factors).  This Bose-Einstein aggregate condenses into an 8-dimensional manifold M 

which is isomorphic to the tangent bundle of space-time.  Moreover, M is a Clifford 

manifold, i.e. a manifold provided with a Clifford ring: 

( ) ( ) ( ) ( )MCMCMCMC N⊕⊕⊕= K10  (where: C0(M), C1(M),…,CN(M) represent the 

scalars, vectors,…, N-vectors on the manifold).  For any tangent vectors γµ
(x),  γν

(x) on 

(Lie algebra dM) then: 

         γµ
(x) ° γ

ν
(x) = g

µν
(x)     (III.1) 

where: °  is the scalar product. (2004a, 43)  Hence the space-time manifold is a singular 

limit of the Clifford algebra representing the global dynamics of the chronons in an 

experimental region. 

 Observable consequences of the theory are discussed in the model of the oscillator 

(2004c).  Since the dynamical oscillator undergirds much of the framework of 

contemporary quantum theory, especially quantum field theory, the (generalized) model 

oscillator constructed via group simplification and regularization is isomorphic to a 
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dipole rotator in the orthogonal group O(6N) (where: N = l(l + 1) >> 1).  In other words, a 

finite quantum mechanical oscillator results, bypassing the ultraviolet and infrared 

divergences that occur in the case of the standard (infinite dimensional) oscillator applied 

to quantum field theory.  In place of these divergences, are “soft” and “hard” cases, 

respectively representing maximum potential energy unable to excite one quantum of 

momentum, and maximum kinetic energy being unable to excite one quantum of 

position.  “These [cases]…resemble [and] extend the original ones by which Planck 

obtained a finite thermal distribution of cavity radiation.  Even the 0-point energy of a 

similarly regularized field theory will be finite, and can therefore be physical.” (2004c, 

12)   

In addition, such potentially observable extreme cases modify high and low 

energy physics, as “the simplest regularization leads to interactions between the 

previously uncoupled excitation quanta of the oscillator…strongly attractive for soft or 

hard quanta.” (2004c, 19)  Since the oscillator model quantizes and unifies time, energy, 

space, and momentum, on the scale of the Planck power (10
51

 W) time and energy can be 

interconverted.
27

  

III.b)  Some General Remarks: What Makes Multilinear Algebraic Expansion 

Methdologically Fundamental 

 

 Before turning to the example involving applying Clifford algebraic 

characterization of critical phenomena in fluid mechanics, I shall give a final and brief 

                                                 
27

 In such extreme cases, equipartition and Heisenberg Uncertainty is violated.  The uncertainty 

relation for the soft and hard oscillators read, respectively:  

( ) ( )
2

0
4
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1

hh
<<∆∆⇒≈≥∆∆ ≈ qpLLL L

 ( ) ( )
2
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4
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2

1 1
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<<∆∆⇒≈≥∆∆ ≈ qpLLL L     

    



 16 

recapitulation concerning the reasons why one should consider such methods described 

here as being methodologically fundamental.  For starters, the previous two Ansaetze I 

proposed (in §III.a) act as necessary conditions for what may constitute a 

methodologically fundamental procedure.  Phrasing them in their contrapositive form 

(III.a*, III.b* below) also tell us what formalization schemes for theories in mathematical 

physics cannot be considered methodologically fundamental: 

• Ansatz (IIIa*): If *T ′  is singular with respect to T 
/
 , in the sense that the 

behavior of  *T ′  in the λ → 0 limit does not converge to the theory T 
/
 at the λ = 

0 limit (for any such contraction parameter λ), this entails that the procedure P 

for formulating a theory T  in mathematical physics cannot be methodologically 

fundamental, and is therefore methodologically approximate. 

• Ansatz (IIIb*): If the relativity group of *T ′  is not simple, its Lie algebra is 

subsequently unstable.  Therefore *T ′  cannot act as an effective algebraic 

expansion of T
/
  in the sense of guaranteeing the inverse contraction procedure is 

non-singular.   

. 

Certainly IIIa* is just a re-statement (in algebraic terms) of Batterman’s more 

general discussion (2002) of critical phenomena, evincing in his case-studies a singularity 

or inability for the superseding theory to reduce to the superseded theory.  However this 

need not entail that we must preserve a notion of ‘asymptotic explanations,’ as Batterman 

would invite us to do, which would somehow inextricably involve the superseded and the 

superseding theories.  Instead, as III.a* glibly states, this simply tells us that 

mathematical scheme of the respective theory (or theories) is not methodologically 

fundamental, so we have a signal to search for methodologically fundamental procedures 

in the particular problem-domain, if they exist.
28

 

                                                 
28

 In a practical sense, of course, the existence of procedures entail staying within the strict bounds 

determined by what is computationally feasible. 
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III.b* gives us further insight into criteria filtering out methodologically 

fundamental procedures.  In fact, Finkelstein (2001) shows that all physical theories 

exhibiting, at root, an underlying fiber-bundle topology,
29

 cannot have any relativity 

groups that are simple.  This excludes a vast class of mathematical formalisms: all-field 

theoretic formalisms, whether classical or quantum.   

However, as informally discussed in the preceding section (II), if any class of 

mathematical formalisms is methodologically approximate, this would not in itself entail 

that the computational efficacy or empirical adequacy of any theory T constituted by such 

a class is somehow diminished.  If a formalism is found to be methodologically 

approximate, this should simply act as a caveat against reifying the theory’s ontology, 

until such a theory can be characterized by a methodologically fundamental procedure.  

A methodologically fundamental strategy does more than simply remove 

undesirable singularities.  As discussed above in previous subsection, the finite number of 

degrees of freedom (represented by the maximum grade N of the particular Clifford 

algebra) positively informs certain ontologically fundamental notions regarding our 

metaphysical intuitions concerning the ultimately discrete characteristics of the entities 

fundamentally constituting the phenomenon of interest.
30

  On the other hand, the 

                                                 
29

 I.e., for Hausdorf (separable) spaces X, B, F, and map p: X →B, defined as a bundle projection (with fiber 

F) if there exists a homeomorphism (topologically continuous map) defined on every neighborhood U for 

any point b∈B such that: φ : p(φ<b,f>) = b for any f ∈F.  On p
-1

(U) = {x∈X | p(x) ∈ U}, then p acts as a 

projection map on U×F →F.  A fiber bundle consists is described by B×F , (subject to other topological 

constraints (Brendon (2000), 106-107)) where B acts as the set of base points {b| b∈B ⊆ X } and F the 

associated fibres   p
-1

(b) = {x∈X | p(x) = b} at each b.     
30

 Relative, of course, to the level of scale we wish to begin, in terms of characterizing the theories’ 

ontological primitives.  For instance, should one wish to begin at the level of quarks, the question of 

whether or not their fundamental properties are discrete or continuous becomes a murky issue.  Though 

quantum mechanics is often understood as a fundamentally ‘discrete’ theory, the continuum nevertheless 

appears in a subtle manner, when considering entangled modes, which are based on particular 

superpositions of ‘non-factorizable’ products. 
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regularization techniques have, pace Batterman, epistemically fundamental consequences 

that are positive. 

