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PREFACE
 
 
  

The new classes of super special codes are constructed in 
this book using the specially constructed super special vector 
spaces. These codes mainly use the super matrices. These codes 
can be realized as a special type of concatenated codes. This 
book has four chapters.  
 

In chapter one basic properties of codes and super matrices 
are given. A new type of super special vector space is 
constructed in chapter two of this book. Three new classes of 
super special codes namely, super special row code, super 
special column code and super special codes are introduced in 
chapter three. Applications of these codes are given in the final 
chapter.  
 

These codes will be useful in cryptography, when ARQ 
protocols are impossible or very costly, in scientific experiments 
where stage by stage recording of the results are needed,  can be 
used in bulk transmission of information and in medical fields.  
 

The reader should be familiar with both coding theory and 
in super linear algebras and super matrices.  
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Chapter One 

INTRODUCTION TO 
SUPERMATRICES AND LINEAR CODES

 

 
This chapter has two sections. In section we one introduce the 
basic properties about supermatrices which are essential to build 
super special codes. Section two gives a brief introduction to 
algebraic coding theory and the basic properties related with 
linear codes.  
 
 
1.1 Introduction to Supermatrices  
 
The general rectangular or square array of numbers such as  
 

A = 
2 3 1 4
5 0 7 8

� �
� �� �� �

,  B = 
1 2 3
4 5 6

7 8 11

� �
� ��� �
� ��� �

, 

C = [3, 1, 0, -1, -2] and D = 

7 2
0

2
5
41

�� �
� �
� �
� �
� �
� �
� ��� �

 

are known as matrices.  
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We shall call them as simple matrices [10]. By a simple 
matrix we mean a matrix each of whose elements are just an 
ordinary number or a letter that stands for a number. In other 
words, the elements of a simple matrix are scalars or scalar 
quantities. 

A supermatrix on the other hand is one whose elements are 
themselves matrices with elements that can be either scalars or 
other matrices. In general the kind of supermatrices we shall 
deal with in this book, the matrix elements which have any 
scalar for their elements. Suppose we have the four matrices; 
 

a11 = 
2 4
0 1

�� �
� �
� �

,  a12 = 
0 40
21 12
� �
� ��� �

 

 

a21 = 
3 1
5 7
2 9

�� �
� �
� �
� ��� �

 and a22 = 
4 12
17 6
3 11

� �
� ��� �
� �� �

. 

 
One can observe the change in notation aij denotes a matrix and 
not a scalar of a matrix (1 < i, j < 2). 

Let  

a = 11 12

21 22

a a
a a
� �
� �
� �

; 

 
we can write out the matrix a in terms of the original matrix 
elements i.e., 

a = 

2 4 0 40
0 1 21 12
3 1 4 12
5 7 17 6
2 9 3 11

�� �
� ��� �
� ��
� ��� �
� ��� �

. 

 
Here the elements are divided vertically and horizontally by thin 
lines. If the lines were not used the matrix a would be read as a 
simple matrix. 
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Thus far we have referred to the elements in a supermatrix 
as matrices as elements. It is perhaps more usual to call the 
elements of a supermatrix as submatrices. We speak of the 
submatrices within a supermatrix. Now we proceed on to define 
the order of a supermatrix.  

The order of a supermatrix is defined in the same way as 
that of a simple matrix. The height of a supermatrix is the 
number of rows of submatrices in it. The width of a supermatrix 
is the number of columns of submatrices in it. 

All submatrices with in a given row must have the same 
number of rows. Likewise all submatrices with in a given 
column must have the same number of columns. 

A diagrammatic representation is given by the following 
figure: 
 
          
   
          
          
          
          
   
          
   

 

  

 

     
 
 

In the first row of rectangles we have one row of a square 
for each rectangle; in the second row of rectangles we have four 
rows of squares for each rectangle and in the third row of 
rectangles we have two rows of squares for each rectangle. 
Similarly for the first column of rectangles three columns of 
squares for each rectangle. For the second column of rectangles 
we have two column of squares for each rectangle, and for the 
third column of rectangles we have five columns of squares for 
each rectangle. 

