(o

Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Identification in the limit of categorial grammars

M. Kanazawa

Computer Science/Department of Software Technology

Report CS-R9351 July 1993

CWI is the National Research Institute for Mc
the Stichting Mathematisch Centrum (SMC),
and computer science and their applications.

SMC is sponsored by the Netherlands Organ
member of ERCIM, the European Research Co

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam {MNL)
Kruislaan 413, 1098 S} Amsterdam (N}
Telephone +31 20 592 9333

Telefax +31 20 592 4199

1

Learnability is an important concept in linguistics. It is a property of a class of
languages. A class of languages is learnable if there is a learning strategy that
succeeds in learning an arbitrary language in the class. It is considered that the
class of natural languages has to be learnable, since a normal child is capable of

Identification in the Limit of Categorial
Grammars

Makoto Kanazawa
Department of Linguistics
Stanford University
Stanford, CA 94305-2150, USA

kanazawa@csli.stanford.edu

Abstract

The class of classical categorial grammars which assign at most k types
to each symbol in the alphabet is shown to be identifiable in the limit from
positive data in the sense of Gold (1967), for any k. A corollary to this
is that the entire class of context-free languages becomes learnable from
positive data if the learner is provided with the additional information that
enables her to distinguish between different uses of a lexically ambiguous
symbol. Our algorithm incorporates Buszkowski’s algorithm (Buszkowski
1987, Buszkowski and Penn 1990), which determines a rigid classical cate-
gorial grammar (which assigns at most one type to each symbol) from data

. consisting of functor-argument structures.

1991 CR Subject Classification: F.4.3, 1.2.6.

Keywords and Phrases: categorial grammar, context-free languages, formal
language theory, identification in the limit, inductive inference, learnabil-
ity. -

NOTE: The author was sponsored by project NF 102/62-356 (‘Struc-
tural and Semantic Parallels in Natural Languages and Programming Lan-
guages’), funded by the Netherlands Organization for the Advancement of
Research (N.W.0.).

Introduction

learning any natural language that happens to be spoken around her.

1

Report CSR9351
ISSN 0169-118X

Cwi

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Among the various paradigms of learning current in the computational learn-
ing theory, we consider the classical paradigm of identification in the limit due to
Gold (1967) (see also Osherson, Stob, and Weinstein 1986). Gold’s paradigm was
partly motivated by first language acquisition, and identification in the limit is
in fact the only mathematical notion of learning that linguists have paid serious

attention to (Wexler and Culicover 1980).

‘ In Gold’s model, language learning is considered an infinite process in which
the learner is presented with an infinite stream of sentences of the target language,
one sentence at a time. Each time the learner receives a sentence, she makes a
guess as to the identity of the target language, on the basis of a finite number of
sentences she has received so far. Each guess is made in the form of a grammar
supposed to account for the language. As the learner receives more and more data,
she makes successive guesses, possibly different from the previous ones. Thus,
corresponding to the infinite sequence of sentences presented to the learner, she
produces an infinite sequence of grammars (figure 1).

St 82 83 ... Sp ...,

Gi
G,
Gs

G

Figure 1: Language learning.

It is assumed that every sentence of the target language eventually appears in the
infinite sequence of sentences and only sentences of the target language appear.
Now the learning is considered successful when there is some point beyond which
the learner always makes the same guess and that guess is a correct grammar
for the language. Note that at any finite stage, one can never tell whether the
learning has succeeded or not, since the guess might change at the next moment.
Gold called this criterion of successful learning identification in the limit.

Under this criterion, a class of languages is learnable if there is a learning
strategy that identifies in the limit any language in the class, no matter in what
order the sentences of the language are presented. A class of languages learnable
in this sense is called identifiable in the limit.

Note that in the above model, the information that the learner has about
the target language at any given point consists of only positive data about the
language (i.e., strings in the language). Gold also considered identification from
complete data, which include both positive and negative data (strings not in

the target language) marked as such. Complete data makes identification much
easier. In this paper, we only consider identification from positive data. (Other
variations of the above model are possible, too.)

Gold (1967) studied identifiability in the limit of classes of formal languages.
The initial result obtained by him about identification from positive data was
extremely negative. He showed that the class of all finite languages is a maximal
identifiable class. If a class contains all finite languages and at least one infinite
language, then the class is not identifiable in the limit from positive data. There-
fore, identification in the limit from positive data was considered extremely weak;
not even the class of regular languages, which lies at the bottom of the Chomsky
Hierarchy, is identifiable.

However, recent works (e.g., Angluin 1979, 1980, 1982) have shown that Gold’s
result was very misleading. Many interesting classes of languages have been
shown to be identifiable in the limit from positive data, which cross-cut the
Chomsky Hierarchy. The strongest result of this kind is due to Shinohara (1990a,
1990b): the class of languages generated by context-sensitive grammars which
employ at most k rules, for any fixed &, is identifiable in the limit from positive
data. Note that for any k, although this class contains infinitely many languages,
it does not contain all finite languages, so Gold’s result does not apply. This
shows that there is a sense in which identification in the limit from positive data
can be said to be quite powerful.

In this paper, we prove a result similar to Shinohara’s with respect to clas-
sical categorial grammars: the class of languages that are generated by classical
categorial grammars which assign at most k types to each symbol in the alpha-
bet is identifiable in the limit from positive data, for each k. We show this by
presenting a relatively concrete algorithm, which makes use of Buszkowski’s al-
gorithm (Buszkowski 1987, Buszkowski and Penn 1990) for determining a rigid
categorial grammar (i.e., a categorial grammar which assigns at most one type to
each symbol) from data consisting of functor-argument structures. Given Shino-
hara’s theorem, our result is not surprising; indeed, a straightforward reduction
of our result to Shinohara’s is possible (see Appendix). Nevertheless, since the
algorithm provided by the proof of Shinohara’s theorem is of a rather abstract
character,! our use of Buszkowski's algorithm may be of independent interest.

The fact that the class of rigid categorial grammars is identifiable in the limit
from positive data (consisting of strings) also has an interesting consequence on
the issue of what kind of additional information compensates for the lack of
explicit negative information in positive data. Suppose that the data given to
the learner is not plain strings in the target language but disambiguated strings,
that is, strings where each occurrence of a symbol is annotated with a subscript
to indicate type ambiguity. Given such data, the entire class of context-free
languages becomes learnable while negative data is still precluded.

1Shinohara’s theorem depends on a theorem by Wright (1989), which in turn depends on a,
theorem by Angluin (1980). Following the proofs of these theorems provides an algorithm that
identifies the class in question.

eliminaries

entification in the Limit

ut the paper, ¥ stands for a fixed finite alphabet of symbols. ©* denotes
all strings of symbols from ¥, and X% denotes the set of all non-empty
symbols from ¥. The term ‘language’ is usually used to mean a subset
r the purposes of this paper, however, we disregard the empty string,
ler only e-free languages, that is, subsets of X*. Thus, in this paper,
guage to mean e-free language. Likewise, we simply say string to mean
r string.

nmar system consists of a class Q and a ‘naming’ function L:Q —
where 2 is understood to be a domain on which effective computation
rried out (2 could be the set of natural numbers, or it could be a
e finitary objects like Turing machine programs or rewriting systems).
of {2 are here called grammars. If G is a grammar, then L(G) is called
1ge generated by G. The naming function L(-) usually satisfies the
;swo conditions: (1) the relation s € L(G) between s € £+ and G € Q
semi-decidable (r.e.); (2) from any finite language D C ©*, a grammar
*h that L(G) = D can be effectively computed (so 2 contains names
te languages).

zrammar system (€2, L(-)) be given. Let (s;)ic, = $1,52,83,... be an
quence of strings from X*. Let ¢ be a (partial) function that maps
ences of strings from % to grammars in Q (¢: Ug>1(Z1)F — Q). Then
0 converge to G on (s;);e, iff there exists an n such that for all m > n,
Sm)) is defined and ¢((s1,...,8m)) = G. If G is a class of grammars
is said to identify G in the limit from positive data iff for every G in
every infinite sequence (s;);c, that enumerates L(G), ¢ converges on
some G’ in G such that L(G') = L(G). G is said to be non-effectively
2 in the limit from positive data iff there is a function that identifies
mit from positive data. If there is an effectively computable function
ifies G in the limit from positive data, then G is said to be identifiable
it from positive data. We also say that a class £ of languages is (non-
) identifiable in the limit from positive data iff there is a class G of
which is (non-effectively) identifiable in the limit from positive data
L ={L(G) | G € G}. Since we do not consider identification from
lata in this paper, we shall often simply say ‘identify in the limit’,
:an ‘identify in the limit from positive data’, etc. Note that in general
ity of a class of languages depends on the grammar system under
ion.