In closing, one can ask how likely is it that methodologically fundamental 

multilinear algebraic strategies can be applied to any complex phenomena under study, 

such as critical behavior?  The serious questions deal with practical limitations of 

computational complexity: asymptotic methods can yield simple and elegantly powerful 

results, which would undoubtedly otherwise prove far more laborious to establish by 

discrete multilinear structures, no matter how methodologically fundamental the latter 

turn out to be.  Nevertheless, the ever-burgeoning field of computational physics gives us 

an extra degree of freedom to handle, to a certain extent, the risk of combinatorial 

explosion that such multilinear algebraic techniques may present, when applied to a given 

domain of complex phenomena.
31

  I examine one case below, regarding utilizing Clifford 

algebraic techniques in computational fluid dynamics (CFD), in modeling critical 

phenomena.    

 

IV. Clifford Algebraic Applications in CFD: An Alternative to Navier-Stokes in the 

Analysis of Critical Phenomena. 

 

Gerik Scheuermann (2000), as well as Mann & Rockwood (2003) employ 

Clifford algebras to develop topological vector field visualizations of critical phenomena 

in fluid mechanics.  Visualizations and CFD simulations form a respectable and 

epistemically robust way of characterizing critical phenomena, down to the nanoscale. 

(Lehner (2000)) “The goal is not theory-based insight as it is [typically] elaborated in the 

philosophical literature about scientific explanation.  Rather, the goal is [for instance] to 

                                                 
31

 To be precise, so long as the algorithms implementing such multilinear algebraic procedures are 

‘polytime,’ i.e. grow in polynomial complexity, over time. 
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find stable design-rules that might even be sufficient to build a stable nano-device.” 

(2000, 99, italics added)  Simulations offer potential for intervention, challenging the 

“received criteria for what may count as adequate quantitative understanding.” (ibid.)   

Thus, Lehner’s above remarks appear as a rather strong endorsement for an 

epistemically fundamental procedure: The heuristics of CFD-based phenomenogical 

approaches lend a quasi-empirical character to this kind of research.  CFD techniques can 

produce robust characterizations of critical phenomena where the traditional, ‘[Navier-

Stokes] theory-based insights’ often cannot.  Moreover, aside from their explanatory 

power, CFD visualizations can present more accurate depictions of what occurs at the 

microlevel, insofar as the numerical and modeling algorithms can support a more detailed 

depiction of dynamical processes occurring on the microlevel.  Hence there appears to be 

no inherent tension here: Clifford-algebraic CFD procedures are epistemically as well 

ontologically fundamental.
32

  Of course, I claim that what guarantees this reconciliation is 

precisely the underlying methodologically fundamental feature of applying Clifford 

algebras in these instances. 

  Scheuermann, Mann & Rockwood are primarily motivated by the practical aim of 

achieving accurately representative (i.e. ontologically fundamental) CFD models of fluid 

singularities giving equally reliable (i.e. epistemically fundamental) predictions and 

visualizations covering all sorts of states of affairs.  .  

                                                 
32

 Which is not to say, of course, that the applications of Clifford algebras in CFD contain no inherent 

tensions.  The trade-off, or tension, however, is of a practical nature: that between computational 

complexity and accurate representation of  microlevel details.  Lest this appears as though playing into the 

hands of Batterman’s epistemically versus ontologically ‘fundamental’ distinctions, it is important to keep 

in mind that the trade-off is one of a practical and contingent issue involving computational resources.    

Indeed, in the ideal limit of unconstrained computational power and resources, the trade-off disappears: one 

can model the underlying microlevel phenomena to an arbitrary degree of accuracy.  On the other hand, 

Batterman seems to be arguing that some philosophically important explanatory distinction exists between 

ontological and epistemic fundamentalism.  
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For example, Scheuermann (2000) points out that standard topological methods in 

CFD, using bilinear and piecewise linear interpolation approximating solutions to the 

Navier-Stokes equation, fail to detect critical points or regions of higher order (i.e. order 

greater than 1).  To spell this out, the following definitions are needed: 

Defn IV.1 (Vector Field).  A 2D or 3D vector field is a continuous function  

V: M → R
n 

where M is a manifold
33

 M ⊆ R
n
, where n = 2 or 3 (for the 2Dand 3D 

cases, respectively) and R
n
= R×.(n times).. ×R = {(x1,…, xn| xk ∈ R,1 ≤ k ≤ n}, i.e. n-

dimeanional Euclidean space (where n = 2 or 3.)
34

  

Defn IV.2 (Critical points/region).  A critical point
35

 xc ∈ M⊆ R
n
 or region U ⊆ M 

⊆ R
n
 for the vector field V is one in which ||V(xc)|| = 0 or ||V(x)|| = 0  ∀x∈ U, 

respectively.
36

    

 

A higher-order critical point (or family of points) may signal, for instance, the 

presence of a saddle point (or suddle curve) in the case of the vector field being a 

gradient field of a scalar potential Φ(x) in R
2(or 3)

, i.e. V(x) = ∇∇∇∇Φ(x).  “Higher-order 

critical points cannot exist in piecewise linear or bilinear interpolations.  This thesis 

presents an algorithm based on a new theoretical relation between analytical field 

description in Clifford Algebra and topology.” (Scheuermann (2000), 1)   

The essence of Scheuermann’s approach, of which he works out in detail examples in 

R
2 

and its associated Clifford Algebra CL(R
2
) of maximal grade N = dimR

2
 = 2 consisting 

                                                 
33

 A manifold (2D or 3D) is a Hausdorff (i.e. simply connected) space in which each neighborhood of each 

one of its points is homeomorphic (topologically continuous) with a region in the plane R
2 
or space R

3 
, 

respectively.  For more information concerning topological spaces, see Table A.1.1, Appendix A.1. 
34

 I retain the characterization above to indicate that higher-dimensional generalizations are applicable.  In 

fact, one of the chief advantages of the Clifford algebraic formulations include their automatic applicability 

and generalization to higher-dimensional spaces.  This is in contrast to the notions prevalent in vector 

algebra, in which some notions, like the case of the cross-product, are only definable for spaces of 

maximum dimension 3.  See A.2 for further details.    
35

 For simplicity, as long as no ambiguity appears, in point x in an n –dimensional manifold is depicted in 

the same manner as that of a scalar quantity x.  However, it’s important to keep in mind that x in the former 

case refers to an n –dimensional position vector. 
36

 Note: || || is simply the Euclidean norm.  In the case of a 2D vector field, for example, ||V(x,y)|| =  

||u(x,y)i + v(x,y)j|| = [u
2
(x,y) + v

2
(x,y)]

