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This paper investigates the problem of reachable set bounding for discrete-time system with time-varying delay and bounded
disturbance inputs. Together with a new Lyapunov-Krasovskii functional, discrete Wirtinger-based inequality, and reciprocally
convex approach, sufficient conditions are derived to find an ellipsoid to bound the reachable sets of discrete-time delayed system.
The main advantage of this paper lies in two aspects: first, the initial state vectors are not necessarily zero; second, the obtained
criteria in this paper do not really require all the symmetric matrices involved in the employed Lyapunov-Krasovskii functional to
be positive definite. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed method.

1. Introduction

The reachable set of dynamic system is defined as a collection
of system state vectors in presence of all admissible input
disturbances. As is known to all, the phenomenon of distur-
bance inputs is usually unavoidable in engineering and prac-
tical systems because of data transformation, measurement
errors, linearisation approximations, and some unknown
disturbances. Therefore, the reachable set bounding for
dynamic systems with input disturbances is an important
and challenging research topic in robust control theory and
practical engineering. Then, applications of reachable set
bounding can be found in various fields such as peak-to-
peak minimization, aircraft collision avoidance, parameter
estimation, and constrained control design [1–3]. On the
other hand, time delay often occurs in various real-world
systems and the existence of it may lead to instability,
oscillation, or bad system performance [4–6]. Thus, stability
and control of time-delay systems plays an important role
in the field of engineering. As a result, many scholars have

devoted themselves to the study of time-delay systems [7–
18] and varieties of methods have been introduced to solve
the stability analysis and control synthesis of delayed systems,
such as delay-partitioning method [10, 11], reciprocally con-
vex approach [13], and the free-weighting matrices technique
[14].

In many practical applications, we often require to find a
bound of a set of all the states that are reachable from a given
set. Two definitions on forward and backward reachable sets
are introduced in [18–20]. Those notions have been widely
applied to state bounding observers, safety verification, and
model checking. Forward reachable set with regard to a given
initial set of a dynamic system is the set of all the states
starting from the given initial set. It should be pointed out that
reachable set defined in [21–25] is a special case of forward
reachable set when the given initial set contains only the ori-
gin point.Most of existing results about forward reachable set
bounding were reported for dynamic systems without time
delay. As for the reachable set bounding problem of time-
delay systems, it was firstly solved by Fridman and Shaked
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in [2] based on Lyapunov-Razumikhin approach. Then,
some excellent achievements on reachable set bounding for
dynamical systems have been proposed in the literature [21–
31]. By using an enlarging Lyapunov-Krasovskii functional
and delay-partitioning method, an improved condition was
provided in [21]. Zuo et al. introduced themaximal Lyapunov
functional method to deal with the problem of reachable
set bounding for linear systems in [22]. Subsequently, the
maximal Lyapunov functional approach has been adopted
to research the reachable set estimation for delayed neural
network [23]. In [25], the authors studied the problem of
reachable set estimation and synthesis for delayed systems
by using delay-decomposition technique and reciprocally
convex approach. Recently, the problem of reachable set
estimation for delayed singular systems was considered in
[31] based on Lyapunov method. In [27], new explicit delay-
independent conditions are obtained by utilizing a novel
method which does not involve the Lyapunov-Krasovskii
functional way. In [32], the authors presented a new approach
to obtain the smallest boxwhich bounds all reachable sets of a
class of nonlinear system. The problem of state bounding for
homogeneous positive nonlinear systems was studied in [33].
In this paper, we will further study the forward reachable set
bounding problem for delayed system.

It is worth noting that all the above-mentioned research
has been focused on continuous-time systems. However, with
the progress of computer-based computational techniques,
discrete-time systems play a considerable role in many
practical applications. Therefore, the stability and control
of discrete-time delayed systems is an important issue and
has been studied by many researchers [34–40]. Up to now,
there are few papers considering the reachable set estima-
tion of discrete-time systems with time-varying delay. In
[38], an ellipsoidal-like bounding of the reachable set for
discrete-time system with time-varying delay is shown by
using the delay-decomposition and the free-weightingmatrix
techniques. In [39], the problem of reachable set bounding
for discrete-time polytopic systems with multiple constant
delays was studied; delay-dependent conditions were derived
in the form of relaxed matrix inequalities. Compared with
the results in [38, 39], some less conservative conditions are
obtained in [40] by employing a novel Lyapunov-Krasovskii
functional combining with delay-decomposition technique
and reciprocally convex method. In [41], the reachable
set estimation of delayed discrete-time T-S fuzzy systems
was considered. The reachable set estimation problem for
discrete-time Markovian jump neural networks was firstly
investigated in [42]. However, there is still much room to
investigate the problem of forward reachable set bounding
for discrete-time systemwith time-varying delay, which is our
motivation.

In this paper, we concentrate on the forward reachable
set bounding problem for discrete-time system with time-
varying delay. The ellipsoidal reachable set estimation con-
ditions of discrete-time linear systems are obtained by using
discrete Wirtinger-based inequality and reciprocally convex
approach. The novelty of this paper is three aspects: first,
a relaxed Lyapunov-Krasovskii functional, which does not
require all the involved symmetric matrices to be positive

definite, is employed to solve the addressed problem; second,
the initial state vectors are not necessarily zero, which is
more general than the existing results [38, 39]; third, discrete
Wirtinger-based inequality is taken into account in this
paper to deal with the problem of reachable set bounding
for delayed discrete-time systems. Finally, two numerical
examples are provided to validate the effectiveness of the
proposed method.

Notations. Throughout this paper, 𝑅 > 0(𝑅 ⩾ 0, 𝑅 <0, 𝑅 ⩽ 0)means that thematrix𝑅 is positive definite (positive
semidefinite, negative definite, and negative semidefinite);
R𝑚×𝑛 is the set of𝑚×𝑛 real matrices; the superscripts −1 and𝑇 denote the inverse and transpose of amatrix, respectively;∗
denotes the symmetric block in symmetric matrix; 𝐼 denotes
the identity matrix with compatible dimensions; 𝑁 denotes
the set of natural number; andZ denotes the set of integers.