Thus we have for this supermatrix 3 rows and 3 columns.  
One thing should now be clear from the definition of a 

supermatrix. The super order of a supermatrix tells us nothing 
about the simple order of the matrix from which it was obtained 
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by partitioning. Furthermore, the order of supermatrix tells us 
nothing about the orders of the submatrices within that 
supermatrix. 

Now we illustrate the number of rows and columns of a 
supermatrix. 
 
Example 1.1.1: Let 

a = 

3 3 0 1 4
1 2 1 1 6

0 3 4 5 6
1 7 8 9 0
2 1 2 3 4

� �
� �� �� �
� �
� ��� �
� ��� �

. 

 
a is a supermatrix with two rows and two columns.  
 
Now we proceed on to define the notion of partitioned matrices. 
It is always possible to construct a supermatrix from any simple 
matrix that is not a scalar quantity.  

The supermatrix can be constructed from a simple matrix 
this process of constructing supermatrix is called the 
partitioning. 

A simple matrix can be partitioned by dividing or separating 
the matrix between certain specified rows, or the procedure may 
be reversed. The division may be made first between rows and 
then between columns.  

We illustrate this by a simple example. 
 
Example 1.1.2: Let 

A = 

3 0 1 1 2 0
1 0 0 3 5 2
5 1 6 7 8 4
0 9 1 2 0 1
2 5 2 3 4 6
1 6 1 2 3 9

� �
� �
� �
� ��
� ��� �
� �
� �
� �� �

 

 
is a 6 × 6 simple matrix with real numbers as elements. 
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A1 = 

3 0 1 1 2 0
1 0 0 3 5 2
5 1 6 7 8 4
0 9 1 2 0 1
2 5 2 3 4 6
1 6 1 2 3 9

� �
� �
� �
� ��
� ��� �
� �
� �
� �� �

. 

 
Now let us draw a thin line between the 2nd and 3rd columns. 

This gives us the matrix A1. Actually A1 may be regarded as 
a supermatrix with two matrix elements forming one row and 
two columns. 

Now consider  

A2 = 

3 0 1 1 2 0
1 0 0 3 5 2
5 1 6 7 8 4
0 9 1 2 0 1
2 5 2 3 4 6
1 6 1 2 3 9

� �
� �
� �
� ��
� ��� �
� �
� �
� �� �

. 

 
Draw a thin line between the rows 4 and 5 which gives us the 
new matrix A2. A2 is a supermatrix with two rows and one 
column.  
Now consider the matrix  
 

A3 = 

3 0 1 1 2 0
1 0 0 3 5 2
5 1 6 7 8 4
0 9 1 2 0 1
2 5 2 3 4 6
1 6 1 2 3 9

� �
� �
� �
� ��
� ��� �
� �
� �
� �� �

, 

 
A3 is now a second order supermatrix with two rows and two 
columns. We can simply write A3 as  
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11 12

21 22

a a
a a
� �
� �
� �

 

where 

a11 = 

3 0
1 0
5 1
0 9

� �
� �
� �
� ��
� �
� �

, 

 

a12 = 

1 1 2 0
0 3 5 2
6 7 8 4
1 2 0 1

� �
� �
� �
� �
� ��� �

, 

 

a21 = 
2 5
1 6
� �
� �
� �

 and a22 = 
2 3 4 6
1 2 3 9
� �
� �
� �

. 

 
The elements now are the submatrices defined as a11, a12, a21 and 
a22 and therefore A3 is in terms of letters. 

According to the methods we have illustrated a simple 
matrix can be partitioned to obtain a supermatrix in any way 
that happens to suit our purposes. 

The natural order of a supermatrix is usually determined by 
the natural order of the corresponding simple matrix. Further 
more we are not usually concerned with natural order of the 
submatrices within a supermatrix. 

