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Abstract

Two axiomatizations of the nonassociative and commutative Lambek syntactic cal-
culus are given and their equivalence is proved. The first axiomatization employs
Permutation as the only structural rule, the second one, with no Permutation rule,
employs only unidirectional types. It is also shown that in the case of the Aj-
dukiewicz calculus an analogous equivalence is valid only in the case of a restricted
set of formulas. Unidirectional axiomatizations are employed in order to establish
the generative power of categorial grammars based on the nonassociative and com-
mutative Lambek calculus with product. Those grammars produce CF-languages
of finite degree generated by CF-grammars closed with respect to permutation.
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1 Introduction

Investigations concerning generative power of categorial grammars (CG’s), which date
from the paper of BAR-HILLEL et al.[2], are currently stimulated by two factors. The first
of them is the problem of the generative power of CG’s based on the Lambek calculus [18].
This question posed in [2] resulted in a series of papers characterizing classes of languages
generated by CG’s based on subsystems of the Lambek calculus (see [8,9,11,14,15,25])
and was recently solved by PENTUS [22]. On the other hand, in order to describe in a
better way some phenomena of natural languages the shape of type reduction systems in
CG’s was modified so as to obtain more flexible versions of the formalism; the reader will
find a detailed description of this and other relevant problems in [6]. Modifications in-
cluded, among others, a relaxation of the structure of antecedents of reduction formulas.
Those changes used to be introduced via endowing a type reduction system with struc-
tural rules of permutation, contraction and monotonicity performed as it is the case in
GENTZEN systems LJ and LK [12]. The introduction of structural rules implies changes
in the formal status of antecedents of formulas: if in the case of basic Lambek calculus
(associative and noncommutative) antecedents can be viewed as finite sequences of types
then for a commutative calculus the proper model for an antecedent is that of a multiset,



if we work with a nonassociative calculus, then antecedents are bracketed strings of types
(trees) and if a calculus is both commutative and nonassociative then antecedents can
be considered as mobiles, see [20]. Generative power of categorial grammars enriched
with structural rules of permutation and of permutation and contraction was studied by
BUszZKOWSKI in [7] and by VAN BENTHEM in [3] and [5]. Let us observe, however, that
affixing permutation to the Lambek calculus compels one to accept phrases of a language
without paying attention to the order of words. Although there is some linguistic evi-
dence in favour of such a general relaxation, see for example [1], but still this global effect
caused by permutation seems to be too strong from the point of view of a linguist. As a
way out of this situation one can consider nonassociative calculi [19]: by the presence of
permutation commutativity is restricted only to the set of direct constituents of a phrase
structure. A local, restricted introduction of structural rules can also be performed by
means of structural modalities, see [21]. This method is similar to the procedure of re-
trieving structural rules in Linear Logic, cf. [24]. Commutative syntactic calculi used to
be introduced in different ways: as unidirectional systems [4,7], as bidirectional systems
augmented with a structural rule of Permutation [21] and also as unidirectional systems
with Permutation [6].

In this paper we prove that the bidirectional nonassociative Lambek calculus when
enriched with Permutation as the only structural rule (we denote this system NLP) is
equivalent to a unidirectional system (without Permutation) NCL which can be obtained
from the previous one by unification of the left and right divisions. An analogous result
however can not be obtained for the Ajdukiewicz calculus: the equivalence of bidirec-
tional Ajdukiewicz calculus with permutation and unidirectional calculus holds only for
a restricted class of formulas with an antecedent consisting of types of the order less
than 2 and with a succedent being a primitive type. The problems of equivalence are
examined in sections 2 and 3 of the paper. The axiomatizations GNLP and NLP of the
nonassociative and commutative Lambek calculus as well as the employed in Lemma 1
axiomatization of an auxiliary system L strongly refer to other formalisms for different
versions of Lambek calculi, see [9,18,19,26]. In particular, NLP imitates the formalism of
the (product-free and bidirectional) nonassociative Lambek calculus as presented in [9],
later transformed in [14] to the version with product. Sections 4 and 5 are devoted to
the definite solution of the problem of generative power of categorial grammars based on
NCL. In [17] we showed that the class of languages generated by those grammars is in-
cluded in the class of CF-languages. Here we prove that this class of languages coincides
with the class of CF-languages of finite degree generated by CF-grammars closed with
respect to permutation (CF-languages). To obtain this result, in Section 4 we slightly
refine the main theorem proved in [17]. The proof of the eqality of the considered classes
of languages is given in Section 5.

2 Bidirectional and unidirectional commutative
Lambek calculi
Given a countable but infinite set Pr of primitive types, and three binary operations /, \

and -, called right division, left division and product, respectively, we denote by TP the
smallest set which contains Pr and is closed with respect to /, \ and - . The symbol Tp



stands for the product-free part of TP. Types of the form x/y or y\z (resp. x -y) will
be referred to as functorial (resp. product) types. The number of occurrences of division
and product signs in a given type x is called the complexity of @ and denoted by c(x).
For x being a product-free type, the symbol o(x) stands for the order of x, which is a
non-negative integer defined inductively as follows: (i) o(x) = 0, for « € Pr, (ii) o(x/y) =
o(y\x) = max{o(x), o(y)+ 1}. The set sub(x) of subtypes of a type x is the smallest one
such that: (i) « € sub(x), (ii) ify = z/vory =v\zory =v-z, and y € sub(a) then v €
sub(z) and z € sub(z). If A C TP then we put sub(A) = U,c4sub(z). The set BSTP
of bracketed strings of types is defined inductively in the following way: (i) TP C BSTP,
(ii) if X € BSTP and Y € BSTP then (XY) € BSTP. The symbol BSTp stands for the
product-free part of BSTP.

By NA we will denote the nonassociative Ajdukiewicz calculus (with product), i.e. a
formal system whose formulas are of the shape X — x, where X € BSTP and x € TP,
which employs one axiom scheme:

(A0) = — x, where 2 € TP,
and the following three rules of inference:

X aly Yy
(XY) -z (YX)—a

(A)

(XY)—=a-y

By adding to NA the (structural) rule of permutation:

(XY)— =

(Perm) S =

, where X|Y € BSTP, z € TP,

we obtain the nonassociative Ajdukiewicz calculus (with product) with permutation NAP.
In the presence of (Perm) in the system the derivability of a formula in NAP does not
depend on the order of the constituents of any bracketed string of types occurring on the
left-hand side of this formula. Calculi of syntactic types which neglect the order of types
or constituents in their formulas were also introduced as unidirectional systems, cf. [4,6,
7,17]. Below we present a unidirectional version NCA of the nonassociative Ajdukiewicz
calculus, to be called the nonassociative and commutative Ajdukiewicz calculus (with
product). NCA employs types with product - and only one, right division /, and is
formalized by (A0), (A), (PR), and by two additional rules of inference:

(AY) X—oaly Yoy (PR’) X—>z2 Yoy
(YX)—a (YX)—z-y

In this form NCA was introduced in [17]. Product-free versions of the calculi NA, NAP
and NCA which employ types from Tp instead of TP, and make no use of axioms and
rules involving types with product will be denoted NA®, NAP®, and NCA®, respectively.
Calculi NAP and NCA will serve as a basis of two axiomatizations of the nonassocia-
tive and commutative Lambek calculus. But before we describe them we present this
calculus in another, yet traditional form of a Gentzen sequential system GNLP in which
Permutation is the only structural rule.