2. Problem Statement and Preliminaries

We consider the following discrete-time system with time-
varying delay:

𝑥 (𝑘 + 1) = 𝐴1𝑥 (𝑘) + 𝐴2𝑥 (𝑘 − 𝜏 (𝑘)) + 𝐵𝜔 (𝑘) ,
𝑥 (𝜃) = 𝜑 (𝜃) , 𝜃 ∈ {−𝜏𝑀, −𝜏𝑀 + 1, . . . , 0} , (1)

where 𝑥(𝑘) = [𝑥1(𝑘), 𝑥2(𝑘), . . . , 𝑥𝑛(𝑘)]𝑇 ∈ R𝑛 is the state
vector of the system, 𝐴1, 𝐴2, and 𝐵 are known constant
matrices with appropriate dimensions, 𝜏(𝑘) is the time-
varying delay and satisfies 0 < 𝜏𝑚 ≤ 𝜏(𝑘) ≤ 𝜏𝑀, and𝜔(𝑘) ∈ R𝑙

represents a disturbance which satisfies

𝜔𝑇 (𝑘) 𝜔 (𝑘) ≤ 𝜔2𝑑. (2)

𝜑(𝜃) is the initial condition function satisfying

𝜑𝑇 (𝜃) 𝜑 (𝜃) ≤ 𝜎1, 𝜃 ∈ {−𝜏𝑀, −𝜏𝑀 + 1, . . . , 0} . (3)

Define that 𝜂(𝑘) = 𝑥(𝑘 + 1) − 𝑥(𝑘), which satisfies

𝜂𝑇 (𝑘) 𝜂 (𝑘) ≤ 𝜎2, 𝑘 ∈ {−𝜏𝑀, −𝜏𝑀 + 1, . . . , 0} . (4)

In this paper, we denote reachable set of system (1) as

R = {𝑥 (𝑘) | 𝑥 (𝑘) , 𝜔 (𝑘) satisfy (1)–(4), 𝑘 ≥ 0} . (5)

Our aim is to find an ellipsoid to bound the reachable setR
of system (1).

In addition, we give some lemmas which will be used in
deriving our results.

Lemma 1. Let 𝑉(𝑘) be a positive-definite function with 𝜔(𝑘)
satisfying 𝜔𝑇(𝑘)𝜔(𝑘) ≤ 𝜔2𝑑; if there exists a scalar 0 < 𝛽 < 1,
such that

Δ𝑉 (𝑘) + (1 − 𝛽)𝑉 (𝑘) − 1 − 𝛽𝜔2𝑑 𝜔𝑇 (𝑘) 𝜔 (𝑘) ≤ 0, (6)

then, we have 𝑉(𝑘) ≤ max{1, 𝑉(0)}, ∀𝑘 ∈ 𝑁.
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Proof. From (6), we can get

𝑉 (𝑘 + 1) − 𝑉 (𝑘) + (1 − 𝛽)𝑉 (𝑘) − 1 − 𝛽𝜔2𝑑 𝜔𝑇 (𝑘) 𝜔 (𝑘)
≤ 0;

(7)

then, we have

𝑉 (𝑘 + 1) ≤ 𝛽𝑉 (𝑘) + 1 − 𝛽𝜔2𝑑 𝜔𝑇 (𝑘) 𝜔 (𝑘)
≤ 𝛽𝑉 (𝑘) + (1 − 𝛽)
≤ 𝛽2𝑉 (𝑘 − 1) + (1 − 𝛽2)
...
≤ 𝛽𝑘+1𝑉 (0) + (1 − 𝛽𝑘+1) ;

(8)

then, we can get

𝑉 (𝑘) ≤ 1 + 𝛽𝑘 (𝑉 (0) − 1) ≤ max {1, 𝑉 (0)} , ∀𝑘 ≥ 0. (9)

This completes the proof.

Lemma 2 (see [18]). For a given matrix 𝑌 > 0, and three
given nonnegative integers 𝑎, 𝑏, 𝑘 satisfying 𝑎 ≤ 𝑏 ≤ 𝑘, vector
function 𝑥(𝑖) : [𝑘 − 𝑏, 𝑘 − 𝑎] ∩Z → R𝑛, 𝜂(𝑖) = 𝑥(𝑖 + 1) − 𝑥(𝑖),
we denote

𝜛 (𝑘, 𝑎, 𝑏)
= {{{{{

1𝑏 − 𝑎 [2𝑘−𝑎−1∑
𝑖=𝑘−𝑏

𝑥 (𝑖) + 𝑥 (𝑘 − 𝑎) − 𝑥 (𝑘 − 𝑏)] , 𝑎 < 𝑏,
2𝑥 (𝑘 − 𝑎) , 𝑎 = 𝑏;

(10)

then, we have

− (𝑏 − 𝑎) 𝑘−𝑎−1∑
𝑖=𝑘−𝑏

𝜂𝑇 (𝑖) 𝑌𝜂 (𝑖)
≤ − [𝑥 (𝑘 − 𝑎) − 𝑥 (𝑘 − 𝑏)]𝑇 𝑌 [𝑥 (𝑘 − 𝑎) − 𝑥 (𝑘 − 𝑏)]

− 3Λ𝑇𝑌Λ,
(11)

where Λ = 𝑥(𝑘 − 𝑎) + 𝑥(𝑘 − 𝑏) − 𝜛(𝑘, 𝑎, 𝑏).
Lemma 3 (see [13]). Let 𝑓1, 𝑓2, . . . , 𝑓𝑛 : R𝑚 󳨃→ R

have positive values in an open subset 𝐷 and R𝑚; then, the
reciprocally convex combination of 𝑓𝑖 over𝐷 satisfies

min
{𝛼𝑖|𝛼𝑖>0∑𝑖 𝛼𝑖=1}

∑
𝑖

1𝛼𝑖𝑓𝑖 (𝑡) = ∑
𝑖

𝑓𝑖 (𝑡) +max
𝑔𝑖,𝑗(𝑡)

∑
𝑖 ̸=𝑗

𝑔𝑖𝑗 (𝑡) ,

subject to {𝑔𝑖,𝑗R𝑚 → R, 𝑔𝑗,𝑖 (𝑡) = 𝑔𝑖,𝑗 (𝑡) , [ 𝑓𝑖 (𝑡) 𝑔𝑖,𝑗 (𝑡)𝑔𝑗,𝑖 (𝑡) 𝑓𝑗 (𝑡) ] ≥ 0} .
(12)

3. Main Results

Before main results, we define block entry matrices as𝑒𝑖 ∈ R9𝑛×𝑛 (𝑖 = 1, 2, . . . , 9) (e.g., 𝑒5 = [0, 0, 0, 0, 𝐼, 0, 0, 0, 0]𝑇).
The other vectors are defined as

