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P a r t  1 
Bounded set theory 

A b s t r a c t .  A problem which enthusiasts of IST,  Nelson's internal set theory, usually 
face is how to t reat  external sets in the internal universe which does not contain them 
directly. To solve this problem, we consider BST,  bounded set theory, a modification of 
I S T  which is, briefly, a theory for the family of those I S T  sets which are members of 
s tandard sets. 

We show that  B S T  is strong enough to incorporate external sets in the internal 
universe in a way sufficient to develop the most advanced applications of nonstandard 
methods. In particular,  we define in B S T  an enlargement of the B S T  universe which 

satisfies the axioms of H S T ,  an external theory close to a theory introduced by Hrbaeek. 

H S T  includes Replacement and Saturation for all formulas but contradicts the Power 
Set and Choice axioms (either of them is incompatible with Replacement plus Saturation), 
therefore to get an external universe which satisfies all of Z F C  minus Regularity one has 
to pay by a restriction of Saturation. We prove that  H S T  admits a system of subuniverses 
which model Z F C  (minus Regularity but with Power Set and Choice) and Saturation in 
a form restricted by a fixed but arbitrary standard cardinal. 

Thus the proposed system of set theoretic foundations for nonstandard mathematics,  

based on the simple and natural  axioms of the internal theory BST,  provides the treat-  

ment of external sets sufficient to carry out elaborate external constructions. 

This article t is the first in the series of three articles devoted to set theoretic 
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foundations of nonstandard mathematics, to be published by Studia Logica. 
This research was accomplished as a single paper, too long, indeed, to be 
published in this Journal as a single paper. 

The following Preface and Introduction present the problems which mo- 
tivated this research, and the results and conclusions, related both to this 
first part and the two next parts. 

P r e f a c e  

Since Kreisel [19] initiated consideration of axiomatic systems for nonstan- 
dard analysis, several approaches to this matter have been suggested. 

First of all, this is RZ, the theory of Robinson and Zakon [27] (see also 
Keisle r [17]), which axiomatizes nonstandard extensions 1 of mathematical 
structures in the same sense as, say, the list of axioms for linearly ordered 
sets axiomatizes the class of all linearly ordered sets. 

We consider, however, the other approach which intends to axiomatize 
the universe of all sets, "the universe of discourse" as it is called sometimes, 
in a nonstandard way rather than to describe nonstandard structures in 
the standard universe of ZFC. This approach also splits in two principal 
directions which we call here internal and external. Both of them have 
something in common: both assume that the "universe of discourse" inc]udes 
a proper part, the class of all standard sets, which we denote by $ and 
which is informally identified with the universe of all sets considered by 
"classical", non-nonstandard mathematics. But they differ from each other 
in the answer to the question of how $ relates to the "universe of discourse". 

The internal approach sees the "universe of discourse" as an elementary 
extension of S which obeys a certain amount of Saturation (ca]led Idealiza- 
tion, or weak Saturation, see footnote 10), and such that,  with respect to 5, 
no new bounded (= parts of sets) collections of standard sets can be defined. 
The universe of a theory of this type is usually called internal universe; we 

The authors are especially indebted to the referee for substantial  critics of the first 
version of the paper and many useful suggestions. 
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shall denote it by ]. Formally, $ is distinguished in the "universe of dis- 
course" by the predicate of standardness st which, therefore, becomes the 
second basic predicate (together with the membership E ). 

This approach was realized in Nelson's internal set theory IST .  Its 
axioms are rather simple, easy to use, and well grounded philosophically, 
and have successfully demonstrated the ability to work in various branches 
of nonstandard mathematics.  

There is, however, a problem considered sometimes as fatal for I S T  as a 
base for the development of nonstandard mathematics. Indeed, it seems that  
I S T  fails to handle a very important  type of nonstandard mathematical  
objects, therefore fails to serve as a system of foundations for nonstandard 
mathematics  in all its totality. 

P r o b l e m  2 

The I S T  universe does not contain external sets 3 directly. For example, 
the "set" of all s tandard natural  numbers and the "set" of all real numbers 
infinitely close to 0 are not sets in IST.  -~ 

This problem is fixed in the framework of the alternative external approach 
originated by Hrba~ek [9, 10]. The internal universe i is assumed as above, 
but it does not exhaust the "universe of discourse". In particular, the latter 
contains external sets which do not exist in the internM universe. An external 
universe has also to satisfy a form of Saturation, e.g. the standard size 
Saturation which says that  any standard size 4 external family of internal 
sets with the finite intersection property has nonempty intersection. 

But this advantage is paid for by some other problems. 

First of all the external universe cannot satisfy all of Z F C  : Regularity 
fails since the set of all nonstandard I-natural numbers does not contain an 
E-minimal element. 

All other axioms, including Choice, can be saved; Kawai" [16] introduced 
a theory which contains the standard size Saturation and provides Z F C  
minus the Regularity axiom (but with a weak form of Regularity, an axiom 

2 ,,... ma thema t i c s  in I S T  looks more like tradit ional  mathemat ics  than mathemat ics  
in R Z  does. For this reason, it is easier for a classical mathemat ic ian  to read works in 
I S T  than  in R.Z. However,  because the external  sets are missing, developments  such as 
the Loeb measure  construct ion and hyperfinite descriptive set theory cannot  be carried 
out in their  full general i ty in I S T  ." This  is from Keisler [17]. 

3 In this sett ing,  "external  sets" are the mathemat ica l  objects natural ly defined so that  
the s tandatdness  predicate  occurs in the definition. 

4 To be of s tandard  size means to be an image of the set of all s tandard  elements of a 
s tandard  set. 
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which says that the universe of all sets is wellfounded over the internal sub- 
universe), so that the standardness predicate may occur in the schemata of 
Comprehension and Replacement, and proved that the theory is a conser- 
vative extension of Z F C .  Kawai's theory can be criticized, indeed, from 
the other point of view. It includes IST as the theory of the internal sub- 
universe, and therefore admits sets which contain all standard sets, which 
contradicts the idea that nonstandard sets should not be much larger than 
standard ones. 

This is the background for a more essential and visible defect, important 
especially for those who are inclined to treat nonstandard methods as short- 
cuts for "standard" reasoning, something like a higher level language which 
has some advantages with respect to the basic low level language but which 
can be in principle reduced to the basic language, see e.g. Nelson [24]. A 
necessary condition for such a treatment is that the new language does not 
generate really new properties of the "old" objects. This can be formalized 
as follows. 

R e d u c t i o n  p r o p e r t y  s 

We say that a nonstandard set theory T containing the standardness pred- 
icate st in the language is reducible to ZFC if 

1) T proves ZFC in the standard universe S = {x : s t x } ,  and 

2) for any formula ¢(Xl, ..., xn) in the language of T there exists an 
E-formula ~(xl ,  ...,xn) such that 

VstXl  ... st ^ s t  
• . . ,  ¢ (xl, v , 

is a theorem of T, where ~ t  denotes the relativization of ~ to $ . A 

If this property holds then one gains a sort of "vision" of a universe of T 
from the much more customary universe $, the ZFC universe of "stan- 
dard" mathematics, at least as long as one is interested in the properties 
and behaviour of standard sets only. Such a "materialization" of formM 
reasoning is not available on the base of conservativity. 

But unfortunately neither IST nor, therefore, any theory which includes 
IST satisfies this property. 6 Thus, if the Reduction property is seen as 

5 This  is n o t  conservativity;  this proper ty  deals with t r u t h ,  - well, it postulates  tha t  
the t ru th  of the formulas with s tandard parameters  in the universe of T can be in fact  
de termined in the Z F C  universe of all s tandard  sets, - which is close to mathemat ics ,  
while the conservat ivi ty  deals with provabi l i ty~  more in cus tom in logic. 

6 Kanovei  [13], [14] found a sentence ¢ in the s t -E-language which is not  provably 
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indispensable, KawaFs system does not work properly. But this is not the 
only problem. 