Let X[z] (resp. X[Y]) denote a bracketed string of types X in which, on a certain
place, a type = (resp. a bracketed string of types Y') occurrs. By X[Y : 7] we denote
a bracketed string of types which arises from X[Y] by replacing a placed occurrence of
Y by a bracketed string Z (in particular X, Y and Z can be types). The system GNLP
employs the axiom scheme (A0) and the listed below rules of inference:

(RI,,) % (R1%) (;()27;\;

) ey W) S e o

" S tas
(Perm) EXQ —= . where X, € BSTP, = € TP.

The above axiomatization differs from the Gentzen—style axiomatization of the nonasso-
ciative Lambek calculus NL as, for example presented in [16] only in the presence of the
rule (Perm). Using the same procedure as in [18] or [19] one can prove that GNLP is
closed with respect to the Cut rule of the form

X—a Yoy
Y[r:X]—y

(Cut)

It is easily observed that formulas x/y — y\z and y\z — x/y are both derivable in
GNLP and both derivations essentially make use of (Perm).

By Ax we denote a system which consists of formulas of the shape x — y, where
x,y € TP, and which admits the following axiom schemata and rules of inference for all
x,y,z € TP:

(A0) =z —ux
(a0)  a/y —y\x (a0")  y\z — z/y
(al)  (x/y)-y—a (al’) y-(zfy) =«
(al) (y\z)-y —x (al’) y-(y\z) —
(a2) @ —(=-y)/y (a2') = = y\(y-z)
(a3) @ —y/(z\y) (a3") @ — (y/2)\y
(ad) z-y—y-x
. z =y R !
(1) r/z —y/z (x1) 2y — z/x
o) Loy Tty
ey R
(r2) =y (r2") =y
Tz Y-z cer—zey



To simplify the notation we write # — y € Ax instead of b4z @ — y. Let us define
the nonassociative Lambek calculus (with product) with permutation NLP as the system
which arises from NAP by augmenting it with the following compound rule:

— X — =z
© 2
— Y

, ifr—yecAxand x #y.

In what follows we are going to prove the equivalence of GNLP and NLP. However,
instead of doing it directly we will show that these systems are equivalent to a certain
auxiliary system L. This system has (Cut) as the only inference rule and employs (A0),

formulas
(a1) (2/yy) — = (arr) (yafy) —
(@)  (W\ry) — = (@) (yy\e) — =

(AP) (vy) = -y

and all theses of Ax as (schemes of ) axioms.

For systems which have (Cut) as the unique rule of inference one can introduce the
notion of reduction. We present the definition for the calculus L. and will refer to it in
case of other calculi. For X|Y € BSTP we say that X reduces to Y in L if there exists
a sequence X = Xy, Xq,..., X, =Y, X; € BSTP, : = 0,1,...,n, called a reduction,
such that for every £k =1,2,... ,n there are Z,T € BSTP and ¢t € TP such that X;_; =
Z[T], Xe = Z[T : t] and T'— t is a non-(A0) axiom of L.

It is possible to express the notion of derivability in L in terms of reduction. We have
the following

Fact 1 For any formula X — x there holds the following equivalence:
Fr, X — a if and only if X reduces to x in L.

The proof of this fact is similar to that given in the case of associative Lambek calculi,
see [26]. Using induction on the length of reduction one can also prove

Fact 2 If X reduces to (YZ) in L then there are X1, Xy € BSTP such that X = (X1 X3)
and X, reduces to Y and Xy reduces to Z in L.

Lemma 1 GNLP and NLP are equivalent, i.e. for any formula X — x there holds the
following equivalence:
|_GNLP X -z Zf and 07”Lly Zf |_NLP X — .

Proof. To prove the equivalence of GNLP and NLP it is sufficient to show that GNLP
is equivalent to L. and L is equivalent to NLP.

To prove the first equivalence we proceed as in [27], adjusting slightly the presented
method to the calculus with product and with permutation.

In order to prove the equivalence of L and NLP we first show that NLP is a subsystem
of L. One can easily check that L is closed with respect to (A), (A) and (PR). To prove
that L is closed with respect to (C) it suffices to observe that every formula from Ax
is an axiom in L, thus it is derivable in L. Consequently, if X — z is derivable in L
and z — y € Ax, then X — y is derivable in L from the above formulas by a single



application of (Cut). Thus L is closed with respect to the rule (C). It remains to prove
that L is closed with respect to (Perm). Let Fp, (XY) — z. By Fact 1, there exists a
reduction (XVY),...,zin L. Let ¢, 1 < ¢ < n, be the smallest number such that X; €
TP. Thus X; must be obtained from X,_; by application of one of the axioms (a1), (a1/),
(a1), (arr) or (AP). Moreover, the formula X;_; — X itself is one of those axioms. If it
is an instance of (AP), then we have a reduction (XVY),...,(zy),z-y,...,z. By Fact
2, X reduces to  in L. and Y reduces to y in L. We can thus write the reduction
YX),...,(ya),(y(x-y)/y),(x-y),...,z which, again by Fact 1, gives us derivability
of (YX) — zin L. If X;_; — X, is an instance of (ay) (the argument for (ay/), (ay)
and (ays) is similar) then the reduction (XY),...,(z/yy),z,...,z can be transformed
to (YX),....(yx/y),x,...,z (we use (ar/) instead of (a;) when transforming (¢ — 1)th
element of the latter reduction to ¢th).

Now we show that L is a subsystem of NLP. First, let us observe that all formulas from
Ax are derivable in NLP, we must only put X = z in the rule (C). Axioms (a;), (a1/),
(a1) and (ay) can be easily obtained as conclusions of the rules (A), (A) and (Perm).
The axiom (AP) is, in turn, a trivial consequence of (PR). Thus it suffices to show that
NLP is closed with respect to (Cut), but this can be proved by induction on the length
of derivation of Y[z] — y in NLP. O

The form of NLP ilustrates the fact that the Lambek calculus can be considered as
such an extension of Ajdukiewicz calculus which, in addition to functor-argument ana-
lysis of bracketed strings of types provided by the latter system, allows one to transform
also individual types. The derivability of formulas x/y — y\z and y\z — 2 /y in GNLP
(and in NLP) emphasizes a well known property of commutative Lambek calculi that
they do not differentiate between right and left division signs. Thus one can ask whether
it is possible to present the discussed calculus in the form of a unidirectional system. The
answer is positive and we will perform the operation of unification of left and right divi-
sions in NLP calling the resulting system the nonassociative and commutative Lambek
calculus NCL.