𝜅1 (𝑘) = 𝜛 (𝑘, 0, 𝜏𝑚) =
{{{{{{{{{

1𝜏𝑚 [
[2 𝑘−1∑
𝑖=𝑘−𝜏𝑚

𝑥 (𝑖) + 𝑥 (𝑘) − 𝑥 (𝑘 − 𝜏𝑚)]] , 𝜏𝑚 > 0,
2𝑥 (𝑘) , 𝜏𝑚 = 0,

𝜅2 (𝑘) = 𝜛 (𝑘, 𝜏𝑚, 𝜏 (𝑘)) =
{{{{{{{{{

1𝜏 (𝑘) − 𝜏𝑚 [2 𝑘−𝜏𝑚−1∑
𝑖=𝑘−𝜏(𝑘)

𝑥 (𝑖) + 𝑥 (𝑘 − 𝜏𝑚) − 𝑥 (𝑘 − 𝜏 (𝑘))] , 𝜏𝑚 < 𝜏 (𝑘) ,
2𝑥 (𝑘 − 𝜏𝑚) , 𝜏𝑚 = 𝜏 (𝑘) ,

𝜅3 (𝑘) = 𝜛 (𝑘, 𝜏 (𝑘) , 𝜏𝑀) =
{{{{{{{{{

1𝜏𝑀 − 𝜏 (𝑘) [[2𝑘−𝜏(𝑘)−1∑
𝑖=𝑘−𝜏𝑀

𝑥 (𝑖) + 𝑥 (𝑘 − 𝜏 (𝑘)) − 𝑥 (𝑘 − 𝜏𝑀)]] , 𝜏 (𝑘) < 𝜏𝑀,
2𝑥 (𝑘 − 𝜏 (𝑘)) , 𝜏𝑀 = 𝜏 (𝑘) .

(13)
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Theorem 4. For given scalar 0 < 𝛽 < 1, if there exist positive
scalars 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, symmetric matrices 𝑃1 ∈ R𝑛×𝑛, 𝑄1 ∈
R𝑛×𝑛, 𝑄2 ∈ R𝑛×𝑛, 𝑍1 ∈ R𝑛×𝑛 > 0, 𝑍2 ∈ R𝑛×𝑛 > 0, 𝑊 ∈
R𝑛×𝑛 > 0, and matrices 𝑆 ∈ R2𝑛×2𝑛, 𝑀1 ∈ R𝑛×𝑛, 𝑀2 ∈ R𝑛×𝑛,𝑀3 ∈ R𝑛×𝑛, such that

Φ1 = [𝑍2 𝑆
∗ 𝑍2] > 0, (14)

Ω1 > 0,
Ω2 > 0, (15)

𝑃1 ≤ 𝜆1𝐼,
𝑄1 ≤ 𝜆2𝐼,
𝑄2 ≤ 𝜆3𝐼,
0 < 𝑍1 ≤ 𝜆4𝐼,
0 < 𝑍2 ≤ 𝜆5𝐼,

(16)

𝜇1𝜎1 + 𝜇2𝜎2 ≤ 1, (17)

Ξ = Ξ1 + Ξ2 < 0, (18)

then, the reachable set of system (1) is contained in the following
ellipsoid:

𝜀 (𝑊) = {𝜉 ∈ R
𝑛 | 𝜉𝑇𝑊𝜉 ≤ 1} , (19)

where

Ω1 = [𝛿𝑃1 + 𝑍1 − 𝛿𝑊 −𝑍1∗ 𝑄1 + 𝑄2 + 𝑍1] ,

Ω2 = [[[
[
𝛿𝑃1 + 𝜏𝑀𝑚𝜏𝑀 𝑍2 − 𝛿𝑊 −𝜏𝑀𝑚𝜏𝑀 𝑍2

∗ 𝑄2 + 𝜏𝑀𝑚𝜏𝑀 𝑍2
]]]
]
,

Ξ1 = (𝑒1 + 𝑒8) 𝑃1 (𝑒1 + 𝑒8)𝑇 − 𝛽𝑒1𝑃1𝑒1 + 𝑒1𝑄1𝑒𝑇1
+ 𝑒1𝑄2𝑒𝑇1 − 𝛽𝜏𝑚𝑒2𝑄1𝑒𝑇2 − 𝛽𝜏𝑀𝑒4𝑄2𝑒𝑇4 + 𝜏2𝑚𝑒8𝑍𝑇1 𝑒8
+ 𝜏2𝑀𝑚𝑒8𝑍𝑇2 𝑒8 − 1𝜔2𝑑 𝑒9𝑒𝑇9 − 𝛽𝜏𝑚Λ 1 [𝑍1 0

0 3𝑍1]Λ𝑇1
− 𝛽𝜏𝑀Λ 2 [𝑍2 𝑆

∗ 𝑍2]Λ𝑇2,
Λ 1 = [𝑒1 − 𝑒2, 𝑒1 + 𝑒2 − 𝑒5] ,
Λ 2 = [𝑒2 − 𝑒3, 𝑒2 + 𝑒3 − 𝑒6, 𝑒3 − 𝑒4, 𝑒3 + 𝑒4 − 𝑒7] ,
Ξ2 = 2 [𝑒1𝑀1 + 𝑒3𝑀2 + 𝑒8𝑀3]

⋅ [𝑒1 (𝐴 − 𝐼)𝑇 + 𝑒3𝐵𝑇 − 𝑒8]𝑇 ,

𝑍2 = [𝑍2 0
0 3𝑍2] ,

𝜇1 = 󵄨󵄨󵄨󵄨𝜆1󵄨󵄨󵄨󵄨 + 𝜏𝑚 󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨 + 𝜏𝑀 󵄨󵄨󵄨󵄨𝜆3󵄨󵄨󵄨󵄨 ,
𝜇2 = 𝜏𝑚 (𝜏𝑚 − 1)2 𝜆4 + 𝛽𝜏𝑚 𝜏𝑀𝑚 (𝜏𝑀 + 𝜏𝑚 + 1)2 𝜆5,
𝜏𝑀𝑚 = 𝜏𝑀 − 𝜏𝑚,
𝛿 = 1 − 𝛽1 − 𝛽𝜏𝑀 .

(20)

Proof. We construct the following Lyapunov-Krasovskii
functional for system (1):

𝑉 (𝑘) = 3∑
𝑖=1

𝑉𝑖 (𝑘) , (21)

where

𝑉1 (𝑘) = 𝑥𝑇 (𝑘) 𝑃1𝑥 (𝑘) ,
𝑉2 (𝑘) = 𝑘−1∑

𝑖=𝑘−𝜏𝑚

𝛽𝑘−1−𝑖𝑥𝑇 (𝑖) 𝑄1𝑥 (𝑖)

+ 𝑘−1∑
𝑖=𝑘−𝜏𝑀

𝛽𝑘−1−𝑖𝑥𝑇 (𝑖) 𝑄2𝑥 (𝑖) ,

𝑉3 (𝑘) = 𝜏𝑚 −1∑
𝑗=−𝜏𝑚

𝑘−1∑
𝑖=𝑘+𝑗

𝛽𝑘−1−𝑖𝜂𝑇 (𝑖) 𝑍1𝜂 (𝑖)

+ 𝜏𝑀𝑚−𝜏𝑚−1∑
𝑗=−𝜏𝑀

𝑘−1∑
𝑖=𝑘+𝑗

𝛽𝑘−1−𝑖𝜂𝑇 (𝑖) 𝑍2𝜂 (𝑖) .