1 (Gold) With respect to any grammar system, if a class of languages
ne infinite language and all finite subsets of it, it is not non-effectively
2 in the limit from positive data.

mar system satisfies condition (2) above, then the class of all finite lan-
identifiable in the limit from positive data, so it is a maximal identifiable

lassical Categorial Grammars

ler the grammar system (C, L(-)) consisting of the class C of classical cat-
ammars of Ajdukiewicz and Bar-Hillel, under the usual interpretation.
stem, a grammar G is a finite relation between ¥ and Tp (G C ¥ x Tp
finite),> where Tp is the set of types. Types are constructed from prim-
s by two type-forming operators, / and \; that is, Tp is the smallest
ning Pr such that if A, B € Tp, then A\B, B/A € Tp, where Pr is the
-~ infinite set of primitive types. One member ¢ of Pr is singled out as
guished type. If a grammar G relates a € ¥ with A € Tp ({(a, A) € G),
assigns A to a and write G:a +— A.

y that a finite sequence of types Ay, ..., A, cancels to a type Anyq, if
ssion Ay, ..., A, = A, is derivable from the axiom schema:

A=A
rules:

'==A A= A\B
A= B

I'=>B/A A=A
A=1B

stand for finite sequences of types). Now L(G) is defined to be the
ings s = ay...a, such that for some types A;,..., A,, G:a; — A;
n) and Ai,..., A, cancels to t. It is known that L = L(G) for some
ategorial grammar G if and only if L is an e-free context-free language,
he question whether s € L(G) is decidable in polynomial time. (C, L(-))
1e conditions (1) and (2) above on the naming function.
- a partial function from ¥ to Tp, then G assigns at most one type to
»ol in ¥ Such a grammar is called rigid. If a grammar G assigns at
ses to each symbol, then G is called a k-valued grammar. Let C, denote
of k-valued grammars, and let £ = {L(G) | G € C; }. Note that for
is infinite, and if |Z| > 2, £; is, too.
vte our main result in this paper:

1 2 (Main Theorem) For each k, Cy, (and hence Ly) is identifiable in
rom positive data.

paper, we use C to mean proper subset.

3 Buszkowski’s Algorithm

The question of learnability has not been addressed with respect to categorial
grammars. There is a very important work by Buszkowski (1987), however, in
which he presents a simple intuitive algorithm that computes a classical cate-
gorial grammar from linguistic data. The input to the algorithm is a finite set
consisting of functor-argument structures, and the output is a rigid classical cat-
egorial grammar which is compatible with the input data (if there is one). The
algorithm, which is similar to the one for the typing problem in lambda and
combinatory calculi, is an interesting application of unification, and it has some
nice formal properties, as proved by Buszkowski and Penn (1990). Although
Buszkowski does not consider the question of learnability, his algorithm can in
fact be used in an algorithm that identifies Cy, in the limit.

3.1 Definitions of Basic Notions

Before presenting Buszkowski’s algorithm, we introduce some basic notions.
Henceforth, ‘grammar’ means ‘classical categorial grammar’, unless otherwise
specified.

3.1.1 F-structure

A functor-argument structure (F-structure for short) (over X) is just a binary
branching tree where leaves are labeled by symbols from 3, and, for each internal
node, one of its daughters is distinguished as the functor (the other daughter is
the argument). Figure 2 is an example of F-structure.

Every man loves

a woman

Figure 2: F-structure.

‘f here indicates functors. Symbols in ¥ are identified with F-structures of depth
0. An F-language is just a set of F-structures.

If we view trees as terms, then F-structures can be regarded as terms built up
from constants in ¥ and two binary function symbols f;, and fr (corresponding
to the case where the left daughter is the functor and the case where the right
daughter is the functor, respectively). For example, the F-structure in figure 2
can be written fr(fL(every, man), fr(loves, fr(a, woman))). Thus, F-structures

gs over ¥ U {fr, fr} of a certain kind (parentheses and commas are not
1ecessary), and F-languages are certain subsets of (X U {fr, fr})*. (The
. F-structures over ¥ is a context-free language over ¥ U {fz, fr}-)
hstructure of an F-structure T is an F-structure that occurs as part of T'.
de v of T determines a substructure, namely that portion of T' that lies
(including v). If we view F-structures as terms, then substructures are
yield of an F-structure T, yield(T"), is the string of symbols labeling the
T. If we view T as a string in (XU{fr, fr})™, then yield(T) is the result
g the occurrences of f; and fg in T.

type assignment to symbols by a grammar G is extended to a type as-
; to F-structures in the following way.

7 assigns type B/A to F-structure T; and type A to F-structure Ty, then

assigns type B to J/\ .
T T

7 assigns type A to F-structure 77 and type A\B to F-structure T, then

assigns type B to /\f .
T1 T2

Iso write G:T — A for ‘G assigns type A to F-structure T’. So, for
 if
G: John +— e
walks — e\t

G: /\f — t,
John walks

G: V\ — t.
John walks

'p(G) be the set of subtypes of the types in range(G). If G: T — A, then
Tp(G).

F-language of G, FL(G), is defined to be {T | G:T ~ t}. L(G) can
lefined in terms of FL(G); L(G) = {yield(T) | T € FL(G) }.

rse of an F-structure T by a grammar G is a function A from the set of
T to Tp which satisfies the following conditions:

naps the root node of T to ¢.

leaf node v of T is labeled by a symbol a, then A maps v to a type A
.that G:a +— A.

node v of T has a left daughter v, and a right daughter v, then h maps
B if and only if either (i) v; is marked as the functor and for some
- A, h maps v; to B/A and v, to A, or (ii) v, is marked as the functor
for some type A, h maps v; to A and v, to A\B.

of some F-structure T by G maps a node v of T to A and T” is the
ire of T' determined by v, then G: T' — A. Moreover, if G: T + t, then
t be a parse of T by G. So FL(G) = {T | G has a parse of T'}.

hat (C,FL(-)) can be viewed as a grammar system (over an extended

1bstitution

Pr—{t}. We call the elements of Var variables. There are denumerably
ables, so we assume Var = {z;, z,23,...}.

stitution is a function o: Var — Tp, which is extended to a function
'p as follows:

o(t) = ¢

o(A\B) = o(A)\o(B)

a(B/A) = o(B)/o(A)
d o' are substitutions, o is said to be more general than ¢’ if there is
tion 7 such that o' =1 o00.
titution o is said to unify a set of types {A;,..., A} if 0(4;) =--- =
2 say that o unifies a family of sets of types, if o unifies each set in the
\e notion of most general unifier is understood in the usual way: ¢ is a
ral unifier of a family S of sets of types iff for every unifier ¢’ of S, o is
ral than ¢'. There is an algorithm that decides whether a given family
ypes has a unifier, and if it does, computes a most general unifier of it.
enotes the grammar obtained by performing substitution o in the type
t of G. That is, 0[G] = {(a,0(A)) | (a,4) € G}. 0[G] is called
on instance of G. Two grammars that are substitution instances of

- are identical for all intents and purposes and are called alphabetic
The following is easy to see:

. If 0[G] C @, then FL(G) C FL(G").

lgorithm RG
i’s algorithm RG takes a finite set of F-structures as input and returns
mmar compatible with it as output, if there is one:

RGIDZ{{Tl,Tz,...,Tn}F——) G
rigid

rithm essentially uses unification of sets of types.

wski’s algorithm RG.
>ut: a finite set D of F-structures.
tput: a rigid grammar G such that D C FL(G) (if there is one).

rate the algorithm using the following example:

f
b=y /N
John walks walks
Every man

sign a type to each node of F-structures in D as follows:

) Assign ¢ to the root node of each F-structure in D.