For every type @ € TP (resp. string X € BSTP) we define a type ||z| (resp. a
string || X||) called the unidirectional version of x (resp. of X) inductively as follows:
Q) ol = p, it p € Pr, i) lle - yll = el - Iyl Nefol = lhell = el /Mol Gii
XY = (IX|[IIY]])- By the unidirectional version of a formula X — x, to be denoted
|X — z||, we mean the formula | X|| — ||z||.

Let Ax denote the unidirectional version of Ax, i.e. the system whose axioms are
unidirectional versions of axioms of Ax and whose rules of inference are rules of Ax
restricted to uniditectional versions of premises and conclusions. Thus types in formulas
of Ax contain only product and right division and the system admits the following axioms
and inference rules:



(A0) =z —ux

(A1) (2/y) y—= (A1) y-(z/y) ==

(A2) @ —(z-y)/y (A2) @ — (y-z)/y

(A3) = —y/(y/z) (Ad) z-y—y- -z
T oy ' T =y

(R1) xv/z—vy/z (RL) 2]y — z/x

(R2) ——4— (R2) ——4—
Tz =Yz z-x —2z-Y

Although some axioms and rules in Ax have the same form as in Ax, we give them
different names to have the possibility of referring to each of the system without any
ambiguity. We adopt a similar convention as for Ax and write + — y € Ax instead of
Fax © — 9.

We define the nonassociative and commutative Lambek calculus NCL as a system
which arises from NCA by adding to this calculus the following compound rule:

— Y

ite -y € Axand z # y.

Y

We adopt a similar convention as in the case of Ajdukiewicz calculi and use symbols
NLP® and NCL? to denote product-free parts of NLP and NCL. A formula X — y is
called C-derivable in NLP (resp. C-derivable in NCL) if and only if X — y is derivable
in NLP (resp. in NCL) and every derivation of X — y employs only (possibly 0 times)
the rule (C) (resp. (C)).

Lemma 2 If Fnep X — y (resp. Fnen X — y) then X — gy s C-derivable in NLP
(resp. C-derivable in NCL) if and only if X = x € TP.

Proof. We give the argument for NLP but it can be applied for NCL as well. There are
only the rules (A), (A) and (PR) which can increase the number of types on the left-hand
side of a formula. However, these rules can not be used if a formula is C-derivable, and
instances of the rule (C) do not affect left-hand sides of formulas. Thus starting from an
axiom, by a number of applications of (C) we get a formula with its left-hand side being

a single type. a

A sequence of types zy,...,7, is called a C-reduction in NLP (resp. a C-reduction
in NCL) if and only if n = 1 or if for every number 1 < k < n we have vy — 441 € Ax
(resp. Ax) and xp # Tpi1.

Lemma 3 A formula X — y is C-derivable in NLP if and only if there exists a C-
reduction x1,...,x, in NLP such that X = a1 and y = x,.

Proof. According to Lemma 2, X must be a type. To prove the lemma we use induction,

for (=) on the number of instances of (C)-rule in a derivation, and for (<) on the number
of types in C-reduction. O



Corollary 1 If formulas + — y and y — z are C-derivable in NLP, then the formula
x — z is C-derivable in NLP as well.

Lemma 4 If ||z|| = |ly|| and x,y € TP, then the formulas + — y and y — x are

C-derivable.

Proof. Induction on c(x). If « € Pr then @ = |jz|]| = |ly]| = y, hence * — y and
y — x are instances of (A0). Let # = x1/x3. The type y must be of one of the forms
y1/yz2 or y2\y1, and ||z1][ = [[y1|| and |lzs|| = ||ly2|[. Consider y = yi/y>. By inductive
assumption 1 — y; and y; — x5 as well as y; — 1 and x93 — y, are C-derivable.
By Lemma 3, there exist the following reductions: zy,...,y; as well as y,,..., x5 and
Y1,...,21 as well as x9,...,y3. But then, the sequences x1/xq,...,y1/22 as well as
y1/x2, ... y1/y2 and yq1/y2, ..., x1/y2 as well as x1/ya,...,21/x2, and consequently, by
Corollary 1, sequences a1/xa, ..., y1/22, ..., y1/y2 and y1 /y2, ..., 21 /Y2, ..., 21/ 25 are also

C-reductions. Hence, by Lemma 3 again, formulas z,/zy — y1/y2 and 3, /ys — 21 /24 are
C-derivable. If y = y;\y1, then to the obtained as above C-reductions z1/xq,...,y1/ys
and y1/y2,...,x1/x2 one can add an instance of the axiom (a0) at the end of the first
sequence and an instance of the axiom (a0’) at the beginning of the second sequence
in order to obtain C-reductions z1/xa,...,%2\y1 and y2\y1,..., 71 /2. Their existence,
by Lemma 3, gives us C-derivability of formulas z1/xy — y2\y1 and yo\y1 — 21 /29, If
x = xp\x1 then the proof is essentially the same as for @ = 1 /z,. Consider x = xq - 5.

We must have y = y1 - y2, and ||z1]] = ||y1]| and [|z2]] = ||y2||. By inductive assumption
formulas 7 — w1, and 23 — vy, and y3 — 21, and y, — x5 are C-derivable. We
employ Lemma 3 to obtain C-reductions z,...,y; as well as x,,...,y; and yq,..., 2,
as well as yo,...,x9. It is easy to observe that xy - xo,...,y1 -2 and y1 - x2,...,y1 - Y2,
and y; - yg,..., %1 - yo and xq - Yy, ... 2 - 5 are also C-reductions. By Corollary 1,
Ty Ty ... Y1 Tose.ayr -y and Yy - Yo, ..., Ty - Yo, ..., Ty - Ty are C-reductions as well,
thus 21 - ©9 — y1 -y and y; - y3 — 21 - x5 are C-derivable. O

Lemma 5 (i) If x — y € Ax, then ||z| — |ly|| € Ax.
(i) For all z,y € TP, if ||z|| — ||y|| € Ax, then * — y is C-derivable in NLP.

Proof. (i) Easy induction on the length of derivation in Ax.