Now we proceed on to recall the notion of symmetric 
partition, for more information about these concepts please refer 
[10]. By a symmetric partitioning of a matrix we mean that the 
rows and columns are partitioned in exactly the same way. If the 
matrix is partitioned between the first and second column and 
between the third and fourth column, then to be symmetrically 
partitioning, it must also be partitioned between the first and 
second rows and third and fourth rows. According to this rule of 
symmetric partitioning only square simple matrix can be 
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symmetrically partitioned. We give an example of a 
symmetrically partitioned matrix as,  
 
Example 1.1.3: Let  

 

as = 

2 3 4 1
5 6 9 2
0 6 1 9
5 1 1 5

� �
� �
� �
� �
� �
� �� �

. 

 
Here we see that the matrix has been partitioned between 
columns one and two and three and four. It has also been 
partitioned between rows one and two and rows three and four. 
 
Now we just recall from [10] the method of symmetric 
partitioning of a symmetric simple matrix.  
 
Example 1.1.4: Let us take a fourth order symmetric matrix and 
partition it between the second and third rows and also between 
the second and third columns. 
 

a = 

4 3 2 7
3 6 1 4
2 1 5 2
7 4 2 7

� �
� �
� �
� �
� �
� �

. 

 
We can represent this matrix as a supermatrix with letter 
elements. 

a11 = 
4 3
3 6
� �
� �
� �

, a12 = 
2 7
1 4
� �
� �
� �

 

 

a21 = 
2 1
7 4
� �
� �
� �

 and a22 = 
5 2
2 7
� �
� �
� �

, 

 
so that 
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a = 11 12

21 22

a a
a a
� �
� �
� �

. 

 
The diagonal elements of the supermatrix a are a11 and a22. We 
also observe the matrices a11 and a22 are also symmetric 
matrices. 

The non diagonal elements of this supermatrix a are the 
matrices a12 and a21. Clearly a21 is the transpose of a12.  

The simple rule about the matrix element of a 
symmetrically partitioned symmetric simple matrix are (1) The 
diagonal submatrices of the supermatrix are all symmetric 
matrices. (2) The matrix elements below the diagonal are the 
transposes of the corresponding elements above the diagonal. 

The forth order supermatrix obtained from a symmetric 
partitioning of a symmetric simple matrix a is as follows:  
 

a = 

11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44

a a a a
'a a a a
' 'a a a a
' ' 'a a a a

� �
� �
� �
� �
� �
� �

. 

 
How to express that a symmetric matrix has been symmetrically 
partitioned (i) a11 and at

11 are equal. (ii) at
ij (i 	 j); t

ija  = aji and  
t
jia  = aij. Thus the general expression for a symmetrically 

partitioned symmetric matrix; 
 

a = 

11 12 1n

12 22 2n

1n 2n nn

a a ... a
a ' a ... a

a ' a ' ... a

� �
� �
� �
� �
� �
� �

� � �
. 

 
If we want to indicate a symmetrically partitioned simple 
diagonal matrix we would write 
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D = 

1

2

n

D 0 ... 0
0 D ... 0

0 0 ... D

� �
� �
� �
� �
� �
 
� �

 

 
0' only represents the order is reversed or transformed. We 
denote  t

ija  = a'ij just the ' means the transpose.  
D will be referred to as the super diagonal matrix. The 

identity matrix  
 

I = 
s

t

r

I 0 0
0 I 0
0 0 I

� �
� �
� �
� �� �

 

 
s, t and r denote the number of rows and columns of the first 
second and third identity matrices respectively (zeros denote 
matrices with zero as all entries). 
 
Example 1.1.5: We just illustrate a general super diagonal 
matrix d; 
 

d = 

3 1 2 0 0
5 6 0 0 0
0 0 0 2 5
0 0 0 1 3
0 0 0 9 10

� �
� �
� �
� �
� ��� �
� �� �

 

 

 i.e.,  d = 1

2

m 0
0 m

� �
� �
� �

. 

