Skip to main content
Log in

Perturbations and Quantum Relaxation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We investigate whether small perturbations can cause relaxation to quantum equilibrium over very long timescales. We consider in particular a two-dimensional harmonic oscillator, which can serve as a model of a field mode on expanding space. We assume an initial wave function with small perturbations to the ground state. We present evidence that the trajectories are highly confined so as to preclude relaxation to equilibrium even over very long timescales. Cosmological implications are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Note that the properties of a general nonequilibrium ensemble cannot be described by \(\psi \) alone.

  2. An exception is an early paper by Bohm [35], which considered an ensemble of two-level molecules subject to random external collisions and argued that the molecules would relax to equilibrium.

  3. Specifically, the signature amounts to a primordial power deficit at long wavelengths with a specific (inverse-tangent) dependence on wavenumber k [21, 23]. A large-scale power deficit has in fact been reported in the Planck data [39, 40], though the extent to which it matches our prediction is still being evaluated [41].

  4. The initial phases were \(\theta _{00} = 0.5442\), \(\theta _{01} = 2.3099\), \(\theta _{10} = 5.6703\), \(\theta _{11} = 4.5333\).

  5. For the illustrative figures in this subsection, the initial phases were as follows: \(\theta _{00} = 4.8157\), \(\theta _{01} = 1.486\), \(\theta _{10} = 2.6226\), \(\theta _{11} = 3.8416\).

  6. For the trajectories in Fig. 12, the initial phases were \(\theta _{00} = 4.2065\), \(\theta _{01} = 0.1803\), \(\theta _{02} = 2.0226\), \(\theta _{10} = 5.5521\), \(\theta _{11} = 3.3361\), \(\theta _{20} = 2.6561\).

  7. For a square centered at the origin, the coordinates of the 13 points would be as follows: \((-\,0.02,0.02)\), \((-\,0.02,0.0)\), \((-\,0.02,-\,0.02)\), \((0.0,-\,0.02)\), \((0.02,-\,0.02)\), (0.02, 0.0), (0.02, 0.02), (0.0, 0.02), \((-\,0.01,0.01)\), \((-\,0.01,-\,0.01)\), \((0.01,-\,0.01)\), (0.01, 0.01), (0.0, 0.0).

  8. For the trajectories displayed in Fig. 13, the initial phases used were \(\theta _{00} = 1.2434\), \(\theta _{01} = 4.411\), \(\theta _{02} = 4.3749\), \(\theta _{10} = 4.2427\), \(\theta _{11} = 1.5574\), \(\theta _{20} = 5.7796\).

  9. For the trajectories displayed in Fig. 15, the initial phases used were \(\theta _{00} = 4.0857\), \(\theta _{01} = 0.2194\), \(\theta _{02} = 4.6059\), \(\theta _{10} = 1.2201\), \(\theta _{11} = 0.439\), \(\theta _{20} = 4.0563\).

References

  1. de Broglie, L.: La nouvelle dynamique des quanta. In: Électrons et Photons: Rapports et Discussions du Cinquième Conseil de Physique Gauthier-Villars, Paris, (1928). [English translation in ref. [2].]

  2. Bacciagaluppi, G., Valentini, A.: Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge (2009). arXiv:quant-ph/0609184

    Book  MATH  Google Scholar 

  3. Bohm, D.: A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. I. Phys. Rev. 85, 166 (1952)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bohm, D.: A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. II. Phys. Rev. 85, 180 (1952)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Holland, P.R.: The Quantum Theory of Motion: an Account of the de Broglie–Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  6. Valentini, A.: Signal-locality, uncertainty, and the subquantum H-theorem. I. Phys. Lett. A 156, 5 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  7. Valentini, A.: Signal-locality, uncertainty, and the subquantum H-theorem. II. Phys. Lett. A 158, 1 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  8. Valentini, A.: On the pilot-wave theory of classical, quantum and subquantum physics, PhD thesis, International School for Advanced Studies, Trieste, Italy (1992). http://urania.sissa.it/xmlui/handle/1963/5424

  9. Valentini, A.: Pilot-wave theory of fields, gravitation and cosmology. In: Cushing, J.T. (ed.) Bohmian Mechanics and Quantum Theory: An Appraisal. Kluwer, Dordrecht (1996)

    Google Scholar 

  10. Valentini, A.: Hidden variables, statistical mechanics and the early universe. In: Bricmont, J. (ed.) Chance in Physics: Foundations and Perspectives. Springer, Berlin (2001). arXiv:quant-ph/0104067

    Google Scholar 

  11. Pearle, P., Valentini, A.: Quantum mechanics: generalizations. In: Françoise, J.-P. (ed.) Encyclopaedia of Mathematical Physics. Elsevier, North-Holland (2006). arXiv:quant-ph/0506115

    Google Scholar 

  12. Valentini, A., Westman, H.: Dynamical origin of quantum probabilities. Proc. R. Soc. Lond. A 461, 253 (2005). arXiv:quant-ph/0403034

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Efthymiopoulos, C., Contopoulos, G.: Chaos in Bohmian quantum mechanics. J. Phys. A 39, 1819 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Towler, M.D., Russell, N.J., Valentini, A.: Time scales for dynamical relaxation to the Born rule. Proc. R. Soc. Lond. A 468, 990 (2012). arXiv:1103.1589