(ii) Throughout the proof, in order to make it shorter, we will employ Lemma 3 and
Corollary 1 without stating it explicitly. We use induction on the length of derivation in
Ax. If ||z|| — |ly|| = (AO) then the conclusion follows from Lemma 4. Let ||| — ||y|| =
(Al). Thus & = (21/x2) - ¥3 or @ = (x2\x1) - ¥3 and in both cases ||zz|| = ||=s]| and
l|lz1]] = |ly]]- By Lemma 4, formulas x5 — z; and #; — y are C-derivable in NLP.
We can use C-reductions z3,...,7; and xy,- -,y to produce a C-reduction (z;/z3) -
T3,...,(21/x2) T2, 71,. ..,y whose existence gives us C-derivability of (z;/x3)-23 — y. In
order to obtain C-derivability of (z5\z1)-z3 — y it suffices to precede the above reduction
by the type (z2\z1)-2s. If[2]| — |ly|| = (A1") then # = z5-(x1/x2) or ¥ = 23-(w2\71), and
|z2|| = ||xs|| and ||@1]] = ||y]|- To obtain C-reductions for the formulas x5 - (v1/22) — ¥y
and a3 - (x2\x1) — y one can precede the two C-reductions constructed for the axiom
(A1) by, respectively, types w5 - (v1/w2) and ws - (v2\w1). Let [[z| — |ly|| = (A2).
Thus y = (1 - 2)/s or y = 9\(vs  92) and in both cases ] = o] and ]| =
||z||. We employ C-reductions z,...,y; and ys,...,y2 in construction of a C-reduction



Ty Y15 (Y1 Y2) Y2y 5 (Y1 - y2)/ys which yields C-derivability of v — (y1 - y2)/ys. The
constructed C-reduction, with the type ys\(y1 - y2) added at the very end provides C-
derivability of x — y3\(y1 - y2). If ||z|| — [ly]| = (A2") then the C-reductions for x — y
can be obtained from those constructed for (A2) in an essentially the same way as those
for (A1) were obtained from C-reductions for (A1). If ||z|| — |ly|| = (A3) then we have
four possibilities for the type y: it can be of the form y1/(y2/ys), (y2/y3)\y1, y1/(y3\y2)
or (ys\y2)\y1 where ||ys|| = ||z|| and ||y1|| = ||y2]]. We provide the argument for the
last case, all other cases are similar. By Lemma 4, formulas + — y3 and y; — y; are
C-derivable. Thus given C-reductions z,...,ys and ¥,,...,y; we can produce a new
C-reduction ..., y3, (y2/y3)\y2, - -, (v2/y3)\y1, (y3\y2)\y1 which is sufficient to prove
C-derivability of @ — y. If ||| — |ly|| = (A4) then @ = a1 - 22, ¥y = y1 - Y2, and
lz1]] = |lya|l and |[y1]] = ||z2||- As 22 — ¥ and z; — y, are C-derivable we can
write a C-reduction xy - 29,29 - T1,...,Y1 - T1,...,Y; - y2 which proves C-derivability of
Ty -T2 — Y1 Y2

Now we take into consideration the cases when |[z|| — |ly|| arises by an applica-
tion of derivation rules of Ax. If ||x|| — |ly|| arises by (R1) then x and y must be

of one of the following forms: = = x1/z1, y = y1/22 or ©* = z\x1, y = y1/22 or
T = x1/z1, Yy = z\y2 or ¥ = z\x1, ¥ = Z2\U1 Ehere lz1|l — lln]] € Ax and
|z1]| = |lz2||- By our inductive assumption xy — y; is C-derivable in NLP. If « = a1/
and y = y; /2, we employ C-reductions z1,...,y; and zy,...,z, in order to construct a

C-reduction z1/z1,...,y1/21,...,y1/72 which gives us C-derivability of x1/2 — y1/2..
For = z;\@1,y = y1/2, the appropriate C-reduction arises from that constructed above
by preceding it by the type zi\x;. Other cases can be treated in a similar manner.
Consequently, the formula # — y is C-derivable. If ||z|| — ||y|| arises by (R1’), then
the proof is similar to that presented above. Let ||z|| — ||y|| be a conclusion of (R2).

Thus we must have x = =1 - 21, ¥y = 11 22, |z1]| = ||22]| and Hl’_lH — ||y1]| € Ax. As
by the inductive assumption x; — y; is C-derivable, we have a C-reduction xy,..., ;.
There exists also a C-reduction zy,...,z29. This is sufficient to construct a C-reduction

Ty 21y Y1t 21y, Y1 - 22. Consequently, the formula z — y is C-derivable in NLP. A
similar argument is valid for the rule (R2'). O

The equivalence of NLP and NCL is established by the following

Theorem 1 If the formula Y — y is a unidirectional version of a formula X — x, then
|_NLP X — =z Zf and 07”Lly Zf |_NCL Y — .

Proof. The ‘if’—part of the equivalence can be proved by induction on the length of
derivation of X — x in NLP. For axioms there is nothing to prove. For formulas X — «
arising by (A), (A) or (PR) one obtains the conclusion immediately (one must use (A),
(A") or (PR) in NCL). If X — z arises by (C), then there must be formulas X — z and
z — x such that Fypp X — 2z and 2 — = € Ax. By inductive assumption || X — ||z||
is derivable in NCL, and by Lemma 5(i), ||z]| — ||z|| € Ax. Consequently, || X — ||=||
is derivable in NCL from ||X|| — ||z|| and ||z|| — ||z]| via (C)-rule. The only case which
needs some comment is that where X — 2 is the result of an application of (Perm). Then
X = (X1X3) and, by inductive assumption (|| Xz || X1]|) — ||=|| is derivable in NCL. We
have to show that it is the case for the formula (|| X1|| | X2]|) — ||z]| as well. In a derivation
of (J|IXz|[|X1|l) — ||z|| one of the rules (A), (A"), (PR) or (PR’) must be used at last

once. Let us consider the last occurrence of a rule from this group in the derivation. This

9



instance of the rule introduces the bracketed string (|| Xz||||X1]|) into the antecedens of
the formula. As a result, in this step we get a formula (|| X3]| || X1]]) — 2z which is then
transformed to (|| Xz|| || X1]|) — ||=|| via a number (possibly zero) of applications of rule
(C). Now, if the last afore mentioned rule is (A) (resp. (A’), (PR), (PR’)) then in order
to obtain a derivation of (|| X1 ||X2||) — ||z|| we replace it by an instance of (A’) (resp.
(A), (PR'), (PR)) and execute the same transformation by means of (C)-rule as in the
transition from (|| X3l || X1]|) — z to (|| Xz|[ || X1]]) — .

