
On commutative and nonassociativesyntactic calculi and categorial grammarsMaciej KandulskiFaculty of Mathematics and Computer ScienceAdam Mickiewicz Universityul. Matejki 48/49, 60-769 Pozna�n, PolandAbstractTwo axiomatizations of the nonassociative and commutative Lambek syntactic cal-culus are given and their equivalence is proved. The �rst axiomatization employsPermutation as the only structural rule, the second one, with no Permutation rule,employs only unidirectional types. It is also shown that in the case of the Aj-dukiewicz calculus an analogous equivalence is valid only in the case of a restrictedset of formulas. Unidirectional axiomatizations are employed in order to establishthe generative power of categorial grammars based on the nonassociative and com-mutative Lambek calculus with product. Those grammars produce CF-languagesof �nite degree generated by CF-grammars closed with respect to permutation.Key words: Lambek calculus, Ajdukiewicz calculus, Structural rules, Categorialgrammar, Context-free languages.Mathematics Subjects Classi�cation: 68Q50, 03D15, 03B65.1 IntroductionInvestigations concerning generative power of categorial grammars (CG's), which datefrom the paper of Bar-Hillel et al.[2], are currently stimulated by two factors. The �rstof them is the problem of the generative power of CG's based on the Lambek calculus [18].This question posed in [2] resulted in a series of papers characterizing classes of languagesgenerated by CG's based on subsystems of the Lambek calculus (see [8,9,11,14,15,25])and was recently solved by Pentus [22]. On the other hand, in order to describe in abetter way some phenomena of natural languages the shape of type reduction systems inCG's was modi�ed so as to obtain more exible versions of the formalism; the reader will�nd a detailed description of this and other relevant problems in [6]. Modi�cations in-cluded, among others, a relaxation of the structure of antecedents of reduction formulas.Those changes used to be introduced via endowing a type reduction system with struc-tural rules of permutation, contraction and monotonicity performed as it is the case inGentzen systems LJ and LK [12]. The introduction of structural rules implies changesin the formal status of antecedents of formulas: if in the case of basic Lambek calculus(associative and noncommutative) antecedents can be viewed as �nite sequences of typesthen for a commutative calculus the proper model for an antecedent is that of a multiset,1



if we work with a nonassociative calculus, then antecedents are bracketed strings of types(trees) and if a calculus is both commutative and nonassociative then antecedents canbe considered as mobiles, see [20]. Generative power of categorial grammars enrichedwith structural rules of permutation and of permutation and contraction was studied byBuszkowski in [7] and by van Benthem in [3] and [5]. Let us observe, however, thata�xing permutation to the Lambek calculus compels one to accept phrases of a languagewithout paying attention to the order of words. Although there is some linguistic evi-dence in favour of such a general relaxation, see for example [1], but still this global e�ectcaused by permutation seems to be too strong from the point of view of a linguist. As away out of this situation one can consider nonassociative calculi [19]: by the presence ofpermutation commutativity is restricted only to the set of direct constituents of a phrasestructure. A local, restricted introduction of structural rules can also be performed bymeans of structural modalities, see [21]. This method is similar to the procedure of re-trieving structural rules in Linear Logic, cf. [24]. Commutative syntactic calculi used tobe introduced in di�erent ways: as unidirectional systems [4,7], as bidirectional systemsaugmented with a structural rule of Permutation [21] and also as unidirectional systemswith Permutation [6].In this paper we prove that the bidirectional nonassociative Lambek calculus whenenriched with Permutation as the only structural rule (we denote this system NLP) isequivalent to a unidirectional system (without Permutation) NCL which can be obtainedfrom the previous one by uni�cation of the left and right divisions. An analogous resulthowever can not be obtained for the Ajdukiewicz calculus: the equivalence of bidirec-tional Ajdukiewicz calculus with permutation and unidirectional calculus holds only fora restricted class of formulas with an antecedent consisting of types of the order lessthan 2 and with a succedent being a primitive type. The problems of equivalence areexamined in sections 2 and 3 of the paper. The axiomatizations GNLP and NLP of thenonassociative and commutative Lambek calculus as well as the employed in Lemma 1axiomatization of an auxiliary system L strongly refer to other formalisms for di�erentversions of Lambek calculi, see [9,18,19,26]. In particular, NLP imitates the formalism ofthe (product-free and bidirectional) nonassociative Lambek calculus as presented in [9],later transformed in [14] to the version with product. Sections 4 and 5 are devoted tothe de�nite solution of the problem of generative power of categorial grammars based onNCL. In [17] we showed that the class of languages generated by those grammars is in-cluded in the class of CF-languages. Here we prove that this class of languages coincideswith the class of CF-languages of �nite degree generated by CF-grammars closed withrespect to permutation (CF-languages). To obtain this result, in Section 4 we slightlyre�ne the main theorem proved in [17]. The proof of the eqality of the considered classesof languages is given in Section 5.2 Bidirectional and unidirectional commutativeLambek calculiGiven a countable but in�nite set Pr of primitive types, and three binary operations /, nand �, called right division, left division and product, respectively, we denote by TP thesmallest set which contains Pr and is closed with respect to /, n and � . The symbol Tp2



stands for the product-free part of TP. Types of the form x=y or ynx (resp. x � y) willbe referred to as functorial (resp. product) types. The number of occurrences of divisionand product signs in a given type x is called the complexity of x and denoted by c(x).For x being a product-free type, the symbol o(x) stands for the order of x, which is anon-negative integer de�ned inductively as follows: (i) o(x) = 0, for x 2 Pr, (ii) o(x=y) =o(ynx) = maxfo(x); o(y)+ 1g. The set sub(x) of subtypes of a type x is the smallest onesuch that: (i) x 2 sub(x), (ii) if y = z=v or y = vnz or y = v � z, and y 2 sub(x) then v 2sub(x) and z 2 sub(x). If A � TP then we put sub(A) = Sx2Asub(x). The set BSTPof bracketed strings of types is de�ned inductively in the following way: (i) TP � BSTP,(ii) if X 2 BSTP and Y 2 BSTP then (XY ) 2 BSTP. The symbol BSTp stands for theproduct-free part of BSTP.By NA we will denote the nonassociative Ajdukiewicz calculus (with product), i.e. aformal system whose formulas are of the shape X ! x, where X 2 BSTP and x 2 TP,which employs one axiom scheme:(A0) x! x , where x 2 TP,and the following three rules of inference:(A) X ! x=y Y ! y(XY )! x (A) X ! ynx Y ! y(Y X)! x(PR) X ! x Y ! y(XY )! x � y .By adding to NA the (structural) rule of permutation:(Perm) (XY )! z(Y X)! z , where X;Y 2 BSTP, z 2 TP,we obtain the nonassociative Ajdukiewicz calculus (with product) with permutation NAP.In the presence of (Perm) in the system the derivability of a formula in NAP does notdepend on the order of the constituents of any bracketed string of types occurring on theleft-hand side of this formula. Calculi of syntactic types which neglect the order of typesor constituents in their formulas were also introduced as unidirectional systems, cf. [4,6,7,17]. Below we present a unidirectional version NCA of the nonassociative Ajdukiewiczcalculus, to be called the nonassociative and commutative Ajdukiewicz calculus (withproduct). NCA employs types with product � and only one, right division /, and isformalized by (A0), (A), (PR), and by two additional rules of inference:(A0) X ! x=y Y ! y(Y X) ! x (PR0) X ! x Y ! y(Y X)! x � yIn this form NCA was introduced in [17]. Product-free versions of the calculi NA, NAPand NCA which employ types from Tp instead of TP, and make no use of axioms andrules involving types with product will be denoted NAo, NAPo, and NCAo, respectively.Calculi NAP and NCA will serve as a basis of two axiomatizations of the nonassocia-tive and commutative Lambek calculus. But before we describe them we present thiscalculus in another, yet traditional form of a Gentzen sequential system GNLP in whichPermutation is the only structural rule. 3