Model  en largement  property  7 

We say that  a nonstandard set theory T has this property with respect to 
Z F C  if every countable model M of Z F C  can be enlarged to a model 
M t of T containing M as the class of all standard sets. 

If this does not hold then T "knows" something about the standard universe 
which Z F C  itself does not know. This "something" may not be a 1st order 
property, however one has in this case an evidence that  the nonstandard 
tools of T are more than another way of presentation of ZFC.  

Neither I S T  nor KawaFs theories satisfy the Model enlargement prop- 
erty; we shall see that  the minimal transitive Z F C  model M is not the 
s tandard part  of a model of IST.  (This is an easy consequence of the fol- 
lowing: first, every x E M is E-definable in M; second, I S T  provides a 
t ru th  definition for E-formulas in the standard subuniverse.) 

Another  idea was realized by Hrba~ek [9, 10]: every internal set should be 
an element of a s tandard set. The corresponding internal theory, bounded set 
theory B S T  (the "internal" part  of Hrba~ek's theories NS1 and N Z F C  ) 
was explicitly formulated in Kanovei [12]. It will be demonstrated below 
that ,  unlike IST ,  B S T  satisfies both the Reduction and the Model en- 
largement property, s 

At the external level HrbaSek's approach faces another problem: it is 
the case that  the Replacement axiom in the external universe contradicts 
both  Power Set and Choice, provided one keeps Saturation for families of 
s tandard size. 

HrbaSek considered two possibilities: (i) to retain Replacement, which 
is the theory N S l ,  and (ii) to retain Power Set plus Choice, which is NS2, 

equivalent in I S T  to ~st for any E-sentence q.  Obviously such a sentence • is 
independent in I S T  . 

7 We use the word enlargement to denote relations between universes. We use the word 
extension to denote relations between theories, and also in the notion of the Extension 
principle, see below. 

8 It is an interesting and important open problem to figure out whether B S T  can be 
interpreted in Z F C  so that the class of all standard sets in the sense of the interpretation 
coincides (or: is isomorphic to) the basic Z F C  universe. (The proof of Theorem 2.4. 
below shows that B S T  has such an interpretation in Z F G C ,  the extension of Z F C  
by the axiom of global choice.) This problem may have a relation to the following question 
suggested to one of the authors by V. A. Uspensky: prove that in the Solovay model for 
Z F C  plus "all projective sets are measurable" there does not exist a real-ordinal-definable 
nonstandard enlargement of [{ . 
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or  N Z F C .  9 T h e  first one satisfies the Model  en l a rgemen t  p r o p e r t y  ( this  

was ac tua l ly  es tabl ished by  Hrba~ek)  and  possibly the  R e d u c t i o n  p r o p e r t y ,  

wi th  respect  to  the  second theo ry  the  ques t ion  is open.  B u t  even  a p a r t  

f r om Reduc t ion ,  the  lack of  one of  the  f u n d a m e n t a l  set t heo re t i c  pr inciples  

of  m o d e r n  m a t h e m a t i c s  makes  it  impossible  to  t r e a t  e i ther  N S l  or  N Z F C  

as the  base  for n o n s t a n d a r d  m a t h e m a t i c s  chosen once  and  forever .  

T h e  th i rd  possibil i ty might  be the  vers ion of  NS1  con ta in ing  S a t u r a t i o n  

res t r i c t ed  by  a cardinal  n, and including the  Power  Set ax iom.  Here  n can 

be  e i ther  a fixed cardinal ,  large enough to  cap tu re  all ins tances  of  S a t u r a t i o n  

one  m a y  prac t ica l ly  need,  or a cons tan t  added  to  the  l anguage  t o g e t h e r  wi th  

the  ax iom saying tha t  n is a s t a n d a r d  infinite cardinal .  This  could  be 

a solution;  indeed,  ex te rna l  sets are a c c o m o d a t e d ,  Z F  minus  Regu la r i ty  

holds,  a sui table a m o u n t  of Choice (for families of s t a n d a r d  n-size) can  be 

added ,  the  Reduc t ion  and Model  en la rgement  p roper t i e s  can be verified, 

and  a sufficient size of  ~ can be g u a r a n t e e d  by  the  ax iom which pos tu l a t e s  

t h a t  ~ is, say, g rea te r  t han  any cardinal  definable by  a E17 fo rmula .  More  

exact ly ,  this could be a practical solution,  b u t  by  no means  a theoretical 

system of foundations; indeed,  if n is an explici t ly defined card ina l  one 

m a y  ask why  this cardinal ,  not  ano the r  one, is accep ted  as a fundamen ted  

cons t an t  of the  theory .  The re  is no reasonable  answer.  

These  problems  forced ma thema t i c i ans  who were i n t e r e s t ed  in the  topic  

to  i n t roduce  two more  flexible ideas. F le tcher  [7] sugges ted  S N S T ,  a the- 

o ry  which ar ranges  the  ex te rna l  universe  E as the  un ion  of  the  b u i l t - i n  

sys t em of  subuniverses  E~, where n is a s t a n d a r d  cardinal ,  a lmos t  satis- 

fying the  ~;-version of  N S l  men t ioned  above,  bu t  wi th  S a t u r a t i o n  rep laced  

by  the  weakened  form,  weak Sa tu ra t ion  or Ideal izat ion,  d i rec t ly  re la t iv ized 
to  the  in te rna l  universe,  lO This  lack of  the  ex te rna l  f o rm  of  S a t u r a t i o n  is 

9 A convenient theory to develop nonstandard mathematics, as it was shown in [10], 
but one would like not to miss Replacement . . . .  Another interesting property of N Z F C  
should be mentioned. The proof of Theorem 4a in [9] shows that either the class of all 
standard ordinals in the NZFC universe contains a cofinal image of its initial segment 
under a map definable in the external universe, or a strong class theory can be interpreted, 
therefore the standard subuniverse is a model of ZFC + Cons ZFC, not merely ZFC. 
This may be an evidence that NZFC does not satisfy the Model enlargement property. 
An alternative idea how this can be demonstrated was suggested by the referee. 

10 Saturation can be obtained from Idealization with the help of another useful principle, 
Extension, which makes it possible to extend external functions to internal ones in certain 
cases. Kawai's system includes Extension, so Saturation becomes a theorem. Fletcher's 
theory of [7] does not include Extension; perhaps, the latter holds in the proposed model, 
but this needs a separate study. On the other hand, Saturation implies Extension, see 
Hrba~ek [10], but Idealization, in general, does not imply it: Kanovei [12] showed that 
failure of Extension is consistent with the completely idealized theory IST . 
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a principal defect which does not allow to consider the theory as properly 
external as, say, Hrba~ek's and KawaFs theories are: it demonstrates that  
all serious things going on actually happen in the internal subuniverse, the 
external "envelope" is nothing more than a camouflage, and some important  
examples of external reasoning, as, say, the proof of countable additivity of 
the Loeb measure, cannot be formalized as they stand. 

The equipment of S N S T  includes also the system of internal universes 
/~, and the common standard universe S. Apart from the mentioned defect, 
and, perhaps, the Reduction property, which should be studied separately, 
the idea of a "stratified" principal set theoretic universe differs too much 
from the currently known traditions to be easily acceptable. 11 

Another  approach was introduced by Ballard and Hrba~ek [2]. They con- 
sider Z F B C ,  the Zermelo - Fraenkel-  Boffa set theory, as the basic theory. 
( Z F B C  replaces the Regularity axiom by a strong form of its negation and 
adds the axiom of global choice.) Z F B C  is strong enough to model a strat- 
ified system of internal universes I~, with the common external universe E 
which coincides with the Z F B C  universe, and a common standard universe 
which can be chosen in many ways, say, as the class of all wellfounded sets. 
However Z F B C  is a bit too "exotic" a theory to be accepted easily by 
those practically working in nonstandard mathematics. 