 
An example of a super diagonal matrix with vector elements is 
given, which can be useful in experimental designs. 
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Example 1.1.6: Let  
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

. 

Here the diagonal elements are only column unit vectors. In 
case of supermatrix [10] has defined the notion of partial 
triangular matrix as a supermatrix. 
 
Example 1.1.7: Let  

u = 
2 1 1 3 2
0 5 2 1 1
0 0 1 0 2

� �
� �
� �
� �� �

 

u is a partial upper triangular supermatrix. 
 
Example 1.1.8: Let 

L = 

5 0 0 0 0
7 2 0 0 0
1 2 3 0 0
4 5 6 7 0
1 2 5 2 6
1 2 3 4 5
0 1 0 1 0

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

; 
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L is partial upper triangular matrix partitioned as a supermatrix. 
 

Thus T = T
a
� �
� �
� �

 where T is the lower triangular submatrix, with 

 

T = 

5 0 0 0 0
7 2 0 0 0
1 2 3 0 0
4 5 6 7 0
1 2 5 2 6

� �
� �
� �
� �
� �
� �
� �� �

 and a' = 
1 2 3 4 5
0 1 0 1 0
� �
� �
� �

. 

 
We proceed on to define the notion of supervectors i.e., Type I 
column supervector. A simple vector is a vector each of whose 
elements is a scalar. It is nice to see the number of different 
types of supervectors given by [10]. 
 
Example 1.1.9: Let

v = 

1
3
4
5
7

� �
� �
� �
� �
� �
� �
� �� �

��.

 
This is a type I i.e., type one column supervector. 
 

v = 

1

2

n

v
v

v

� �
� �
� �
� �
� �
� �

�
 

 
where each vi is a column subvectors of the column vector v.  
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Type I row supervector is given by the following example. 
 
Example 1.1.10: v1 = [2 3 1 | 5 7 8 4] is a type I row 
supervector. i.e., v' = [v'1, v'2, …, v'n] where each v'i is a row 
subvector; 1 � i � n.  
 
Next we recall the definition of type II supervectors. 
 
Type II column supervectors. 
 
DEFINITION 1.1.1: Let

a = 

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

� �
� �
� �
� �
� �
� �

m

m

n n nm

a a a
a a a

a a a

a1
1 = [a11 … a1m]

a2
1 = [a21 … a2m]

…
an

1 = [an1 … anm]

i.e.,      a = 

1
1
1
2

1

� �
� �
� �
� �
� �
� �� �

�

n m

a
a

a
is defined to be the type II column supervector.  
Similarly if

a1 = 

11

21

1

� �
� �
� �
� �
� �
� �

�

n

a
a

a

,  a2 = 

12

22

2

� �
� �
� �
� �
� �
� �

�

n

a
a

a

 , …,  am = 

1

2

� �
� �
� �
� �
� �
� �

�

m

m

nm

a
a

a

 .

Hence now a = [a1 a2 … am]n is defined to be the type II row 
supervector.
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Clearly

a = 

1
1
1
2

1

� �
� �
� �
� �
� �
� �� �

�

n m

a
a

a

 = [a1 a2 … am]n

the equality of supermatrices. 
 
Example 1.1.11: Let  
 

A = 

3 6 0 4 5
2 1 6 3 0
1 1 1 2 1
0 1 0 1 0
2 0 1 2 1

� �
� �
� �
� �
� �
� �
� �� �

 

 
be a simple matrix. Let a and b the supermatrix made from A. 
 

a = 

3 6 0 4 5
2 1 6 3 0
1 1 1 2 1
0 1 0 1 0
2 0 1 2 1

� �
� �
� �
� �
� �
� �
� �� �

 

where  

a11 = 
3 6 0
2 1 6
1 1 1

� �
� �
� �
� �� �

, a12 = 
4 5
3 0
2 1

� �
� �
� �
� �� �

, 

 

a21 = 
0 1 0
2 0 1
� �
� �
� �

 and a22 = 
1 0
2 1
� �
� �
� �

. 