Let X[x] (resp. X[Y ]) denote a bracketed string of types X in which, on a certainplace, a type x (resp. a bracketed string of types Y ) occurrs. By X[Y : Z] we denotea bracketed string of types which arises from X[Y ] by replacing a placed occurrence ofY by a bracketed string Z (in particular X, Y and Z can be types). The system GNLPemploys the axiom scheme (A0) and the listed below rules of inference:(R10G) (X x)! yX ! y=x (R100G) (xX) ! yX ! xny(R20G) X ! y Y [x]! zY [x : (x=y X)]! z (R200G) X ! y Y [x]! zY [x : (X ynx)]! z(Pr) X[(x y)]! zX[x � y]! z (PR) X ! x Y ! y(XY )! x � y(Perm) (XY )! z(Y X)! z , where X;Y 2 BSTP, z 2 TP.The above axiomatization di�ers from the Gentzen{style axiomatization of the nonasso-ciative Lambek calculus NL as, for example presented in [16] only in the presence of therule (Perm). Using the same procedure as in [18] or [19] one can prove that GNLP isclosed with respect to the Cut rule of the form(Cut) X ! x Y [x]! yY [x : X]! y .It is easily observed that formulas x=y ! ynx and ynx ! x=y are both derivable inGNLP and both derivations essentially make use of (Perm).By Ax we denote a system which consists of formulas of the shape x ! y, wherex; y 2 TP, and which admits the following axiom schemata and rules of inference for allx; y; z 2 TP:(A0) x! x(a0) x=y ! ynx (a00) ynx! x=y(a1) (x=y) � y ! x (a10) y � (x=y)! x(a1) (ynx) � y ! x (a10) y � (ynx)! x(a2) x! (x � y)=y (a20) x! yn(y � x)(a3) x! y=(xny) (a30) x! (y=x)ny(a4) x � y ! y � x(r1) x! yx=z ! y=z (r10) x! yz=y ! z=x(r1) x! yznx! zny (r10) x! yynz ! xnz(r2) x! yx � z ! y � z (r20) x! yz � x! z � y4



To simplify the notation we write x ! y 2 Ax instead of `Ax x ! y. Let us de�nethe nonassociative Lambek calculus (with product) with permutation NLP as the systemwhich arises from NAP by augmenting it with the following compound rule:(C) X ! xX ! y , if x! y 2 Ax and x 6= y.In what follows we are going to prove the equivalence of GNLP and NLP. However,instead of doing it directly we will show that these systems are equivalent to a certainauxiliary system L. This system has (Cut) as the only inference rule and employs (A0),formulas(a1) (x=y y)! x (a10) (y x=y)! x(a1) (ynx y)! x (a10) (y ynx)! x(AP) (x y)! x � yand all theses of Ax as (schemes of) axioms.For systems which have (Cut) as the unique rule of inference one can introduce thenotion of reduction. We present the de�nition for the calculus L and will refer to it incase of other calculi. For X;Y 2 BSTP we say that X reduces to Y in L if there existsa sequence X = X0;X1; . . . ;Xn = Y; Xi 2 BSTP, i = 0; 1; . . . ; n, called a reduction,such that for every k = 1; 2; . . . ; n there are Z; T 2 BSTP and t 2 TP such that Xk�1 =Z[T ]; Xk = Z[T : t] and T ! t is a non-(A0) axiom of L.It is possible to express the notion of derivability in L in terms of reduction. We havethe followingFact 1 For any formula X ! x there holds the following equivalence:`L X ! x if and only if X reduces to x in L.The proof of this fact is similar to that given in the case of associative Lambek calculi,see [26]. Using induction on the length of reduction one can also proveFact 2 If X reduces to (Y Z) in L then there are X1;X2 2 BSTP such that X = (X1X2)and X1 reduces to Y and X2 reduces to Z in L.Lemma 1 GNLP and NLP are equivalent, i.e. for any formula X ! x there holds thefollowing equivalence:`GNLP X ! x if and only if `NLP X ! x.Proof. To prove the equivalence of GNLP and NLP it is su�cient to show that GNLPis equivalent to L and L is equivalent to NLP.To prove the �rst equivalence we proceed as in [27], adjusting slightly the presentedmethod to the calculus with product and with permutation.In order to prove the equivalence of L and NLP we �rst show that NLP is a subsystemof L. One can easily check that L is closed with respect to (A), (A) and (PR). To provethat L is closed with respect to (C) it su�ces to observe that every formula from Axis an axiom in L, thus it is derivable in L. Consequently, if X ! x is derivable in Land x ! y 2 Ax, then X ! y is derivable in L from the above formulas by a single5



application of (Cut). Thus L is closed with respect to the rule (C). It remains to provethat L is closed with respect to (Perm). Let `L (XY ) ! z. By Fact 1, there exists areduction (XY ); . . . ; z in L. Let i, 1 � i < n, be the smallest number such that Xi 2TP. Thus Xi must be obtained from Xi�1 by application of one of the axioms (a1), (a10),(a1), (a10) or (AP). Moreover, the formula Xi�1 ! Xi itself is one of those axioms. If itis an instance of (AP), then we have a reduction (XY ); . . . ; (x y); x � y; . . . ; z. By Fact2, X reduces to x in L and Y reduces to y in L. We can thus write the reduction(Y X); . . . ; (y x); (y (x � y)=y); (x � y); . . . ; z which, again by Fact 1, gives us derivabilityof (Y X) ! z in L. If Xi�1 ! Xi is an instance of (a1) (the argument for (a10), (a1)and (a10) is similar) then the reduction (XY ); . . . ; (x=y y); x; . . . ; z can be transformedto (Y X); . . . ; (y x=y); x; . . . ; z (we use (a10) instead of (a1) when transforming (i � 1)thelement of the latter reduction to ith).Now we show that L is a subsystem of NLP. First, let us observe that all formulas fromAx are derivable in NLP, we must only put X = x in the rule (C). Axioms (a1), (a10),(a1) and (a10) can be easily obtained as conclusions of the rules (A), (A) and (Perm).The axiom (AP) is, in turn, a trivial consequence of (PR). Thus it su�ces to show thatNLP is closed with respect to (Cut), but this can be proved by induction on the lengthof derivation of Y [x]! y in NLP. 2The form of NLP ilustrates the fact that the Lambek calculus can be considered assuch an extension of Ajdukiewicz calculus which, in addition to functor-argument ana-lysis of bracketed strings of types provided by the latter system, allows one to transformalso individual types. The derivability of formulas x=y ! ynx and ynx! x=y in GNLP(and in NLP) emphasizes a well known property of commutative Lambek calculi thatthey do not di�erentiate between right and left division signs. Thus one can ask whetherit is possible to present the discussed calculus in the form of a unidirectional system. Theanswer is positive and we will perform the operation of uni�cation of left and right divi-sions in NLP calling the resulting system the nonassociative and commutative Lambekcalculus NCL.For every type x 2 TP (resp. string X 2 BSTP) we de�ne a type kxk (resp. astring kXk) called the unidirectional version of x (resp. of X) inductively as follows:(i) kpk = p, if p 2 Pr, (ii) kx � yk = kxk � kyk; kx=yk = kynxk = kxk=kyk, (iii)k(XY )k = (kXk kY k). By the unidirectional version of a formula X ! x, to be denotedkX ! xk, we mean the formula kXk ! kxk.Let Ax denote the unidirectional version of Ax, i.e. the system whose axioms areunidirectional versions of axioms of Ax and whose rules of inference are rules of Axrestricted to uniditectional versions of premises and conclusions. Thus types in formulasof Ax contain only product and right division and the system admits the following axiomsand inference rules:
6