(22)

First of all, the functional 𝑉(𝑘) is required to be positive
definite. By using Jensen inequality [37], the following can be
obtained:

𝜏𝑚 −1∑
𝑗=−𝜏𝑚

𝑘−1∑
𝑖=𝑘+𝑗

𝛽𝑘−1−𝑖𝜂𝑇 (𝑖) 𝑍1𝜂 (𝑖) ≥ 𝜏𝑚 −1∑
𝑗=−𝜏𝑚

𝛽−𝑗−1 1−𝑗
⋅ ( 𝑘−1∑
𝑖=𝑘+𝑗

𝜂 (𝑖))
𝑇

𝑍1( 𝑘−1∑
𝑖=𝑘+𝑗

𝜂𝑇 (𝑖))

≥ −1∑
𝑗=−𝜏𝑚

𝛽−𝑗−1 ( 𝑥 (𝑘)
𝑥 (𝑘 + 𝑗))

𝑇

⋅ [𝑍1 −𝑍1∗ 𝑍1 ]( 𝑥 (𝑘)
𝑥 (𝑘 + 𝑗))

≥ 𝑘−1∑
𝑖=𝑘−𝜏𝑚

𝛽𝑘−𝑖−1 ( 𝑥 (𝑘)
𝑥 (𝑖) )𝑇 [𝑍1 −𝑍1∗ 𝑍1 ](𝑥 (𝑘)

𝑥 (𝑖))
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𝜏𝑀𝑚−𝜏𝑚−1∑
𝑗=−𝜏𝑀

𝑘−1∑
𝑖=𝑘+𝑗

𝛽𝑘−1−𝑖𝜂𝑇 (𝑖) 𝑍2𝜂 (𝑖)

≥ 𝜏𝑀𝑚−𝜏𝑚−1∑
𝑗=−𝜏𝑀

𝛽−𝑗−1 1−𝑗 ( 𝑘−1∑
𝑖=𝑘+𝑗

𝜂 (𝑖))
𝑇

⋅ 𝑍2( 𝑘−1∑
𝑖=𝑘+𝑗

𝜂𝑇 (𝑖)) ≥ 𝜏𝑀𝑚𝜏𝑀
⋅ −𝜏𝑚−1∑
𝑗=−𝜏𝑀

𝛽−𝑗−1 ( 𝑥 (𝑘)
𝑥 (𝑘 + 𝑗))

𝑇 [𝑍2 −𝑍2∗ 𝑍2 ]( 𝑥 (𝑘)
𝑥 (𝑘 + 𝑗))

≥ 𝜏𝑀𝑚𝜏𝑀
𝑘−𝜏𝑚−1∑
𝑖=𝑘−𝜏𝑀

𝛽𝑘−𝑖−1 ( 𝑥 (𝑘)
𝑥 (𝑖) )𝑇

⋅ [𝑍2 −𝑍2∗ 𝑍2 ](𝑥 (𝑘)
𝑥 (𝑖)) .

(23)
Noticing that

𝑘−1∑
𝑖=𝑘−𝜏𝑀

𝛽𝑘−𝑖−1 = −1∑
𝑖=−𝜏𝑀

𝛽−𝑖−1 = 1 − 𝛽𝜏𝑀1 − 𝛽 = 1𝛿 , (24)

we have𝑉1 (𝑘)
= 𝛿𝑥𝑇 (𝑘) 𝑃1𝑥 (𝑘)(𝑘−𝜏𝑚−1∑

𝑖=𝑘−𝜏𝑀

𝛽𝑘−𝑖−1 + 𝑘−1∑
𝑖=𝑘−𝜏𝑚

𝛽𝑘−𝑖−1) ,
𝑉2 (𝑘)

= 𝑘−1∑
𝑖=𝑘−𝜏𝑚

𝛽𝑘−1−𝑖𝑥𝑇 (𝑖) (𝑄1 + 𝑄2) 𝑥 (𝑖)

+ 𝑘−𝜏𝑚−1∑
𝑖=𝑘−𝜏𝑀

𝛽𝑘−1−𝑖𝑥𝑇 (𝑖) 𝑄2𝑥 (𝑖) .

(25)

It follows from (23)–(25) that

𝑉 (𝑘) ≥ 𝑘−1∑
𝑖=𝑘−𝜏𝑚

𝛽𝑘−𝑖−1 (𝑥 (𝑘)
𝑥 (𝑖))

𝑇 Υ1 (𝑥 (𝑘)
𝑥 (𝑖))

+ 𝑘−𝜏𝑚−1∑
𝑖=𝑘−𝜏𝑀

𝛽𝑘−𝑖−1 (𝑥 (𝑘)
𝑥 (𝑖))

𝑇 Υ2 (𝑥 (𝑘)
𝑥 (𝑖)) ,

(26)

where

Υ1 = [𝛿𝑃1 + 𝑍1 −𝑍1∗ 𝑄1 + 𝑄2 + 𝑍1] ,

Υ2 = [[[
[
𝛿𝑃1 + 𝜏𝑀𝑚𝜏𝑀 𝑍2 −𝜏𝑀𝑚𝜏𝑀 𝑍2

∗ 𝑄2 + 𝜏𝑀𝑚𝜏𝑀 𝑍2
]]]
]
.

(27)

From condition (15), we have

Υ𝑖 > [𝛿𝑊 0
0 0] , 𝑖 = 1, 2. (28)

Together with (26)–(28), we can get

𝑉 (𝑘) ≥ 𝛿𝑥𝑇 (𝑘)𝑊𝑥 (𝑘) 𝑘−1∑
𝑖=𝑘−𝜏𝑀

𝛽𝑘−𝑖−1 = 𝑥𝑇 (𝑘)𝑊𝑥 (𝑘)
> 0.