Now we prove the ‘only if—part of the thesis. Assume that Y — y is derivable in NCL
and let X — 2 be any formula such that Y — y is its unidirectional version. If Y — y =
(A0) then Y =y and || X]|| = y = ||z||. Thus, by Lemma 4, X — =z is C-derivable in
NLP, hence it is derivable in NLP. Let Y — y arises by (A). We have Y = (Y1Y2) and for
some y; the formulas Y7 — y/y; and Y; — y; are derivable in NCL. Any X such that
| X|| =Y must be of the form X = (X;X3) such that || X;|| = Y1 and || X3|| = V3. Let us
take a type « such that ||z|| = y. As |j11]| = y1 we can apply the inductive assumption
to formulas Y7 — ||z]|/]|y1]| and Y3 — ||y1||. Thus X7 — 2/y1 and Y3 — 31 are derivable
in NLP, and so is the case for (X;X3) — = as we can apply (A) in NLP to the latter
formulas. If Y — y arises by (A’), then the argument is similar to that presented above:
We apply the inductive assumption to formulas Y3 — ||z||/||y1]| and Y2 — ||y1|| in order
to obtain formulas X7 — y;\2 and X; — y; derivable in NLP, and then we employ the
rule (A) to produce the formula (X, X;) — z. Let Y — y be a conclusion of the rule (PR).
Thus Y = (Y1Y2), y = y1 - y2, and if Y — y is a unidirectional version of some X — «,
the following equalities hold: X = (X1X3), v = a1 - o, | Xi|| = Y, ||@i]| = viy ¢ = 1,2
As, according to our inductive assumption, from the derivability of YV; — y;, ¢ = 1,2,
in NCL follows the derivability of X; — x;, ¢« = 1,2, in NLP, it suffices to apply (PR)
to the latter formulas to obtain the derivation of X — « in NLP. If Y — y arises by
(PR’) then we proceed as in the previous case and get an in NLP derivable formula
(X1X32) — 21 - 2. Now it suffices to apply the rule (Perm). In the last case which
we must take into consideration the formula Y — y arises in NCL by (C)-rule. Thus
there must be a type z such that z — y € Ax and Y — y is derivable in NCL. By the
inductive assumption, for any X such that || X]|| =Y and any u such that ||u|| = z the
formula X — v is derivable in NLP. Let & be any type such that ||z|| = y. Consequently
|lul| = ||z|| € Ax and by Lemma 5(ii), u — z is C-derivable in NLP. By Lemma 3, there
exists a C-reduction u, ...,z in NLP. Thus by the definition of C-reduction, the formula
X — x can be obtained from X — u by a number of applications of the C-rule. Hence

X — z is derivable in NLP. O

3 The nonassociative and commutative A jdukiewicz
calculus

In general, Ajdukiewicz calculi NAP and NCA do not have a property which was proved
for NLP and NCL in Theorem 1. As counterexamples one can take for instance a pair
of formulas X — =z = u/v — v\u and Y — y = u/v — u/v or another pair X — x =
(z/(u/v))(v\u) = z and Y — y = (¢/(u/v))(u/v) — z where u,v,z € Pr. Obviously,
Y — y is a unidirectional version of X — z and Fnca Y — y whereas it is not the
case that Fyap X — . However, a result similar to that presented in Theorem 1 can be
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proved for product-free versions of the calculi NAP and NCA in the case of a restricted
class of formulas.

Let NAP? (resp. NCA?) denote a system formalized by (A0), (a1), (a1/), (a1), (a77)
(resp. (A0), (ar) (ay)) and (Cut) which employs types and bracketed strings of types
from Tp and BSTp. By induction on the length of derivation one proves

Lemma 6 Systems NAP® and NAP? (resp. NCA® and NCA?) are equivalent, i.e. for
every formula X — x, where X € BSTp, = € Tp, there holds the equivalence: Fyppo
X — x if and only if Fyape X — & (resp. Fycae X — @ if and only if Fycae X — ).

We introduce the notion of reduction in NAP? and NCA{ in a similar way as we did
it for the calculus L. Moreover, similar as for L a characterization of derivability in NAP;
and NCA? in terms of reduction can be given. We have

Fact 3 A formula X — x is derivable in NAP? (resp. NCA?) if and only if X reduces
to x in NAP? (resp. NCA?)

The proof of this fact is similar to that presented in [26] or [14].

In Section 2 the definition of order of a type was given. It is easily observed that the
order of a compound type does not depend whether we have left or right divisions in this
type. Consequently, we have o(x)=o(]|z||).

Lemma 7 [fx € Tp and o(x) < 1, then o(y) < 1 for every subtype y of x.

Proof. We follow the inductive definition of the set of subtypes of . For « considered
as a subtype of x there is nothing to show. Assume that for some subtype y of = we
have o(y) < 1, and let y = z/v (if y = v\z, the argument is similar). Thus o(y) =
max{o(z),0(v)+ 1} < 1. Consequently we have o(v) =0 and o(z) < 1. O

Corollary 2 FEvery non-primitive, product-free type of order < 1 is of the form y/p or
p\y where p € Pr and o(y) < 1.

Lemma 8 (i) If X € BSTp, | X|| =Y andY =Y|[Z] then there exists U € BSTp such
that X = X[U] and ||U]| = Z.
(i) If X,Y,7 € BSTp, then | XI - ]|l = |X|IV] |21

Proof. We use induction on construction of a string X which contains a placed occur-
rence of Y. O

Theorem 2 If the formula Y — y is a unidirectional version of a formula X — p such
that p € Pr and all types in X are product-free and of order <1 then Fyapo X — p if
and only if Fncao Y — .

Proof. The proof of the ‘if’—part of the conclusion is in fact an inessential modification
of the first part of the proof of Theorem 1. In order to prove the ‘only if’—part of the
conclusion let us first notice that by Fact 3, instead of derivability in NAP® and NCA®
one can consider derivability in NAP? and NCA?. Moreover, as Y — y = || X|| — ||p||
and p € Pr, thus y = p = ||p||. As a result, having established the value of the succedents
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of both formulas, instead of discussing unidirectional versions of formulas we will only
consider unidirectional versions of their antecedents. We employ induction on the length
of a reduction of Y to p in NCA2. If Y — p = (A0) then Y = p. Consequently,
X =p and X — p, as an instance of (A0), is derivable in NAPZ. If the length of a
reduction of Y to p is 1, then Y = (p/qq) or Y = (¢p/q). By Corollary 2, we have ¢ €
Pr. Thus any X € BSTp such that || X|| = Y must be of one of the following forms:
(p/aq), (4\pq), (¢gp/q) or (¢¢\p), where p,q € Pr. Obviously, X — p as axioms are
derivable in NAP?. Let Y — p be derivable in NCA? and let Y =Y;,....Y, =p, n > 2
be a reduction of ¥ to p. According to the definition of reduction, Y; = Yj[Z], where
Z = (x/qq) or Z = (qx/q), and Yy = Yi[Z : z]. By Corollary 2, ¢ € Pr, and by Lemma
7,0(x) < 1. Let X € BSTp be such that ||X|| = ¥;. By Lemma 8(i), X = X[U] and
|U|| = Z. Thus U is of the form (u/qq), or (¢g\uu), or (qu/q), or (g¢\u), for some
u € Tp such that ||u|| = x. Let us consider X[U : u]. According to Lemma 8(ii) we have
XU = ]|l = (IXIIU] : ||lu]l]] = Ya[Z @ ] = Y. Consequently, as Y3 — p is derivable
in NCAY, by the inductive assumption we get derivability of X[U : u] — p. Thus, there
exists a reduction X[U : ul,...,p in NAPS. But U — u is an instance of a non-(A0)
axiom in NAP?, hence the sequence X[U], X[U : u],...,p is a reduction in NAP? as
well. By Fact 3, the formula X[U] — p, i.e. the formula X — p is derivable in NAP?. O

4 The inclusion of the class of NCL-languages in
the class of CF-languages

In this section we slightly refine the result from [17] about the relation between the
class of languages generated by categorial grammars based on the calculus NCL and the
class of CF-languages. The argument presented in both remaining parts of the paper
essentially makes use of concepts and constructions included in former papers concerning
the subject. However, to make this work self-contained, we briefly summarize in this
section all relevant facts and provide the reader with necessary references.