) Assign distinct variables to argument nodes.

f

Z3
T walks
John walks f

T3
Every man

) Compute types of functor nodes as follows:

14
e If nodes v, v, v occur in the configuration J/\ and B is

vy ey
assigned to v and A is assigned to v,, then assign B/A to v;.

v
e If nodes v, 14, v, occur in the configuration J/\ and B is

v
assigned to v and A is assigned to vy, then assign A\B to vs.

t
¢ !
t/x
z1 /\f z1\t /73 walks
Joh Ik f
onn walks (t/.’l?3)/.’li2 Ty
Every man

each symbol a in the alphabet, collect the set of types S, assigned to
nodes labeled by a in the previous step. Obtain a grammar GF(D) (the
ral form determined by D) by letting GF(D) = {(a,A) | A€ S, }.

GF(D): John +~ =z

walks — z;\t, z3
every + (t/za)/x;
man = I9

y the types assigned to the same symbol. Obtain a most general unifier
{S.|a€X} (RG fails if unification fails.) For the present example,
a most general unifier that unifies the two types assigned to walks.

0'((173) = $1\t

RG(D) = o[GF(D)]. (RG(D) is the rigid grammar determined by D.)

RG(D): John +— x;
walks — 2\t
every > (t/(z1\t))/z2
man — I

.e the change in the type assigned to every.)

roperties of RG

tion, we state some important properties of the algorithm RG. Some
ill not be needed in the proof of the main theorem, but they may be of
nt interest.

asic Properties

resent some results from Buszkowski and Penn (1990).
) (Buszkowski and Penn) FL(GF(D)) = D.

The following are easy to see. (i) If B/A or A\B € SubTp(GF(D)),
Var. (ii) For any B € SubTp(GF(D)), if B # t, step 1 of the algorithm
s B to exactly one node (call it vg) in D. (iii) Step 1 of RG provides
of each F-structure T; € D by GF(D). By (iii), D € GF(D). To show
J) C D, we prove

F(D):T ~ B, then T is the same F-structure as the substructure
rmined by some node v that step 1 of RG assigns B,

11

by induction on the depth of 7. If T is a symbol a in %, then GF(D):a — B,

and (*) is clearly satisfied. Let T = f/\ (the other case is similar). Then
Ty T,
for some A, GF(D): T} — B/A and GF(D):T, — A. A must be a variable, so
neither B/A nor A is t. So by induction hypothesis, T} is the same F-structure
as the substructure determined by the node vp/4 in D, and T, is the same F-
structure as the substructure determined by the node v4 in D. In order for vg /A
to be assigned B/A in step 1 of RG, vp/4 and v4 must occur in the configuration
v

V\ . v must be assigned B by step 1 of RG, and V\ is the same
VB/A Va L Ty
F-structure as the substructure determined by the node v in D. []

Lemma 3 (Buszkowski and Penn) Let D be a finite set of F-structures.
Then for any grammar G the following are equivalent:

(i) D CFL(G)
(ii) there is a substitution o such that o|GF(D)] C G.

Proor. (ii) = (i) follows from Lemma 1 and Lemma 2.

(i) = (ii). Assume D C FL(G). For each F-structure T} in D, G has a
parse h; of T;. Let h = J; h;. Define a substitution ¢ by putting for each variable
z; € VarNSubTp(GF(D)), 0(x;) = h(vs;). (See the proof of Lemma 2). Then by
induction on the complexity of type A € SubTp(GF(D)), we can easily see that
0(A) = h(vy) if A # t. Therefore, if GF(D):a + A, then G:a — o(A). (The
case A =t is taken care of by the fact that a € D.) This means o¢|GF(D)] C G.
n

Proposition 4 (Buszkowski and Penn) Let D be a finite set of F-structures.
Then, for any rigid grammar G, the following are equivalent:

(i) D € FL(G)
(ii) RG(D) ezists and 7[RG(D)] C G for some substitution 7.

PROOF. (ii) = (i) follows from Lemma 3.

(i) = (ii). Assume that G is a rigid grammar and D C FL(G). Then by
Lemma 3, for some substitution o, ¢[GF(D)] C G. ¢[GF(D)] is a rigid grammar,
so o unifies all the types assigned to the same symbol by GF(D). Hence RG(D)
exists and RG(D) = ¢¢[GF(D)], where oy is a most general unifier that unifies
all the types assigned to the same symbol by GF(D). This means that for some
substitution 7, 0 = 700y. So G 2 ¢[GF(D)] = (7000)[GF(D)] = 7{0o|GF(D)]] =
T[RG(D)].]

y 5 Let D be a finite set of F-structures. Then, for any rigid grammar
. FL(G), then FL(RG(D)) C FL(G).

rom Proposition 4, using Lemma, 1. [

the F-language of RG(D) is the smallest among the F-languages of rigid
which include D.

v 6 Let D and D' be finite sets of F-structures such that D c D.
\G(D') ezists, RG(D) ezists and T[RG(D)] C RG(D') for some substi-
nd FL(RG(D)) C FL(RG(D")).

dequacy of the Output

it of RG has the property we call adequacy, and this fact will be crucial
the main theorem of this paper. In showing this, we prove some general
t adequate rigid grammars as well.

n A rigid grammar G is called minimal if the following condition holds:
sid grammar G, if FL(G") = FL(G) and ¢[G’] C G for some o, then
for some 7.

hat, for rigid grammars G and G, if 7[G] C G’ and ¢[G'] C G, then
and o[G'] = G, that is, G and G’ are alphabetic variants.

" For every rigid grammar G, there is a minimal rigid grammar G’
FL(G) = FL(G") and o[G'] C G for some substitution o.

€t G be any rigid grammar. Up to alphabetic variants, there are only
mber of rigid grammars G’ such that FL(G) = FL(G') and ¢[G'] C G
ubstitution o. One of them must be minimal.]

ality of a rigid grammar turns out to be equivalent to adequacy, which
fine. '
»e a symbol not in X.

n For any grammar G, and for each A € SubTp(G), let G4 = G U
74 is a grammar over the extended alphabet ¥ U {$}.

n Let G be any grammar. For each A € SubTp(G), define two sets
1 Ve(A) of F-structures as follows. The latter is a set of F-structures
xtended alphabet ¥ U {$}.

)={T|G:Tw A},

1) ={T | T € FL(G4) and $ occurs exactly once in T }.

13

Members of Vz(A) are ‘contexts’ in which an F-structure of type A can occur.
IfT1(8) € Va(A) and Tz € Ug(A), then T1(T3) € FL(G), where T; (T3) is the result
of replacing the leaf labeled by $ in T1($) by Ts.

Lemma 8 The following hold:
1. If Ug(A) # 0 and either Ug(B/A) # 0 or Ug(A\B) # 0, then Ug(B) # 0.
2. If Va(B) # 0 and either Ug(B/A) # 0 or Ug(A\B) # 0, then Ve (A) # 0.
3. If Vo(B) # 0 and Ug(A) # 0, then Va(B/A) # 0 and Vo(A\B) # 0.

Definition A grammar G is called adequate if for each A € SubTp(G), Ug(A) #
@ and Vg(A) 7'5 @

Our definition of ‘adequate’ differs from that of Buszkowski (1988), but the
two coincide with respect to rigid grammars. An adequate categorial grammar is
similar to a context-free grammar with no useless symbols.

Lemma 9 A grammar G is adequate if and only if G satisfies the following two
conditions:

(i) for any A,B € SubTp(G), if Us(BJA) # O or Ug(A\B) # 0, then
Ua(A) # 0.

(ii) for any A € SubTp(G), Ug(A) # B implies Va(A) # 0.