1/2
, where u and v are x and  y are the x,y components of V , described 

as continuous functions, and i, j are orthonormal vectors parallel to the x and y axis, respectively. 
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of 2
2
 = 4 fundamental generators,

37
 involves constructing in CL(R

2
) a coordinate-

independent differential operator ∂: R2→ CL(R
2
).  Here: ( ) ( )

∑
= ∂

∂
=∂

2

1k
k

k

g

xV
gxV , where gk 

the grade-1 generators, or two (non-zero, non-collinear) vectors which hence span R
2
, 

and 
k

g

V

∂

∂
 are the directional derivatives of V with respect to g

k
.  For example, if g

1
, g

2 
are 

orthonormal vectors ( )21
ˆ,ˆ ee , then: ∂V = (∇•V)1 + (∇∧V)i , where 1, and i are the 

respective identity and unit pseudoscalars of CL(R
2
).

 38
  For example, in the matrix 

algebra M2(R), i.e. the algebra of real-valued 2x2 matrices: 

1    







≡

10

01
   i =   









−
≡

01

10
ˆˆ

21ee  

Armed with this analytical notion of a coordinate-free differential operator, as well as 

adopting conformal mappings from R
2 

into the space of Complex numbers (which latter 

form a grade-1 Clifford algebra) Scheuermann develops a topological algorithm 

obtaining estimates for higher-order critical points as well as determining more efficient 

routines: 

We can simplify the structure of the vector field and simplify the analysis by the 

scientist and engineer…some topological features may be missed by a piecewise 

linear interpolation [i.e., in the standard approach].  This problem is successfully 

attacked by using locally higher-order polynomial approximations [of the vector field, 

using conformal maps]…[which] are based on the possible local topological structure 

of the vector field and the results of analyzing plane vector fields by Clifford algebra 

and analysis. (ibid (2000), 7) 

 

Mann and Rockwood (2003) show how adopting Clifford algebras greatly simplifies 

the procedure for calculating the index (or order) of critical points or curves in a 2D or 

                                                 
37

 For details concerning these features of Clifford algebras, see Defn A.2.5 and the brief ensuing 

discussions in A.2 
38

 compare this expression with the Clifford product in Defn A.2.5, A.2 
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3D vector field.  Normally (without Clifford algebra) the index is presented in terms of an 

unwieldy integral formula involving the necessity of evaluating normal curvature around 

a closed contour, as well the differential of an even messier term, known as the Gauss 

map, which acts as the measure of integration.  In short, even obtaining a rough 

numerical estimate for the index using standard vector calculus and differential geometry 

is a computationally costly procedure.   

On the other hand, the index formula takes on a far more elegant form when 

characterized in a Clifford algebra: 

( ) ( ) nxBc

V

dVV

I

C
xind

c

∧
= ∫          (IV.1) 

where: n = dimR
n 

(where n = 2 or 3) 

 xc is a critical point, or point in a critical region  

 C is a normalization constant 

 I is the unit pseudoscalar of CL(R
n
) 

 ∧ is exterior (Grassmann) product
39

  

 

The authors present various relatively straightforward algorithms for calculating the 

index of critical points using (IV.1) above.  “[W]e found the use of Clifford algebra to be 

a straightforward blueprint in coding the algorithm…the…computations of Geometric 

[Clifford] algebra automatically handle some of the geometric details…simplifying the 

programming job.” (ibid., 6) 

 The most significant geometric details here of course involve critical surfaces 

arising in droplet-formation, which produce singularities in the standard Navier-Stokes 

continuum-based theory.  Though Mann and Rockwood (2003) do not handle the 

problem of modeling droplet-formation using Clifford-algebraic CFD per se, they do 

present an algorithm for the computation of surface singularities: 

                                                 
39

 For definitions and brief discussions of these terms, see DefnA.2.5, A.2 
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To compute a surface singularity, we essentially use the same idea as for 

computing curve singularities…though the test for whether a surface singularity 

passes through the edge [of an idealized test cube used as the basis of ‘octree’ 

iterative algorithm, i.e. the 3D equivalent of a dichotomization procedure using 

squares that tile a plane] is simpler than in the case of curve singularities.  No 

outer products are needed—if the projected vectors along an edge [of the cube] 

change orientation/sign, then there is a [surface] singularity in the projected vector 

field. (ibid., 4) 

 

Shortcomings, however, include the procedure’s inability to determine the index for 

curve and surface singularities.  “Our approach here should be considered a first 

attempt….in finding curve and surface singularities…[our] heuristics are simple, and 

more work remains to improve them.” (7) 

 Nevertheless, what is of interest here is the means by which a Clifford algebraic 

CFD algorithm can determine the existence of curve and surface singularities, and track 

their location in R
3 

 given a vector field  V: M → R
3
.  The authors demonstrate their 

results using various constructed examples.  Based on the fact that every element in a 

Clifford algebra is invertible,
40

 the authors ran cases such as determining the line 

singularities for vector fields such as:  

( ) ( ) 3

1 ˆ,, ezuuwzyxV += −        (IV.2) 

 

where: 
( )
( ) 1

22

21

ˆ,

ˆˆ,

eyxyxw

eyexyxu

+=

+=
 

     and ( )321
ˆ,ˆ,ˆ eee  are the unit orthonormal vectors spanning R

3
  

An example like this would prove impossible to construct using standard vector calculus 

on manifolds, since the ‘inverse’ or quotient operation is undefined in the case of 

ordinary vectors.  Hence the rich geometric and algebraic structure of Clifford algebras 

admits constructions and cases for fields that would prove inadmissible using standard 

                                                 
40

 See A.2, in the discussion following Defn A.2.5, for further details. 
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approaches.  The algorithm works also for sampled vector fields.  “Regardless of the 

interpolation method, our method would find the singularities within the interpolated 

sampled field.” (ibid., 5) 

 The Clifford algebraic CFD algorithms developed by the authors yield some of 

the following results: 

1. A means for determining higher-order singularities, otherwise off-limits in 

standard CFD topology.  

2. A means for locating surface and curve singularities for computed as well as 

sampled vector fields.  Moreover, in the former case, the invertability of 

Clifford elements produces constructions of vector fields subject to analyses 

that would otherwise prove inadmissible in standard vector field based 

formalisms. 