Let V be a finite vocabulary. The set BS(V') of phrase structures over V is defined as
the smallest set such that: (i) V. C BS(V), (ii)if A1,..., A, € BS(V), then (A;... A,) €
BS(V). We will denote by |A| the sequence arising from a phrase structure A by deleting
all brackets. Any subset L of BS(V) is called a phrase language over V.

The set BS(V') provided with operations f,(A1,..., A4,) = (A1... A,), n=2,3,4,...
can be considered as an absolutely free algebra over the set of generators V. The largest
congruence with respect to inclusion on a phrase language L, denoted by INT, is called
the intersubstitutability relation for L, see [10,15]. We refer to the index of the relation
INT}, as to the index of L and denote this number by ind(L).

Given a phrase structure A = (A;... A,) we call Aq,... A, as to the direct substruc-
tures of A. The set sub(A) of substructures of A is defined in a natural way: (i) A €
sub(A), (ii) if B € sub(A) and C is a direct substructure of A, then C' € sub(A). The
size of A € BS(V), denoted by s(A), is the maximum number of direct substructures in
any element of sub(A). For L C BS(V) we put s(L) = sup{s(A): A € L} and call s(L)
the size of L.

By a path in A € BS(V) we mean a sequence Ag, Ay,..., A, of substructures of A
such that for all 1 < ¢ < n, A; is a direct substructure of A;,_;. The external degree

12



of A € BS(V), denoted by deg®(A), is defined to be the minimal length of paths in A
whose initial term is A itself and whose final term is an element from V. For A € BS(V)
we put

deg(A) = max{deg®(B) : B € sub(A)}
and for L C BS(V') let
deg(L) = sup{deg(A) : A € L}
and we call those numbers the degree of A and the degree of L, respectively.

Any calculus of syntactic types described in the paper can play the role of a type
reduction system in a categorial grammar. A categorial grammar over a (nonassociative)
type reduction system TRS is an ordered quadruple G = (Vg, Ig, s¢, TRS), where Vi
is an nonempty wvocabulary of G, sg 1s a distinguished primitive type understood as
a type of properly built sentences, I C Vi xTP is a finite relation called the initial
type assignment of GG and TRS is a certain nonassociative calculus of syntactic types.
In a natural way [ can inductively be extended to a relation Fz € BS(Vi)x BSTP:
(i) e C Fg, (ii) if (A1, X1) € Fo and (As, X3) € Fg, then ((A142),(X1X2)) € Fg.
By the string (resp. phrase) language L(G) (resp. BL(G)) generated by a categorial
grammar GG over TRS we mean the set

L(G)=A{]A|: (3X € BSTP)((A, X) € Fo & Frs X — sg)}
(resp. BL(G) ={ A: (3X € BSTP)((A, X) € F & Frrs X — s6)}).
As L(G) = {|]A| : A € BL(G)} thus, if two CG’s generate the same phrase languages,

then they also generate the same string languages; the converse implication however does
not hold. If there is no special reason we call string languages generated by CG’s simply
languages. A categorial grammar in which TRS = NA (resp. NCA, NAP, NCL, NLP)
will be called to as an NA- (resp. NCA-, NAP-, NCL-, NLP-)grammar. We adopt this
convention for product-free calculi as well. It is easily observed that all phrase languages
generated by NA-, NCA-, NAP-, NCL- or NLP-grammars are of size < 2.

The following theorem establishes the equivalence of NA- and NA®-grammars within
the scope of phrase languages, thus within the scope of string languages as well (see [15]
where this result is given in a stronger form):

Theorem 3 NA-grammars and NA°-grammars generate the same class of phrase lan-
guages.

By the order of a product-free categorial grammar GG we mean the number o(() such
that o(G) = sup{o(x) : (Fv € Vg)((v,x) € I5)}. The following theorem was proved in

[10] (in a stronger case of functorial languages):

Theorem 4 Any phrase language generated by an NA®-grammar is also generated by an
NA®-grammar G such that o(G') < 1.

Lemma 9 NAP®-grammars of the order <1 generate the same class of phrase languages
as NCA®-grammars of the order < 1.
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Proof. Let G = (Vg, I, $¢,NAP®) be an NAP®-grammar and let o(G) < 1. We define
an NCA®-grammar (; in the following way: Vi, = Vg, sq, = sg, and for ¢ € Vg,
x € TP, (a,z) € Ig if and only if (a,||z||) € Ig,. It is clear that o(G) = o(Gy) < 1.
By induction on the complexity of A one can easily prove that (A, X) € Fg if and
only if (A,||X||) € Fg,. Assume A € BL(G). Thus there exists X € BSTp such that
(A, X) € Fg and Fyapo X — sg. Consequently (A, || X]|) € Fg,. Formulas X — s¢g
and | X|| — sg, fulfil the assumptions of Theorem 2, hence Fycae || X|| — sq,. It
proves that A € BL(G4). To prove that BL(G4) € BL(G) assume A € BL(G4). There
exists then X € BSTp, consisting of unidirectional types, such that (A, X) € Fg, and
Fxcae X — s@,. Thus one can find Y € BSTp such that (A,Y) € Fi and ||V = X.
Employing Theorem 2 once more we conclude that Fyspe Y — s¢, thus A € BL(G).
Conversely, let L = L(G) for some NCA®-grammar G = (Vi I, s¢,NCA®) of order
< 1, and let G4 be an NAP®-grammar whose components are described as follows: Vi, =
Ve, 6, = sg, and for all a« € Vi, and x,y € Tp, (a,y) € Ig, if and only if (a,2) € Ig
and ||y|| = @. As there exists only a finite number of types y such that for a given type
x the equality ||y|| = « holds, I, is still a finite relation. Proceeding essentially in the
same way as previously we show that BL(G) = BL(GY). O

The next theorem gives characterization of phrase languages generated by NA®-
grammars (see [9]):

Theorem 5 A phrase language L such that s(L) < 2 is generated by an NA°-grammar
if and only if both ind(L) and deg(L) are finite.