Definition Note that any type A can be written uniquely in the following form:

(- (plA1)] -)| An

where B|C' stands for either B/C or C\B, and p € Pr. For 0 < ¢ < n, we call
the subtype (... (p|A1)]...)]A; of A (when 7 = 0, we take this to be p) a head
subtype of A. pis the head of A and is denoted head(A). A;’s are called argument
subtypes of A.

Lemma 10 If Ug(B) # 0, B occurs as a head subtype of some type in range(G).
Proposition 11 For every rigid grammar G, if G is minimal, G is adequate.

PrOOF. We prove the contrapositive. Suppose that G is a rigid grammar that
is not adequate. Then there must be a type A = (... (p|4;)]...)|A. € range(G)
such that either Ug(A;) = 0 for some ¢ (1 < 7 < n) or Vg(p) = 8. To see this,
use Lemmas 8, 9, and 10.

Case 1. Vg(p) = 0.

CASE 1A. n=0 (p = A). Let G' = G — {(a, A)}, where a is a symbol such
that G:a — A. It is clear that FL(G') = FL(G), so G is not minimal.

1B. n > 1. Pick a fresh variable z and let ¢ be the substitution that
plA; (and every other variable to itself). For any type B € SubTp(G),
¢ the result of replacing all occurrences of p|A; in B by z. (6(g(B)) =
he rigid grammar G' = { (b, g(B)) | (b, B) € G }. G = o[G'], and there
itution 7 such that G' = 7[G]. FL(G') C FL(G), so it remains to show
"L(G"). Suppose T € FL(G). Let h be a parse of T' by G. Let h' be the
om the nodes of T to types such that h'(v) = g(h(v)). We show that
ie of T by G'. That h' maps the root node of T to ¢ is obvious. If vis a
f T labeled by the symbol b, h'(b) is a type assigned to b by G, by the
m of G'. Let v be any node of T with daughters v; and v,. Then for

€ SubTp(QG), either (i) A(v) = B, h(vy) = B/C, and h(vy) = C, or
B, h(r1) = C, and h(v,) = C\B. In the case of (i), since Vg(p) = 9,
B/C # p|A1. Thus i'(v) = g(B), h'(v1) = g(B/C) = g(B)/9(C), and
C). Case (ii) is similar. This shows that A’ is a parse of T by G'. So

). Us(A;) = 0. Pick a fresh variable z and let o be the substitution that
(...(plA1)]...)]As. Forany type B € SubTp(G), let g(B) be the result
g all occurrences of (... (p|A1)|...)|Aiin B by z. (0(g9(B)) = B.) Take
rammar G' = {(b,g(B)) | (b, B) € G}. That G’ is a counterexample
imality of G can be shown in a similar way to Case 1b. |

nverse of Proposition 11 also holds (Corollary 19).

he questions ‘Ug(A) # 07’ and ‘Vg(A) # 07’ are decidable, the proof
tion 11 provides an effective procedure which, given a rigid grammar
. adequate (and minimal, by Corollary 19) rigid grammar G’ such that
‘L(G).

12 Gwen a rigid grammar G, one can effectively find an adequate
nar G' such that FL(G) = FL(G") and 0|G'] C G for some substitution

13 RG(D), if it exists, is adequate.

y Proposition 4, RG(D), if it exists, is minimal, and hence adequate
tion 11. =

rther Properties of RG

n will not be needed in the proof of the main theorem and therefore
yped, but may be of interest in its own right.

e case that, for any rigid grammar G, there is some D such that
FL(RG(D))? The answer is positive. The following construction,
due to Sakakibara (1992), gives more information.

v Let G be an adequate grammar. For each A € SubTp(G), pick two
s, Ug(A) and Vg(A) as follows:

15
e Ug(A) is an F-structure of the minimal size in Ug(A).
o Vi(A) is an F-structure of the minimal size in Vg(A).
It is actually immaterial which members of Uz(A) and Vg(A) Ug(A) and
Ve(A) are, except that Vg(t) must be $.

If T is an F-structure over ¥ U {$} with exactly one occurrence of $, and T}
is an F-structure over ¥, then we write

for the result of substituting T3 for $ in T3.

Definition Let G be an adequate rigid grammar. CS(G) (the characteristic
sample of G) is the set which contains the following F-structures:

Va(A)

for all A € SubTp(G),

Uc(A)

¢ Vs (A) for all @ € X, A € range(G) such that G:a — A.

Va(B)

N

for all B/A € SubTp(G),

Us(B/A) Us(A)

16

Va(B)

. /\f for all A\B € SubTp(G).

Us(A) Us(A\B)

Note CS(G) C FL(G).

Lemma 14 If G is a rigid grammar, G assigns at most one type to any F-
structure, and each F-structure in FL(G) has a unique parse.

Lemma 15 Let G be a rigid grammar. Let Ty be an F-structure over ¥ U {$}
with exactly one occurrence of $, and let Ty and T3 be F-structures over . If

and

are both in FL(G), then G assigns the same type to Ty and Ts.
PRroOF. By induction on T;.]

Proposition 16 Let G be an adequate rigid grammar. For any rigid grammar
G, if CS(G) C FL(G), then o[G] C G' for some substitution o.

PROOF. Since CS(G) C FL(G"), G’ assigns a type to each substructure of F-
structures in CS(G). Let o be the substitution that maps each variable z in
SubTp(G) to the type G’ assigns to Ug(z).

We show by induction on C € SubTp(G) that G':Ug(C) — o(C). By the
definition of o, if is a variable in SubTp(G), then G':Ug(z) — o(z). Since
Va(t) = 8, Us(t) is in CS(G), and hence in FL(G'), so G':Ug(t) — t. Sup-
pose C = B/A € SubTp(G). By induction hypothesis, G': Ug(A) — o(A) and
G':Ug(B) — o(B). Since

17

Ve(B) Ve(B)

and f

Uc(B)

Us(B/A) Us(A)

are both in CS(G), and hence in FL(G"), by Lemma, 15,

T~

G" — o(B).
Us(B/A) Uc(A)

Then it must be that G': Ug(B/A) + 0(B)/o(A). The case C = A\B is treated
similarly.
Suppose G:a +— A. Since G': Ug(A) — o(A), and

and A

a

Us(A)

are both in CS(G), and hence in FL(G'), it must be that G':a — o (A). Therefore,
o[G] C G n

The following are immediate consequences of the above proposition.

Corollary 17 Let G be an adeguate rigid grammar. For any rigid grammar G/,
if FL(G) = FL(G"), then o|G] C G’ for some substitution o.

Corollary 18 For any rigid grammar G, there is, up to alphabetic variants, o
untque adequate rigid grammar G' such that FL(G) = FL(G').

Corollary 19 For every rigid grammar G, if G is adequate, G is minimal.

Thus, we can use ‘minimal’ and ‘adequate’ interchangeably when talking
about rigid grammars.

20 Let G be an adequate rigid grammar. For any finite set D of
s, if CS(G) € D C FL(G), then RG(D) is an alphabetic variant of

‘om Propositions 4 and 16. m

21 Given any rigid grammar G, a finite set D of F-structures such
(D)) = FL(G) can be effectively found.

siven a rigid grammar G, an adequate rigid grammar G’ such that
*L(G") can be effectively found (Corollary 12), and from G’, the set
1 be effectively constructed. Then the corollary follows from Corol-

n

1 Let prg be the function from finite sequences of F-structures to rigid
such that prg((T1,...,T,)) = RG{Ty,...,Tn})-

ke (C,FL(-)) to be the grammar system, and if we equate grammars
dhabetic variants, then Corollary 20 has the following consequence:

3 With respect to the grammar system (C,FL(-)), ¢rg identifies C;
: from positive data.

3t G be a rigid grammar and let Ty, 75, T3, . .. be an infinite sequence
ures such that {T1,75,T3,...} = FL(G). There is an adequate rigid
¢ such that FL(G) = FL(G'). There is an n such that for all m > n
T1,...,Tn}. Then by Corollary 20, for all m > n, pra((T1, ..., Tm))
betic variant of G’. Thus, if we equate grammars that are alphabetic
r adjust @rg so that it outputs a certain representative), then prg
o an adequate rigid grammar G’ such that FL(G) = FL(G"). [|

n 3 is parallel to the result obtained by Sakakibara (1992) about
> grammars: the class of what he calls ‘reversible context-free gram-
ed as tree-generating devices, is identifiable in the limit from positive
sting of trees). In fact, there is a close connection between reversible
> grammars and rigid classical categorial grammars (an analogue of
holds for reversible context-free grammars), and the similarity of
's algorithm and Buszkowski’s is evident. The nice thing about re-
itext-free grammars is that they provide a kind of normal form for
> grammars in that every context-free language is generated by some
ontext-free grammar. On the other hand, this makes it impossible to
: class of reversible context-free grammars, as generators of strings, in
om positive data, by Gold’s theorem. In section 4, we show that RG
| in an algorithm that identifies Cy, in the limit from positive data, for

19

3.4 An Incremental Version of RG

When applying RG successively to a sequence of increasing data D; C D, C
D3 C .-+, it is more efficient to make use of the previous value RG(D;_;) to
compute the current value RG(D;).