3. A far more elegant and computationally efficient means for calculating the 

indices of singularities. 

 

Clifford algebraic CFD procedures that would refine Mann and Rockwood’s 

algorithms described in 2., by determining for instance the indices of surface 

singularities, as well as being computationally more efficient, are precisely the cases I 

argue which will serve as effective responses against Batterman’s claims.  For there 

would exist formalisms rivaling, in their expressive power, the standard Navier-Stokes 

approach.  But such CFD research would relies exclusively on finite-dimensional Clifford 

algebraic techniques, and would not appeal to the asymptotic singularities in the standard 

Navier-Stokes formulation in any meaningful way.  Certainly the “first attempt” by Mann 

and Rockwood in characterizing surface singularities is an impressive one, in what 

appears to be the onset of a very promising and compelling research program. 

I have furthermore argued in this section that such Clifford algebraic CFD 

algorithms are both epistemically and ontologically fundamental.  It remains to show how 
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these CFD algorithms are, in principle, methodologically fundamental.  I sketch this in 

the conclusion.  

 

V. Conclusion  

 

To show how Clifford algebraic CFD algorithms in principle conform to a 

methodologically fundamental procedure, as defined in described in III in this essay, 

recall the (Category theoretic) commutative diagram (Fig. III.a.1): 

 ENDO 

X   A = ENDO(X) 

    SQ        SQ   

   S 
ENDO

  CL   

 

Now, let  X be the mode space of the eigenvectors of one particular fluid molecule.  Then, 

the SQ functor acts on X to produce S:  the statistical composite of the fluid’s molecules.  

The ENDO functor acts on X to produce A: the algebra of endomorphism (operators) on 

the mode space of which represent intervention/transformations of the observables of the 

molecule’s observables. 

Acting on X either first with SQ and then with ENDO, or vice versa, will produce 

CL: the Clifford algebra representing the global dynamics of the fluid’s molecules for 

some experimental region.  Though the grade N of this algebra is obviously vast, N is still  

finite.  Hence a Clifford algebraic characterization of fluid dynamics is, in principle, 

methodologically fundamental, for the same formal reasons as exhibited in the case of 
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deriving the space-time manifold limit of fundamental quantum processes, characterized 

by Clifford algebras and Clifford statistics.  (Finkelstein (2001, 2004a-c)).  

Robert Batterman is quite correct.  Nature abhors singularities.  So should we.  

The above procedure denoted as ‘methodological fundamentalism’ shows us how 

singularities, at least in principle, may be avoided.  We need not accept some divergence 

between explanation and reduction (Batterman 2002), or between epistemological and 

ontological fundamentalism (Batterman 2004). 

 

Appendix: A Brief Synopsis of the Relevant Algebraic Structures 

A.1: Category Algebra and Category Theory 

 As authors like Hestenes (1984, 1986), Snygg (1997), Lasenby, et. al. (2000) 

promote Clifford Algebra as a unified mathematical language for physics, so Adamek 

(1990), Mikhalev & Pilz (2000) and many others similarly claim that Category Theory 

likewise forms a unifying basis for all branches of mathematics.  There are also 

mathematical physicists like Robert Geroch (1985) who seem to bridge these two 

presumably unifying languages, by building up a mathematical toolchest comprising 

most of the salient algebraic and topological structures for the workaday mathematical 

physicist, from a Category-theoretic basis. 

 A category is defined as follows: 

• Defn. A1.1: A category C = 〈Ω, MOR(Ω),° 〉 is the ordered triple where: 

a.) Ω is the class of C’s objects. 

b.) MOR(Ω) is the set of morphisms defined on Ω.  Graphically, this can be 

depicted (where ϕ ∈ MOR(Ω), A∈Ω, B ∈Ω): BA →ϕ      

c.) The elements of MOR(Ω) are connected by the product ° which obeys the law 

of  composition: For A∈Ω, B ∈Ω, C ∈Ω: if ϕ is the morphism from A to B, and if 

ψ is a morphism from B to C, then ψ °ϕ is a morphism from A to C, denoted 

graphically: CACBBA →=→→ ϕψψϕ o
o .  Furthermore: 

c.1)  ° is associative: For any morphisms φ , ϕ , ψ  with product defined in 

as in c.) above, then: ( ) ( ) ϕφψϕφψϕφψ oooooo ≡= . 
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c.2) Every morphism is equipped with a left and a right identity.  That is, 

if ψ is any morphism from A to B, (where A and B are any two objects) 

then there exists the (right) identity morphism on A (denoted ιA  ) such 

that: ψ ° ιA  = ψ.  Furthermore, for any object C, if ϕ is any morphism 

from C to A, then there exists the (left) identity morphism on A (ιA ) such 

that:  ιA° ϕ = ϕ .  Graphically, the left (or right) identity morphisms can be 

depicted as loops.   

 

 A simpler way to define a category is in terms of a special kind of a semigroup 

(i.e. a set S closed under an associative product).  Since identities are defined for every 

object, one can in principle identify each object with its associated (left/right) identity.  

That is to say, for any morphism ϕ from A to B, with associated left/right identities ιB , ιA, 

identify: ιB = λ, ιA = ρ . Hence condition c2) above can be re-stated as c2
/
 ): “For every ϕ 

there exist (λ, ρ ) such that: λ° ϕ = ϕ, and ϕ ° ρ  = ϕ.”  With this apparent identification, 

DefnI.1 is coextensive with that of a “semigroup with enough identities.  

Category theory provides a unique insight into the general nature, or universal 

features of the construction process that practically all mathematical systems share, in 

one way or another.  Set theory can be embedded into category theory, but not vice versa.  

Such basic universal features involved in the construction of mathematical systems, 

which category theory generalizes and systematizes, include, at base, the following: 

Feature Underlying Notion 

Objects The collection of primitive, or stipulated, entities of the mathematical 

system.  

Product 

 

How to ‘concatenate and combine,’ in a natural manner, to form new 

objects or entities in the mathematical system respecting the properties of 

what are characterized by the system’s stipulated objects. 

Morphsim How to ‘morph’ from one object to another. 

Isomorphism 

(structural 

equivalence) 

How all such objects, relative to the system, are understood to be 

equivalent. 

              Table A.1.1 

For an informal demonstration of how such general aspects are abstracted from three 

different mathematical systems (sets, groups, and topological spaces
41

), for instance, see 

Table A.1.2 below. 

