
COMPUTABILITY OF SELF-SIMILAR SETS

HIROYASU KAMO AND KIKO KAWAMURA

Abstract. We investigate computability of a self-similar set on a Euclidean
space. A nonempty compact subset of a Euclidean space is called a self-similar
set if it equals to the union of the images of itself by some set of contractions.
The main result in this paper is that if all of the contractions are computable,
then the self-similar is a recursive compact set. A further result on the case
that the self-similar set forms a curve is also discussed.

1. Introduction

The aim of this paper is to find fundamental mathematical tools to investigate
self-similar sets from the viewpoint of computability.

First, we should recall what “self-similarity” means. Mandelbrot called a set
constructed from some miniatures of the whole a self-similar set [5]. A more precise
definition was discovered by Hutchinson [3] and generalized by Hata [2]. For any
finitely many contractions T0, . . . , Tm−1 : Rq → Rq , the set equation

X = T0(X) ∪ · · · ∪ Tm−1(X)

has a unique nonempty compact solution. A nonempty compact set that is the
solution of a set equation of this form is called a self-similar set.

Next, we should clarify what “computability” is. Many important studies have
been made on real numbers, real function, subsets of the real line, etc from the
viewpoint of computability since Rice discovered the real field of all computable real
numbers [8]. In this research field, which is often referred to as classical computable

analysis or simply computable analysis, the following recursiveness is often used: a
nonempty compact subset K ⊂ Rq is called recursive if dK : Rq → R defined by
dK(x) = infy∈K‖x − y‖ is computable [12] [13].

A question now arises whether the self-similar set is a recursive compact set
if all of the contractions are computable transformations. In this paper, we shall
answer this question positively. If all of contractions T0, . . . , Tm−1 : Rq → Rq are
computable transformations, then the self-similar set with respect to T0, . . . Tm−1

is a recursive compact subset.
Kawamura and Kamo have already shown that the result above holds in the

special case when all of the contrancions are affine translations [4]. In other words,
some of the results shown in this paper is partly a generalization of those in [4].

In addition, we shall discuss on a further result. Hata [2] proved that if contrac-
tions T0, . . . , Tm−1 : Rq → Rq satisfy an additional condition

T1(Fix(T0)) = T0(Fix(Tm−1)), . . . , and Tm−1(Fix(T0)) = Tm−2(Fix(Tm−1))
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where Fix(T ) denotes the unique fixed point of T , then the self-similar set is (the
image of) a curve. We shall show that, under this condition, if all of T0, . . . , Tm−1

are computable transformations, then the curve can be a computable function.
We believe that these results will be the first step for investigation of self-similar

sets from the view point of computability.

2. Preliminary

2.1. Self-similarity.

2.1.1. Self-similar Set.

Definition 2.1. A nonempty compact subset X of Rq is self-similar with respect
to contractions T0, . . . , Tm−1 : Rq → Rq if

X = T0(X) ∪ · · · ∪ Tm−1(X).

We should notice that Ti’s in this definition need not be similarity transforma-
tions. They may be arbitrary contractions.

We denote the set of all nonempty compact subsets of Rq by K(Rq). A complete
metric known as the Hausdorff metric dH on K(Rq) is defined by:

dH(X, Y ) = max{d′(X, Y ), d′(Y, X)}
where

d′(X, Y ) = sup
x∈X

inf
y∈Y

‖x − y‖.

Theorem 2.1 (Hutchinson). Let T0, . . . , Tm−1 : Rq → Rq be contractions. Then

there exists a unique self-similar set X with respect to T0, . . . and Tm−1. If {Xn}
is a sequence of nonempty compact sets on Rq with

Xn+1 = T0(Xn) ∪ · · · ∪ Tm−1(Xn),

then Xn converges to the self-similar set X as n → ∞ in the Hausdorff metric.

Refer to [3] for the proof.

2.1.2. Self-similar Curve. In this paper, we call a continuous function from an
interval to Rq a curve on Rq . We do not call the image of the function a curve. To
distinguish a curve and the image of it, we say a curve f : I → Rq constructs a
set γ ∈ Rq if f(I) = γ.

Hata investigated self-similar curves [2]. We summarize here some of the results
necessary to proceed out task.