We admit a standard definition of a (A-free) CF-grammar as an ordered quadruple
(V,U,s, P) in which symbols V, U, s, P denote, respectively, the set of terminals, the set
of nonterminals, the initial symbol and the set of production rules. We adopt the notation
a+— by...b, for elements of P. A production rule a — b;y...b, is called a permutation
variant of a v« ¢y ... c, if the sequence by ...b, is a permutation of the sequence ¢; ... ¢,.
In case of a binary rule, i.e. when n = 2 we use the term ‘transposition variant’ instead
of ‘permutation variant’. A set of production rules is closed with respect to permutations
if together with a certain rule it also contains all permutation variants of this rule. A
CF-grammar (resp. CF-language) is called closed with respect to permutations if is closed
with respect to permutations its set of production rules (resp. a CF-grammar generating
this language). The definitions of closed with respect to transposition for grammars and
for languages are similar.

Every CF-grammar induces in a natural way a bracketing on the elements of the
generated (string) language. Thus, together with a (string) language L(G) C V*, a CF-
grammar G generates also a phrase language BL(G) C BS(V) such that L(G) = {|A]| :
A € BL(G)}. The following theorem provides a necessary and sufficient condition for a
phrase language L to be generated by a CF-grammar (see [23]):

Theorem 6 A phrase language L is generated by a CF-grammar if and only if s(L)
and ind(L) are finite.

The following definition is essential for our further considerations: A CF-grammar ¢
is called a CF-grammarif (i) G is closed with respect to permutation and (ii) deg(BL(G))
is finite.
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Let # — y € Ax. We call  — y an E-formula (resp. an R-formula or an O-formula)
if e(x) < e(y) (resp. c(x) > ¢(y) or ¢(x) = ¢(y)). An instance of the (C)-rule employing
an E- (resp. R-, O-) formula is called an E- (resp. R-, O-) instance of this rule. We call a
derivation D of X — y in NCL seminormal if all E-instances of (C) follow R-instances
of (C) as well as the rules (A), (A"), (PR) and (PR’). We call a derivation D of X — y
in NCL normal if it is seminormal and additionally if all R-instances of (C) precede (A),
(A"), (PR) and (PR’) and no O-instance of (C) is placed between (A), (A’), (PR) and
(PR").

In [17] the following theorem was proved:

Theorem 7 [If Fnor, X — =z, then any derivation D of X — x can be transformed
effectively to a normal form.

The existence of normal form for derivations in NCL provided by Theorem 7 enables
us to construct for every NCL-grammar an NCA-grammar generating the same language.
The reader can find details of this construction in [9] or in [14]. Here we only formulate
this result in the form of the following lemma:

Lemma 10 For every NCL-grammar G one can construct an NCA-grammar Gy such

that L(G) = L(Gy).

Let G = (Vg, le, $¢,NCA) be an NCA-grammar. We define a CF-grammar G in the
following way: Vg = Vi, s¢ = s¢ and Ug = sub({z € TP: (Jv € Viz)((v,2) € I5}). The
set Py of production rules contains all rules of one of the shapes: (i)  +— v where @ €
TP, v € Vg, and (v,2) € Ig, or (i) x — afyy, e —my afy, x-y—axy, -y y,
for all x,y € Ug. For the grammar G defined as above we have:

Lemma 11 BL(G) = BL(G).

For details of the described construction and the proof of the lemma see the previously
mentioned references.

The following lemma is a straightforward consequence of Lemma 11 and the presented
construction:

Lemma 12 For every NCA-grammar G one can find a CF-grammar G such that G is
closed with respect to transpositions and BL(G) = BL(G).

Lemma 13 Let GG be an NCA-grammar. If G is a CF-grammar constructed as above,

then deg(BL(G)) < No.

Proof. By Lemma 11, BL(G) = BL(G), thus it is sufficient to show the finiteness of
deg(BL(#)). Let G = (Vg, I, s¢,NCA) and let NCA denote the calculus obtained from
NCA by dropping the rules (A") and (PR'), thus employing only (A) and (PR). We put

G = Vi, Ig, 36,NCA). Obviousely BL(G) C BL((). Observe that BL(G) arises from

BL(G) by adding all phrase structures obtained by a finite number of transpositions of

direct substructures in substructures of elements of BL(('). However, the degree of any

phrase structure B obtained by transpositions from a given structure A is the same as

the degree of the structure A itself. Thus deg(BL(()) = deg(BL(()) and we will show
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that deg(BL(()) is finite. For this we prove that for some phrase language Lo such that
BL(G) C Ly we have deg(Ly) < Rg. We put the calculus NA instead of NCA in the
definition of (G and denote the obtained grammar by Gy. Let Ly = BL(Gy). Every in
NCA derivable formula is also derivable in NA, thus we get the inclusion BL(@) C L.
By Theorem 3, the language Lo being generated by an NA-grammar is also generated
by an NA®-grammar. Consequently, as s(Lg) < 2 thus according to Theorem 5, the

number deg(Lg) is finite. Thus we have deg(BL(G)) = deg(BL(G)) = deg(BL(G)) <
deg(Lo) < Ng. O

Lemmas 2, 4 and 5 give

Theorem 8 For ecvery NCL-grammar G one finds an CF-grammar G such that L(G)
=1(G), i.e. the class of languages generated by NCL-grammars is included in the class
of languages generated by CF-grammars.

5 The equivalence of CF-grammars and NCL-gram-
mars.

Lemma 14 For every CF-grammar G one can find a CF-grammar G' such that BL(G)
= BL(G') and all the production rules in the grammar G' are of one of the following
forms: a — by...b,,n > 2, oraw— v, where a,by,..., b, are nonterminals and v is a
terminal in G'.

Proof. This lemma usually constitutes a part of the proot of the Chomsky normal
form theorem, see for example [13]. The equality BL(G) = BL(G’) is a straihgtforward
consequence of the fact that the employed in the proof procedures of getting rid of unit
productions (i.e. of productions of the form a — b) as well as of productions contain-
ing terminals on right-hand sides do not affect the phrase structure of elements of the
generated language. O

Lemma 15 Let G = (Vg,Ug, sg, Pg) be a CF-grammar. Then there exists a CF-grammar
G' in Chomsky normal form which is closed with respect to transposition such that 1L(G)
=1(G") and deg(BL(G")) < N,.