(29)

Then, taking the forward difference of 𝑉(𝑘) with respect to
(1), we can get

Δ𝑉1 (𝑘) = (𝑥 (𝑘) + 𝜂 (𝑘))𝑇 𝑃1 (𝑥 (𝑘) + 𝜂 (𝑘))
− 𝛽𝑥𝑇 (𝑘) 𝑃1𝑥 (𝑘) − (1 − 𝛽)𝑉1 (𝑘) = (1 − 𝛽) 𝑥𝑇 (𝑘)
⋅ 𝑃1𝑥 (𝑘) + 2𝑥𝑇 (𝑘) 𝑃1𝜂 (𝑘) + 𝜂𝑇 (𝑘) 𝑃1𝜂 (𝑘) − (1
− 𝛽)𝑉1 (𝑘)

Δ𝑉2 (𝑘) = 𝑘∑
𝑖=𝑘−𝜏𝑚+1

𝛽𝑘−𝑖𝑥𝑇 (𝑖) 𝑄1𝑥 (𝑖) − 𝑘−1∑
𝑖=𝑘−𝜏𝑚

𝛽𝑘−𝑖𝑥𝑇 (𝑖)

⋅ 𝑄1𝑥 (𝑖) + 𝑘∑
𝑖=𝑘−𝜏𝑀+1

𝛽𝑘−𝑖𝑥𝑇 (𝑖) 𝑄2𝑥 (𝑖)

− 𝑘−1∑
𝑖=𝑘−𝜏𝑀

𝛽𝑘−𝑖𝑥𝑇 (𝑖) 𝑄2𝑥 (𝑖) − (1 − 𝛽)

⋅ 𝑘−1∑
𝑖=𝑘−𝜏𝑚

𝛽𝑘−𝑖−1𝑥𝑇 (𝑖) 𝑄1𝑥 (𝑖) − (1 − 𝛽)

⋅ 𝑘−1∑
𝑖=𝑘−𝜏𝑀

𝛽𝑘−𝑖−1𝑥𝑇 (𝑖) 𝑄2𝑥 (𝑖) = 𝑥𝑇 (𝑘)𝑄1𝑥 (𝑘)
+ 𝑥𝑇 (𝑘) 𝑄2𝑥 (𝑘) − 𝛽𝜏𝑚𝑥𝑇 (𝑘 − 𝜏𝑚) 𝑄1𝑥 (𝑘 − 𝜏𝑚)
− 𝛽𝜏𝑀𝑥𝑇 (𝑘 − 𝜏𝑀) 𝑄2𝑥 (𝑘 − 𝜏𝑀) − (1 − 𝛽)𝑉2 (𝑘) ,

Δ𝑉3 (𝑘) = 𝜏𝑚 −1∑
𝑖=−𝜏𝑚

[𝜂𝑇 (𝑘) 𝑍1𝜂 (𝑘)
− 𝛽−𝑖𝜂𝑇 (𝑘 + 𝑖) 𝑍1𝜂 (𝑘 + 𝑖)]
+ 𝜏𝑀𝑚−𝜏𝑚−1∑

𝑖=−𝜏𝑀

[𝜂𝑇 (𝑘) 𝑍2𝜂 (𝑘)
− 𝛽−𝑖𝜂 (𝑘 + 𝑖) 𝑍2𝜂 (𝑘 + 𝑖)] − (1 − 𝛽)𝑉3 (𝑘)
≤ 𝜂𝑇 (𝑘) (𝜏2𝑚𝑍1 + 𝜏2𝑀𝑚𝑍2) 𝜂 (𝑘)
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− 𝜏𝑚𝛽𝜏𝑚 𝑘−1∑
𝑖=𝑘−𝜏𝑚

𝜂𝑇 (𝑖) 𝑍1𝜂 (𝑖) − 𝜏𝑀𝑚𝛽𝜏𝑀𝑘−𝜏𝑚−1∑
𝑖=𝑘−𝜏𝑀

𝜂𝑇 (𝑖)
⋅ 𝑍2𝜂 (𝑖) − (1 − 𝛽)𝑉3 (𝑘) .

(30)

Based on Lemma 2, we have

− 𝜏𝑚 𝑘−1∑
𝑖=𝑘−𝜏𝑚

𝜂𝑇 (𝑖) 𝑍1𝜂 (𝑖) ≤ − [𝑥 (𝑘) − 𝑥 (𝑘 − 𝜏𝑚)]𝑇
⋅ 𝑍1 [𝑥 (𝑘) − 𝑥 (𝑘 − 𝜏𝑚)]
− 3 [𝑥 (𝑘) + 𝑥 (𝑘 − 𝜏𝑚) − 𝜅1 (𝑘)]𝑇
⋅ 𝑍1 [𝑥 (𝑘) + 𝑥 (𝑘 − 𝜏𝑚) − 𝜅1 (𝑘)] .

(31)

When ℎ𝑚 < 𝜏(𝑘) < ℎ𝑀, by using Lemma 2, we obtain

− (𝜏𝑀 − 𝜏𝑚) 𝑘−𝜏𝑚−1∑
𝑖=𝑘−𝜏𝑀

𝜂𝑇 (𝑖) 𝑍2𝜂 (𝑖) = − (𝜏𝑀 − 𝜏𝑚)

⋅ 𝑘−𝜏𝑚−1∑
𝑖=𝑘−𝜏(𝑘)

𝜂𝑇 (𝑖) 𝑍2𝜂 (𝑖) − (𝜏𝑀 − 𝜏𝑚)

⋅ 𝑘−𝜏(𝑘)−1∑
𝑖=𝑘−𝜏𝑀

𝜂𝑇 (𝑖) 𝑍2𝜂 (𝑖)
≤ − 𝜏𝑀𝑚𝜏 (𝑘) − 𝜏𝑚 [𝜋𝑇1 (𝑘) 𝑍2𝜋1 (𝑘)
+ 3𝜋𝑇2 (𝑘) 𝑍2𝜋2 (𝑘)] − 𝜏𝑀𝑚𝜏𝑀 − 𝜏 (𝑘) [𝜋𝑇3 (𝑘) 𝑍2𝜋3 (𝑘)
+ 3𝜋𝑇4 (𝑘) 𝑍2𝜋4 (𝑘)] ,

(32)

where 𝜋1(𝑘) = 𝑥(𝑘 − 𝜏𝑚) − 𝑥(𝑘 − 𝜏(𝑘)), 𝜋2(𝑘) = 𝑥(𝑘 − 𝜏𝑚) +𝑥(𝑘 − 𝜏(𝑘)) − 𝜅2(𝑘), 𝜋3(𝑘) = 𝑥(𝑘 − 𝜏(𝑘)) − 𝑥(𝑘 − 𝜏𝑀), and𝜋4(𝑘) = 𝑥(𝑘 − 𝜏(𝑘)) + 𝑥(𝑘 − 𝜏𝑀) − 𝜅3(𝑘).
Noting (𝜏(𝑘) − 𝜏𝑚)/𝜏𝑀𝑚 + (𝜏𝑀 − 𝜏(𝑘))/𝜏𝑀𝑚 = 1 and[ 𝑍2 𝑆
∗ 𝑍2