(A0) x! x(A1) (x=y) � y ! x (A10) y � (x=y)! x(A2) x! (x � y)=y (A20) x! (y � x)=y(A3) x! y=(y=x) (A4) x � y ! y � x(R1) x! yx=z ! y=z (R10) x! yz=y ! z=x(R2) x! yx � z ! y � z (R20) x! yz � x! z � yAlthough some axioms and rules in Ax have the same form as in Ax, we give themdi�erent names to have the possibility of referring to each of the system without anyambiguity. We adopt a similar convention as for Ax and write x ! y 2 Ax instead of`Ax x! y.We de�ne the nonassociative and commutative Lambek calculus NCL as a systemwhich arises from NCA by adding to this calculus the following compound rule:(C) X ! xX ! y , if x! y 2 Ax and x 6= y.We adopt a similar convention as in the case of Ajdukiewicz calculi and use symbolsNLPo and NCLo to denote product-free parts of NLP and NCL. A formula X ! y iscalled C-derivable in NLP (resp. C-derivable in NCL) if and only if X ! y is derivablein NLP (resp. in NCL) and every derivation of X ! y employs only (possibly 0 times)the rule (C) (resp. (C)).Lemma 2 If `NLP X ! y (resp. `NCL X ! y) then X ! y is C-derivable in NLP(resp. C-derivable in NCL) if and only if X = x 2 TP.Proof. We give the argument for NLP but it can be applied for NCL as well. There areonly the rules (A), (A) and (PR) which can increase the number of types on the left-handside of a formula. However, these rules can not be used if a formula is C-derivable, andinstances of the rule (C) do not a�ect left-hand sides of formulas. Thus starting from anaxiom, by a number of applications of (C) we get a formula with its left-hand side beinga single type. 2A sequence of types x1; . . . ; xn is called a C-reduction in NLP (resp. a C-reductionin NCL) if and only if n = 1 or if for every number 1 � k < n we have xk ! xk+1 2 Ax(resp. Ax) and xk 6= xk+1:Lemma 3 A formula X ! y is C-derivable in NLP if and only if there exists a C-reduction x1; . . . ; xn in NLP such that X = x1 and y = xn:Proof. According to Lemma 2, X must be a type. To prove the lemma we use induction,for ()) on the number of instances of (C)-rule in a derivation, and for (() on the numberof types in C-reduction. 27



Corollary 1 If formulas x ! y and y ! z are C-derivable in NLP, then the formulax! z is C-derivable in NLP as well.Lemma 4 If kxk = kyk and x; y 2 TP, then the formulas x ! y and y ! x areC-derivable.Proof. Induction on c(x). If x 2 Pr then x = kxk = kyk = y, hence x ! y andy ! x are instances of (A0). Let x = x1=x2. The type y must be of one of the formsy1=y2 or y2ny1, and kx1k = ky1k and kx2k = ky2k. Consider y = y1=y2. By inductiveassumption x1 ! y1 and y2 ! x2 as well as y1 ! x1 and x2 ! y2 are C-derivable.By Lemma 3, there exist the following reductions: x1; . . . ; y1 as well as y2; . . . ; x2 andy1; . . . ; x1 as well as x2; . . . ; y2. But then, the sequences x1=x2; . . . ; y1=x2 as well asy1=x2; . . . ; y1=y2 and y1=y2; . . . ; x1=y2 as well as x1=y2; . . . ; x1=x2, and consequently, byCorollary 1, sequences x1=x2; . . . ; y1=x2; . . . ; y1=y2 and y1=y2; . . . ; x1=y2; . . . ; x1=x2 are alsoC-reductions. Hence, by Lemma 3 again, formulas x1=x2 ! y1=y2 and y1=y2 ! x1=x2 areC-derivable. If y = y2ny1, then to the obtained as above C-reductions x1=x2; . . . ; y1=y2and y1=y2; . . . ; x1=x2 one can add an instance of the axiom (a0) at the end of the �rstsequence and an instance of the axiom (a00) at the beginning of the second sequencein order to obtain C-reductions x1=x2; . . . ; y2ny1 and y2ny1; . . . ; x1=x2. Their existence,by Lemma 3, gives us C-derivability of formulas x1=x2 ! y2ny1 and y2ny1 ! x1=x2. Ifx = x2nx1 then the proof is essentially the same as for x = x1=x2. Consider x = x1 � x2.We must have y = y1 � y2, and kx1k = ky1k and kx2k = ky2k. By inductive assumptionformulas x1 ! y1, and x2 ! y2, and y1 ! x1, and y2 ! x2 are C-derivable. Weemploy Lemma 3 to obtain C-reductions x1; . . . ; y1 as well as x2; . . . ; y2 and y1; . . . ; x1as well as y2; . . . ; x2. It is easy to observe that x1 � x2; . . . ; y1 � x2 and y1 � x2; . . . ; y1 � y2,and y1 � y2; . . . ; x1 � y2 and x1 � y2; . . .x1 � x2 are also C-reductions. By Corollary 1,x1 � x2; . . . ; y1 � x2; . . . ; y1 � y2 and y1 � y2; . . . ; x1 � y2; . . . ; x1 � x2 are C-reductions as well,thus x1 � x2 ! y1 � y2 and y1 � y2 ! x1 � x2 are C-derivable. 2Lemma 5 (i) If x! y 2 Ax, then kxk ! kyk 2 Ax.(ii) For all x; y 2 TP, if kxk ! kyk 2 Ax, then x! y is C-derivable in NLP.Proof. (i) Easy induction on the length of derivation in Ax.(ii) Throughout the proof, in order to make it shorter, we will employ Lemma 3 andCorollary 1 without stating it explicitly. We use induction on the length of derivation inAx. If kxk ! kyk = (A0) then the conclusion follows from Lemma 4. Let kxk ! kyk =(A1). Thus x = (x1=x2) � x3 or x = (x2nx1) � x3 and in both cases kx2k = kx3k andkx1k = kyk. By Lemma 4, formulas x3 ! x2 and x1 ! y are C-derivable in NLP.We can use C-reductions x3; . . . ; x2 and x1; � � � ; y to produce a C-reduction (x1=x2) �x3; . . . ; (x1=x2)�x2; x1; . . . ; y whose existence gives us C-derivability of (x1=x2)�x3 ! y. Inorder to obtain C-derivability of (x2nx1)�x3 ! y it su�ces to precede the above reductionby the type (x2nx1)�x3. If kxk ! kyk = (A10) then x = x3�(x1=x2) or x = x3�(x2nx1), andkx2k = kx3k and kx1k = kyk. To obtain C-reductions for the formulas x3 � (x1=x2) ! yand x3 � (x2nx1) ! y one can precede the two C-reductions constructed for the axiom(A1) by, respectively, types x3 � (x1=x2) and x3 � (x2nx1). Let kxk ! kyk = (A2).Thus y = (y1 � y2)=y3 or y = y3n(y1 � y2) and in both cases ky2k = ky3k and ky1k =kxk. We employ C-reductions x; . . . ; y1 and y3; . . . ; y2 in construction of a C-reduction8