Proof. According to Lemma 14 we can assume that Py = P;UP;, where P; consists of
productions of the form a — by ...b,,n > 2 and P; consists of productions of the form
a v+ v, where a,by,...,b, € Ug and v € V5. We show that every set of production rules
which comprises all permutation variants of a given production rule can be replaced by a
set of binary rules which is closed with respect to transpositions. Let R = a + b;...0, €
Pg. If n =2, then there is nothing to show as, according to our assumptions, both a —
biby and a — byby are in Py and they constitute the desired set of binary rules. For n > 3
we replace R by a set F} consisting of the rules a +— bicy, ¢1 — bycy, ..., oo+ by 1b,
as we usually do in the construction of the Chomsky normal form for a CF-grammar
(¢1y...,cn_2 are new nonterminals). Then we add to Fp all transposition variants of its
elements and denote the set obtained in this way by Fgr. Observe that for generation
of a language over V; only those strings derivable from « are essential which consist of
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nonterminals b1,...,b, but not ¢,...,¢c,_2. However, due to the form of the rules in
Fp, every string derivable from a by means of those rules, which consists exclusively of
nonterminals by, ...,b, must contain all of them, additionally, together with a sequence
by...b,, some of its permutations can also be derived from a by means of productions
from Fr. Thus, Fr is a substitute for the rule R as well as for some of its permutation
variants. The described procedure can be performed for all permutation variants of R
(all new nonterminals must differ one from another in order to avoid an interaction of
rules). The set of all binary rules obtained in this way for R and all its permutation
variants will be denoted by Fpe,n(r). This set produces the same strings as the rule R
and its permutation variants and no other strings. Fp,,(r) is also closed with respect
to transposition. We define Py = Py, Py = U{FpeTm(R) : R e ?g}, Py = Pgr U Pyr
sgr = sg, Vg = Vg, and let Ug/ consist of all nonterminals from Ug as well as of all new
nonterminals introduced in the process of constructing the sets Fpe,n(r) for all R’s. We

put G' = (Vgr, Ugr, sgr, Pgr). The set Pgr produces precisely the same strings over Ug:
as Pg over Ug and consequently, as Pgr = Pg, we have L(G') = L(G).

Now we show that deg(BL(G’)) < Xq. The replacement of a rule @ +— by...b,, n >3
by a set of binary rules introduces a (binary) phrase structure on by...b, and con-
sequently makes the phrase structure of elements of BL(G’) finer than that we have
in BL(G). As a result, the length of paths leading from any substructure of an ele-
ment of BL(G’) to an atom (terminal) can increase. However, for any A € BL(G) and
A" € BL(G’') such that |A| = |A’| we have deg(A’) < deg(A)-(s(BL(G)) — 1) < deg(A)-
s(BL(G)). But s(BL(G)) is finite (it is the maximal length of strings on the right-hand
sides of production rules from Pg) and deg(BL(G)) is finite as well (G is a CF-grammar).
Therefore deg(BL(G)) = sup{deg(A’) : A’ € BL(G")} < sup{deg(A)-s(BL(G)) : A €
BL(G) &JA] = |4} = des(BL(G))5(BL(G)) < No 0

Lemma 16 If G is a CF-grammar in Chomsky normal form, then BL(G) = BL(G) for
some NCA®-grammar G of order < 1.

Proof. By Theorem 6, ind(BL(G)) < Ry and s(BL(G)) < Xy (the second inequality
is not important because in our case we have s(BL(G)) < 2). Since deg(BL(G)) <
Rg, by Theorem 5 we conclude that BL(G) = BL(Gy), for some NA®-grammar Gy =
(Vo Laos Sy, NA®).  According to Theorem 4, we can assume that o(Gy) < 1. Let
G = (Voo Loy, Sag . NAP?). As NAP?is stronger than NA°, we immediately have BL(G)
= BL(Gy) C BL(G4). But we also have BL(G1) € BL(G): this follows from the fact that
G is closed with respect to transposition, thus the language BL(G) (and BL(G))) is closed
with respect to transpositions of its substructures. As a result, adding the rule (Perm)
to NA® i.e. employing NAPas a type reduction system instead of NA®, does not lead
us beyond the language generated by G. Now, as o(G1) < 1, we apply Lemma 9 and
get an NCA®-grammar (i of the order < 1 such that BL(G) = BL(G1). Consequently
BL(G) = BL(G). O

Lemma 17 For every NCA®-grammar Gy of the order < 1 there exists an NCL-grammar
G4 such that BL(G) = BL(GY).

Proof. We adopt a standard argument presented for example in [9] or in [15] but
suited here to the case of commutative calculi. The axiomatization of NCA® we use
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consists of the axiom scheme (A0) and the rules (A) and (A’). Given an NCA®-grammar
G = (Va, lg, sq, NCA®) we put Gy = (Vi, I, s¢,NCL) and claim that BL(G) = BL(GY).
In order to obtain this equality it is sufficient to prove that Fycpe X — sg if and only if
Fnon X — s, unless all types in X are product-free and of order < 1. It is obvious that
every formula derivable in NCA® is also derivable in NCL because NCA® is a subsystem
of NCL. To prove the converse implication let us assume Fnco, X — sg. By Theorem
7, the formula X — s5 possesses a normal derivation D in NCL. Since s € Pr, no
E-instances of (C)-rule occur in D. For every type x in X any R-instance of (C)-rule
would employ such a formula © — y from Ax that ¢(x) > ¢(y). This formula can not be
obtained by means of the rules (R2) or (R2') because of the presence of the product sign
- in their conclusions. For axioms (A1), (Al’), (A2), (A2') as well as for formulas in Ax
which arise from them by an application of rules (R1) or (R1’), one sees that this side of a
formula which is of greater complexity contains also a product sign. The formula x — y
can not be obtained from (A4) by any rule from Ax as well, otherwise we would have
c(x) = ¢(y). The only remaining possibility of constructing + — y is that using (A3)
and the rules (R1) or (R1"). For any z,¢ € Tp we have however o(z/(z/t)) = max{o(z),
o(t) + 2}, and thus o(z/(z/t)) > 2. Consequently, this side of the formula @ — y which
is of greater complexity would have the order > 2, but for + — y being an R-formula
this is impossible, as o(G) < 1. We conclude that no R-formulas are employed in D,
thus D is a derivation in NCA. But the rules (PR) and (PR’) can not be applied in D,
otherwise for some types z,1 a product type z -y would be a subtype of a type in X. As
a result, D is a derivation in NCA® and Fycpae X — sq. O

Theorem 9 For any CF-grammar G there exists an NCL-grammar G such that L(G)
- 1L(9).

Proof. We conclude from Lemma 15 that for the grammar G one can construct a CF-
grammar G’ in Chomsky normal form, closed with respect to transposition and such
that L(G) = L(G') and deg(BL(G’)) < No. Employing Lemma 16 we find for G’ an
NCA®-grammar Gy such that o(G1) <1 and BL(G') = BL(G1). By Lemma 17, we can
find for G4 an NCL-grammar G such that BL(G1) = BL(G). Accordingly, as L(G') =

L(G1) = L(G), G is the grammar fulfilling the thesis. O
Theorem 10 NLC-grammars and CF-grammars generate the same class of (string) lan-
guages.

Proof. This is a consequence of Theorem 8 and Theorem 9. O

Note. It is not known however, whether the finiteness of the degree in the definition of
CF-grammars is an essential restriction. So far we do not know if the question whether for
every closed with respect to permutation CF-grammar G one can construct a closed with

respect to permutation CF-grammar G’ such that L(G) = L(G’") and deg(BL(G")) < N

has a positive or negative answer.
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