Let T0, . . . , Tm−1 : R → R be contractions. If they satisfy an additional condition

T1(Fix(T0)) = T0(Fix(Tm−1)), . . . , Tm−1(Fix(T0)) = Tm−2(Fix(Tm−1)).(1)

where Fix(T ) denotes the unique fixed point of T , then the self-similar set is con-
structed from a curve. Namely, if T0, . . . and Tm−1 satisfy (1), there exists a contin-
uous function f : [0, 1] → Rq such that f([0, 1]) = T0(f([0, 1]))∪· · ·∪Tm−1(f([0, 1])).
Such an f is called a self-similar curve.

More precisely, from any given contractions T0, . . . , Tm−1 : Rq → Rq that sat-
isfy (1), we can obtain a self-similar curve through the following proposition.
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Proposition 2.1. Let T0, . . . , Tm−1 : Rq → Rq be contractions that satisfy

T1(Fix(T0)) = T0(Fix(Tm−1)), . . . , Tm−1(Fix(T0)) = Tm−2(Fix(Tm−1)).

Define fn : [0, 1] → Rq for n ∈ N recursively by

f0(t) = (1 − t) Fix(T0) + t Fix(Tm−1),

fn+1(t) = Tk(fn(mt − k)) if t ∈ [k/m, (k + 1)/m] and k ∈ {0, . . . , m − 1}.
Then the sequence {fn} is uniformly convergent. Using f for the limit, we have

f([0, 1]) = T0(f([0, 1])) ∪ · · · ∪ Tm−1(f([0, 1])).

2.2. Computability in Analysis.

2.2.1. Computability of Real Functions. In this subsection, we will briefly recall the
theory of computability on real functions. The definitions here are equivalent to
those in [7] although they are expressed differently in detail.

The definitions here are also equivalent to those in another formalization of
computability that uses an extended Turing machine named Type 2 machine [9]
[10] [12] [13]. The equivalence is not used in this paper. It is however important in
application of theoretical computability to computation in the real world.

Definition 2.2. A sequence of rational numbers {rk} is computable if there exist
recursive functions s, a, b : N → N such that

rk = (−1)s(k) a(k)

b(k) + 1
.

Definition 2.3. A double sequence of reals {xnk} converges to a sequence of reals
{xn} as k → ∞ effectively in n and k if there exists a recursive function a : N2 → N

such that for any n, N ∈ N and any k ∈ N with k ≥ a(n, N), |xnk − xn| < 2−N .

Definition 2.4. A sequence of reals {xn} is computable if there exists a computable
double sequence of rational numbers {rnk} that converges to {xn} as k → ∞
effectively in n and k.

A real x is called computable if {x}k∈N, the sequence all elements of which
equal x, is a computable sequence of reals. A sequence of points on a Euclidean
space is called computable iff each sequence of its coordinates is computable. A
closed rectangle

∏q

i=1[ai, bi] is computable iff all of ai’s and bi’s are computable
reals.

Definition 2.5. Let I ⊂ Rq be a computable closed rectangle. A sequence of
functions {fn} with fn : I → R is computable if it satisfies the following two
conditions.

1. For any computable sequence of points {xk} with xk ∈ I , the double sequence
of reals {fn(xk)} is computable.

2. There exists a recursive function a : N2 → N such that for any n, N ∈ N and
any x, x′ ∈ I , if ‖x − x′‖ < 2−a(n,N), then |fn(x) − fn(x′)| < 2−N where ‖-‖
denotes the Euclidean norm.

Definition 2.6. A sequence of functions {fn} with fn : Rq → R is computable if
it satisfies the following two conditions.

1. For any computable sequence of points {xk} on Rq , the double sequence of
reals {fn(xk)} is computable.
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2. There exists a recursive function a : N3 → N such that for any n, N, M ∈ N

and any x, x′ ∈ [−M, M ]q, if ‖x − x′‖ < 2−a(n,N,M), then |fn(x) − fn(x′)| <
2−N .

We say {fn} is sequentially computable if it satisfies the condition 1 and effectively

uniformly continuous if it satisfies the condition 2.
A function f is called computable if {f}k∈N, the sequence all elements of which

equal to f , is a computable sequence of functions.

Definition 2.7. Let I be a computable rectangle in Rq . A double sequence of
functions {fnk} with fnk : I → R converges to a sequence of functions {fn} with
fn : I → R as k → ∞ uniformly on I effectively in n and k if there exists a recursive
function a : N2 → N such that for any n, N ∈ N and any k ∈ N, if k ≥ a(n, N),
then for any x in I , |fnk(x) − fn(x)| < 2−N .

We quote the following three facts on computable functions from [7]. Refer to
[7] for proofs.