x; . . . ; y1; (y1 � y2)=y2; . . . ; (y1 � y2)=y3 which yields C-derivability of x! (y1 � y2)=y3. Theconstructed C-reduction, with the type y3n(y1 � y2) added at the very end provides C-derivability of x ! y3n(y1 � y2). If kxk ! kyk = (A20) then the C-reductions for x ! ycan be obtained from those constructed for (A2) in an essentially the same way as thosefor (A10) were obtained from C-reductions for (A1). If kxk ! kyk = (A3) then we havefour possibilities for the type y: it can be of the form y1=(y2=y3); (y2=y3)ny1; y1=(y3ny2)or (y3ny2)ny1 where ky3k = kxk and ky1k = ky2k. We provide the argument for thelast case, all other cases are similar. By Lemma 4, formulas x ! y3 and y2 ! y1 areC-derivable. Thus given C-reductions x; . . . ; y3 and y2; . . . ; y1 we can produce a newC-reduction x; . . . ; y3; (y2=y3)ny2; . . . ; (y2=y3)ny1; (y3ny2)ny1 which is su�cient to proveC-derivability of x ! y. If kxk ! kyk = (A4) then x = x1 � x2, y = y1 � y2, andkx1k = ky2k and ky1k = kx2k. As x2 ! y1 and x1 ! y2 are C-derivable we canwrite a C-reduction x1 � x2; x2 � x1; . . . ; y1 � x1; . . . ; y1 � y2 which proves C-derivability ofx1 � x2 ! y1 � y2.Now we take into consideration the cases when kxk ! kyk arises by an applica-tion of derivation rules of Ax. If kxk ! kyk arises by (R1) then x and y must beof one of the following forms: x = x1=z1, y = y1=z2 or x = z1nx1, y = y1=z2 orx = x1=z1, y = z2ny2 or x = z1nx1, y = z2ny1 where kx1k ! ky1k 2 Ax andkz1k = kz2k. By our inductive assumption x1 ! y1 is C-derivable in NLP. If x = x1=z1and y = y1=z2 we employ C-reductions x1; . . . ; y1 and z2; . . . ; z1, in order to construct aC-reduction x1=z1; . . . ; y1=z1; . . . ; y1=z2 which gives us C-derivability of x1=z1 ! y1=z2.For x = z1nx1; y = y1=z2 the appropriate C-reduction arises from that constructed aboveby preceding it by the type z1nx1. Other cases can be treated in a similar manner.Consequently, the formula x ! y is C-derivable. If kxk ! kyk arises by (R10), thenthe proof is similar to that presented above. Let kxk ! kyk be a conclusion of (R2).Thus we must have x = x1 � z1, y = y1 � z2, kz1k = kz2k and kx1k ! ky1k 2 Ax. Asby the inductive assumption x1 ! y1 is C-derivable, we have a C-reduction x1; . . . ; y1.There exists also a C-reduction z1; . . . ; z2. This is su�cient to construct a C-reductionx1 � z1; . . . ; y1 � z1; . . . ; y1 � z2. Consequently, the formula x! y is C-derivable in NLP. Asimilar argument is valid for the rule (R20). 2The equivalence of NLP and NCL is established by the followingTheorem 1 If the formula Y ! y is a unidirectional version of a formula X ! x, then`NLP X ! x if and only if `NCL Y ! y.Proof. The `if'{part of the equivalence can be proved by induction on the length ofderivation of X ! x in NLP. For axioms there is nothing to prove. For formulas X ! xarising by (A), (A) or (PR) one obtains the conclusion immediately (one must use (A),(A0) or (PR) in NCL). If X ! x arises by (C), then there must be formulas X ! z andz ! x such that `NLP X ! z and z ! x 2 Ax. By inductive assumption kXk ! kzkis derivable in NCL, and by Lemma 5(i), kzk ! kxk 2 Ax. Consequently, kXk ! kxkis derivable in NCL from kXk ! kzk and kzk ! kxk via (C)-rule. The only case whichneeds some comment is that whereX ! x is the result of an application of (Perm). ThenX = (X1X2) and, by inductive assumption (kX2k kX1k)! kxk is derivable in NCL. Wehave to show that it is the case for the formula (kX1k jX2k)! kxk as well. In a derivationof (kX2k kX1k) ! kxk one of the rules (A), (A0), (PR) or (PR0) must be used at lastonce. Let us consider the last occurrence of a rule from this group in the derivation. This9



instance of the rule introduces the bracketed string (kX2k kX1k) into the antecedens ofthe formula. As a result, in this step we get a formula (kX2k kX1k) ! z which is thentransformed to (kX2k kX1k)! kxk via a number (possibly zero) of applications of rule(C). Now, if the last afore mentioned rule is (A) (resp. (A0), (PR), (PR0)) then in orderto obtain a derivation of (kX1k kX2k)! kxk we replace it by an instance of (A0) (resp.(A), (PR0), (PR)) and execute the same transformation by means of (C)-rule as in thetransition from (kX2k kX1k)! z to (kX2k kX1k)! x.Now we prove the `only if'{part of the thesis. Assume that Y ! y is derivable in NCLand let X ! x be any formula such that Y ! y is its unidirectional version. If Y ! y =(A0) then Y = y and kXk = y = kxk. Thus, by Lemma 4, X ! x is C-derivable inNLP, hence it is derivable in NLP. Let Y ! y arises by (A). We have Y = (Y1Y2) and forsome y1 the formulas Y1 ! y=y1 and Y2 ! y1 are derivable in NCL. Any X such thatkXk = Y must be of the form X = (X1X2) such that kX1k = Y1 and kX2k = Y2. Let ustake a type x such that kxk = y. As ky1k = y1 we can apply the inductive assumptionto formulas Y1 ! kxk=ky1k and Y2 ! ky1k. Thus X1 ! x=y1 and Y2 ! y1 are derivablein NLP, and so is the case for (X1X2) ! x as we can apply (A) in NLP to the latterformulas. If Y ! y arises by (A0), then the argument is similar to that presented above:We apply the inductive assumption to formulas Y1 ! kxk=ky1k and Y2 ! ky1k in orderto obtain formulas X1 ! y1nx and X2 ! y1 derivable in NLP, and then we employ therule (A) to produce the formula (X2X1)! x. Let Y ! y be a conclusion of the rule (PR).Thus Y = (Y1Y2), y = y1 � y2, and if Y ! y is a unidirectional version of some X ! x,the following equalities hold: X = (X1X2); x = x1 � x2; kXik = Yi; kxik = yi; i = 1; 2.As, according to our inductive assumption, from the derivability of Yi ! yi; i = 1; 2;in NCL follows the derivability of Xi ! xi; i = 1; 2; in NLP, it su�ces to apply (PR)to the latter formulas to obtain the derivation of X ! x in NLP. If Y ! y arises by(PR0) then we proceed as in the previous case and get an in NLP derivable formula(X1X2) ! x1 � x2. Now it su�ces to apply the rule (Perm). In the last case whichwe must take into consideration the formula Y ! y arises in NCL by (C)-rule. Thusthere must be a type z such that z ! y 2 Ax and Y ! y is derivable in NCL. By theinductive assumption, for any X such that kXk = Y and any u such that kuk = z theformula X ! u is derivable in NLP. Let x be any type such that kxk = y. Consequentlykuk ! kxk 2 Ax and by Lemma 5(ii), u! x is C-derivable in NLP. By Lemma 3, thereexists a C-reduction u; . . . ; x in NLP. Thus by the de�nition of C-reduction, the formulaX ! x can be obtained from X ! u by a number of applications of the C-rule. HenceX ! x is derivable in NLP. 23 The nonassociative and commutative AjdukiewiczcalculusIn general, Ajdukiewicz calculi NAP and NCA do not have a property which was provedfor NLP and NCL in Theorem 1. As counterexamples one can take for instance a pairof formulas X ! x = u=v ! vnu and Y ! y = u=v ! u=v or another pair X ! x =(z=(u=v))(vnu) ! z and Y ! y = (z=(u=v))(u=v) ! z where u; v; z 2 Pr. Obviously,Y ! y is a unidirectional version of X ! x and `NCA Y ! y whereas it is not thecase that `NAP X ! x. However, a result similar to that presented in Theorem 1 can be10