 

i.e.,      a = 11 12

21 22

a a
a a
� �
� �
� �

. 
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b = 

3 6 0 4 5
2 1 6 3 0
1 1 1 2 1
0 1 0 1 0
2 0 1 2 1

� �
� �
� �
� �
� �
� �
� �
� �

 = 11 12

21 22

b b
b b
� �
� �
� �

 

where  

b11 = 

3 6 0 4
2 1 6 3
1 1 1 2
0 1 0 1

� �
� �
� �
� �
� �
� �

 , b12 = 

5
0
1
0

� �
� �
� �
� �
� �
� �

, 

 
b21 = [2 0 1 2 ] and b22 = [1]. 

 

a = 

3 6 0 4 5
2 1 6 3 0
1 1 1 2 1
0 1 0 1 0
2 0 1 2 1

� �
� �
� �
� �
� �
� �
� �� �

 

and  

b = 

3 6 0 4 5
2 1 6 3 0
1 1 1 2 1
0 1 0 1 0
2 0 1 2 1

� �
� �
� �
� �
� �
� �
� �
� �

. 

 
We see that the corresponding scalar elements for matrix a and 
matrix b are identical. Thus two supermatrices are equal if and 
only if their corresponding simple forms are equal. 
 

Now we give examples of type III supervector for more 
refer [10]. 
 



 21

Example 1.1.12:  

a = 
3 2 1 7 8
0 2 1 6 9
0 0 5 1 2

� �
� �
� �
� �� �

 =  [T' | a'] 

and 
 

b = 

2 0 0
9 4 0
8 3 6
5 2 9
4 7 3

� �
� �
� �
� �
� �
� �
� �� �

 = T
b
� �
� �
� �

 

 
are type III supervectors. 
 
One interesting and common example of a type III supervector 
is a prediction data matrix having both predictor and criterion 
attributes. 

The next interesting notion about supermatrix is its 
transpose. First we illustrate this by an example before we give 
the general case. 
 
Example 1.1.13: Let  

a = 

2 1 3 5 6
0 2 0 1 1
1 1 1 0 2
2 2 0 1 1
5 6 1 0 1
2 0 0 0 4
1 0 1 1 5

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

 

 

= 
11 12

21 22

31 32

a a
a a
a a

� �
� �
� �
� �� �
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where 
 

a11 = 
2 1 3
0 2 0
1 1 1

� �
� �
� �
� �� �

, a12 = 
5 6
1 1
0 2

� �
� �
� �
� �� �

, 

 

a21 = 
2 2 0
5 6 1
� �
� �
� �

, a22 = 
1 1
0 1
� �
� �
� �

, 

 

a31 = 
2 0 0
1 0 1
� �
� �
� �

 and a32 = 
0 4
1 5
� �
� �
� �

. 

 
The transpose of a  
 

at = a' = 

2 0 1 2 5 2 1
1 2 1 2 6 0 0
3 0 1 0 1 0 1
5 1 0 1 0 0 1
6 1 2 1 1 4 5

� �
� �
� �
� �
� �
� �
� �� �

. 

 
Let us consider the transposes of a11, a12, a21, a22, a31 and a32. 
 

a'11 = t
11

2 0 1
a 1 2 1

3 0 1

� �
� �� � �
� �� �

 

 

a'12 = t
12

5 1 0
a

6 1 2
� �

� � �
� �

 

 

a'21 = t
21

2 5
a 2 6

0 1

� �
� �� � �
� �� �
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a'31 = t
31

2 1
a 0 0

0 1

� �
� �� � �
� �� �

 

 

a'22 = t
22

1 0
a

1 1
� �

� � �
� �

 

 

a'32 = t
32

0 1
a

4 5
� �

� � �
� �

. 