] > 0 and using Lemma 3, we have

− (𝜏𝑀 − 𝜏𝑚) 𝑘−𝜏𝑚−1∑
𝑖=𝑘−𝜏𝑀

𝜂𝑇 (𝑘) 𝑍2𝜂 (𝑘)

≤ −𝛼𝑇 (𝑘) [𝑍2 𝑆
∗ 𝑍2]𝛼 (𝑘) ,

(33)

where 𝑍2 = [ 𝑍2 00 3𝑍2 ] and 𝛼𝑇(𝑘) = [𝜋𝑇1 (𝑘), 𝜋𝑇2 (𝑘), 𝜋𝑇3 (𝑘),𝜋𝑇4 (𝑘)].
If 𝜏(𝑘) = 𝜏𝑚, we have 𝑥(𝑘 − 𝜏𝑚) − 𝑥(𝑘 − 𝜏(𝑘)) = 0, 𝑥(𝑘 −𝜏𝑚) + 𝑥(𝑘 − 𝜏(𝑘)) − 𝜛(𝑘, 𝜏𝑚, 𝜏(𝑘)) = 0; if 𝜏(𝑘) = 𝜏𝑀, we also

have 𝑥(𝑘 − 𝜏(𝑘)) − 𝑥(𝑘 − 𝜏𝑀) = 0, 𝑥(𝑘 − 𝜏(𝑘)) + 𝑥(𝑘 − 𝜏𝑀) −𝜛(𝑘, 𝜏(𝑘), 𝜏𝑀) = 0. Accordingly, when 𝜏(𝑘) = 𝜏𝑚 or 𝜏(𝑘) =𝜏𝑀, (33) still holds.

Thus, we obtain

Δ𝑉3 (𝑘) ≤ 𝜂𝑇 (𝑘) (𝜏2𝑚𝑍1 + (𝜏𝑀𝑚)2 𝑍2) 𝜂 (𝑘)
− 𝛽𝜏𝑚 [𝑥 (𝑘) − 𝑥 (𝑘 − 𝜏𝑚)]𝑇
⋅ 𝑍1 [𝑥 (𝑘) − 𝑥 (𝑘 − 𝜏𝑚)]

− 3𝛽𝜏𝑚 [𝑥 (𝑘) + 𝑥 (𝑘 − 𝜏𝑚) − 𝜅1 (𝑘)]𝑇
⋅ 𝑍1 [𝑥 (𝑘) + 𝑥 (𝑘 − 𝜏𝑚) − 𝜅1 (𝑘)]

− 𝛽𝜏𝑀𝛼𝑇 (𝑘) [𝑍2 𝑆
∗ 𝑍2]𝛼 (𝑘) − (1 − 𝛽)

⋅ 𝑉3 (𝑘) .

(34)

From (30)–(34), we have

Δ𝑉 (𝑘) + (1 − 𝛽)𝑉 (𝑘) − (1 − 𝛽) 𝜔𝑇 (𝑘) 𝜔 (𝑘)𝜔𝑑2
≤ 𝜁𝑇 (𝑘) Ξ1𝜁 (𝑘) ,

(35)

where 𝜁𝑇(𝑘) = [𝑥𝑇(𝑘), 𝑥𝑇(𝑘 − 𝜏𝑚), 𝑥𝑇(𝑘 − 𝜏(𝑘)), 𝑥𝑇(𝑘 −𝜏𝑀), 𝜅𝑇1 (𝑘), 𝜅𝑇2 (𝑘), 𝜅𝑇3 (𝑘), 𝜂𝑇(𝑘), 𝜔𝑇(𝑘)].
For any matrices 𝑀1,𝑀2,𝑀3 with appropriate dimen-

sions, we have

2 [𝑥𝑇 (𝑘)𝑀1 + 𝑥𝑇 (𝑘 − 𝜏 (𝑘))𝑀2 + 𝜂𝑇 (𝑘)𝑀3]
⋅ [(𝐴1 − 𝐼) 𝑥 (𝑘) + 𝐴2𝑥 (𝑘 − 𝜏 (𝑘)) + 𝐵𝜔 (𝑘)
− 𝜂 (𝑘)] = 𝜁𝑇 (𝑘) Ξ2𝜁 (𝑘) = 0.

(36)

From (35)-(36), we can get

Δ𝑉 (𝑘) + (1 − 𝛽)𝑉 (𝑘) − (1 − 𝛽) 𝜔𝑇 (𝑘) 𝜔 (𝑘)𝜔𝑑2
≤ 𝜁𝑇 (𝑘) (Ξ1 + Ξ2) 𝜁 (𝑘) .

(37)

Noting that Ξ = Ξ1 + Ξ2 < 0, we obtain
Δ𝑉 (𝑘) + (1 − 𝛽)𝑉 (𝑘) − (1 − 𝛽) 𝜔𝑇 (𝑘) 𝜔 (𝑘)𝜔𝑑2 ≤ 0. (38)

Furthermore, we describe the initial value of Lyapunov
functional as

𝑉 (0) = 𝑥𝑇 (0) 𝑃1𝑥 (0) + −1∑
𝑖=−𝜏𝑚

𝛽−1−𝑖𝑥𝑇 (𝑖) 𝑄1𝑥 (𝑖)

+ −1∑
𝑖=−𝜏𝑀

𝛽−1−𝑖𝑥𝑇 (𝑖) 𝑄2𝑥 (𝑖)

+ −1∑
𝑗=−𝜏𝑚

−1∑
𝑖=𝑗

𝛽−1−𝑖𝜂𝑇 (𝑖) 𝑍1𝜂 (𝑖)
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+ −𝜏𝑚−1∑
𝑗=−𝜏𝑀

−1∑
𝑖=𝑗

𝛽−1−𝑖𝜂𝑇 (𝑖) 𝑍2𝜂 (𝑖) ≤ 󵄨󵄨󵄨󵄨𝜆1󵄨󵄨󵄨󵄨 𝑥𝑇 (0) 𝑥 (0)

+ 󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨 −1∑
𝑖=−𝜏𝑚

𝑥𝑇 (𝑖) 𝑥 (𝑖) + 󵄨󵄨󵄨󵄨𝜆3󵄨󵄨󵄨󵄨 −1∑
𝑖=−𝜏𝑀

𝑥𝑇 (𝑖) 𝑥 (𝑖)