proved for product-free versions of the calculi NAP and NCA in the case of a restrictedclass of formulas.Let NAPoc (resp. NCAoc) denote a system formalized by (A0), (a1), (a10), (a1), (a10)(resp. (A0), (a1) (a10)) and (Cut) which employs types and bracketed strings of typesfrom Tp and BSTp. By induction on the length of derivation one provesLemma 6 Systems NAPo and NAPoc (resp. NCAo and NCAoc) are equivalent, i.e. forevery formula X ! x, where X 2 BSTp, x 2 Tp, there holds the equivalence: `NAPoX ! x if and only if `NAPoc X ! x (resp. `NCAo X ! x if and only if `NCAoc X ! x).We introduce the notion of reduction in NAPoc and NCAoc in a similar way as we didit for the calculus L. Moreover, similar as for L a characterization of derivability in NAPocand NCAoc in terms of reduction can be given. We haveFact 3 A formula X ! x is derivable in NAPoc (resp. NCAoc) if and only if X reducesto x in NAPoc (resp. NCAoc)The proof of this fact is similar to that presented in [26] or [14].In Section 2 the de�nition of order of a type was given. It is easily observed that theorder of a compound type does not depend whether we have left or right divisions in thistype. Consequently, we have o(x)=o(kxk).Lemma 7 If x 2 Tp and o(x) � 1, then o(y) � 1 for every subtype y of x.Proof. We follow the inductive de�nition of the set of subtypes of x. For x consideredas a subtype of x there is nothing to show. Assume that for some subtype y of x wehave o(y) � 1, and let y = z=v (if y = vnz, the argument is similar). Thus o(y) =maxfo(z);o(v) + 1g � 1. Consequently we have o(v) = 0 and o(z) � 1. 2Corollary 2 Every non-primitive, product-free type of order � 1 is of the form y=p orpny where p 2 Pr and o(y) � 1.Lemma 8 (i) If X 2 BSTp, kXk = Y and Y = Y [Z] then there exists U 2 BSTp suchthat X = X[U ] and kUk = Z:(ii) If X;Y;Z 2 BSTp, then kX[Y : Z]k = kXk[kY k : kZk].Proof. We use induction on construction of a string X which contains a placed occur-rence of Y . 2Theorem 2 If the formula Y ! y is a unidirectional version of a formula X ! p suchthat p 2 Pr and all types in X are product-free and of order � 1 then `NAPo X ! p ifand only if `NCAo Y ! y.Proof. The proof of the `if'{part of the conclusion is in fact an inessential modi�cationof the �rst part of the proof of Theorem 1. In order to prove the `only if'{part of theconclusion let us �rst notice that by Fact 3, instead of derivability in NAPo and NCAoone can consider derivability in NAPoc and NCAoc. Moreover, as Y ! y = kXk ! kpkand p 2 Pr, thus y = p = kpk. As a result, having established the value of the succedents11



of both formulas, instead of discussing unidirectional versions of formulas we will onlyconsider unidirectional versions of their antecedents. We employ induction on the lengthof a reduction of Y to p in NCAoc. If Y ! p = (A0) then Y = p. Consequently,X = p and X ! p, as an instance of (A0), is derivable in NAPoc. If the length of areduction of Y to p is 1, then Y = (p=q q) or Y = (q p=q). By Corollary 2, we have q 2Pr. Thus any X 2 BSTp such that kXk = Y must be of one of the following forms:(p=q q); (qnp q); (q p=q) or (q qnp); where p; q 2 Pr. Obviously, X ! p as axioms arederivable in NAPoc. Let Y ! p be derivable in NCAoc and let Y = Y1; . . . ; Yn = p; n > 2be a reduction of Y to p. According to the de�nition of reduction, Y1 = Y1[Z], whereZ = (x=q q) or Z = (q x=q), and Y2 = Y1[Z : x]. By Corollary 2, q 2 Pr, and by Lemma7, o(x) � 1. Let X 2 BSTp be such that kXk = Y1. By Lemma 8(i), X = X[U ] andkUk = Z. Thus U is of the form (u=q q); or (qnuu); or (q u=q); or (q qnu); for someu 2 Tp such that kuk = x. Let us consider X[U : u]. According to Lemma 8(ii) we havekX[U : u]k = kXk[kUk : kuk] = Y1[Z : x] = Y2. Consequently, as Y2 ! p is derivablein NCAoc, by the inductive assumption we get derivability of X[U : u] ! p. Thus, thereexists a reduction X[U : u]; . . . ; p in NAPoc. But U ! u is an instance of a non-(A0)axiom in NAPoc, hence the sequence X[U ];X[U : u]; . . . ; p is a reduction in NAPoc aswell. By Fact 3, the formula X[U ]! p; i.e. the formula X ! p is derivable in NAPoc. 24 The inclusion of the class of NCL-languages inthe class of CF-languagesIn this section we slightly re�ne the result from [17] about the relation between theclass of languages generated by categorial grammars based on the calculus NCL and theclass of CF-languages. The argument presented in both remaining parts of the paperessentially makes use of concepts and constructions included in former papers concerningthe subject. However, to make this work self{contained, we briey summarize in thissection all relevant facts and provide the reader with necessary references.Let V be a �nite vocabulary. The set BS(V ) of phrase structures over V is de�ned asthe smallest set such that: (i) V � BS(V ), (ii) if A1; . . . ; An 2 BS(V ), then (A1 . . .An) 2BS(V ). We will denote by jAj the sequence arising from a phrase structure A by deletingall brackets. Any subset L of BS(V ) is called a phrase language over V .The set BS(V ) provided with operations fn(A1; . . . ; An) = (A1 . . .An), n = 2; 3; 4; . . .can be considered as an absolutely free algebra over the set of generators V . The largestcongruence with respect to inclusion on a phrase language L, denoted by INTL, is calledthe intersubstitutability relation for L, see [10,15]. We refer to the index of the relationINTL as to the index of L and denote this number by ind(L).Given a phrase structure A = (A1 . . .An) we call A1; . . . ; An as to the direct substruc-tures of A. The set sub(A) of substructures of A is de�ned in a natural way: (i) A 2sub(A), (ii) if B 2 sub(A) and C is a direct substructure of A, then C 2 sub(A). Thesize of A 2 BS(V ), denoted by s(A), is the maximum number of direct substructures inany element of sub(A). For L � BS(V ) we put s(L) = supfs(A) : A 2 Lg and call s(L)the size of L.By a path in A 2 BS(V ) we mean a sequence A0; A1; . . . ; An of substructures of Asuch that for all 1 � i � n, Ai is a direct substructure of Ai�1. The external degree12