To conclude, several variants of external set theories were proposed. Per- 
haps, KawaFs theory from [16] is the best equipped technically, but it cer- 
tainly fails to satisfy the Reduction property and gives an unpleasant picture 
of enormously large sets. The other candidates miss either something essen- 
tial from Z F C  (we do not mean Regularity, of course), or some essential 
nonstandard tools (say Saturation in the general form, not reduced to inter- 
nal Idealization), and besides this involve tools the philosophical acceptabil- 
ity of which for the everyday mathematical  work is quite problematic. 

I n t r o d u c t i o n  

This section introduces the common content of the series of three articles. 

11 When the work over the final version of this article had been almost completed, one 
of the authors received the manuscript of D. Ballard [1]. It contains, among many other 
important  results in foundations of nonstandard mathematics, development of a theory 
which has a semblance of S N S T  but at a much more advanced level. 
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P a r t  1: th i s  a r t i c l e  

The system of foundations for nonstandard mathematics  we propose is based 
on bounded set theory B S T ,  a minor modification of Nelson's I S T ,  and, at 
the same time, the "internal part"  of Hrba~ek's theories NS]  and N Z F C  = 
NS2, explicitly formulated (as an internal theory) by Kanovei [12]. This 
theory (see the description of the axioms in Section 1.) is based on the four 
simple and philosophically acceptable ideas, approved by the current  practice 
of internal theories (mostly I S T  ). They are as follows: 

1. The "universe of discourse" | is an elementary extension of the uni- 
verse $ of s tandard sets. 

2. | satisfies Idealization (Saturation for E-formulas) in the case when 
the "index set" is of the form *A = A N $, where A is s tandard.  

3. Every collection of the form {x E *X : ¢ ( x ) ) ,  where X is s tandard,  
is equal to o y = { y E Y : s t y )  for some s tandard Y .  

4. Every set belongs to a s tandard set. 

Thus B S T  is a close relative of IST,  completely equivalent to I S T  in 
the known applications of the lat ter  in the framework of "conventional" 

nonstandard  analysis. 

S e c t i o n  1. This section presents the basic technical tools of B S T .  We show 
that  B S T  provides an ins t rumentar ium more advanced than I S T  does, 
in particular: 

- the Collection, Extension, Dependent Choice theorems (only the first 
of them is known to be a theorem of I S T  as well, see Kanovei [15]); 

- a theorem which allows to convert every formula to an equivalent 
~ t  formula 12 (proved in I S T  by Nelson [23] only for a special type  

of formulas), 

- the Reduction property introduced in the Preface, so tha t  the t ru th  
of formulas with s tandard parameters  in the B S T  universe can be 
reduced to the Z F C  truth in the subuniverse of all s tandard  sets. 

These theorems will provide a base for the t rea tment  of external sets. 

S e c t i o n  2. We study interrelations between Z F C ,  B S T ,  and I S T .  The 
following are the main results: 

12 That is, to the form 3 st Y St (E-formula). 
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1. B S T  has an inner model in IST,  the class of all bounded sets, i.e. 
elements of s tandard sets; this allows to prove that  B S T ,  similarly 
to I S T ,  is a conservative extension of Z F C .  

2. B S T  satisfies the Model enlargement property: any countable model 
of Z F C  can be embedded as the class of all s tandard sets into a B S T  
model. 

3. The minimal transitive model of Z F C  cannot be enlarged in the same 
manner  to an I S T  model, therefore I S T  does not satisfy the Model 
enlargement  property.  

P a r t  2: e x t e r n a l  u n i v e r s e s  o v e r  t h e  B S T  u n i v e r s e  

The principal idea of how external sets will be incorporated in the internal 
world ! of B S T  is very common for various branches of mathematics:  
it is the idea of completion. Indeed, since I is "incomplete" in the sense 
tha t  some objects defined via Comprehension using formulas containing the 
s tandardness  predicate s t ,  as e.g. aN = ( n  E N : st n}, the collection of 
all s tandard  na tura l  numbers,  are not legitimate sets in B S T ,  we enlarge 
! by adding these collections, in a way similar to many other operations of 
this type  in mathemat ics  (e.g. the Dedekind completion, embedding of a 
field into an algebraically closed field, etc.). 

This is actually the same as what one usually does when treating such 
objects as monads (not legitimate sets) in IST  : "define" what is, say, a 
monad  and consider them as "external sets". Certain provisions, however, 
must  be taken.  An enlargement of the "universe of discourse" by new objects 
is well defined in the "universe of discourse" if the newly added objects admit  
a common parametr izat ion,  that  is, a common definition by a single formula 
in which only set parameters  may  vary. 

E.g. in the case of monads one defines M~ = {y : y ~ x} (not a set in 
internal  theories) and freely considers sentences containing M~ as legitimate 
formulas being sure tha t  every such a sentence can be treated,  if necessary, 
as saying something about x rather  than M~.  

To introduce all external objects rather than a certain part  of them in 
this manner ,  a common parametrizat ion of all definable subclasses of sets is 
indispensable. 

S e c t i o n  3. It is the principal point of our approach to external sets tha t  
such a parametr izat ion can be given by gp = I.J~e~A Nbe~B Cab, where 
p =  (A,B,~)),  A and B are internal sets while r / = ( C a b : a E A  ~: b E B }  
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is an internal indexed family of internal sets. We prove that  in B S T  every 
definable subclass of a set is equal to gp for some (internal) set p .  

Notice that  the collection of objects gp is introduced by a single explic- 
itly written formula, that  is, in principle in the same manner as the family of 
all monads. Thus the parametrization theorem asserts that  all st-E-definable 
subclasses of sets are E~ t in B S T .  It may be seen from this explanation 
that  the parametrization system we use.is very natural. 

Then we introduce external sets, in their most primitive form of external 
sets having only internal elements, as 

1) definable subclasses of (internal) sets - -  which makes them easily "vis- 
ible" from the point of view of the "internal" observer; 

2) (and this is the same !) objects of the form Cp - -  which makes it 
evident that  the treatment is logically consistent. 

This manner of incorporation of external sets into the internal universe is 
therefore a form of the completion procedure, very natural  and systemati- 
cally used in mathematics. On the other hand, it reflects the actually known 
practice of consideration of external objects in internal theories. 

To conclude, we enlarge the B S T  universe I to the external universe 
F = {Cp :p  E J} which contains external sets of internal elements and sat- 
isfies the Comprehension principle for all st-E-formulas and certain useful 
forms of Extension and Saturation. 13 Therefore the B S T  mathematician 
can legitimately and freely avail himself of the methods provided by this 
type of external sets (including, in particular, quantifiers over external sets) 
although the external objects do not "physically" exist in the internal uni- 
verse, seeing them as elements of the enlargement defined entirely in terms 
of the B S T  language. 

S e c t i o n  4. On the other hand, E will be the base for a more sophisticated 
construction of external sets, grounded on the idea of cumulation of sets 
along wellfounded trees. This is realized in the construction of the cumulative 
external enlargement H.  

Sec t ion  5. We shall prove that  H models H S T ,  Hrbadek set theory, 
an externM set theory which is approximately Hrba~ek's theory NS1 (the 
one which contMns Saturation and Replacement but does not contain Power 

13 E x t e n s i o n  postulates that every function f defined on a set of the form ~S =-- {x E 
S : st x} and taking internal values can be extended to an internal function. Sa tura t i on  

in this case postulates that every standard size family of internal sets satisfying the finite 
intersection property has nonempty intersection. 
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Set) plus Extension, a s tandard  size form of Choice, Dependent  Choice, 
and a weakened form of Regularity. We also prove that  in H S T  a set is of 
s tandard  size if and only if it is wellorderable; thus all "standard size" results 
turn  out  to be "wellorderable" theorems. 14 Unfortunately the universe H 
does not  model  the Power Set axiom; in fact this axiom is incompatible with 
Saturat ion + Replacement.  