+ 𝜆4 −1∑
𝑗=−𝜏𝑚

−1∑
𝑖=𝑗

𝜂𝑇 (𝑖) 𝜂 (𝑖) + 𝛽ℎ𝑚𝜆5−ℎ𝑚−1∑
𝑗=−𝜏𝑀

−1∑
𝑖=𝑗

𝜂𝑇 (𝑖) 𝜂 (𝑖)
= (󵄨󵄨󵄨󵄨𝜆1󵄨󵄨󵄨󵄨 + 𝜏𝑚 󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨 + 𝜏𝑀 󵄨󵄨󵄨󵄨𝜆3󵄨󵄨󵄨󵄨) 𝜎1 + (𝜏𝑚 (𝜏𝑚 − 1)2 𝜆4
+ 𝛽𝜏𝑚 (𝜏𝑀 − 𝜏𝑚) (𝜏𝑀 + 𝜏𝑚 + 1)2 𝜆5)𝜎2 = 𝜇1𝜎1
+ 𝜇2𝜎2.

(39)
By condition (17) and Lemma 1, we have 𝑉(𝑘) ≤ 1. Then,

together with (15), it is implied that 𝑥𝑇(𝑘)𝑊𝑥(𝑘) ≤ 1. Thus,
this means that the reachable set of system (1) is contained in
the ellipsoid defined by (19). This completes the proof.

Remark 5. The difficulty of this paper is how to han-
dle the term ∑−1𝑗=−𝜏𝑚 ∑𝑘−1𝑖=𝑘+𝑗 𝜂𝑇(𝑖)𝑍1𝜂(𝑖) and the term
∑−𝜏𝑚−1𝑗=−𝜏𝑀 ∑𝑘−1𝑖=𝑘+𝑗 𝜂𝑇(𝑖)𝑍2𝜂(𝑖). In this paper, we using dis-
crete Wirtinger-based inequality instead of discrete
Jensen inequality [38–40] to deal with the term∑−1𝑗=−𝜏𝑚 ∑𝑘−1𝑖=𝑘+𝑗 𝜂𝑇(𝑖)𝑍1𝜂(𝑖). Then, by using reciprocally
convex approach and discrete Wirtinger-based inequality,
the new inequality (33) is introduced to deal with the term∑−𝜏𝑚−1𝑗=−𝜏𝑀 ∑𝑘−1𝑖=𝑘+𝑗 𝜂𝑇(𝑖)𝑍2𝜂(𝑖).
Remark 6. It is worth pointing out that our results are
more relaxed and general compared with the results in [38],
because the initial condition is not required to be zero in
system (1). In the case where the initial set contains only the
origin point, that is, 𝜎1 = 𝜎2 = 0, it is easy to get 𝑉(0) = 0
without needing (17). Therefore, we can obtain reachable set
bounding for discrete-time system with time-varying delay
and it is stated in the following theorem.

Theorem 7. For given scalars 0 < 𝛽 < 1, if there exist
symmetric matrices 𝑃1 ∈ R𝑛×𝑛, 𝑄1 ∈ R𝑛×𝑛, 𝑄2 ∈ R𝑛×𝑛,𝑍1 ∈ R𝑛×𝑛 > 0, 𝑍2 ∈ R𝑛×𝑛 > 0, 𝑊 ∈ R𝑛×𝑛 > 0 and matrices𝑆 ∈ R2𝑛×2𝑛,𝑀1 ∈ R𝑛×𝑛,𝑀2 ∈ R𝑛×𝑛,𝑀3 ∈ R𝑛×𝑛, such that

Φ1 = [𝑍2 𝑆
∗ 𝑍2] > 0,

Ω1 > 0,
Ω2 > 0,
Ξ = Ξ1 + Ξ2 < 0,

(40)

then, the reachable set of system (1) is contained in the following
ellipsoid:

𝜀 (𝑊) = {𝜉 ∈ R
𝑛 | 𝜉𝑇𝑊𝜉 ≤ 1} , (41)

where Ξ1, Ξ2, Ω1, Ω2 are defined in Theorem 4.

Remark 8. Traditionally, it was always assumed that each
of the involved symmetric matrices must be positive, which
ensured that the corresponding Lyapunov-Krasovskii func-
tional would be positive, while, in this paper, we relaxed these
conditions. Particularly, we established a novel Lyapunov-
Krasovskii functional that the involved matrices such as 𝑃,𝑄1, and 𝑄2 may be nonpositive.

Remark 9. The difficulty of this method lies in how to prove
that the relevant Lyapunov-Krasovskii functional 𝑉(𝑘) must
be positive definite. In order to overcome this difficulty, we
take full advantage of Jensen’s inequality; then, one can obtain
the conditions (15), which ensure 𝑉(𝑘) ≥ 𝑥𝑇(𝑘)𝑊𝑥(𝑘) > 0. If
the methods in [38] are followed, all the involved symmetric
matrices in Lyapunov-Krasovskii functional being positive
definite implies that 𝑉(𝑘) ≥ 𝑥𝑇(𝑘)𝑃𝑥(𝑘) > 0. We can easily
obtain the following corollaries.

Corollary 10. For given scalars 0 < 𝛽 < 1, if there exist
positive scalars 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, symmetric matrices 𝑃1 ∈
R𝑛×𝑛 > 0, 𝑄1 ∈ R𝑛×𝑛 > 0, 𝑄2 ∈ R𝑛×𝑛 > 0, 𝑍1 ∈ R𝑛×𝑛 > 0,𝑍2 ∈ R𝑛×𝑛 > 0, and matrices 𝑆 ∈ R2𝑛×2𝑛, 𝑀1 ∈ R𝑛×𝑛,𝑀2 ∈ R𝑛×𝑛,𝑀3 ∈ R𝑛×𝑛, such that

Φ1 = [𝑍2 𝑆
∗ 𝑍2] > 0,

𝑃1 ≤ 𝜆1𝐼,
𝑄1 ≤ 𝜆2𝐼,
𝑄2 ≤ 𝜆3𝐼,
0 < 𝑍1 ≤ 𝜆4𝐼,
0 < 𝑍2 ≤ 𝜆5𝐼,

𝜇1𝜎1 + 𝜇2𝜎2 ≤ 1,
Ξ = Ξ1 + Ξ2 < 0,

(42)

then, the reachable set of system (1) is contained in the following
ellipsoid:

𝜀 (𝑃1) = {𝜉 ∈ R
𝑛 | 𝜉𝑇𝑃1𝜉 ≤ 1} , (43)

where Ξ1, Ξ2, 𝜇1, 𝜇2 are defined in Theorem 4.