of A 2 BS(V ), denoted by dege(A), is de�ned to be the minimal length of paths in Awhose initial term is A itself and whose �nal term is an element from V . For A 2 BS(V )we put deg(A) = maxfdege(B) : B 2 sub(A)gand for L � BS(V ) letdeg(L) = supfdeg(A) : A 2 Lgand we call those numbers the degree of A and the degree of L, respectively.Any calculus of syntactic types described in the paper can play the role of a typereduction system in a categorial grammar. A categorial grammar over a (nonassociative)type reduction system TRS is an ordered quadruple G = hVG; IG; sG;TRSi, where VGis an nonempty vocabulary of G, sG is a distinguished primitive type understood asa type of properly built sentences, IG � VG�TP is a �nite relation called the initialtype assignment of G and TRS is a certain nonassociative calculus of syntactic types.In a natural way IG can inductively be extended to a relation FG � BS(VG)� BSTP:(i) IG � FG, (ii) if (A1;X1) 2 FG and (A2;X2) 2 FG, then ((A1A2); (X1X2)) 2 FG.By the string (resp. phrase ) language L(G) (resp. BL(G)) generated by a categorialgrammar G over TRS we mean the setL(G) = fjAj : (9X 2 BSTP)((A;X) 2 FG & `TRS X ! sG)g(resp. BL(G) = fA : (9X 2 BSTP)((A;X) 2 FG & `TRS X ! sG)g).As L(G) = fjAj : A 2 BL(G)g thus, if two CG's generate the same phrase languages,then they also generate the same string languages; the converse implication however doesnot hold. If there is no special reason we call string languages generated by CG's simplylanguages. A categorial grammar in which TRS = NA (resp. NCA, NAP, NCL, NLP)will be called to as an NA- (resp. NCA-, NAP-, NCL-, NLP-)grammar. We adopt thisconvention for product-free calculi as well. It is easily observed that all phrase languagesgenerated by NA-, NCA-, NAP-, NCL- or NLP-grammars are of size � 2.The following theorem establishes the equivalence of NA- and NAo-grammars withinthe scope of phrase languages, thus within the scope of string languages as well (see [15]where this result is given in a stronger form):Theorem 3 NA-grammars and NAo-grammars generate the same class of phrase lan-guages.By the order of a product-free categorial grammar G we mean the number o(G) suchthat o(G) = supfo(x) : (9v 2 VG)((v; x) 2 IG)g. The following theorem was proved in[10] (in a stronger case of functorial languages):Theorem 4 Any phrase language generated by an NAo-grammar is also generated by anNAo-grammar G such that o(G) � 1.Lemma 9 NAPo-grammars of the order � 1 generate the same class of phrase languagesas NCAo-grammars of the order � 1. 13



Proof. Let G = hVG; IG; sG;NAPoi be an NAPo-grammar and let o(G) � 1. We de�nean NCAo-grammar G1 in the following way: VG1 = VG; sG1 = sG, and for a 2 VG,x 2 TP, (a; x) 2 IG if and only if (a; kxk) 2 IG1. It is clear that o(G) = o(G1) � 1.By induction on the complexity of A one can easily prove that (A;X) 2 FG if andonly if (A; kXk) 2 FG1. Assume A 2 BL(G). Thus there exists X 2 BSTp such that(A;X) 2 FG and `NAPo X ! sG. Consequently (A; kXk) 2 FG1 . Formulas X ! sGand kXk ! sG1 ful�l the assumptions of Theorem 2, hence `NCAo kXk ! sG1 . Itproves that A 2 BL(G1). To prove that BL(G1) � BL(G) assume A 2 BL(G1). Thereexists then X 2 BSTp, consisting of unidirectional types, such that (A;X) 2 FG1 and`NCAo X ! sG1 . Thus one can �nd Y 2 BSTp such that (A;Y ) 2 FG and kY k = X.Employing Theorem 2 once more we conclude that `NAPo Y ! sG, thus A 2 BL(G).Conversely, let L = L(G) for some NCAo-grammar G = hVG; IG; sG;NCAoi of order� 1, and let G1 be an NAPo-grammar whose components are described as follows: VG1 =VG; sG1 = sG, and for all a 2 VG1 and x; y 2 Tp, (a; y) 2 IG1 if and only if (a; x) 2 IGand kyk = x. As there exists only a �nite number of types y such that for a given typex the equality kyk = x holds, IG1 is still a �nite relation. Proceeding essentially in thesame way as previously we show that BL(G) = BL(G1). 2The next theorem gives characterization of phrase languages generated by NAo-grammars (see [9]):Theorem 5 A phrase language L such that s(L) � 2 is generated by an NAo-grammarif and only if both ind(L) and deg(L) are �nite.We admit a standard de�nition of a (�-free) CF-grammar as an ordered quadruplehV;U; s; P i in which symbols V , U , s, P denote, respectively, the set of terminals, the setof nonterminals, the initial symbol and the set of production rules. We adopt the notationa 7! b1 . . . bn for elements of P . A production rule a 7! b1 . . . bn is called a permutationvariant of a 7! c1 . . . cn if the sequence b1 . . . bn is a permutation of the sequence c1 . . . cn.In case of a binary rule, i.e. when n = 2 we use the term `transposition variant' insteadof `permutation variant'. A set of production rules is closed with respect to permutationsif together with a certain rule it also contains all permutation variants of this rule. ACF-grammar (resp. CF-language) is called closed with respect to permutations if is closedwith respect to permutations its set of production rules (resp. a CF-grammar generatingthis language). The de�nitions of closed with respect to transposition for grammars andfor languages are similar.Every CF-grammar induces in a natural way a bracketing on the elements of thegenerated (string) language. Thus, together with a (string) language L(G) � V �, a CF-grammar G generates also a phrase language BL(G) � BS(V ) such that L(G) = fjAj :A 2 BL(G)g. The following theorem provides a necessary and su�cient condition for aphrase language L to be generated by a CF-grammar (see [23]):Theorem 6 A phrase language L is generated by a CF-grammar if and only if s(L)and ind(L) are �nite.The following de�nition is essential for our further considerations: A CF-grammar Gis called a CF-grammar if (i) G is closed with respect to permutation and (ii) deg(BL(G))is �nite. 14



Let x! y 2 Ax. We call x! y an E-formula (resp. an R-formula or an O-formula)if c(x) < c(y) (resp. c(x) > c(y) or c(x) = c(y)). An instance of the (C)-rule employingan E- (resp. R-, O-) formula is called an E- (resp. R-, O-) instance of this rule. We call aderivation D of X ! y in NCL seminormal if all E-instances of (C) follow R-instancesof (C) as well as the rules (A), (A0), (PR) and (PR0). We call a derivation D of X ! yin NCL normal if it is seminormal and additionally if all R-instances of (C) precede (A),(A0), (PR) and (PR0) and no O-instance of (C) is placed between (A), (A0), (PR) and(PR0).In [17] the following theorem was proved:Theorem 7 If `NCL X ! x, then any derivation D of X ! x can be transformede�ectively to a normal form.The existence of normal form for derivations in NCL provided by Theorem 7 enablesus to construct for every NCL-grammar an NCA-grammar generating the same language.The reader can �nd details of this construction in [9] or in [14]. Here we only formulatethis result in the form of the following lemma:Lemma 10 For every NCL-grammar G one can construct an NCA-grammar G1 suchthat L(G) = L(G1).Let G = hVG; IG; sG;NCAi be an NCA-grammar. We de�ne a CF-grammar G in thefollowing way: VG = VG; sG = sG and UG = sub(fx 2 TP: (9v 2 VG)((v; x) 2 IGg). Theset PG of production rules contains all rules of one of the shapes: (i) x 7! v where x 2TP, v 2 VG, and (v; x) 2 IG, or (ii) x 7! x=y y; x 7! y x=y; x � y 7! x y; x � y 7! y x,for all x; y 2 UG. For the grammar G de�ned as above we have:Lemma 11 BL(G) = BL(G).For details of the described construction and the proof of the lemma see the previouslymentioned references.The following lemma is a straightforward consequence of Lemma 11 and the presentedconstruction:Lemma 12 For every NCA-grammar G one can �nd a CF-grammar G such that G isclosed with respect to transpositions and BL(G) = BL(G).Lemma 13 Let G be an NCA-grammar. If G is a CF-grammar constructed as above,then deg(BL(G)) < @0.Proof. By Lemma 11, BL(G) = BL(G), thus it is su�cient to show the �niteness ofdeg(BL(G)). Let G = hVG; IG; sG;NCAi and let NCA denote the calculus obtained fromNCA by dropping the rules (A0) and (PR0), thus employing only (A) and (PR). We putG = hVG; IG; sG;NCAi. Obviousely BL(G) � BL(G). Observe that BL(G) arises fromBL(G) by adding all phrase structures obtained by a �nite number of transpositions ofdirect substructures in substructures of elements of BL(G). However, the degree of anyphrase structure B obtained by transpositions from a given structure A is the same asthe degree of the structure A itself. Thus deg(BL(G)) = deg(BL(G)) and we will show15