                                                 
41

 Such systems, of course, are not conceptually disjunct: topological spaces and groups are of course 

defined in terms of sets.  The additional element of structure comprising the concept of group includes the 

notion of a binary operation (which itself can be defined set-theoretically in terms of a mapping) sharing 

the algebraic property of associativity.  The structural element distinguishing a topological space is also 
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I.a) Set (by Principle of Extension) SΦ = {x | Φ(x) } for some property Φ 

I.b) Cartesian  

Product 
For any two sets X, Y : X× Y = {(x,y)| x ∈ X,  y ∈ Y} 

  I.c) Mapping For any two sets X, Y, where f ⊆ X× Y, f is a mapping from X to Y (denoted  f : X 

→ Y ) iff for x1∈ X , y1∈ Y ,y∈ Y, if (x1, y1)∈ f (denoted: y1  = f(x 1)) (x1, y2)∈ f  

then: y1 = y2.   

I.d) Bijection (set 

equivalence) 
For any two sets X, Y, where f : X → Y  is a mapping, then f is a bijection iff: a) f 

is onto (surjective), i.e. f(X) = Y (i.e., for any y∈Y there exists a x∈X such that: 

f(x) = y, b) f is 1-1 (injective) iff  for x1∈ X , y1∈ Y ,y∈ Y, if (x1, y1)∈ f (denoted: 

y1  = f(x 1)) (x1, y2)∈ f  then: y1 = y2.   

II.a) Group I.e., a group 〈G, °〉 is a set G with a binary operation ° on G such that: a.) ° is 

closed with respect to G, i.e.: ∀(x, y) ∈G :  (x ° y ) ≡ z ∈ G (i.e., ° is a mapping 

into G or ° : G × G → G, or °(G × G)  ⊆ G)).  b.)   ° is associative with respect to 

G,: ∀(x, y, z) ∈G:  (x ° y ) ° z = x ° (y ° z) ≡ x ° y ° z,  c.) There (uniquely) exists a 

(left/right) identity element  e ∈ G :  ∀ (x∈ G) ∃! (e ∈ G) : x°e = x = e°x.  d.) For 

every x there exists an inverse element of x, i.e.: ∀ (x∈ G) ∃ (x
/
 ∈ G): x° x

/
  = e = 

x
/
 °x.    

II.b) Direct product For any two groups G, H, their direct product (denoted G ⊗ H) is a group, with 

underlying set is G × H and whose binary operation * is defined as, for any (g1, 

h1)∈ G × H, (g2, h2)∈ G × H : 

(g1, h1)* (g2, h2) = ((g1° h1), (g2 •h2)), where °, • are the respective binary 

operations for G,and H. 

II.c) Group 

homomorphism 
Any structure-preserving mapping ϕ from two groups G and H.  I.e. ϕ : G → H 

is a homomorphism iff for any g1∈ G, g2∈G : ϕ(g1° g2) = ϕ(g1)•ϕ(g2) where °, • 

are the respective binary operations for G,and H.         

II.d) Group 

Isomorphism (group 

equivalence) 

Any structure-preserving bijection ψ from two groups G and H.  I.e. ψ : G → H 

is an isomorphism iff for any g1∈ G, g2∈G : ψ (g1° g2) = ψ (g1)• ψ (g2)  (where °, 

• are the respective binary operations for G,and H ) and ψ is a bijection (see I.d 

above) between group-elements G and H.  Two groups are isomorphic 

(algebraically equivalent, denoted: G  ≅ H ) iff there exists an isomorphism 

connecting them ψ : G → H.)        

III.a) Topological 

Space 
Any set X endowed with a collection τX of its subsets (i.e. τX  ⊆℘(X), 

where℘(X) is X’s power-set, such that: 1) ∅∈τX  ,  X∈τX 2) For any U, U
/∈τX , 

then:  U ∩U
/∈τX

 
 .  3)  For any index (discrete or continuous) γ belonging to 

index-set Γ: if Uγ ∈τX, then: 
XU τ

γ
γ ∈

Γ⊆∆∈
U  .  X is then denoted as a topological 

space, and τX  is its topology.  Elements U belonging to τX  are denoted as open 

                                                                                                                                                 
described, set-theoretically by use of notions of ‘open’ sets.  Moreover, groups and topological spaces can 

conceptually overlap as well, in the notion of a topological group.  So in an obvious sense, set theory 

remains a general classification language for mathematical systems as well.  However, the expressive 

power of set theory pales in comparison to that of category theory .  To put it another way, if category 

theory and set theory are conceived of as deductive systems (Lewis), it could be argued that category 

theory exhibits a better combination of “strength and simplicity” than does naïve set theory.  Admittedly, 

however, this is not a point which can be easily resolved, as far as the simplicity issue goes, since the very 

concept of a category is usually cashed out in terms three fundamental notions (objects, morphisms, 

associative composition), whereas, at least in the case of ‘naïve’ set theory (NST), we have fundamentally 

the two notions: a) of membership ∈ defined by extension, and b) the hierarchy of types (i.e., for any set X, 

X ⊆ X, but X ∉ X .  Or to put more generally, Z ∈ W is a meaningful expression, though it may be false, 

provided, for any set, X: Z ∈℘(k)
(X) and W∈℘(k +1)

(X), where k is any non-negative integer, and ℘(k)
(X) 

defines the kth-level power-set operation, i.e.: ℘(m)
(X) =℘(℘(…k times…(X)…) .)       
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sets.  Hence 1), 2), 3) say that the empty set and all of X are always open, and 

finite intersections of open sets are open, while arbitrary unions of open sets are 

always open.  Moreover: 1)  Any collection of subsets ℑ of X is a basis for X’s 

topology iff for any U∈τX , then for any index (discrete or continuous) γ 

belonging to index-set Γ: if Bγ ∈ℑ, then: 
XUB τ

γ
γ ∈=

Γ⊆∆∈
U    (i.e., arbitrary 

unions of basis elements are open sets.) 2) Any collection of subsets Σ of X is a 

subbasis if for any {S1,…, SN}⊆ Σ, then ∈=
=
I
N

k

k BS
1

ℑ (I.e. finite intersections of 

sub-basis elements are basis elements for X’s topology.)   

III.b) Topological 

product 
For any two topological spaces X, Y, their topological product (denotedτX  ⊗ τY ) 

is defined by taking, as a sub-basis, the collection: {(U,V)| U∈τX , V∈τY }.  I.e., 

τX  ×τY is a subbasis for τX  ⊗ τY.   This is immediately apparent since, for U1 and 

U2 open in X, and V1 and V2 open in Y : since: 

( ) ( )22112121 VUVUVVUU ∩×∩=×∩×   this indeed forms a basis. 

III.c) Continuous 

mapping 

Any mapping  from two topological spaces X and Y, preserving openness.  I.e. f : 

X → Y is continuous iff for any U∈τX: f(U) = V ∈τY  

III.d) 

Homeomorphism 

(topological space 

equivalence) 

Any continous bijection h from two topological spaces X and Y.  I.e. h : X → Y is 

a homeomorphsim iff : a) h is continuous (see III.c), b) h is a bijection (See I.d).  