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Colin, S.: Relaxation to quantum equilibrium for Dirac fermions in the de Broglie–Bohm pilot-wave theory. Proc. R. Soc. Lond. A 468, 1116 (2012). arXiv:1108.5496

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Abraham, E., Colin, S., Valentini, A.: Long-time relaxation in pilot-wave theory. J. Phys. A 47, 395306 (2014). arXiv:1310.1899

    Article  MATH  MathSciNet  Google Scholar 

  17. Valentini, A.: Beyond the quantum. Physics World 22N11 32, arXiv:1001.2758 (2009)

  18. Valentini, A.: Astrophysical and cosmological tests of quantum theory. J. Phys. A 40, 3285 (2007). arXiv:hep-th/0610032

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Valentini, A.: Inflationary cosmology as a probe of primordial quantum mechanics. Phys. Rev. D 82, 063513 (2010). arXiv:0805.0163

    Article  ADS  Google Scholar 

  20. Colin, S., Valentini, A.: Mechanism for the suppression of quantum noise at large scales on expanding space. Phys. Rev. D 88, 103515 (2013). arXiv:1306.1579

    Article  ADS  Google Scholar 

  21. Colin, S., Valentini, A.: Primordial quantum nonequilibrium and large-scale cosmic anomalies. Phys. Rev. D 92, 043520 (2015). arXiv:1407.8262

    Article  ADS  Google Scholar 

  22. Valentini, A.: Statistical anisotropy and cosmological quantum relaxation (2015). arXiv:1510.02523

  23. Colin, S., Valentini, A.: Robust predictions for the large-scale cosmological power deficit from primordial quantum nonequilibrium. Int. J. Mod. Phys. D 25, 1650068 (2016). arXiv:1510.03508

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Valentini, A.: De Broglie–Bohm prediction of quantum violations for cosmological super-Hubble modes (2008). arXiv:0804.4656 [hep-th]

  25. Underwood, N.G., Valentini, A.: Quantum field theory of relic nonequilibrium systems. Phys. Rev. D 92, 063531 (2015). arXiv:1409.6817

    Article  ADS  MathSciNet  Google Scholar 

  26. Underwood, N.G., Valentini, A.: Anomalous spectral lines and relic quantum nonequilibrium (2016). arXiv:1609.04576 [quant-ph]

  27. Colin, S., Valentini, A.: Instability of quantum equilibrium in Bohm’s dynamics. Proc. R. Soc. A 470, 20140288 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Struyve, W., Valentini, A.: De Broglie–Bohm guidance equations for arbitrary Hamiltonians. J. Phys. A 42, 035301 (2009). arXiv:0808.0290

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Valentini, A.: Subquantum information and computation. Pramana 59, 269 (2002). arXiv:quant-ph/0203049

    Article  ADS  Google Scholar 

  30. Valentini, A.: Hidden variables and the large-scale structure of space–time. In: Craig, W.L., Smith, Q. (eds.) Einstein, Relativity and AbsoluteSimultaneity. Routledge, London (2008). arXiv:quant-ph/0504011

    Google Scholar 

  31. Valentini, A.: De Broglie–Bohm pilot-wave theory: many-worlds in denial? In: Saunders, S. (ed.) Many Worlds? Everett, Quantum Theory, and Reality. Oxford University Press, Oxford (2010). arXiv:0811.0810

    Google Scholar 

  32. Contopoulos, G., Delis, N., Efthymiopoulos, C.: Order in de Broglie–Bohm quantum mechanics. J. Phys. A 45, 165301 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Tolman, R.C.: The Principles of Statistical Mechanics. Dover, New York (1979)

    MATH  Google Scholar 

  34. Davies, P.C.W.: The Physics of Time Asymmetry. University of California Press, Berkeley, CA (1974)

    Google Scholar 

  35. Bohm, D.: Proof that probability density approaches \(|\psi | ^{2}\) in causal interpretation of the quantum theory. Phys. Rev. 89, 458 (1953)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Liddle, A.R., Lyth, D.H.: Cosmological Inflation and Large-Scale Structure. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  37. Mukhanov, V.: Physical Foundations of Cosmology. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  38. Peter, P., Uzan, J.-P.: Primordial Cosmology. Oxford University Press, Oxford (2009)

    Google Scholar 

  39. Ade, P.A.R., et al.: (Planck collaboration), Planck 2013 results. XV. CMB power spectra and likelihood. Astron. Astrophys. 571, A15 (2014). arXiv:1303.5075

    Article  Google Scholar 

  40. Aghanim, N., et al.: (Planck collaboration), Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters. Astron. Astrophys. 594, A11 (2016). arXiv:1507.02704

    Article  Google Scholar 

  41. Vitenti, S., Peter, P., Valentini, A.: Modeling the large-scale power deficit, in preparation

  42. Dürr, D., Goldstein, S., Zanghì, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Dürr, D., Teufel, S.: Bohmian Mechanics: The Physics and Mathematics of Quantum Theory. Springer, New Yrok (2009)

    MATH  Google Scholar 

  44. Contaldi, C.R., Bean, R., Magueijo, J.: Photographing the wave function of the universe. Phys. Lett. B 468, 189 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony Valentini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandhadai, A., Valentini, A. Perturbations and Quantum Relaxation. Found Phys 49, 1–23 (2019). https://doi.org/10.1007/s10701-018-0227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0227-3

Keywords

Navigation