that deg(BL(G)) is �nite. For this we prove that for some phrase language L0 such thatBL(G) � L0 we have deg(L0) < @0. We put the calculus NA instead of NCA in thede�nition of G and denote the obtained grammar by G0. Let L0 = BL(G0). Every inNCA derivable formula is also derivable in NA, thus we get the inclusion BL(G) � L0.By Theorem 3, the language L0 being generated by an NA-grammar is also generatedby an NAo-grammar. Consequently, as s(L0) � 2 thus according to Theorem 5, thenumber deg(L0) is �nite. Thus we have deg(BL(G)) = deg(BL(G)) = deg(BL(G)) �deg(L0) < @0. 2Lemmas 2, 4 and 5 giveTheorem 8 For every NCL-grammar G one �nds an CF-grammar G such that L(G)= L(G), i.e. the class of languages generated by NCL-grammars is included in the classof languages generated by CF-grammars.5 The equivalence of CF-grammars and NCL-gram-mars.Lemma 14 For every CF-grammar G one can �nd a CF-grammar G 0 such that BL(G)= BL(G 0) and all the production rules in the grammar G 0 are of one of the followingforms: a 7! b1 . . . bn; n � 2; or a 7! v, where a; b1; . . . ; bn are nonterminals and v is aterminal in G 0.Proof. This lemma usually constitutes a part of the proof of the Chomsky normalform theorem, see for example [13]. The equality BL(G) = BL(G 0) is a straihgtforwardconsequence of the fact that the employed in the proof procedures of getting rid of unitproductions (i.e. of productions of the form a 7! b) as well as of productions contain-ing terminals on right-hand sides do not a�ect the phrase structure of elements of thegenerated language. 2Lemma 15 Let G = hVG ; UG; sG; PGi be a CF-grammar. Then there exists a CF-grammarG 0 in Chomsky normal form which is closed with respect to transposition such that L(G)= L(G 0) and deg(BL(G 0)) < @0.Proof. According to Lemma 14 we can assume that PG = PG[PG , where PG consists ofproductions of the form a 7! b1 . . . bn; n � 2 and PG consists of productions of the forma 7! v, where a; b1; . . . ; bn 2 UG and v 2 VG. We show that every set of production ruleswhich comprises all permutation variants of a given production rule can be replaced by aset of binary rules which is closed with respect to transpositions. Let R = a 7! b1 . . . bn 2PG. If n = 2, then there is nothing to show as, according to our assumptions, both a 7!b1b2 and a 7! b2b1 are in PG and they constitute the desired set of binary rules. For n � 3we replace R by a set F 0R consisting of the rules a 7! b1c1; c1 7! b2c2; . . . ; cn�2 7! bn�1bnas we usually do in the construction of the Chomsky normal form for a CF-grammar(c1; . . . ; cn�2 are new nonterminals). Then we add to F 0R all transposition variants of itselements and denote the set obtained in this way by FR. Observe that for generationof a language over VG only those strings derivable from a are essential which consist of16



nonterminals b1; . . . ; bn but not c1; . . . ; cn�2. However, due to the form of the rules inFR, every string derivable from a by means of those rules, which consists exclusively ofnonterminals b1; . . . ; bn must contain all of them, additionally, together with a sequenceb1 . . . bn, some of its permutations can also be derived from a by means of productionsfrom FR. Thus, FR is a substitute for the rule R as well as for some of its permutationvariants. The described procedure can be performed for all permutation variants of R(all new nonterminals must di�er one from another in order to avoid an interaction ofrules). The set of all binary rules obtained in this way for R and all its permutationvariants will be denoted by FPerm(R). This set produces the same strings as the rule Rand its permutation variants and no other strings. FPerm(R) is also closed with respectto transposition. We de�ne PG0 = PG, PG0 = SfFPerm(R) : R 2 PGg; PG0 = PG0 [ PG0sG0 = sG; VG0 = VG ; and let UG0 consist of all nonterminals from UG as well as of all newnonterminals introduced in the process of constructing the sets FPerm(R) for all R's. Weput G 0 = hVG0 ; UG0; sG0 ; PG0i. The set PG0 produces precisely the same strings over UG0as PG over UG and consequently, as PG0 = PG, we have L(G 0) = L(G).Now we show that deg(BL(G 0)) < @0. The replacement of a rule a 7! b1 . . . bn; n � 3by a set of binary rules introduces a (binary) phrase structure on b1 . . . bn and con-sequently makes the phrase structure of elements of BL(G 0) �ner than that we havein BL(G). As a result, the length of paths leading from any substructure of an ele-ment of BL(G 0) to an atom (terminal) can increase. However, for any A 2 BL(G) andA0 2 BL(G 0) such that jAj = jA0j we have deg(A0) � deg(A)�(s(BL(G)) � 1) < deg(A)�s(BL(G)). But s(BL(G)) is �nite (it is the maximal length of strings on the right-handsides of production rules from PG) and deg(BL(G)) is �nite as well (G is a CF-grammar).Therefore deg(BL(G)) = supfdeg(A0) : A0 2 BL(G 0)g � supfdeg(A)�s(BL(G)) : A 2BL(G) &jAj = jA0jg = deg(BL(G))�s(BL(G)) < @0. 2Lemma 16 If G is a CF-grammar in Chomsky normal form, then BL(G) = BL(G) forsome NCAo-grammar G of order � 1.Proof. By Theorem 6, ind(BL(G)) < @0 and s(BL(G)) < @0 (the second inequalityis not important because in our case we have s(BL(G)) � 2). Since deg(BL(G)) <@0, by Theorem 5 we conclude that BL(G) = BL(G0), for some NAo-grammar G0 =hVG0 ; IG0; sG0 ;NAoi. According to Theorem 4, we can assume that o(G0) � 1. LetG1 = hVG0 ; IG0 ; sG0;NAPoi. As NAPo is stronger than NAo, we immediately have BL(G)= BL(G0) � BL(G1). But we also have BL(G1) � BL(G): this follows from the fact thatG is closed with respect to transposition, thus the language BL(G) (and BL(G0)) is closedwith respect to transpositions of its substructures. As a result, adding the rule (Perm)to NAo, i.e. employing NAPoas a type reduction system instead of NAo, does not leadus beyond the language generated by G0. Now, as o(G1) � 1, we apply Lemma 9 andget an NCAo-grammar G of the order � 1 such that BL(G) = BL(G1). ConsequentlyBL(G) = BL(G). 2Lemma 17 For every NCAo-grammarG0 of the order � 1 there exists an NCL-grammarG1 such that BL(G) = BL(G1).Proof. We adopt a standard argument presented for example in [9] or in [15] butsuited here to the case of commutative calculi. The axiomatization of NCAo we use17