P a r t  3: partially saturated u n i v e r s e s  

The idea to save the Power Set axiom at the cost of reduction of s tandard 
size propert ies  to those having s tandard n-size, 15 where ~ is a s tandard  

infinite cardinal, can be realized in H S T  as a system of subuniverses which 
model  the internal and external theories reduced in this way. 

There are two principal steps in the construction of the subuniverses. 

I n t e r n a l  s t e p .  We choose an internal subuniverse I c U, an inner 
class in N which includes all s tandard sets and models a suitable K-version 
of B S T ,  for instance containing Idealization restricted somehow to sets of 
cardinality < K but  enhanced by the assumption that  every set belongs to 
a s tandard  set of cardinality _< ~. 

There are at least two ways how I can be defined. First, we simply 
put  I = t~, the class of all elements of s tandard sets of cardinality _< ~. 
It turns  out  tha t  |~ is an elementary submodel of i, the universe of all 
internal sets in H S T ,  with respect to all E-formula ;  therefore if one is 
interested primarily in internal properties of internal sets, seeing external 
sets only as a research instrument,  one can switch from i to i~ without  
any harm. 

The other version defines I as a ~-saturated ultrapower of the stan- 
dard universe S; notice that  the B S T  universe n is sa turated enough to 
guarantee  that  the ultrapowers exist as inner classes in |. Of course the 
propert ies of the subuniverses of this type may depend on the choice of the 
ultrafilter. 

E x t e r n a l  s t e p .  The class I is then expanded inside the H S T  universe 
H to a corresponding class H of external sets. This can be organized also 
in two different ways. First we can simulate inside I the above-ment ioned 
cumulat ive construction of external sets. Second, for the internal universes 

14 In particular Saturation postulates in HST that the internal subuniverse is saturated 
with respect to all wellorderable cardinals. 

15 Aset of standard tc-sizeis an image ofaset  of the form %'= { s E S : s t s ) ,  where 
S is a standard set of cardinality < t¢ in S . 
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of second type, we can run this construction outside (but start ing from I ), 
using the fact that  in H every subset of I is a set of s tandard  size. 

External  classes H of both types satisfy n-forms of Extension, Satura- 
tion, and s tandard size Choice, and satisfy the Power Set axiom (false in 
H S T  ). In addition, the universes H of second type satisfy the full Choice 
(in fact the s ta tement  that  every set has s tandard size and is wellorderable). 
On the other hand, the universes of the first type have the following essential 
property:  if x E I then there exists a s tandard cardinal n such that  x 
itself, all elements of x, all elements of elements etc. belong to I ,  which 
the universes of second type fail to satisfy: none of them contains even all 
internal natural  numbers. 

Thus we shall define in H S T  imprinted systems of "partially sa tura ted"  
external  subuniverses which model the corresponding n-versions of H S T ,  
including the Power Set and, in the second version, full Choice, axioms. 

C o n c l u s i o n  

Mathematicians working, informally speaking, in the internal universe 
B S T  have many possibilities how to carry out their investigations. 

| of  

First, one can use purely internal methods,  which work well in many  cases. 

Second, if an access to external sets is indispensable, but  only to those of 
them which consist of internal elements, one can assume tha t  the in- 
ternal universe I is the internal part  of F, a universe which provides, 
in particular, Comprehension for all st-E-formulas ( that  is, any st-E- 
definable subclass of a set is a set), and Saturation. 

Third, if more complicated external sets are desirable, one can assume that  
the universe ! is the internal part  of a universe H of the powerful 
theory H S T .  

Fourth, if the Power Set axiom is requested, one can choose a s tandard  car- 
dinal n such that  the standard n-size Saturation provides the amount  
of Saturation necessary for the particular research aim, and argue in an 
external subuniverse of H which models a n-version of H S T  includ- 
ing Power Set, n-size Saturation, and (full or s tandard  size) Choice. 

All the mentioned possibilities are completely legitimate in the logical sense. 
All of them are in accordance with the Reduction and Model enlargement  
properties (see the Preface). In all the cases the newly introduced external  
sets are definable and well visible from the point of view of n . • 
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This system of external subuniverses is somewhat similar to what is pro- 
posed by Fletcher, see the Preface. There is, however, an essential advan- 
tage. Indeed, Fletcher's theory S N S T  does not contain directly, and it 
is not seen how it may imply indirectly, the Extension principle, or, what 
is equivalent in this case, (externM) Saturation, which is obligatory if one 
wants to develop certain important  branches of nonstandard mathematics ,  
say Loeb measures. 

Thus external sets may be incorporated in B S T  as a mathematical  
inst rumentar ium, not as a primary element of the theory. External objects 
introduced by the interpretation are completely describable in B S T ,  so 
that  they can be considered as a tool which a mathematician working in 
B S T  is free to choose and apply, but actually being still based on the 
B S T  axioms. We would compare the treatment of external objects in B S T  
via the mentioned interpretation with an advanced programming language, 
which is based on a low level language. 

To conclude, the investigation is mainly devoted to logical details of 
nonstandard axiomatical systems rather than to demonstration how the pro- 
posed system of foundations practically works in this or another branch of 
nonstandard  mathematics.  We shall place in Part  2 and Part  3 some brief 
explanations as to how the external enlargements can be used by those who 
are interested mainly in practical applications but not in set theoretic anal- 
ysis. 

1. B o u n d e d  s e t  t h e o r y  

Both I S T  and B S T  are theories in the st-E-language, the language con- 
taining equality, the membership relation E, and the standardness predicate 
s t .  Formulas of this language are called st-E-formulas while formulas of the 
Z F C  language are called E-formulas or internal formulas. Abbreviations 
3stx and VStx have the obvious meaning. 

1.1.  I n t e r n a l  t h e o r i e s :  I S T  a n d  B S T  

DEFINITION 1.1. | is the universe of all (internal) sets; 

S = {x : st x)  = the class of all standard sets; 

~ X = { x C X : s t x ) = X  N $ for every set X .  

It is very seldom that ~X is a legitimate set in internal theories. (Notice 
that  the standardness predicate is not allowed to occur in the Comprehension 
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scheme.) In particular if X is standard then ~X is a set if and only if X 
is finite, and in this case X = °X. Thus occurrences like ~X in "internM" 
reasoning are nothing more than shortcuts for the corresponding (usually 
longer) legitimate expressions. 

DEFINITION 1.2. [Nelson] IS T  16 is a theory in the st-E-language which 
includes all of Z F C  (in the E-language) together with the three principles: 

Idealization I:  V s t f m A 3 x V a E A O ( x , a )  ~ ~ 3 x V S t a e ~ ( x , a )  

for every E-formula ¢ (x ,a )  with arbitrary parameters in U ; 

Standardization S : VstX 3 s t y  VStz  I x  E Y ~ ..... > x E X & ~ ( x ) ]  

for every st-E-formula O(x) with arbitrary parameters in I ; 

Transfer T :  3x O(x) ) 3Stx O(x) 

for every E-formula O(x) with standard parameters. 

vstfinA m e a n s :  for M] standard finite A .  • 

Thus I S T = Z F C + I + S + T .  

The principal idea behind B S T ,  the modified theory we consider, is to 
reduce the multi tude of nonstandard sets. The following axiom is added: 

Boundedness B :  Yx 3s tx  (x E X ) .  

This evidently contradicts Idealization, therefore the latter has to be weak- 
ened. The natural idea is to restrict the domain of one of the "active" 
variables x, a by a standard set. We obtain the following two weakened 
forms of Idealization, called Bounded Idealization and Internal Saturation: 

B I :  V s t r m A 3 x E X V a E A ~ 2 ( x , a ) ~  ) 3 x E X V S t a ~ ( x , a )  

for every standard X and every E-formula ~(x,  a ) ,  and 

IS : vstfmA C_ A0 3 x V a  E A ¢(x , a )  ( ) 3 x VSta E A0 O ( x , a )  

for every standard Ao and every E-formula O(x ,a ) .  