Two spaces X and Y are topologically equivalent (i.e., homeomorphic, denoted:  

X  ≅ Y) iff  there exists a homeomorphism connecting them, i.e. h : X → Y 

        Table A.1.2 

     Now the classes of mathematical objects exhibited in Table A.1.2 comprising sets, 

groups, and topological spaces, all exhibit certain common features:  

• The concept of product (I.b, II.b, III.b) (or concatenating, in ‘natural 

manner’ property-preserving structures.)  For instance, the Cartesian (I.b)  

product preserves the ‘set-ness’ property for chains of objects formed from 

the class of sets, the direct product (II.b) preserves the ‘group-ness’ 

property under concatenation, etc.  

• The concept of ‘morphing’ (I.c, II.c, III.c) from one class of objects to 

another, in a property-preserving manner.  For instance, the continuous 

map (III.c) respects what makes spaces X  and Y ‘topological,’ when 

morphing from one to another.  The homomorphism respects the group 

properties shared by G and H, when ‘morphing’ from one to another, etc. 

• The concept of ‘equivalence in form’ (isomorphism)  (I.d, II.d, III.d) 

defined via conditions placed on ‘how’ one should ‘morph,’ which 

fundmantally should be in an invertible manner.  One universally 

necessary condition for this to hold, is that such a manner is modeled as a 

bijection.  The other necessary conditions of course involve the particular 

property structure-respecting conditions placed on such morphisms. 

 

Similar to naïve set theory (NST) Category theory also preserves its form and 

structure on any level or category ‘type.’  That is to say, any two (or more) categories C, 
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D can be part of the set of structured objects of a meta-category ΧΧΧΧ whose morphisms 

(functors) respect the categorical structure of its arguments C, D.  That is to say: 

• Defn A1.2.  Given two categories C = 〈Ω, MOR(Ω),° 〉, D = 〈Ω’, MOR(Ω’),• 〉, a 

categorical functor ΦΦΦΦ is a morphism in the meta-category ΧΧΧΧ from objects C to D 

assigning each C-object (in Ω) a D-object (in Ω’) and each C-morphism (in 

MOR(Ω)) a D-morphism (in MOR(Ω’)) such that: 

a.) ΦΦΦΦ preserves the ‘product’ (compositional) structure of the two categories, i.e., 

for any ϕ ∈ MOR(Ω), ψ ∈ MOR(Ω):  ΦΦΦΦ(ϕ  ° ψ) = ΦΦΦΦ(ϕ ) • ΦΦΦΦ(ψ) ≡ ϕ’ •ψ’  (where 

ϕ’ ,ψ’  are the ΦΦΦΦ-images in D of the functors ϕ , ψ in C. 

b.) ΦΦΦΦ preserves identity structure across all categories.  That is to say, for any 

A∈Ω, ιA ∈ MOR(Ω),  ΦΦΦΦ(ιA) = ι ΦΦΦΦ(A) = ι A’  where A’ is the D-object (in Ω’)  

assigned by ΦΦΦΦ.  (I.e., A’ =  ΦΦΦΦ(A)) 

 

Examples of functors include the ‘forgetful functor’ FOR: C→SET (where SET is 

the category of all sets) which has the effect of ‘stripping off’ any extra structure in a 

mathematical system C down to its ‘bare-bones’ set-structure only.  That is to say, for 

any C-object A∈Ω, FOR(A) = SA (where SA is A’s underlying set), and for any 

ψ∈MOR(Ω):  FOR(ψ) = f is just the mapping (or functional) property of ψ.  Robert 

Geroch (1985, p. 132, p. 248), for example, builds up the toolchest of the most important 

mathematical structures applied in physics, via a combination of (partially forgetful
42

) 

and (free construction functors.)  Part of this toolchest, for example, is suggested in the 

diagram below.  The boxed items represent the categories (of sets, groups, Abelian or 

commutative groups, etc.), the solid arrows are the (partially) forgetful functors, and the 

dashed arrows represent the free construction  

functors. 

   

 

 

etc..  

 

      Figure A1.1 

                                                 
42

 ‘Partially forgetful’ in the sense that the action of such functors does not collapse the structure entirely 

back to its set-base, just to the ‘nearmost’ (simpler) structure. 

SET GRP Abelian 

(commutative) 

Real vector spaces Complex vector 

spaces 
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A.2 Clifford Algebras and Other Algebraic Structures 

 

 I proceed here by simply defining the necessary algebraic structures in an 

increasing hierarchy of complexity: 

Defn A2.1: (Group) A group 〈G, °〉 is a set G with a binary operation ° on G such 

that:  

a.) ° is closed with respect to G, i.e.: ∀(x, y) ∈G :  (x ° y ) ≡ z ∈ G (i.e., ° is a 

mapping into G or ° : G × G → G, or °(G × G)  ⊆ G)).   

b.) ° is associative with respect to G,: ∀(x, y, z) ∈G:  (x ° y ) ° z = x ° (y ° z) ≡ x ° y ° 

z,   

c.) There (uniquely) exists a (left/right) identity element  e ∈ G :  ∀ (x∈ G) ∃! (e 

∈ G) : x°e = x = e°x.   

d.) For every x there exists an inverse element of x, i.e.: ∀ (x∈ G) ∃ (x
/
 ∈ G): x° x

/
  

= e = x
/
 °x.    

 

In terms of categories, Defn A2.1 is coextensive with that of a monoid endowed with 

property A.2.1.d.).  A monoid is a category in which all of its left and right identities 

coincide to one unique element.  For example, the integers Z form a monoid under 

integer multiplication (since, ∀n∈ Z ∃! 1∈ Z such that n
.
1 = n = 1

.
n), but not a group, 

since their multiplicative inverse can violate closure.  Whereas, the non-zero rational 

numbers Q* ={
n
/m | n ≠ 0, m ≠ 0} form an Abelian (i.e. commutative) group under 

multiplication. 

Defn A2.2: (Subgroups, Normal Subgroups, Simple Groups) 

i.) Let 〈G, °〉 be a group.  Then, for any H ⊆ G, H is a subgroup of G 

(denoted: H ∠ G) if for any x, y ∈ H, then x°y 
/∈ H.  In other words, H is 

closed under °, e∈ H, and if  x ∈ H then x 
/∈ H.  If H ∠ G, and H⊂ G, then 

H is a proper subgroup, denoted: H ∠ G.  Moreover, if denoted: ∅⊂ H, 

then H is non-trivial. 

ii.) H is a normal (or invariant) subgroup of G (denoted: GH < ) if its left and 

right cosets agree, for any g∈ G.  That is to say, GH <  iff ∀ g∈ G:  

gH = {gh| h∈ H}=  Hg = {kg| k∈ H}. 

iii.) G is simple if G contains no proper, non-trivial, normal subgroups. 