• (Closure under effective convergence) Let {xnk} be a computable double se-
quence of reals and {xn} a sequence of reals such that xnk → xn as k → ∞
effectively in n and k. Then {xn} is a computable sequence of reals.

• Let I be a computable rectangle on Rq, {fnk} a computable double sequence of
functions with fnk : I → R, and {fn} a sequence of functions with fn : I → R

such that fnk(x) → fn(x) as k → ∞ effectively in n and uniformly in x. Then
{fn} is a computable sequence of functions.

• (Effective version of Maximum Value Theorem) Let I be a computable rec-
tangle in Rq and {fn} a computable sequence of functions with fn : I → R.
Then the maximum values {maxx∈I fn(x)} form a computable sequence of
real numbers.

2.2.2. Recursiveness of compact subsets of Euclidean Spaces. Defining computabil-
ity of a subset of Euclidean spaces is not a straightforward task. For A ⊂ Rq, the
characteristic function χA : Rq → R defined by

χA(x) =

{

1 if x ∈ A,

0 otherwise

is useless to investigate computability of A since χA is computable iff A = ∅ or
A = Rq.

An alternative for the characteristic function is dA : Rq → R defined by

dA(x) = inf
y∈A

‖x − y‖.

Recursiveness defined as follows is often used in computable analysis.

Definition 2.8 (Weihrauch). A nonempty compact subset K ⊂ Rq is recursive if
dK is computable.

We should notice that the definition of a recursive compact subset is position-
dependent. In other words, a compact subset may not be recursive even if it is
congruent to a recursive compact subset. For example, let x0 ∈ Rq be a non-
computable point. The compact subset {x0} is not recursive although it is congru-
ent to a recursive compact subset {0}.
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2.2.3. Computability of curves. Defining computability of a curve is a straightfor-
ward task. A curve on a Euclidean space is (or is considered to be) a continuous
function from an interval to a Euclidean space. Thus we can define computability
of a curve by using computability of a function.

Definition 2.9. A computable curve is a computable function f : [0, 1] → Rq .

Restriction of the domain to [0, 1] causes no loss of generality. Let f : [a, b] →
Rq be a continuous function from an interval [a, b] with computable endpoints.
Computability of f is equivalent to that of f ′ : [0, 1] → Rq defined by f ′(t) =
f(a + (b − a)t).

We should notice that the definition of a computable curve is also position-
dependent.

Theorem 2.2. If f : [0, 1] → Rq is a computable function, then f([0, 1]) is a

recursive compact set.

Proof. Apply the effective version of Maximum Value Theorem to

df([0,1])(x) = min
t∈[0,1]

‖x − f(t)‖.

In other words, computability of a curve as a function is a stronger condition than
recursiveness of a curve as a compact set.

3. Recursiveness of a Self-similar Set

In this section, we investigate computability of a self-similar set. Recursiveness
of a self-similar set with respect to a set of contractions is of course dependent on
computability of the contractions. We will claim that a self-similar set with respect
to computable contractions is a recursive compact set.

First, we will show three lemmas.

Lemma 3.1. Let T0, . . . , Tm−1 : Rq → Rq be computable contractions and a ∈ Rq

a computable point. Define a sequence of nonempty compact sets {Xn} on Rq

recursively by

X0 = {a},
Xn+1 = T0(Xn) ∪ · · · ∪ Tm−1(Xn).

Then {dXn

} is a computable sequence of functions.

Proof. For i ∈ {0, . . . , mn−1}, we abbreviate Tin−1
◦ · · ·◦Ti0 to T n

i if i0, . . . , in−1 ∈
{0, . . . , m − 1} and i = i0m

0 + · · · + in−1m
n−1.

By induction on n, it is straightforward to show that each Xn is well-defined and
each dXn

satisfies

dXn

(x) = min
i∈{0,...,mn−1}

‖x − T n
i (a)‖.

Clearly, {dXn

} is a computable sequence of functions.

Lemma 3.2. Let T0, . . . , Tm−1 : Rq → Rq be computable contractions and {Xn} a

sequence of nonempty compact sets on Rq such that

Xn+1 = T0(Xn) ∪ · · · ∪ Tm−1(Xn).
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Then {Xn} converges to some nonempty compact set X effectively in n in the

Hausdorff metric as n → ∞.