consists of the axiom scheme (A0) and the rules (A) and (A0). Given an NCAo-grammarG = hVG; IG; sG;NCAoi we put G1 = hVG; IG; sG;NCLi and claim that BL(G) = BL(G1).In order to obtain this equality it is su�cient to prove that `NCAo X ! sG if and only if`NCL X ! sG, unless all types in X are product-free and of order � 1. It is obvious thatevery formula derivable in NCAo is also derivable in NCL because NCAo is a subsystemof NCL. To prove the converse implication let us assume `NCL X ! sG. By Theorem7, the formula X ! sG possesses a normal derivation D in NCL. Since sG 2 Pr, noE-instances of (C)-rule occur in D. For every type x in X any R-instance of (C)-rulewould employ such a formula x! y from Ax that c(x) > c(y). This formula can not beobtained by means of the rules (R2) or (R20) because of the presence of the product sign� in their conclusions. For axioms (A1), (A10), (A2), (A20) as well as for formulas in Axwhich arise from them by an application of rules (R1) or (R10), one sees that this side of aformula which is of greater complexity contains also a product sign. The formula x! ycan not be obtained from (A4) by any rule from Ax as well, otherwise we would havec(x) = c(y). The only remaining possibility of constructing x ! y is that using (A3)and the rules (R1) or (R10). For any z; t 2 Tp we have however o(z=(z=t)) = maxfo(z),o(t) + 2g, and thus o(z=(z=t)) � 2. Consequently, this side of the formula x! y whichis of greater complexity would have the order � 2, but for x ! y being an R-formulathis is impossible, as o(G) � 1. We conclude that no R-formulas are employed in D,thus D is a derivation in NCA. But the rules (PR) and (PR0) can not be applied in D,otherwise for some types z; t a product type z � y would be a subtype of a type in X. Asa result, D is a derivation in NCAo and `NCAo X ! sG. 2Theorem 9 For any CF-grammar G there exists an NCL-grammar G such that L(G)= L(G).Proof. We conclude from Lemma 15 that for the grammar G one can construct a CF-grammar G 0 in Chomsky normal form, closed with respect to transposition and suchthat L(G) = L(G 0) and deg(BL(G 0)) < @0. Employing Lemma 16 we �nd for G 0 anNCAo-grammar G1 such that o(G1) � 1 and BL(G 0) = BL(G1). By Lemma 17, we can�nd for G1 an NCL-grammar G such that BL(G1) = BL(G). Accordingly, as L(G 0) =L(G1) = L(G), G is the grammar ful�lling the thesis. 2Theorem 10 NLC-grammars and CF-grammars generate the same class of (string) lan-guages.Proof. This is a consequence of Theorem 8 and Theorem 9. 2Note. It is not known however, whether the �niteness of the degree in the de�nition ofCF-grammars is an essential restriction. So far we do not know if the question whether forevery closed with respect to permutation CF-grammar G one can construct a closed withrespect to permutation CF-grammar G 0 such that L(G) = L(G 0) and deg(BL(G 0)) < @0has a positive or negative answer.References[1] Bach, E., Some generalizations of categorial grammars. In: Varieties of FormalSemantics (Landman, F. and F. Veltman, eds.) Foris, Dordrecht 1984, 1{23.18



[2] Bar-Hillel, Y., C. Gaifman and E. Shamir, On categorial and phrase structuregrammars. Bulletin of the Research Council of Israel F.9 (1960), 1{16.[3] Benthem, J. van, The Lambek calculus. In: Categorial Grammars and NaturalLanguage Structures. Studies in Linguistics and Philosophy (Oehrle, R., E. Bachand D. Wheeler, eds.), D. Reidel, Dordrecht 1988, 35{68.[4] Benthem, J. van, The semantics of variety in categorial grammar. In: Categorialgrammar (W. Buszkowski, W. Marciszewski and J. van Benthem, eds.),J. Benjamins, Amsterdam 1988, 37{56.[5] Benthem, J. van, Semantic type change and syntactic recognition. In: Properties,Types and Meaning, vol I: Foundational Issues, vol II: Semantic Issues (Chierchia,G., B. Partee and R. Turner, eds.), Kluwer, Dordrecht 1989, 231{249.[6] Benthem, J. van, Language in Action. Categories, Lambdas and Dynamic Logic.Studies in Logic and the Foundations of Mathematics, North{Holland, Amsterdam1991.[7] Buszkowski, W., A note on the Lambek-van Benthem calculus. Bulletin of theSection of Logic 131 (1984), 31{37.[8] Buszkowski, W., The equivalence of unidirectional Lambek categorial grammarsand context-free grammars. Zeitschrift f�ur mathematische Logik und Grundlagender Mathematik 31 (1985), 369{384.[9] Buszkowski, W., Generative capacity of nonassociative Lambek calculus. Bulletinof the Polish Academy of Sciences: Mathematics 34 (1986), 507{516.[10] Buszkowski, W., Typed functorial languages. Bulletin of the Polish Academy ofSciences: Mathematics 34 (1986), 495{505.[11] Buszkowski, W., On generative capacity of the Lambek calculus. In: Logics inAI (Eijck, J. van, ed.), Lecture Notes in Arti�cial Intelligence, Springer Verlag,Berlin{Heidelberg{New York 1991, 139{152.[12] Gentzen, G., Untersuchungen �uber das logische Schliessen I{II. MathematischeZeitschrift 39 (1934), 176{210, 405{431.[13] Hopcroft, J. and J. Ullman, Introduction to Automata Theory, Languages, andComputation. Addison-Wesley Publishing Company, Reading, Massachusetts 1979.[14] Kandulski, M., The equivalence of nonassociative Lambek categorial grammarsand context-free grammars. Zeitschrift f�ur mathematische Logik und Grundlagender Mathematik 34 (1988), 41{52.[15] Kandulski, M., Phrase structure languages generated by categorial grammars withproduct. Zeitschrift f�ur mathematische Logik und Grundlagen der Mathematik 34(1988), 373{383. 19



[16] Kandulski, M., The non-associative Lambek calculus. In: Categorial Grammar(W. Buszkowski, W. Marciszewski and J. van Benthem, eds.), Benjamins,Amsterdam 1988, 141{152.[17] Kandulski, M., Normal form of derivations in the nonassociative and commutativeLambek calculus with product. Mathematical Logic Quarterly 39 (1993), 103{114.[18] Lambek, J., The mathematics of sentence structure. American MathematicalMonthly 65 (1958), 154{170.[19] Lambek, J., On the calculus of syntactic types. In: Structure of Language and ItsMathematical Aspects (Jacobson, R., ed.), Amer. Math. Soc., Providence, R.I.,1961, 166{178.[20] Moortgat, M., Labelled Deductive Systems for categorial theorem proving. OTSWorking Papers, OTS-WP-CL-92-003, Research Institute for Language and Speech,Rijksuniversiteit Utrecht, 1992.[21] Moortgat, M. and G. Morrill, Heads and phrases. Type calculus for depen-dency and constituent structure. ms., OTS Utrecht, (to appear in Journal of Logic,Language and Information).[22] Pentus, M., Lambek grammars are context-free. Unpublished manuscript, 1992.[23] Thatcher, J.W., Characterizing derivation trees of context-free grammars througha generalization of �nite automata theory. Journal Comput. Systems Sci. 1 (1967),317{322.[24] Troelstra, A.S., Lectures on Linear Logic. CSLI Lecture Notes, vol.29, Centerfor the Study of Language and Information, Stanford University 1992.[25] Zielonka, W., A direct proof of the equivalence of free categorial grammars andsimple phrase structure grammars. Studia Logica 37 (1978), 41{57.[26] Zielonka, W., Axiomatizability of Ajdukiewicz-Lambek calculus by means of can-cellation schemes. Zeitschrift f�ur Mathematische Logik und Grundlagen der Mathe-matik 27 (1981), 215{224.[27] Zielonka, W., A simple and general method of solving the �nite axiomatizabilityproblems for Lambek's syntactic calculi. Studia Logica 48 (1989), 35{39.
20