 

Defn A2.3: (Vector Space) A vector space is to a structure 〈V, F, * , ⋅ 〉 endowed with 

a (commutative) operation (i.e. ∀(x,y)∈ V  : x*y = y*x, denoted, by convention, by the 

“+” symbol, though not necessarily to be understood as addition on the real numbers) 

such that:  

i) 〈V, *〉 is a commutative (or Abelian) group.  
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ii) Given a field
43

 of scalars F the scalar multiplication mapping into V ⋅ : F × V 

→ V obeys distributivity (in the following two senses):  

iii) ∀(α,β) ∈F  ∀ ϕ ∈ V  :  (α +β)⋅ϕ = (α⋅ϕ) + (α⋅ϕ)   

iv) ∀(ϕ , φ) ∈ V  ∀γ ∈F  : γ ⋅ (ϕ + φ) = (γ ⋅ϕ) + (γ ⋅ φ).  

 

Defn A2.4: (Algebra) An algebra Α, then, is defined as a vector space 〈V, F, * , ⋅,• 〉 
endowed with an associative binary mapping  • into  Α (i.e., • : Α× Α→ Α, such that 

∀(ψ, ϕ, φ) ∈G:  (ψ • ϕ) • φ =ψ •( ϕ • φ) ≡ ψ • ϕ •φ  denoted, by convention, by the 

“×” symbol, though not necessarily to be understood as ordinary multiplication on the 

real numbers) This can be re-stated  by saying that   〈Α, •〉 forms a semigroup (i.e. a 

set Α closed under the binary associative product •), while 〈Α, *〉 forms an Abelian 

group. 

 

Examples of algebras include the class of Lie algebras, i.e. an algebra dA whose 

‘product’ • is defined by an (associative) Lie product (denoted [ , ] )obeying the Jacobi 

Identity: ∀(ς,ξ,ζ)∈ dA : [[ς,ξ],ζ] + [[ξ,ζ],ς] + [[ζ,ς],ξ] = 0.  The structure of classes of 

infinitesimal generators in many applications often form a Lie algebra.  Lie algebras, in 

addition, are often characterized by the behavior of their structure constants C.  For any 

elements of a Lie algebra ςµ ,ξν characterized by their covariant (or contravariant –if 

placed above) indices (µ ,ν), then a structure constant is the indicial function C(λ)
σ

µν 

such that, for any ζρ ∈dA : [ ] ( ) σ
σ

µν
σ

νµ ζλξς ∑
=

=
N

C
1

,  , where N is the dimension of dA, and 

λ is the Lie Algebra’s contraction parameter.  A Lie algebra is stable whenever: 

 limλ→∞∨λ→0 C(λ)
σ

µν  is well-defined for any structure constant  C(λ)
σ

µν  and contraction 

parameter λ. 

 

Defn A2.5: (Clifford Algebra) .  A Clifford Algebra is a graded algebra endowed 

with the (non-commutative) Clifford product.  That is to say: 

i.) For any two elements A, B in a Clifford algebra CL, their Clifford product is 

defined by: AB = A•B + A∧B, where A•B is their (commutative and 

associative) inner product, and A∧B is their anti-commutative, i.e. A∧B  = -

B∧A, and associative  exterior (or Grassmann) product.  This naturally makes 

the Clifford product associative: A(BC) = (AB)C ≡ ABC.  Less obviously, 

however, for reasons that will be discussed below, is how the existence of an 

                                                 
43

 I.e. a an algebraic structure 〈 F, + , × 〉 endowed with two binary operations such that 〈F, +〉 and 〈F, ×〉 
form commutative groups and  + , ×  are connected by left (and right, because of commutativity) 

distributivity, i.e., ∀(α,β,γ) ∈F : α ×(β + γ) = (α ×β) + (α ×γ). 
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inverse A
-1

 for every (nonzero) Clifford element A arises from the Clifford 

product, i.e.: A
-1

A = I =  AA
-1

, where I is the unit pseudoscalar of CL.      

ii.) CL is equipped with an adjoint 
↑
 and grade operator < >r  (where < >r  is 

defined as isolating the rth grade of a Clifford element A) such that, for any 

Clifford elements A, B:  <AB >
↑

r  =  (-1)
C(r,2)

 <B
↑
A

↑
 >r   (where: C(r ,2) = 

r!
/(2!(r – 2)!)  = 

r(r – 1)/
2. )  

 

Hence a general Clifford element (or multivector) A of Clifford algebra CL of 

maximal grade N = dimV (i.e the dimension of the underlying vector space structure of 

the Clifford algebra) is expressed by the linear combination:  

A = α(0)
A0 + α(1)

A1  + α(2)
A2+ … + α(N)

AN    (A.3.1)  

where: {α(k) 
 | 1 ≤ k ≤ N } are the elements of the scalar field (expansion coefficients) 

while {Ak
 
 | 1 ≤ k ≤ N } are the pure Clifford elements, i.e. <Ak>l  = Ak whenever k = l, 

and <Ak>l  = 0 otherwise, while for a general multivector (A.3.1), <A>l  = α(l)
Al  , for  

1 ≤ l ≤ N  

 

Hence, the pure Clifford elements live in their associated closed Clifford subspaces CL(k) 

of grade k, i.e. CL = CL(0) ⊕ CL(1) ⊕…⊕CL(N) .    

Consider the following example: Let V = R
3
, i.e. the underlying vector space for 

CL  is a 3 dimensional Euclidean space R
3 

= { =r
r

(x,y,z) | x∈ R, y∈ R,  z∈ R}.  Then the 

maximum grade for Clifford Algebra over R
3
 , i.e. CL(R

3
) is N = dimR

3
 = 3.  Hence:  

 CL(R
3
)  = CL(0) ⊕ CL(1) ⊕ CL(2) ⊕CL(3)   where: CL(0)  (the Clifford subspace of grade 0) 

is (algebraically) isomorphic to the real numbers R.
44

  CL(1)  (the Clifford subspace of 

grade 1) is algebraically isomorphic to the Complex numbers C.  CL(2)  (the Clifford 

subspace of grade 2) is algebraically isomorphic the Quaternions H.  CL(3)  (the Clifford 

subspace of grade 3) is algebraically isomorphic to the Octonions O. 