Proof. The existence of X is guaranteed by Theorem 2.1.
Since T0, . . . and Tm−1 are contractions, there exists a computable real α with

0 < α < 1 such that for any i ∈ {0, . . . , m − 1} and any x, y ∈ Rq,

‖Ti(x) − Ti(y)‖ ≤ α‖x − y‖.
Analogously to Hutchinson’s proof of Theorem 2.1, this implies:

dH(Xn, X) ≤ αn

1 − α
dH(X0, X1).

The right-hand side forms a computable sequence of reals since

dH(X0, X1) = max
i∈{0,...,m−1}

‖a − Ti(a)‖.

Therefore, dH(Xn, X) → 0 effectively in n as n → ∞.

Lemma 3.3. In the notation of Lemma 3.2, dXn

(x) converges to dX(x) uniformly

in x and effectively in n as n → ∞.

Proof. For an arbitrary point x in Rq , we will show that

|dXn

(x) − dX(x)| ≤ dH(Xn, X).

We obtain that for any x ∈ Rq,

dX(x) − dXn

(x) = sup
y∈Xn

inf
z∈X

(‖x − z‖ − ‖x − y‖)

≤ sup
y∈Xn

inf
z∈X

‖y − z‖.

By exchanging Xn and X , we also obtain that

dXn

(x) − dX(x) ≤ sup
z∈X

inf
y∈Xn

‖z − y‖.

Thus

|dXn

(x) − dX(x)| ≤ dH(Xn, X).

Now an application of Lemma 3.2 yields that dXn

(x) converges to dX(x) uniformly
in x and effectively in n as n → ∞.

As an immediate consequence of Theorem 2.1 and Lemmas 3.1 and 3.3, we obtain
the following according to Definition 2.8.

Theorem 3.1. Let T0, . . . , Tm−1 : Rq → Rq be computable contractions. Then the

unique nonempty compact set X such that

X = T0(X) ∪ · · · ∪ Tm−1(X)

is a recursive compact set.

Example 3.1. A Cantor ternary set which is a self-similar set on R with respect
to contractions T0 and T1 defined by

T0(x) =
1

3
x, T1(x) =

1

3
x +

2

3
,

is a recursive compact set.
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Example 3.2. A Sierpiński gasket which is a self-similar set on R2 with respect
to contractions T0, T1 and T2 defined by

T0(x) =
1

2
x, T1(x) =

1

2
x +

(

1/2
0

)

, T2(x) =
1

2
x +

(

1/4√
3/4

)

,

is a recursive compact set.

4. Computability of a Self-similar Curve

As shown in Proposition 2.1, contractions T0, . . . , Tm−1 : Rq → Rq that satisfy

T1(Fix(T0)) = T0(Fix(Tm−1)), . . . , Tm−1(Fix(T0)) = Tm−2(Fix(Tm−1))

generate a curve f : [0, 1] → Rq . In this case, computability of f is also of our
interest.

We have already claimed that computability of f is a stronger condition than
recursiveness of f([0, 1]). We have also obtained that if T0, . . . , and Tm−1 are
computable, then f([0, 1]) is a recursive compact set. The next question is the
computability of f .

We will first prove two lemmas.

Lemma 4.1. Let T0, . . . , Tm−1 : Rq → Rq be contractions that satisfy

T1(Fix(T0)) = T0(Fix(Tm−1)), . . . , and Tm−1(Fix(T0)) = Tm−2(Fix(Tm−1)).

Define fn : [0, 1] → Rq recursively by

f0(t) = (1 − t) Fix(T0) + t Fix(Tm−1),

fn+1(t) = Ti(fn(mt − i)) if t ∈ [i/m, (i + 1)/m] with i ∈ {0, . . . , m − 1}.
If all of Ti’s are computable, then {fn} forms a computable sequence of functions.

Proof. We use the abbreviation T n
i in Lemma 3.1.

It is straightforward to show, by induction on n, that each fn is well-defined and
satisfies, for any i ∈ {0, . . . , mn − 1},

fn(t) = T n
i (f0(m

nt − i)) if t ∈ [i/mn, (i + 1)/mn].(2)

Clearly, {fn} is effectively uniformly continuous. We however confront with a
difficulty here in showing sequential computability of {fn}. Calculation from a
real t of the integer i in (2) is not effective. This makes it impossible to choose T n

i

effectively for calculation of fn(t).
Take any computable sequence {tk} with tk ∈ [0, 1]. There exists a double

sequence of rational numbers {τkl} such that τkl → tk effectively in k and l as
l → ∞. To overcome the difficulty and to show that {fn(tk)} is a computable
double sequence of points, we shall investigate the triple sequence of the points
{fn(τkl)}.