Definition If G is a grammar and D is a finite set of F-structures, RGy(G, D) is
defined to be the rigid grammar ¢[G'UGF(D)], where G’ is an alphabetic variant
of G such that G’ and GF(D) do not employ common variables, and ¢ is a most
general unifier of the class {{A | G":a = A}U{A|GF(D):a— A} |ae X},
if such exists.

Lemma 22 Let G be any grammar and D be a finite set of F-structures. For
any rigid grammar G', the following are equivalent:

(i) o[G] C G’ for some substitution o and D C FL(G").

(ii) RGo(G, D) ezists and T[RGo(G, D)] C G' for some substitution 7.

PROOF. (ii) = (i) is easy, using Lemma. 3.

(i) = (ii). By Lemma 3, 0y[GF(D)] C G’ for some oy. Assuming that G does
not involve any variables used in GF(D) (if it does, use an alphabetic variant of
@), we have G’ D o[G)U 0o[GF(D)] = 0,[GUGF(D)], where ¢, agrees with o on
variables that appear in G and with o¢ on variables that appear in GF(D). Since
G' is rigid, this means that o, unifies the types assigned to the same symbol by
G UGF(D). So RGy(G,GF(D)) exists, and if it is 03[G U GF(D)], 01 = 7 0 03
for some substitution 7. Therefore, G' D T[RG2(G, GF(D))]. n

Lemma 23 RGy(RG(D,), D;) = RG(D, U Dy), up to alphabetic variants.

PROOF. Suppose that RG2(RG(D;), D,) exists. By Lemma 22, a1[RG(Dy)] €
RG2(RG(D:), D,) for some substitution ¢; and Dy C FL(RGy(RG(D,), D,)).
This means DU D, C FL(RG,(RG(D,), D;)), and so by Proposition 4, RG(D; U
D,) exists, and 71 [RG(D; U Dy)] € RGo(RG(D,), D,) for some ;.

Suppose now that RG(D; U D,) exists. By Corollary 6, RG(D;) exists and
02[RG(D1)] € RG(D, U D,) for some substitution oy. Since Dy C FL(RG(D; U
Ds)), this means, by Lemma 22, that RG,(RG(D,), D) ex1sts and for some
substitution 75, 3[RG2(RG(D;), Dz)] C RG(D, U D).

We have proved that if one of RG2(RG(D;), D) and RG(D; U D,) exists the
other exists and they are alphabetic variants. |

RG, will be used in the proof of the main theorem.

20

4 Proof of the Main Theorem
4.1 The Case k=1

We first prove the main theorem for the special case k = 1, to illustrate the core
idea of the proof.

We define a computable function ¢, that identifies C; in the limit as the
composition of two computable functions, 1, and x. ¢, is a function from
finite sequences of strings to finite sets of rigid grammars, and ¥ is a function
that takes two arguments, a finite set of rigid grammars and a positive integer,
and returns a member of the first argument.

When applied successively to larger and larger initial segments of an enumer-
ation of the language of some rigid grammar, 1), converges to a finite set which
contains a correct grammar for the language. Given a finite set of grammars,
what x does is to ‘compute in the limit’ a grammar in that set which generates
the smallest language.

Definition ¢, ((s1,..., s,)) is defined recursively as follows. Let G,, abbreviate
¢C1(<81, ciey 8n>).
G = {0}

GOny1 = {GG On l Snt1 EL(G)}U
{G" | for some G € G, and some F-structure 7',
$nt1 & L(G), sny1 = yield(T), and G' = RGy(G, {T})}

Lemma 24 If G € range(yc,), then G is a finite set of adequate rigid grammars.

PROOF. That any G € range(v,) is finite is obvious, since for any string s, there
are only finitely many F-structures T such that yield(T") = s. By induction on n,
one can show that, if G € ¢, ((s1,- .., 6x)), G is an alphabetic variant of RG(D)
for some D, using Lemma 23. Then by Corollary 13, G is adequate. |

Lemma 25 If G € ¢, ((s1,...,5n)), then {s1,...,8.} C L(G).
ProoF. By induction on n. []

Lemma 26 If G’ is a rigid grammar such that {si,...,s,} C L(G'), then there
is a G € Y, ((51,...,5n)) such that o[G] C G’ for some o.

PROOF. Induction on n. Let G’ be a rigid grammar. The case n = 0 is
trivial. Suppose {si,...,8541} C L(G'). By induction hypothesis, there is
2 G € ¢ ({s1,...,8n)) such that o[G] C G' for some 0. If s,y € L(G),
then G € 9, ({s1,...,5n41)). If 8n4y1 & G, let T be an F-structure such that
yield(T) = sp41 and T € FL(G'). Then by Lemma 22, RG,(G,{T}) exists
and RG3(G,{T}) € ve,({s1,---,8nt1)), and there is a substitution 7 such that
T[RG2(G,{T})] C G". n

21

Lemma 27 Let sy, $9,83,... be an infinite sequence of strings. If G' is a rigid
grammar such that {si,8s,83,...} = L(G'), then for some n, there is a rigid
grammar G € Y, ((s1,- .., 8n)) such that L(G) = L(G") and o[G] C G’ for some
substitution o.

PROOF. Suppose that G’ is a rigid grammar such that {sy, sq, s3,...} = L(G").
By Lemma 26, for every n, there is a G € ¢, ({51, - . .,8,)) such that o[G] C G’
for some o. o[G] C G’ implies L(G) C L(G"). If L(G) ¢ L(G"), then, by
Lemma 25, there is an n such that for all m > n, G & v¥¢,({s1,-..,8m)). Since
up to alphabetic variants there are only finitely many rigid grammars G such
that o|G] C G' for some o, it follows that there is an n such that for all G,
if o[G] € G’ for some o and L(G) C L(G'), G & v¥c,({s1,...,8,)). Then the
required conclusion follows. |

Lemma 28 (Convergence Lemma) Let sy, 53,S53,... be an infinite sequence
of strings. Then there are some n and a finite set G of rigid grammars such that

for all m > n, e, ((s1,...,8m)) =G.

Proor. Corresponding to the definition of G, = ¢, ({s1,..., sn)), one can form
trees 7, in the following way, each of whose nodes is labeled by either a grammar
in GoU---UG, or a special symbol J.

Stage 0. 7y is a tree with just one node, which is labeled by the empty grammar

D.

Stage n + 1. 7,.; is obtained by attaching daughter nodes to some leaf nodes
(possibly none) of 7, in the following way. For each leaf node v of 7, do the
following:

1. If v is labeled by 9, do nothing and leave it as a leaf node.

2. If v is labeled by a grammar G such that s,41 € L(G), do nothing and leave
it as a leaf node.

3. If v is labeled by a grammar G such that s,41 & L(G), let
F ={G |G =RGy(G,{T}) for some T such that yield(T) = sp41 }
and

(a) if F =0, create a new node v/, label it by 9, and attach it to v as its
only daughter.