As above, • may contain arbitrary parameters (syntactically - free variables 
other than x and a ). Fortunately the two possibilities are equivMent to 
e~ch other. 

16 Papers and textbooks of van den Berg [3], F. Diener and Stroyan [5], F. Diener and 
Reeb [4], Kanovei [12, 14], Lutz and Gose [21], Nelson [23, 24], Reeken [25], Robert [26] 
give substantial information on IST and its applications. 
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LEMMA 1.3. B I  is equivalent to IS in Z F C  plus Boundednessplus Trans- 
fer. 

PROOF. The case of many  parameters  in • can be easily reduced to 
the case of one parameter .  Thus let ~ contain a single parameter  Po, so 
tha t  ~ is O(x,a, po). We prove BI  ~ IS; thus B I  and the lef t-  
hand side of IS are assumed, and we prove the r igh t -hand side of IS. 
Let, by the Boundedness axiom, P be a s tandard set containing Po, and 
F = Pfm(Ao) = {all finite subsets of A0} ; F is s tandard by Transfer. By 
the Z F C  Collection there exists a set X such that  

V p E P V A E F [ 3 x V a E A O ( x , a , p )  ~ 3 x E X V a E A O ( x , a , p ) ] .  

One can choose a s tandard  set X of this kind by Transfer. It remains to 
apply BI  to the formula a E A0 ~ q~(x, a, p0) and the set X .  

We prove the opposite direction: IS ....... .~ BI.  Let X be s tandard 
and P as before. For any a, let Za = {(p,x) E P × X :  ¢(x ,a ,p)} .  As 
above, there exists a sta0adard set A0 such that  Va' 3a E Ao (Za = Za,). 
Using IS, one gets x E X such that  ~(x ,a ,p0)  for all s tandard a E A0. 
It remains to prove O(x~al, po) for all s tandard a' in general. Let a I be 
s tandard.  By Transfer and the choice of A0 we have Za = Za, for some 
s tandard  a E A0. Then 

O(x,a, po) ~ (po, x) E Za = Za, ~. O(x,a',po), 

as required. • 

DEFINITION 1.4. Bounded set theory B S T  is the theory in the st-E-language 
which includes all of Z F C ,  S, T,  B, and BI  (or, what is equivalent by 
the lemma,  IS ). 17 • 

Thus B S T  provides a lesser amount  of Idealization than I S T  does. On 
the other  hand,  B S T  contains the Boundedness axiom. One may  consider 
theories with even weaker Idealization but stronger Boundedness. It is not 
immediate ly  clear what we do gain by the introduction of the boundedness 
at the cost of idealization. However it will be demonstra ted in parts  2 and 
3 of this paper  tha t  actually the step from I S T  to B S T  provides the 
possibility to define external  enlargements of the internal universe, while the 
fur ther  restrictions provide the Power Set axiom in the relevant external  
universes. 

lr BST is the "internal part" of NS1, an external theory of Itrba~ek [9], i.e. the 
axioms of BST postulate the same for all sets what NS1 implies for internal sets. 
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1.2.  B a s i c  t h e o r e m s  o f  B S T  

This subsection presents several basic theorems is of B S T .  

A remarkable point in the I S T  development of the reduct ion to E~ t 
form given by Nelson is that  the involved s tandard variables (those bound 
by quantifiers 3 st, V ~t ) have to be restricted by s tandard sets; otherwise one 
cannot change places of different types of quantifiers. It turns out  tha t  in 
B S T  no such restriction is necessary. 

THEOREM 1.5. [Reduction to ~ t  ] 

Every formula is equivalent in B S T  to a ~ t  formula with the same set of 
free variables. In other words, let O(xl,  ...,Xm) be a st-E-formula. There 
exists an E-formula ~(xl ,  ...,Xm, a, b) such that the following is a theorem 
of B S T  : 

Vxl . . .VXm[¢(x l , . . . ,Xm)  , ,  3StaVStbg(xl,...,Xm, a,b)]. 

( Z~t is the class of all formulas 3StaVStb~ where ~ is an E-formula.) 

PROOF. 19 To simplify notat ion we write Z instead of Xl,...,x,~. 
The proof is carried out by induction on the number  of logicM symbols in 
~. After elimination of all occurrences of st z by 3Stw (z = w), it suffices 
to go through induction steps for -, and 3 .  

The induction step for ~ .  We search for a Z~ t formula equivalent to 
the formula VSta 3~tb ~(~, a, b) (where ~ is an E-formula), taken as ¢(~) .  
Let Ult U be the formula: U is an ultrafilter. For any ultrafilter U, let 
#(U) = ~ { u  E U : st u )  (the monad of U ). It is asserted tha t  

The r ig th-hand  side is evidently ~ t ,  so the equivalence is enough to com- 
plete the step. 

By the Boundedness and Standardization axioms, for every Z there 
exists a s tandard ultrafilter U such tha t  Z E #(U).  It remMns to verify 

18 Actually proved by Kanovei [12], with the exception of the Dependent Choices the- 
orem. They are included partially for the sake of convenience, partially because a much 
simpler way to prove the Collection and Reduction to ~ t  theorems has been found. 

is This version of the proof is due to P. Andreev. 
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for every U of this type. By Transfer, this is equivalent to 

@(Z) (-, ~ VSta 3Stb 3Stu E U VgE  u ¢p(!~,a,b), 

tha t  is, to 9~(Z, a, b) ~ ) 3Stu E U V y E U ~p(y, a, b) for all s tandard a 
and b. Let a,b be s tandard  and u = u~b = {~7 E X :  ~(~',a,b)), where 
X = UU.  Both X and u are s tandard by Transfer. If u E U then 
bo th  the le f t -hand  and the r igh t -hand  parts of the last equivalence are true,  
otherwise both  of them are false. 

The step for 3 .  Let ~ be an E-formula. We need a E~ t formula 
which is equivalent to the formula 3 w 3sea Wtb ~(~, w, a, b) taken as (I)(~). 
Changing places 3 w and 3Sta and applying the Boundedness and Bounded 
Idealization axioms, we obtain 

( ) ~Sta ~s tw vstfinB ~ w E W V b E B 9~(a7, w, a, b) . l  

COROLLARY 1.6. [Reduction property] [ B S T  ] 

Let O(Zl, ..., Xm) be an arbitrary st-C-formula. There exists an E-formula 
~)(Xl, ..., Xm) such that the following is a theorem of B S T  : 

w %  , 

( (~st denotes relativization of (~ to the s tandard universe: 3 and V are 
changed to 3 st and V st .) Thus it is asserted that  every st-E-formula with 
s tandard  parameters  is provably equivMent in B S T  to an E-formula with 
the same list of parameters .  20 In other words, the Reduction property  
discussed in the Preface holds for B S T .  

PROOF. Let ~ be the formula given by Theorem 1.5. Then, by Trans- 
fer, the formula 3 a V b  ~(x l , . . . , xm,  a,b) can be taken as ~ .  J 

To demons t ra te  the power and significance of Theorem 1.5, we prove the 
Collection and Extension theorems. The first of them needs special form to 
be proved beforehand; besides the application to Collection in general form, 
the next l emma will be very useful in our parametrization theorems. 

20 This is true in IST, but with respect to formulas in which the standardness predicate 
occurs only as superscript in quantifiers 3stx E X, V~tx E X, where X is standard, see 
Nelson [23]. It is proved by Kanovei [13] that there exists a st-E-sentence (not of the 
mentioned type) which is not provably equivMent in IST to an E-formula. 
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LEMMA 1.7. [ BST  ] 

Let ~a(a,b,x) be an internal formula, X a standard set, ~ = cardX .  
There exist standard sets A and B of cardinality ~ 22~ such that for all 
x e X , 3Sta VStb ~(a, b,x) ~ 

( ~ 3Sta e A VStb ~(a,b,x)  ( > 3Sta • A VStb • B ~(a,  b, x) .  