 To understand why the Clifford algebra over R
3 

would invariably involve closed 

subspaces with elements related to the unit imaginary  i =√-1 (and some of its derivative 

notions thereon, in the case of the Quaternions and Octonions) entails a closer study of 

the nature of the Clifford product.  Defn. A.2.4 i) deliberately leaves the Grassman 

product under-specified.  I now fill in the details here.  First, it is important to note that ∧ 

is a grade-raising operation: for any pure Clifford element Ak (where k < N = dimV) and 

                                                 
44

 Since the real numbers are a field, they’re obviously describable as an algebra, in which their underlying 

‘vector space’ structure is identical to their field of scalars.  In other words, scalar multiplication is the 

same as the ‘vector’ product •. 
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B1 , then <AkB1> = k + 1.  It is for this reason that pure Clifford elements of grade k are 

often called multivectors.  Conversely, the inner product • is a grade-lowering operation: 

for any pure Clifford element Ak (where k < N = dimV) and B1 , then <Ak•B1> = k – 1.  

(Hence the inner product is often referred to as a contraction). 

 The reason for the grade-raising, anti-commutative nature of the Grassman 

product is historically attributed to Grassman’s geometric notions of (directed) line 

segments, (rays) areas, volumes, hypervolumes, etc.   For example, in the case of two 

vectors BA
rr

,  , their associated directed area segments  ABBA
vrrr

∧∧ , are illustrated below: 

  B
r

     B
r

 

  BA
rr

∧       AB
rr

∧     

           A
r

     A
r

 

        Fig. A.2.1 

The notion of directed area, volume, hypervolume segments indeed survives, to a certain 

limited sense, in the vector-algebraic notion of ‘cross-product.’  For example, the 

magnitude of the cross-product BA
rr

×  is precisely the area of the parallelogram spanned 

by BA
rr

,  as depicted in Fig. A.2.1.  The difference, however, lies in the fixity of grade in 

the case of BA
rr

× , in the sense that the anti-commutativity is geometrically attributed to 

the directionality of the vector BA
rr

×  (of positive sign in the case of right-handed 

coordinate system) perpendicular to the plane spanned by BA
rr

, .  This limits the notion of 

the vector cross-product, as it can only be defined for spaces of maximum dimensionality 

3.
45

  On the other hand, the Grassmann product of multivectors interpreted as directed 

areas, volumes, and hypervolumes is unrestricted by the dimensionality of the vector 

space. 

 The connection with the algebraic behavior of  i =√-1 lies in the inherently anti-

commutative aspect (i.e. the Grassmann component) of the Clifford product, as discussed 

above.  To see this, consider the even simpler case of V = R
2 

(as discussed, for example, 

                                                 
45

 “[T]he vector algebra of Gibbs…was effectively the end of the search for a unifying mathematical 

language and the beginning of a proliferation of novel algebraic systems, created as and when they were 

needed; for example, spinor algebra, matrix and tensor algebra, differential forms, etc.” (Lansenby, et. al. 

(2000), 21)   
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in Lasenby, et. al. (2000), 26-29).  Then; N = dimR
2
 = 2.  Moreover, R

2 
= ( )21

ˆ,ˆ ee , 

where 〈…〉 denotes the span and ( )21
ˆ,ˆ ee  are the ordered pair of orthonormal vectors 

(parallel, for example, to the x and y axes.)  Hence: ,1ˆˆ
2

2

2

1 == ee  and 

0ˆˆˆˆ
1221 =•=• eeee .  So: 121221211221

ˆˆˆˆˆˆˆˆˆˆˆˆ eeeeeeeeeeee −=∧−=∧=∧+•= .  Hence: 

( ) ( )( ) ( ) ( ) ( )( ) ( )( ) 1ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ 2

2

2

12211221121212121

2

21 −=−=−=−=== eeeeeeeeeeeeeeeeeeee  (using the 

anti-commutativity and associativity of the Clifford product.)  Hence, the multivector 

21
ˆˆ ee  is algebraically isomorphic to i =√-1.  Moreover, ( ) 2121

ˆˆˆˆ eeee −=  and ( ) 1221
ˆˆˆˆ eeee = , by 

the same simple algebraic maneuvering.  Geometrically, then, the multivector 21
ˆˆ ee  when 

multiplying on the left has the effect of a clockwise 
π
/2 –rotation.  Represented then in the 

matrix algebra M2(R) (the algebra of real-valued 2x2 matrices): 

 








−
≡

01

10
ˆˆ

21ee ,  where: 







≡








≡

1

0
ˆ,

0

1
ˆ

21 ee  

Moreover, for CL(R
2
) the multivector 21

ˆˆ ee is the unit pseudoscalar, i.e. the 

element of maximal grade.  In general, for any Clifford Algebra CL(V), where dimV = N, 

and V = 〈(γ1, γ2, …, γN)〉, where the basis elements aren’t necessarily orthonormal, the 

unit pseudoscalar I of  CL(V) is:  I = γ1γ2… γN.  In general, for grade k (where 1 ≤ k ≤ N) 

the closed subspaces CL(k) of grade k in CL(V) = CL(0) ⊕ CL(1) ⊕…⊕CL(N) have 

dimensionality C(N,k) = 
N!

/[k!(N – k)!], i.e are spanned by C(N,k) = 
N!

/[k!(N – k)!] multivectors of 

degree k.  Hence the total number of Clifford basis elements generated by the Clifford 

product acting on the basis elements of the underlying vector space is: ( )∑
=

=
N

k

N
kNC

0

,2 .  

The unit pseudoscalar is therefore the (one) multivector (only one there are C(N,N) =1 of 

them, modulo sign or order of mutliplication) spanning the closed Clifford subspace of 

maximal grade N. 

For example, in the case of  CL(R
3
)  = CL(0) ⊕ CL(1) ⊕ CL(2) ⊕CL(3)  , where: 

R
3 

= ( )321
ˆ,ˆ,ˆ eee :  

( ) ( ) ( ) ( ) ( ) ( ) 1233231312232110 ,,,,,,,1 eICLeeeCLeeeCLRCL ====≅=   
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(where the abbreviation ei…k = ki ee ˆ...ˆ is adopted).  As demonstrated in the case of CL(R
2
) 

the multivector, the unit psuedoscalar I should not be interpreted as a multiplicative 

identity, i.e. it is certainly not the case that for any A∈ CL(V), AI = A = IA.  Rather, the 

unit pseudoscalar is adopted to define an element of dual grade A* : for any pure Clifford 

element Ak, (where 0≤ k <N)  : the grade of AI (or A*) is N- k, and vice versa.  Thus an 

inverse element A
-1

 can in principle be constructed, for every nonzero A∈ CL(V).  So the 

linear equation AX = B has the formal solution X = A
-1

B in  CL(V).  “Much of the power 

of geometric (Clifford) algebra lies in this property of invertibility.” (Lasenby, et. al. 

(2000), 25)    
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