(b) if F = {G1,...,Gi} # 0, then create a new node v; for each G; € F,
label it by G;, and attach vy, ..., to v as its daughters.

It is easy to see the following:

(I) G, = {G | G labels a leaf node of 7, }.

T, G' labels a daughter o/ of a node v labeled by G, o[G] C G’ for
2 0, but G and G’ are not alphabetic variants.

rach 7,4, is an ‘extension’ of 7,, one can construct the union 7 of
ndeed, the above definition of 7,, describes an infinite procedure to
T. That is, the nodes of 7 are nodes that are created at some stage of
procedure, and a node v of T has ' as one of its daughters if and only
stage n of the above procedure v/ is newly created and attached to v
tter. Since for each node there is at most one stage at which daughters
ad to it, 7 is a finitely branching tree.

has no infinite branch.

es that 7 is finite by Konig’s Lemma. To prove the claim, we need
itions and a technical lemma on adequate rigid grammars.

n Let G be a rigid grammar and let A, B € SubTp(G). We say that
on B (in G) if for all T € Ug(A), there is a proper substructure T" of
) such that 7" € Ug(B).

A

B

/\

1 Define the degree d(G) of a grammar G as follows:
d(GQ) = |Var N SubTp(G)| + |Z — dom(G)).

1 Let Head(G) denote the set { head(A) | A € range(G) } for any G.

9 (Key Lemma) Let G and G' be adequate rigid grammars. If
and G and G' are not alphabetic variants, then d(G) > d(G").

appose that G and G’ are adequate rigid grammars such that ¢[G] C
using Lemma 10,

SubTp(G")] [Head(G") — {t}|

|(Head(o[G]) — {t}) U (Head(G" — 0[G]) — {t})]

f

< [Head(o[G]) — {t}| + |[Head(G" - o[G]) - {t}| (1)
< |Head(o[G]) — {t}| + |Head(G' — o[G))| (2)
< [Head(o[G]) — {t}| + |dom(G’) — dom(G))| (3)
< |Head(G) — {t}| + |dom(G’) — dom(G))| (4)

[Var N SubTp(G)| + |dom(G') — dom(G)]|
Jity holds for

23

(1) just in case (Head(c[G]) — {t}) N (Head(G' — ¢[G]) — {t}) = 0.
(2) just in case t € Head(G' — o[G]).

(3) just in case for all b,c € dom(G') — dom(G), b # c¢ implies head(B) #
head(C), where B and C are the types such that G':b+ B and G:c+— C.

(4) just in case for all z € Head(G) — {t}, head(c(z)) # ¢ and for all z,y €
Head(G) — {t}, = # y implies head(o(x)) # head(o(y)).

So [VarNSubTp(G')| < |[VarNSubTp(G)| + |[dom(G') — dom(G)|, which is equiv-
alent to d(G') < d(Q).

Assume that d(G) = d(G’). Then the conditions (1)-(4) above must hold.
Let

{z1,...,2m} = Head(G) - {t},
{v1,--.,u} = Head(G' - o[G)),
head(o(z;)) = 2.

{#1,-- 1 %m, Y1, ..., yi} = Head(G") — {t} and z1, ..., 2m, 41, . . .,y are all distinct.
We will show

@) {y1,--u}=0
(ii) o(z;) =2z for 1 <i<m.

Note that y; € {o(z1),...,0(zm)} and if 0(z;) # 2, then z; & {o(x1),...,0(Tm)}
So suppose that there is some w € {zy,...,2m,¥1,...,¥} such that w ¢
{o(z1),...,0(zm)}, to derive a contradiction. Since G’ is adequate, Vg (w) # 0,
so w must occur as an argument subtype of some type A in range(G'). There are
two cases.

Case 1. A € range(G' — 0[G]). Then A must look like

(G sl AD])]

Since y; does not occur as the head of any B # A in range(G’), this implies that
y; depends on w.
CASE 2. A € range(o[G]). A looks like

(Gl AD] -) w)] - -

A = o(B) for some B € range(G), and the assumption o(z;) # w for all x; implies
that w # o(C) for any C' € SubTp(G). This means that w occurs as an argument
subtype of o(z;), where z; = head(B). Then z; = head(o(z;)) # o(z;). z; must
depend on w, since every D € range(G') with head(D) = z; has o(z;) as a head
subtype.

Thus we have found a w' € {z1,...,2Zm,¥1,...,5} such that w' ¢
{o(z1),...,0(zm)} and w’' depends on w. Repeating this argument, we find

24

a cycle of dependency wg, w, ..., w, (n > 1) such that wy = w, and w; depends
on w;—3 for 1 < 4 < n. This is a contradiction, for no adequate grammar can
afford to have such a cycle of dependency; Ugr(wy) would have to be empty.

So we have proved (i) and (ii). The conclusion that G and G’ are alphabetic
variants follows easily.]

We now get back to the proof of the Convergence Lemma. d(G) = |5 if
G =0, and, by points (I), (II) above and Lemmas 24 and 29, this number must
decrease as we go down in 7. So the length of each branch in 7 is bounded by
|X| + 1, which proves the claim above.

Since 7 is the union of all 7,,’s and 7,,; is at least as large as 7T, the finiteness
of 7 implies that the sequence 7y, 77,73, . .. ‘stops growing’ at some point. That
is, there is some n such that for all m > n, 7,,, = 7,,. Therefore G, also converges.
|

Note that, in general, an adequate rigid grammar G with d(G) > 1 can have
infinitely many non-equivalent adequate rigid grammars G’ such that o[G] C G
for some 0. What the Key Lemma says is that there is no “infinite chain’ of non-
equivalent adequate rigid grammars Gy, G, Gy, . . . such that for each n, o|G,] C
Gp41 for some o.

Lemma 30 Let G’ be a rigid grammar and let sy, 8o, 53,... be an infinite se-
quence of strings such that {si,s3,ss,...} = L(G'). Then ¢, ({s1,...,5.)) con-
verges to some finite set G of rigid grammars such that

(i) for some G € G, L(G") = L(G),
(i) for all G € G, L(G") C L(G).

PROOF. Part (ii) follows from Lemma 25. Part (i) follows from Lemma 27 and the
fact that if G € ¢, ((s1,.--,54)) and sn41 € L(G), then G € v¢, ((s1,- -, Sny1))-
]

If 4 is a function that maps a finite set of rigid grammars G to one of its
members G such that for all G’ € G, L(G) C L(G"), then by Lemma 30, x o 1,
identifies C; in the limit. But we do not know that y is computable, so this only
shows that C; is non-effectively identifiable in the limit. However, decidability of
the membership problem ‘s € L(G)?’ implies that the question ‘L(G) C L(G")?’
is ‘computable in the limit’ and so is p. This is enough to establish that C; is
identified in the limit by a computable function.

Definition Let £ denote the set of strings over © with length < [.

Fix a particular recursive total ordering of all grammars. Below, ‘first’ means
first in this ordering.

25

on Let G range over finite sets of grammars, and let n range over positive

Let x be the computable function from finite sets of grammars and
integers to grammars such that x(G, n) is the first grammar G € G with
wing property, if there is one:

forall G' € G, L(G)NLs" C L(G) N X=™,
is no such G, let x(G,n) be undefined.

31 Let G be a finite set of grammars such that there is a G € G such
all G' € G, L(G) C L(G"). Let Gy be the first such G € G. Then x(G,n)
s to G, that is, there is some n such that for all m > n, x(G,m) = G;.

For every G' € G such that L(G;) C L(G’), there is an I such that
Yl ¢ L(GYNESle, Let n = max({lg | G' € G,L(G;) N Z5ler C
$<le' }). Then it is clear that for all m > n, x(G,m) = G. u

on Let e, ((s1,.-.,8n)) = x(¥e,({S1,---,8n)),n). (n is the length of
n)-)

m 2a ¢, tdentifies Cy in the limit from positive data.