PROOF. We define, for all a and b, 

X[a, b] = (x e X : ~(a, b, x)} g X ; 

X[a] = {X[a,  b]: b is an arbitrary set} C_ P ( X )  ; 

X[]  = { X [ a ] : a  i s an  arbitrary set} C P2(X)  

and 

Thus the set X[]  has cardinality at most ~ = 22- while every set X[a] has 
cardinality at most 2 ~. Therefore, using the ZFC Collection and Choice, 
and then Transfer, one may choose standard sets A and B, both of cardi- 
na~ty _<22~ such that V a ' 3 a e A ( X [ a ] = X [ a ' ] ) ,  and for any a e A :  

Vb' 3b E B (X[a,b] = X[a,b']).  

We assert that A and B are as required. Let (1), (2), (3) denote 
the parts of the equivalence of the lemma from left to right. Notice that 
(2) ~ (1) & (3). On the other hand, both (1) and (3) imply 

3Sta VStb E B ~p(a, b, x),  (4) 

so that it remains to prove that (4) > (2). So let a standard set a 
satisfy VStb E B 9o(a, b, x). By the choice of A and Transfer, there exists a 
standard a' E A such that X[a] = X[a']. It is asserted that ~(a', b',x) is 
true for every standard bC Notice that X[a' ,b  r] is a standard member of 
X[a] ~- Z[a'], therefore by Transfer and the choice of B we have X[a',  bq = 
X[a,  b] for a suitable standard b E B. Thus 

~a(a',b',x) ~ x e X[a',b'] -" X[a,b] 1. ~. ¢,a(a,b,x), 

but the right-hand formula is true by the choice of a .  

THEOREM 1.8. [Collection] [ BST ] 

Let ~(x, y) be a st-E-formula having arbitrary sets as parameters. For any 
X there exists a standard set Y such that 

3yer (x,y)]. 
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Collection is a theorem of ZFC;  hence it is true in B S T  for all E- 
formulas (I). It is asserted, however, that  the result holds for all formulas. 21 

PROOF. Let ~ be (I)(x, y,p), where p is an arbitrary set. By the Boun- 
dedness axiom 3y(~(x ,y ,p )  implies 3Stz3y E za~(x,y,p). Let ~2(x,z,p) 
denote the following formula: By E zO(x ,y ,p ) .  By the Reduction to E~ t 
theorem, ~(x,  z,p) is equivalent to a E~ t formula 
3StaVStb cfl(x, z,p,  a, b). Covering the parameter p in • by a s tandard set 
P and applying Lemmu 1.7, we obtain a standard set Z such that  

3 tz , 3 tz e Z - f o r a l l x E X .  

The set Y = U Z - - { y :  3 z E Z ( y E z ) }  is as required. ! 

TItEOItEM 1.9. [Extension] [ B S T  ] 

Let O(x, y) be a st-E-formula containing arbitrary sets as parameters. Then 
for any standard X there exists a function f defined on X such that 

E X[3y  ¢(x, y) 

PROOF. We may assume that  VStx E X 
generality (otherwise replace (I) by O(x,y) 
tion, there exists a standard set Y such that  
may now assume that  • is a E~ t formula 

¢ ( x , f ( x ) ) ] .  

3 y q)(x, y) without any loss of 
V -' 3 y' ~(x,  y')). By Collec- 
V S t x E X 3 y E Y ~ ( x , y ) .  We 

3Sta V~tb ~(x, y, a, b), where qp 
is an E-formula. Covering parameters in ~ by standard sets and applying 
Collection again, we obtain a pair of standard sets A, B such that  

O(x,y) ( ) 3sea E A VStb E B 9~(x, y, a ,  b) - for all x E X and y E Y.  

Thus VStx E X 3 y E Y 3Sta E A VStb E B ~(x, y, a, b). 

Changing places the quantifiers on y and a and applying a theorem of 
Netson [23] we get VStx E X 3 y E Y VStb E B ~(x, y, 5(x), b) for a standard 
function 5 : X ~ ~ A. The next step is the idea of the Saturation theorem 
of Nelson [24]. We apply B I  to the pair of quantifiers 3 y VStb, use the fa.ct 
that  the quantifier V~tx E X is equivalent to the combination VafmX ~ _C 
X V x E X  t, and get 

Vstfmx' _C X VstfmB ' _C B ~/x E X '  3 y E Y V b E B ~ ~(x,  y, 5(x), b), 

therefore 

v s t ~ x  ' C X W t ~ B  ' C B 3 ~) E ? V x E X '  V b E B' ~,(x, ~(x), a(x), b), 

21 It  is rather surprising that Collection, unlike Reduction to ~ t  , holds in I S T  for 
all st-E-formula,s, see Kanovei [15]. 
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where 3: is the (standard) set of all functions ~ such that  dora ~) is a finite 
subset of X while ran ~ C Y .  

Converting the pair of variables x, b into one variable and applying B I  
in the opposite direction we obtain 3 ~ VStx E X Vstb e B ~o(x, ~(x), a(x), b) 
finally, that  is, 3 ~ VStx E X ~(x,  ~)(x)). • 

THEOREM 1.10. The dependent choices scheme holds in B S T .  

P R o o f .  We have to prove the following. Let X be an arbitrary set 
and O(x, y) an arbitrary st-E-formula (having, perhaps, parameters which 
we do not indicate explicitly). Assume that  Vx E X 3y E X O(x,y). It is 
asserted that  there exists a function f such that  

vstk E N I f (k )  is defined and a2(f(k), f ( k  + 1))] .  (1) 

First of a~, by theorems 1.6. (Reduction to E~ t ) and 1.8. (Collection) (I, 
may be assumed to be a E~ t formula 3Sta E A Vstb E B ~0(a, b,x,y), where 
A and B are standard sets while ~2 is an E-formula. 

Let g = (al, ...,an) be a finite sequence of elements of A. We put  

X(f~) = {(xl,...,Xn_F1 ) E X n-t-1 : V k  ~ nVStb E B ~(ak, b, xk, xk+l)). 

We say that  ~ is good if X(~) ~ 0. The empty sequence A is evi- 
dently good: n = 0 and X(A) = Z .  If ~ = (al,...,an) is good then 

"*A by the assumption there exists a standard an+l E A such that  a a~+l = 
(al, ..., a~, an+l) is also good. By Standardization, there exists a s tandard 
set S whose elements are finite sequences of elements of A, and whose 
standard elements are all standard good sequences and nothing more. By 
what is said above and by Transfer, every sequence in S can be extended 
to a sequence in S by adding one more element. Therefore there exists an 
infinite sequence a = (an : 1 <__ n E N) such that  (al , . . . ,  an) E S for all n. 
By Transfer again, there exists a standard sequence a of this type. Then, 
for any standard n, an is standard and (al, ...,an) is s tandard and good. 
Thus, 

~/Stn 3 (Xl, ..., Xn-bl ) ~/ k "( n ~/Stb E B ~ ( a k ,  b, xk, xk+l). 

To proceed with the proof, we first restrict the quantifier 3 (xl, ..., x,~+l) by 
a standard set U using Collection. Thus 

~/stn ~ (Xl, ..., xn4.1) E U V k <~ n VStb E B c2(ak , b, xk ,  xk-bl ) • 

By Bounded Idealization BI,  we obtain 

VStn vstfinB ! C B ~ (Xl, ..., xn.t-1 ) E U V k ~ n V b E B' ~(ak, b, xk, xk+l) .  
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Applying Bounded Idealization in the opposite direction, we get 

(Xl, ..., Xn+l) E U Vstk VStb E B ~(ak, b, xk, Xk+l); 

in particular, n, the length of this sequence (Xl, ..., Xn+l) minus 1, is non- 
standard.  We put  f ( k )  = Xk for k < n and f ( k )  = Xl (not essential) for 
k > n; (1) holds since ak is standard provided k is standard. ,, 

2. M o d e l s  o f  B S T  a n d  r e l a t e d  t o p i c s  

This section contains three main results. First we prove that  B S T  has 
an inner model in I S T  : the class of all bounded sets. Then we demon- 
strate that  every countable model of Z F C  can be enlarged to a model of 
B S T ,  therefore B S T  has the Model enlargement property discussed in the 
Preface, but the minimal transitive model of Z F C  cannot be enlarged to a 
model  of I S T .  