Corollary 11. For given scalars 0 < 𝛽 < 1, if there exist
symmetric matrices 𝑃1 ∈ R𝑛×𝑛 > 0, 𝑄1 ∈ R𝑛×𝑛 > 0,𝑄2 ∈ R𝑛×𝑛 > 0, 𝑍1 ∈ R𝑛×𝑛 > 0, 𝑍2 ∈ R𝑛×𝑛 > 0, and matrices𝑆 ∈ R2𝑛×2𝑛,𝑀1 ∈ R𝑛×𝑛,𝑀2 ∈ R𝑛×𝑛,𝑀3 ∈ R𝑛×𝑛, such that

Φ1 = [𝑍2 𝑆
∗ 𝑍2] > 0,

Ξ = Ξ1 + Ξ2 < 0,
(44)
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then, the reachable set of system (1) is contained in the following
ellipsoid:

𝜀 (𝑃1) = {𝜉 ∈ R
𝑛 | 𝜉𝑇𝑃1𝜉 ≤ 1} , (45)

where Ξ1, Ξ2 are defined in Theorem 4.

Remark 12. To get the smallest possible ellipsoid with the
shortest major axis, we consider the matrix 𝑊 as a decision
variable and satisfying 0 < 𝛾𝐼 ≤ 𝑊, which is equivalent to

[−𝛾𝐼 𝐼
𝐼 −𝑊] ≤ 0, (46)

where 𝛾 = 1/𝛾. Then the smallest possible ellipsoid can be
obtained when 𝛿 is minimum.

Remark 13. In order to solve matrix inequalities (14)–(18)
with 6 parameters 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, and 𝛽, we first simplify
them into linear matrix inequalities (LMIs). For example,
matrix inequality 𝑃1 ≤ 𝜆1 is represented as linear matrix
inequality𝑃1 ≤ 𝑃̃1, where 𝑃̃1 = diag{𝜆1, 𝜆1, . . . , 𝜆1}. Similarly,
matrix inequalities (16) are also represented as LMIs. Then,
by fixing parameter 𝛽, matrix inequalities (15), (17), and (18)
are reduced to LMIs. Thus, to compute the smallest bound
of a reachable set for discrete-time systems (1), we solve the
optimization problem for a parameter 𝛾 > 0:

min 𝛾 (𝛾 = 1𝛾)
s.t. {{{

(𝑎) 𝛾𝐼 ≤ 𝑊
(𝑏) (14)–(18).

(47)

4. Numerical Examples

In this section, we present two examples to demonstrate the
effectiveness of our results.

Example 14. Consider the discrete-time system (1) with the
following parameters:

𝐴1 = [ 0.8 −0.01
−0.5 0.09 ] ,

𝐴2 = [−0.02 0
−0.1 −0.01] ,

𝐵 = [0.20.1] ,
(48)

and 𝜔𝑑 = 0.1 and 𝛿1 = 𝛿2 = 0. The time-varying delay
satisfied 2 ≤ 𝜏(𝑘) ≤ 6, by applying Theorem 7 with the
Matlab LMI tool box, the minimal 𝛾 = 2.2594 is obtained

when 𝛽 = 0.7, and some of the obtained decision variables
are

𝑊 = [1.3013 0.2415
0.2415 0.5105] ,

𝑄1 = [−0.2262 −0.0527
−0.0527 0.2064 ] ,

𝑄2 = [ 0.2974 −0.0665
−0.0665 0.6575 ] ,

𝑍1 = [ 0.8662 −0.1165
−0.1165 0.1029 ] ,

𝑍2 = [ 0.6042 −0.0819
−0.0819 0.1321 ] ,

𝑆11 = [0.2372 −0.0351
0.0403 −0.0927] ,

𝑆12 = [ 0.0118 0.0006
−0.0023 0.0029] ,

𝑆21 = [−0.0286 0.0023
−0.0047 0.0004] ,

𝑆22 = [0.0623 −0.0004
0.0206 −0.0044] ,

𝑀1 = [2.0413 −0.0402
1.6849 2.0052 ] ,

𝑀2 = [−0.1119 −0.1517
0.0906 −0.2828] ,

𝑀3 = [13.3680 −1.1525
−3.7618 5.0743 ] .

(49)

The eigenvalues of 𝑄1 are −0.2325 and 0.2127. Obviously,
the matrix 𝑄1 is not positive definite. Hence, there really
exist nonpositive-definite matrices 𝑄1 such that the LKF in
(21) is positive definite. Moreover, by the method in [40],
the minimal 𝛾 = 2.8160 is obtained. Figure 1 gives a
more intuitive comparison of the reachable sets by different
methods; it is clear that ourmethod in this paper yields much
tighter bounds than that of [40].Therefore, it can be seen that
our results are less conservative than the ones in [40]. Figure 2
shows the reachable set when 2 ≤ 𝜏(𝑘) ≤ 8 and 2 ≤ 𝜏(𝑘) ≤ 10;
from Figure 2, we can see that the reachable set of the system
is related to the time delay.

Example 15. Consider the discrete-time system (1) with the
following parameters:

𝐴1 = [0.8 0.1
0 0.97] ,
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Figure 1: The bounding reachable set computed by different
methods.

Table 1: Different values of 𝜏𝑀 with different 𝜏𝑚.
𝜏𝑚 4 5
Theorem 1, [38] 7 7
Theorem 1, [40] 14 11
Corollary 11 16 15

𝐴2 = [−0.1 0
−0.1 −0.1] ,

𝐵 = [ 0.1
0.1 ] ,

(50)

and 𝜔𝑑 = 0.1 and 𝛿1 = 𝛿2 = 0. The system has been
considered in some existing works [38, 40]. The allowable
maximal values of 𝜏𝑀 are listed in Table 1 with different 𝜏𝑚.
Therefore, our conditions proposed in Corollary 11 provide a
better range for the time-varying delay as shown in Table 1.

5. Conclusions

In this paper, the problem of reachable set bounding for
discrete-time system with time-varying delay and bounded
disturbance inputs has been investigated, by establishing
a novel Lyapunov-Krasovskii functional, which does not
require all the involved symmetric matrices to be positive
definite. Then, we present some new criteria based on
discrete Wirtinger-based inequality and reciprocally convex

−0.5−1 0 0.5 1 1.5−1.5

x1

−1.5

−1

−0.5

0

0.5

1

1.5

x
2

[2, 8]
[2, 10]

Figure 2: The bounding reachable set computed by different time-
varying delay.

method. Twonumerical examples are provided to validate the
effectiveness of the proposed methods.
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