Let G be a rigid grammar and let sy, $9, S3,... be an infinite sequence
s such that {sy, s9,83,...} = L(G). By Lemma 30, there is a number
ite set G of grammars, and a member (G; of G such that for all m > ny,

8m)) = G, L(G1) = L(G), and G, is the first grammar in G such
all G’ € G, L(G;) C L(G"). By Lemma. 31, there is a number ny such

all m > ny, x(G,m) = G;. Let n = max(ni,ny). Then for all m > n,
,..,Sm))ZGl. n

Che General Case

reated the special case k = 1, we now go on to prove our main theorem for

ral case. Let k£ be a fixed positive integer. We will present an algorithm
identifies Cr in the limit from positive data. The idea is to associate

-valued grammar a rigid grammar over a ‘disambiguated’ alphabet.

on Let T be the alphabet that contains k copies of each symbeol in X,
r=U{{a1,-.-,ac} |a€ X}

on Let amb: T* — L7 be the homomorphism that mfips each copy a;
,, for all @ € X. A string u € TV is called a disambiguation of a string

ff s = amb(u). amb(u) is called the ambiguation of u.

on Let M CT*. Then amb[M] denotes { amb(u) |ue€ M }.

n Let G be a k-valued grammar over ¥. A rigid grammar H over T is
isambiguation of G if G = { (amb(b), B) | (b, B) € H}. In such a case,
| the ambiguation of H and is written amb[H].

02 For every k-valued grammar G over ¥, there is a rigid grammar H
ch that H is a disambiguation of G.

33 If H is a rigid grammar over T, amb[L(H)] = L(amb[H]).

n An F-structure U over T is called an analysis of a string s € &+, if
(0)) =s.

1 now define the guessing part 9, of the algorithm ¢, .

n 4, is a function that maps finite sequences of strings over X to
of rigid grammars over T and is defined recursively as follows. Let H,,

' ’lﬁck((sl, ce ey Sn>)

= {0}
= {He€H,|sp41 €amb[L(H)]}U
{H' € H, | for some H € H, and some analysis U of s,1,
Sn1 & amb|L(H)] and H' = RGy(H, {U}) }

lowing two lemmas are analogous to Lemmas 24 and 25 and are proved

4 If 'H € range(yc,), then H is a finite set of adequate rigid gram-

5 If H €y, ((s1,...,5n)), then {s1,...,8,} C amb[L(H)].

6 Let G' be a k-valued grammar and let H' be a disambiguation of G'.
8n} C L(G"), there is an H € vc,({s1,.--,5n)) such that o[H] C H'
ubstitution o.

y induction on n. The case n = 0 is trivial. Suppose {s1,---y8n11} C
* induction hypothesis, there is an H € ¢, ({(s1,-..,8n)) such that
for some g. If 5,41 € amb[L(H)], then H € v, ({s1, ..., 5n)). Suppose
O[L(H)]. Since sp41 € L(G"), by Lemma 33, there is a disambiguation
uch that u € L(H"). Let U be an F-structure such that yield(U) = u
"L(H'). U is an analysis of s,.;. Then by Lemma 22, RG,(H, {U})
RGy(H,{U}) € ¢, ({s1,---,8n+1)), and there is a substitution 7 such
(H,{U})] C H'. |

27

Lemma 37 Let G' be a k-valued grammar and let H' be a disambiguation
of G'. Let s1,82,83,... be an infinite sequence of strings over ¥ such that
{s1,52,83,...} = L(G"). Then for some n, there is an H € ¢, ({s1,-..,5a))
such that amb[L(H)| = amb[L(H")] and o{H] C H' for some substitution o.

Proor. By Lemma 36, for every n, there is an H € ¢ ({s1,...,8n)) such
that o[H] C H' for some ¢. ¢[H| C H' implies amb[L(H)] C amb|[L(H")]. If
amb[L(H)] C amb[L(H")] = L(G"), then, by Lemma 35, there is an n such that
forallm > n, H & ¢, ({s1,...,8m)). Since up to alphabetic variants there are
only finitely many rigid grammars H such that o[H] C H' for some o, by taking n
large enough, we can ensure H & v, ((s1,. .., sn)) for all H such that o[H] C H’
and amb[L(H)] C amb[L(H")], so the required conclusion follows. n

That)¢, converges can be proved in an entirely parallel way to the case of

¢C1 .

Lemma 38 Let sy,59,53,... be an infinite sequence of strings over . Then
there are some n and a finite set H of rigid grammars over Y such that for all
m > n, ¢Ck(<31a e 3m>) =H.

Lemma 39 Let G’ be a k-valued grammar over ¥ and let sy, 89, 3, ... be an infi-
nite sequence of strings such that {s1, s2, s3,...} = L(G"). Then v¢,({(s1,-..,55))
converges to some finite set ‘H of rigid grammars over T such that

(i) for some H € H, L(G") = amb|[L(H)],
(ii) for all H € H, L(G') C amb[L(H)].

PRrOOF. From Lemmas 35 and 37 and the fact that H € 9¢, ({s1,...,$,)) and
Sn+1 € amb[L(H)] imply H € ¥¢, ({51, -, 8nt1))- |

Definition Let H be a finite set of rigid grammars over T. Define amb[H] to
be {amb[H] | H e H }.

Lemma 40 Let G' be a k-valued grammar over ¥ and let si,83,83,... be
an infinite sequence of strings such that {si,s2,s3,...} = L(G'). Then
amb(yc, ((s1,. .., 8n))] converges to some finite set G of k-valued grammars over
2 such that

(i) for some G € G, L(G") = L(G),
(ii) for all G € G, L(G") C L(G).
PROOF. Immediate from Lemma 39, using Lemma 33. n

Definition Let x be as defined in the proof of the case £k = 1, and let
o, ((s1,-- -, 5n)) = x(amblic, ({1, .- ., 82))], 7).

Theorem 2b ¢, identifies Cy, in the limit from positive data.

PROOF. Just like the proof of Theorem 2a.]

scussions

le with some implications of our main theorem.

nplicity

gth |A| of type A be the number of occurrences of primitive types in
the size |G| of grammar G be 2 aedom(G) 2o(a,a)cc |A|. Note that for
nars G and &, if ¢[G] C o[G"] for some o, then |G| < |G'], and that
3 k-valued grammar is always the same as that of a disambiguation of
1allest size.
e a recursive total ordering of all grammars such that if G < &/, then
If we base our definition of x on <, then it is not difficult to see
1g: if G € range(gc,), then G is a grammar of the smallest size in
L(G') = L(G) }. Thus, if we now take (Ci,L(-)) to be the grammar
ralgorithm (¢, never outputs an unnecessarily complex grammar, and
nded in the sense of Osherson, Stob, and Weinstein (1986, p. 64).2 This
ntradict their Proposition 4.3.6A (p. 65), which says that any class
y & simpleminded algorithm contains only finitely many grammars,
s proposition essentially depends on the fact that they have indices
rsively enumerable languages in their grammar system. Thus, their
children implement recursive, simpleminded learning functions, and
only learn languages for which they can produce grammars, then
nly finitely many natural languages’ (p. 65) should be taken with a
t. The point has been amply demonstrated by earlier works (see e.g.,
79, 1982); our result simply reinforces it with reference to a more
ammar system.

mtification from Disambiguated Strings

have assumed that we are given a fixed finite alphabet. In fact,
r algorithm can work on an infinite alphabet, as long as each grammar
is based on a finite subalphabet of it. Let T be a fixed finite alphabet,
=U{{a|i€w}|ae X} Assume that T> is coded in some finite
y, for example, regarding a; as a followed by 4 strokes. Let C7° be the
rigid grammars over some finite subalphabet of T*°. Then it is clear
ally the same algorithm as ¢, identifies C° in the limit from positive

t has a rather interesting consequence. Consider the class C of all clas-
rial grammars over X.. Then C® is precisely the class of disambigua-
mmars in C. That Cf° is identifiable in the limit from positive data
C is identifiable in the limit from data consisting of disambiguated

cise, we have to identify grammars that are alphabetic variants in order to make
1sure (Osherson, Stob, and Weinstein 1986, p. 63).