2 .1 .  I n n e r  i n t e r p r e t a t i o n  in I S T  

We argue in IST .  We say that  a set x is bounded iff it is an element of 
a s tandard set. Thus all s tandard sets, all natural and real numbers are 
bounded in IST .  (In B S T  all sets are bounded.) We put  B = {x : 
3stX (x E X ) )  (the class of all bounded sets). Quantifiers 3 bd and V bd 
have the obvious meaning. 

LEMMA 2.1. B is a model of  B S T  in IST.  More exactly, let A be an 
axiom of  B S T ,  then A bd is a theorem of  I S T .  

Here A ba denotes the result of replacing every quantifier 3 or V in A by 
3 ba or V bd respectively, that  is, the retativization of A to B .  

PROOF. We check the statement 3bdx 0bd(x) ) 3stx (~bd(x) ( that  
is, Transfer), where ~ is an E-formula with standard parameters.  This 
would be an immediate consequence of the I S T  Transfer if we could replace 
the formula obd, which certainly is not an E-formula, by an equivMent E- 
formula. So it is the following proposition that  remains to be proved: 

PROPOSITION 2.2. Let ~ be an E-formula having only bounded sets as 
parameters. Then • ~ :~ obd. 
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P R o o f .  The proof goes on by induction on the number  of logical signs 
in ~. The induction step for 3 is the only one that  needs a special consid- 
eration. 

Thus let ~b(x) be an E-formula with bounded sets as parameters .  We 
assert that  3z~p(z) ) 3z  E B ~b(z). Indeed, applying the Z F C  Re- 
placement and the I S T  Transfer, we get a s tandard set Z such tha t  
3 z  ¢ (z )  ) 3z  E Z ¢(z) .  However all elements of a s tandard set are 
bounded. -~ 

Thus Transfer in B has been checked. Therefore all Z F C  axioms hold 
in B. Standardization and the Boundedness axiom are evident.  To verify 
Bounded Idealization, let X be s tandard and (I) be an E-formula with 
bounded parameters;  we have to prove 

V s t f m A 3 x ~ X V a E A ~ ( x , a )  ~ 3 x E X V S t a O ( x , a ) .  

(The superscript bd is deleted from • by the proposition.) But this follows 
from the I S T  Idealization. • 

COROLLARY 2.3. B S T  is an equiconsistent and conservative extension of 
Z F C .  

PROOF. Use a theorem of [23] which says that  I S T  is a conservative 
and equiconsistent extension of Z F C .  • 

2.2. BST enlargements  of models  of Z F C  22 

Let M be a model of Z F C ,  not necessary an E-model. A model *M of 
B S T  or I S T  is called a regular enlargement of M if M is (isomorphic 
to) the class of all s tandard sets in *M (with the membership and equality 
inherited from *M .) 

THEOREM 2.4. [Model enlargement for B S T  ] 

Any countable model M of Z F C  has a regular B S T  enlargement. 

PROOF. 23 First of all we may assume that  M is a model of Z F G C ,  
the "global choice" version of Z F C ,  which contains G as an ext ra  func- 
tional symbol in the language, and the axiom which says tha t  G is a global 

22 The authors are in debt to A. Enayat for the interest in this part of the paper end 
useful comments. 

2s A proof of this theorem modulo minor details was outlined in Hrba~ek [9] as a part 
of the proof of a stronger enlargement result. We prefer to give here a somewhat different 
proof first to make the exposition self-contained and second to save some space in Part  3 
where the construction of the proof is used for another theorem. 
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choice function for the universe, and it is assumed that  G may occur also 
in the schemata of Separation and Replacement. (Indeed, by a theorem of 
Felgner [6] every countable model of Z F C  can be enlarged, by forcing, to a 
model of Z F G C  containing the same sets). Evidently Z F G C  implies, by 
the Zermelo argument ,  the existence of a wellordering of the universe of all 
sets; let -~ denote such a wellordering of M. In other words, M is a model 
of Z F C  enriched by the assumption that -~ may occur in the schemata, 
and it is true in M that  -< wellorders the universe. 

The principal idea is to apply the method of adequate ultrapowers used 
in the construction of I S T  models given in Nelson [23]. We introduce, 
however, some changes and simplifications. 

Let C be an arbitrary set. We put C fin = :Pfin(C) (all fn i te  subsets 
of C ) .  Anonpr inc ipa l  ultrafilter V C_ :P(C fro) = {I  : I C_ C r~} will be 
called C-adequate iffit  contains all sets I(C,i)  = {i' E C fm: i C_ i '}, where 
i C  C f~. If in this case D_C C then we define U r D  = {u r D : u E  U} 
where u I D = { i M D : i c u }  for any iC_C fin. Then U t D  will b e a  D 
-adequate ultrafilter. 

There are two operations over ultrafilters which we shall use below. 

Operation 1. Let U and U I be a C-adequate and a CI-adequate 
ultrafilters respectively. We suppose that  C N C t = ~. Then we let 

U* U'= {w C (C U C ' ) ~  : Vi  U' i '  (iU i' ~ w)}.  24 

Then U * U ~ is a (C U C~)-adequate ultrafilter, q 

Operation 2. Assume that  Us is a Ca-adequate ultrafilter for all a < A, 
A a limit ordinal. Assume that  Ca _C C z and U~ = U z I Ca for all pairs 

< f t .  We put  c = u ~ < ~ C a  and u~=ua<~U~[- -*C]  where 

U ~ [ ~ V ] = { u [ - - ~ C ] : u C U ~ }  and u [ - - * C ] = { j c C : j N C ~ E u } .  

Then U~ is an C-adequate filter, that  is, there exists an C-adequate ul- 
trafilter U~ such that  U~ C U~. We let ]im~<~ U~ denote the -~-least of 
such U~ in the case when a wellordering -~ of the universe is fixed. 

Let O = Ord M. Using the relation -~ which wellorders the universe 
in (M;-~), and the two operations, we can easily define an O-adequate 
ultrafilter U such that  

1. The indexed family of ultrafilters Uc = U I C, where C E M is 
such that  it is true in M that C is a set of ordinals, is definable in 
(M; -~) . 

24 If  V is a n u l t r a f i l t e r  o v e r a s e t  I then  Ui¢(i) means: { i E I : ¢ ( i ) }  E U. 
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2. It is true in (M; -<) that for any C C_C_ Ord and any cardinal t~ there 
e x i s t s a s e t  DC_ Ord ofcardinali ty > a such that  D f l C = O  and 

UCUD ~- UD :~ UC . 

W e  a r g u e  in t h e  m o d e l  (M;-<) 

We say that  a formula ~(i) is C-reduced if ~(i) , ) ~( i f lC)  holds for all 
finite i. We say that  ~ is reduced if it is C-reduced for some set C C_ Oral. 
Let ~(i) be such a formula. The quantifier U is defined by: 

V i ~(i) if and only if [To i ~( i ) .  

where C _COrd is an arbitrary set such that  ~ is C-reduced. The inde- 
pendence on the choice of C is easily verifiable: indeed, every Uc is equal 
to U I C  for one and the same U .  

One can easily check the following properties of these quantifiers. 

PROPOSITION 2.5. [ Properties of the ultrafilter quantifiers ] 

1. I f  c E C then Uc i (c E i). (By the adequacy of Uc .) 

2. Ira formula ¢y(i) is C-reduced, then it is D-reduced for all D D_ C, 
and in this case U c i ~ ( i )  ( ~ UDicp(i) ~ ~ U i ~ ( i ) .  