We have, for any i ∈ {0, . . . , mn − 1},
fn(τkl) = T n

i (f0(m
nτkl − i)) if τkl ∈ [i/mn, (i + 1)/mn].(3)

In this case, calculation of i from n, k and l in (3) is effective since the rela-
tion ≤ in Q is effective. More precisely, we can construct a recursive function that
computes i from n, k and l by using a recursive function that corresponds to the
relation ≤ in Q. Hence {fn(τkl)} is a computable triple sequence of points.

Now we are ready to show computability of {fn(tk)}. Since τkl → tk effectively
in k and l as l → ∞ and {fn} is effectively uniformly continuous, we obtain that
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fn(τkl) → fn(tk) effectively in n, k and l as l → ∞. We conclude that {fn(tk)}
is a computable double sequence of points since it is a list of a computable and
effectively convergent triple sequence of points.

Lemma 4.2. Let T0, . . . , Tm−1 : Rq → Rq be contractions that satisfy

T1(Fix(T0)) = T0(Fix(Tm−1)), . . . , and Tm−1(Fix(T0)) = Tm−2(Fix(Tm−1)),

and {fn} curves with fn : [0, 1] → Rq such that

fn+1(t) = Ti(fn(mt − i)) if t ∈ [i/m, (i + 1)/m] with i ∈ {0, . . . , m − 1}.
If all of Ti’s are computable, {fn} is effectively uniformly convergent as n → ∞.

Proof. Let α be a computable real with 0 < α < 1 such that

∀i ∀x, y ‖Ti(x) − Ti(y)‖ ≤ ‖x − y‖.
We will show, by induction on n, that for any n ∈ N,

sup
t∈[0,1]

‖fn(t) − fn+1(t))‖ ≤ αn sup
t∈[0,1]

‖f0(t) − f1(t))‖.

The induction base is clear. The remaining is the induction step.
Suppose

sup
t∈[0,1]

‖fn(t) − fn+1(t))‖ ≤ αn sup
t∈[0,1]

‖f0(t) − f1(t))‖

and evaluate ‖fn+1(t) − fn+2(t)‖. If t ∈ [i/m, (i + 1)/m], then

‖fn+1(t) − fn+2(t)‖ = ‖Ti(fn(mt − i)) − Ti(fn+1(mt − i))‖
≤ α‖fn(mt − i) − fn+1(mt − i)‖
≤ α sup

t∈[0,1]

‖fn(t) − fn+1(t)‖.

Thus

sup
t∈[0,1]

‖fn+1(t) − fn+2(t))‖ ≤ αn+1 sup
t∈[0,1]

‖f0(t) − f1(t))‖.

We have computed the induction step.
This implies that {fn} converges uniformly to a continuous function as n → ∞.

Using f for the limit, we have

‖fn(t) − f(t)‖ ≤
∞
∑

k=n

‖fk(t) − fk+1(t)‖

≤ αn

1 − α
sup

t∈[0,1]

‖f1(t) − f0(t)‖.

Choosing a computable real such that β ≥ supt∈[0,1]‖f1(t) − f0(t)‖, we have

sup
t∈[0,1]

‖fn(t) − f(t)‖ ≤ αnβ

1 − α
.

Therefore, {fn} is effectively uniformly convergent as n → ∞.

As an immediate consequence of Lemmas 4.1 and 4.2, we obtain the following.
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Theorem 4.1. Let T0, . . . , Tm−1 : Rq → Rq be computable contractions that satisfy

T1(Fix(T0)) = T0(Fix(Tm−1)), . . . , and Tm−1(Fix(T0)) = Tm−2(Fix(Tm−1)).

Then there exist a computable curve f : [0, 1] → Rq such that

f([0, 1]) = T0(f([0, 1])) ∪ · · · ∪ Tm−1(f([0, 1])).

Example 4.1. A Koch curve which is a self-similar set on R2 with respect to
contractions T0 and T1 defined by

T0(x) =

(

1/2 1/(2
√

3)

1/(2
√

3) −1/2

)

x,

T1(x) =

(

1/2 −1/(2
√

3)

−1/(2
√

3) −1/2

)

x +

(

1/2

1/(2
√

3)

)

,

is a computable curve.

5. Conclusion

A finite set of contractions on a Euclidean space construct a self-similar set.
If all of the contractions are computable, then the self-similar set with respect to
them is a recursive compact set. If the contractions additionally satisfy Hata’s
curve condition, then the self-similar curve with respect to the contractions is a
computable curve.
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