29

strings, that is, strings in the language generated by a certain disambiguation
of the target grammar. Disambiguated strings can be regarded as positive data
about the target language augmented with certain ‘intensional’ information about
the target grammar. With this additional information, the entire class of context-
free languages becomes learnable from positive data with respect to the grammar
system of classical categorial grammar. .

To be more precise, let us fix a particular mapping from arbitrary classical
categorial grammars to their disambiguations. Then, in the terminology of sec-
tion 2.1, the function from an arbitrary classical categorial grammar G to the
language L(H) generated by its disambiguation H constitutes a naming func-
tion. Then the result here is that under this naming function, the class C of all
classical categorial grammars is identifiable in the limit from positive data.

This should be compared with Sakakibara’s (1992) result mentioned earlier
in section 3.3.3. In his words (p. 59), ‘the assumption of examples in the form
of structural ‘descriptions strongly compensates for the lack of explicit negative
information in positive samples and is helpful for efficient learning of context-
free grammars.” While his algorithm ensures an efficient learning of the class
of all context-free languages,! the assumption that the learner is presented with
the skeletal phrase structure of each string that she encounters is probably too
strong as a model of first language acquisition. The assumption that the learner
can distinguish between different uses of a lexically ambiguous symbol would
seem more realistic.” Moreover, structures assigned by a reversible context-free
grammar are sometimes rather unnatural, and they are rich enough that they
can in effect encode information about lexical ambiguity.

Interestingly, F-structures are not sufficient to overcome the lack of negative
information. If we take FL(-) to be the naming function, C is not identifiable in
the limit from positive data (Gold’s theorem applies here).

Appendix: Reduction to Shinohara’s Theorem

As was mentioned in section 1, Shinohara (1990a, 1990b) proves that the class of
context-sensitive grammars with no more than & rules is identifiable in the limit
from positive data, for any k. This is done by showing that the class of languages
generated by context-sensitive grammars with no more than & rules has the prop-
erty Wright (1989) called finite elasticity (see also Motoki, Shinohara, and Wright
1991). Wright proved that if a class G of grammars is effectively enumerable and
the (universal) membership problem for the grammars in the class is decidable,

4The precise complexity of the algorithm ¢, is yet to be determined.

5Note that the notions of ‘structure’ and ‘lexical ambiguity’ are both intensional and depen-
dent on the specific grammar that generates the given language. In particular, a rigid classical
categorial grammar may have to assign more than one type to a certain symbol e while an
equivalent Chomsky normal form context-free grammar may have just one rule of the form
A=a.

30

finite elasticity of the class of languages generated by the grammars in G guar-
antees identifiability of G from positive data. Finite elasticity is an extensional
property of classes of languages, and it is closed under subclasses. So Shinohara’s
result implies that the class of languages generated by e-free context-free gram-
mars with no more than k rules has finite elasticity. Given this, we obtain an
alternative proof of our main theorem by the following observation:

Proposition 41 For any k-valued classical categorial grammar over &, there is
an equivalent e-free context-free grammar with no more than 2k|S| — 1 rules.

PRrOOF. First, note that every k-valued grammar G has an adequate k-valued
grammar G’ such that FL(G) = FL(G’). To see this, take a disambiguation
H of G, find an adequate rigid grammar H' such that FL(H) = FL(H') by
Proposition 11, and let G' = amb[H"].

So take an adequate k-valued grammar G. Assume that G # @. Construct
a Chomsky normal form context-free grammar G = (Z, SubTp(G), t, Py) as fol-
lows:

e The set of non-terminals of Gy is SubTp(G).
e The start symbol of Gy is t.

e The set Py of rules of Gy is { B — B/A A | B/A € SubTp(G)}uU {B —
A A\B | A\B € SubTp(G)}U{A—a|(A,a) € G}.

Obviously, L(Go) = L(G), where L(Gy) is defined in the standard way for context-
free grammars. Since G is adequate, Gy is a context-free grammar with no useless
symbol.

Let A = { A € SubTp(G) | there is only one rule in Gy whose left-hand side
is A}. For A € A, let right(A) be such that A — right(A) is a rule in P,. Let
Py =Py~ {A — right(A) | A€ A—{t} }. Now eliminate all occurrences of non-
terminals in A on the right-hand side of rules in P, by repeatedly replacing such
occurrences of A € A by right(A). This process must terminate, for, if it does
not, there must be a cycle of non-terminals Ao, Ay, ..., A, = A4 (n > 1) such
that each 4; (0 <7< n)isin A and A;; occurs in right(4;) for 0 <i<n —1,
which implies that Ay, A;, ..., A, are useless symbols in Gy. Let P, be the result
of applying this process to P;. Let G = (%, SubTp(G) — (A — {t}),t, P,). It
should be clear that L(G;) = L(Gy).

It remains to show that |P,| < 2k|X| — 1. This can be seen as follows. Define
a binary relation C on SubTp(G) U G as follows: C = {(B,B/A) | BJA ¢
SubTp(G) } U {(B,A\B) | A\B € SubTp(G)} U {(4, (a, A)) | (a, A) € G}
There is a one-to-one correspondence between the pairs in C and the rules in P,.
The graph of T consists of m rooted trees, where m = | PrNSubTp(G)|. The
number of leaf nodes of these trees is at most k||, and it is not difficult to see
that the number of nodes in these trees which have more than one daughter is at
most k|Z|—m. Then, the number of pairs (4, X) € C such that 4 has more than

31

one daughter in the graph of C is at most k|X| + k|Z| = m — m = 2k|X| — 2m,
since those correspond one-to-one to either leaf nodes or nodes with more than
one daughter that are not highest. Thus, [Py] < 2k|X|-2m+1<2k|Z|~15m

References

Angluin, D., 1979, Finding patterns common to a set of strings, in Proceedings
of the 11th Annual ACM Symposium on Theory of Computing, 130-141.

Angluin, D., 1980, Inductive inference of formal languages from positive data,
Information and Control 45, 117-135.

Angluin, D., 1982, Inference of reversible languages, Journal for the Association
for Computing Machinery 29, 741-765.

Buszkowski, W., 1987, Discovery procedures for categorial grammars, in E. Klein
and J. van Benthem (eds.), Categories, Polymorphism and Unification, Uni-
versity of Amsterdam, Amsterdam.

Buszkowski, W., 1988, Generative power of categorial grammars, in R. Oehrle, E.
Bach, and D. Wheeler (eds.), Categorial Grammars and Natural Language
Structures, D. Reidel, Dordrecht.

Buszkowski, W. and G. Penn, 1990, Categorial grammars determined from lin-
guistic data by unification, Studia Logica 49, 431-454.

Gold, E. M., 1967, Language identification in the limit, Information and Con-
trol 10, 447-474.

Motoki, T., T. Shinohara, and K. Wright, 1991, The correct definition of finite
elasticity: Corrigendum to identification of unions, in The Fourth Annual

Workshop on Computational Learning Theory, p. 375, Morgan Kaufmann,
San Mateo, CA.

Osherson, D., M. Stob, and S. Weinstein, 1986, Systems That Learn, MIT Press,
Cambridge, MA.

Sakakibara, Y., 1992, Efficient learning of context-free grammars from positive
structural examples, Information and Computation 97, 23-60.

Shinohara, T., 1990a, Inductive inference from positive data is powerful, in The
1990 Workshop on Computational Learning Theory, pp. 97-110, Morgan
Kaufmann, San Mateo, CA.

Shinohara, T., 1990b, Inductive inference of monotonic formal systems from pos-
itive data, in S. Arikawa, S. Goto, S. Ohsuga, and T. Yokomori (eds.),
Algorithmic Learning Theory, pp. 339-351, Ohmsha, Tokyo, and Springer,
New York and Berlin.

Wexler, K. and P. Culicover, 1980, Formal Principles of Language Acquisition,
MIT Press, Cambridge, MA.

8Equality holds when k =].Zl = 1. Otherwise it can be shown that |P;| < 2k|Z| - 2.