3. I f  Y i E C [ ~ ( i )  ) ¢(i)], then V c i ~ ( i )  ~ U c i ¢ ( i ) .  

4. U i ~ ( i )  g~ U i ¢ ( i )  ~ U i [ ~ ( i )  ~z ¢( i ) ]  for reduced ~, ¢ .  

5. u i , u i whenever is reduced. 

For C C_ Ord, we let /Pc denote the class of all functions having C f~ 
as the domain and arbitrary values, and put ~ = Uccora  9~c • For f E Yrc 
we put  C ( f ) = C .  

The set ~ is the base set (class, from the M th point of view) for the 
enlargement. To define the basic predicates - - ,  *E, *st, acting on ~ ,  we 
first put f[i] = f ( i  M C) whenever f E ~ c  but perhaps i S C. Then 
f [ i ] = f ( i )  for i E C  ~ .  Now let f,  g E F .  We put 

f *-- g if and only if U i (f[i] -- g[i]) ; 

f *E g if and only if U i (f[i] E g[i]). 

The formulas f[i] = g[i] and f[i] E g[i] are C ( f )  U C(g)-reduced. 

For x E M, let x E ~'{0) denote the function defined by x(0) = x. 
We put  C = {x : x an arbitrary set (in M )} and define, for f E ~', 

• st f if and only if 3 g E C ( f  *= g) .  
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This is the  s tandardness  predicate.  T h e  e n d  o f  r e a s o n i n g  in M .  -t 

Obviously *= is an equivalence on .T and *E, *st are - - - invar ian t .  
This  allows to define [f] = {g E ~" : f *= g}, and then  

[f] *E [g] if and only if f *E g;  

*st [f] if and only if *st f .  

Let finally *M = { [ f ] :  f E 9~}. We shall consider *M = (*M; =, *E, *st / 
as a s t -E-s t ruc ture  ( E and st are interpreted as *E and *st respectively). 
To t reat  *M as an enlargement  of M, we put  *x = [x_] for all x E M;  
then  x = y  ( ) *x*=  *y, and the same for membership ,  so x~ ) *x is 
in fact  an embedding.  The  sets *x and only these sets satisfy *st in * M .  

Let ~ be an arbi t rary  E-formula with parameters  in .~. We define 
C(O) = [ J { C ( f ) :  f occurs in ~}; then ~) is C(¢)- reduced.  If i is finite 
then  let ~[i] denote  the result of replacing each f occurring in (I) by f[i], 
so t ha t  ¢[i] is an E-formula having sets in M as parameters .  Let [¢] 
denote  the  result  of changing each f occurring in • to [f], so tha t  [~] 
is an E-formula with parameters  from * M .  

LEMMA 2.6. [Log] Let • be a closed E-formula with parameters in ~ .  
Then 

[(I)] is true in *M ~ ) U i (I)[i] is true in M .  

PROOF. Usual proof  in M by induction on the logical complexity of 
based on Propos i t ion  2.5. To carry out the implication ~ in the step 

for 3 we define C = C ( ¢ )  and replace U i by U c i  in the r i gh t -hand  
side by Propos i t ion  2.5.2. 

COROLLARY 2.7. Let ~ be a closed E-formula with parameters in M,  and 
let *~ be obtained by replacing each parameter z E M by *z in ~. Then 

holds in M ( ) [*~] holds in *M. 

PROOF. Evident ly  *~[i] coincides with ~ for all i .  

We assert tha t  *M is a regular B S T  enlargement of  M,  as it is 
required by Theorem 2.4. Indeed, first of all M is (isomorphic to) the col- 
lection of all s t andard  (satisfying *st ) members  of *M via the embedding  
x~ ) *x. Thus  it remains to prove that  *M i s a m o d e l o f  B S T .  

Corollary 2.7 shows tha t  all Z F C  axioms hold in *M and easily implies 
Transfer  in *M. To check Standardizat ion in *M it suffices to recall tha t  
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the predicates *=, *E, *st are expressed in M by certain formulas of the 
{ E, -< }-language. 

We verify Boundedness in *M. Let f E 9v; we have to find a set 
X E M such that  f *E *X. Take notice that  f is an element of M, a 
Z F C  model. Therefore there exists X E M such that  every value of f 
belongs to X. Lemma 2.6 implies the required property of X .  

We verify Internal Saturation IS. W e  a r g u e  in M .  Let ~(x,a) be 
an E-formula containing elements of $" as parameters,  and C = C(~) .  We 
fix some A0 E M and prove 

I S :  VstfmA C *Ao 3 x V a E A [~(x, a)] > 3 x VSta E *A0 [~(x, a)] 

in *M. (The implication < does not need a special consideration because 
it follows from Standardization that  elements of finite standard sets are 
standard, see Nelson [23].) 

Let D C_ Ord be any set of cardinality eard Ao in M disjoint from C 
and such that  UDUC = UD # UC. (Condition II above !) One may assume 
that  in fact A0 = D .  (Let H be a map of D onto Ao. We define ~ t (x ,7)  
as ~(x, H(7))  .) Thus the statement we have to prove in *M takes the form: 

I S :  VstfindC_ * D 3 x V T E A [ ~ ( x , 7 ) ]  > 3xV~t'y E *D[~(x, 'y)].  

One may convert the left-hand side by Lemma 2.6 to the form: 

Vf A C_D Ui  3x VvE A [i], 

VDi' Uoi 3x V ei' [i], 

VDucj E A(j) [j] 

that  is, to 

then to 

by the choice of D, where A E ~:DuC is defined on the domain (D U C) f~ 
by the equality A(j)  = j N D, and finally to U j  3x  (V3' E .4 ~(x,~/)) [j]. 
Then the sentence 3 x V'y E A ~2(x,7) is true in *M by Lemma 2.6. Thus,  
to obtain the r ight-hand side of IS, it suffices to prove *7 E A in *M for 
all 7 E D. This is equivalent to the formula UcuD j ('Y E .4) [j] by Lemma 
2.6, then to UCOD j ("[ E j A D) by the definition of A ,  and this is exactly 
Proposition 2.5.1 because ~, E D .  

This ends the proof of Theorem 2.4. • 
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2 .3 .  A m o d e l  o f  Z F C  h a v i n g  n o  I S T  e n l a r g e m e n t s  

TttEOREM 2.8. The minimal transitive model of Z F C  does not have a 
regular I S T  enlargement. 

PROOF. 2~ Let M = L~ be themin imal  transitive Z F C  model. ( Le 
is the # th level of the constructible hierarchy.) The proof is based on two 
ideas. The first of them is a known fact: 26 every x E M is E-definable in 
M .  

The other idea is the ability of I S T  to express the t ru th  of E-formulas 
in $, the class of a~ s tandard  sets. 27 Let r ( n , T )  be the st-E-formula 
which says tha t  n is a s tandard natural  number,  T is a set of closed E- 
formulas (represented as finite sequences of symbols and, perhaps, sets used 
as parameters)  such tha t  the intersection of T with 5 satisfies the Tarski 

rules for the t ru th  of in S restricted to ~n-formulas and below. 

Let on the contrary *M be an I S T  enlargement of M in which M 
is the collection of all s tandard sets. For any s tandard  n, 3 T v ( n , T )  is 
true in *M - -  it suffices to utilize universal ~n-formula and use Transfer. 

Thus an E-formula ¢(x, y, ...) is true in M (where x, y, ... E $ ) iff 

3 n 3 T [ v ( n , T )  & ¢ ( x , y , . . . ) E T ]  

is t rue in *M. (We omit,  generally speaking, the necessary procedure of 
"GSdelization" of formulas). Therefore, since in particular all M-countable  
ordinals are E-definable in M, there exists a map w which is st-E-definable 

in *M and onto w M, the least uncountable ordinal in M. Applying Stan- 
dardization, we obtain a map ~ onto w M in M, contradiction. [] 
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