 

a' = 11 21 31

12 22 32

a a a
a a a

 
 
� �

� �
 
 
� �
. 

 
Now we describe the general case. Let  
 

a = 

11 12 1m

21 22 2m

n1 n2 nm

a a a
a a a

a a a

� �
� �
� �
� �
� �
� �

�
�

� � �
�

 

 
be a n × m supermatrix. The transpose of the supermatrix a 
denoted by 
 

a' = 

11 21 n1

12 22 n2

1m 2m nm

a a a
a a a

a a a


 
 
� �
� �
 
 
� �
� �
� �
 
 
� �

�
�

� � �
�

. 

 
a' is a m by n supermatrix obtained by taking the transpose of 
each element i.e., the submatrices of a. 
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Now we will find the transpose of a symmetrically partitioned 
symmetric simple matrix. Let a be the symmetrically partitioned 
symmetric simple matrix.  
 
Let a be a m × m symmetric supermatrix i.e.,  
 

a = 

11 21 m1

12 22 m2

1m 2m mm

a a a
a a a

a a a

� �
� �
� �
� �
� �
� �

�
�

� � �
�

 

 
the transpose of the supermatrix is given by a' 
 

a' = 

11 12 1m

12 22 2m

1m 2m mm

a (a ) (a )
a a ' (a )

a a a


 
 
 
 
� �
� �
 
 
� �
� �
� �
 
 
� �

�
�

� � �
�

 

 
The diagonal matrix a11 are symmetric matrices so are unaltered 
by transposition. Hence  

a'11 = a11, a'22 = a22, …, a'mm = amm. 
 

Recall also the transpose of a transpose is the original matrix. 
Therefore  

(a'12)' = a12, (a'13)' = a13, …, (a'ij)' = aij. 
 

Thus the transpose of supermatrix constructed by 
symmetrically partitioned symmetric simple matrix a of a' is 
given by  
 

a' = 

11 12 1m

21 22 2m

1m 2m mm

a a a
a a a

a a a

� �
� �
� �
� �
� �
 
� �

�
�

� � �
�

. 
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Thus a = a'. 
Similarly transpose of a symmetrically partitioned diagonal 
matrix is simply the original diagonal supermatrix itself; 
 
i.e., if  

D = 

1

2

n

d
d

d

� �
� �
� �
� �
� �
� �

�
 

 

D' = 

1

2

n

d
d

d


� �
� �
� �
� �
� �
� �

�
 

 
d'1 = d1, d'2 = d2 etc. Thus D = D'.  
 
Now we see the transpose of a type I supervector.  
 
Example 1.1.14: Let  
 

V = 

3
1
2
4
5
7
5
1

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

 

 
The transpose of V denoted by V' or Vt is  
 

V’ = [3 1 2 | 4 5 7 | 5 1]. 
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If  

V = 
1

2

3

v
v
v

� �
� �
� �
� �� �

 

where  

v1 = 
3
1
2

� �
� �
� �
� �� �

, v2 = 
4
5
7

� �
� �
� �
� �� �

 and v3 = 
5
1
� �
� �
� �

 

 
V' = [v'1 v'2 v'3]. 

Thus if  

V = 

1

2

n

v
v

v

� �
� �
� �
� �
� �
� �

�
 

then  
V' = [v'1 v'2 … v'n]. 

Example 1.1.15: Let  
 

t = 
3 0 1 1 5 2
4 2 0 1 3 5
1 0 1 0 1 6

� �
� �
� �
� �� �

 

 
= [T | a ]. The transpose of t 
 

i.e., t' = 

3 4 1
0 2 0
1 0 1
1 1 0
5 3 1
2 5 6

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

 = 
T
a

� �

� �
� �� �
. 
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1.2 Introduction of Linear Codes and their Properties 
 
In this section we just recall the definition of linear code and 
enumerate a few important properties about them. We begin by 
describing a simple model of a communication transmission 
system given by the figure 1.2.  
 

 
 
 
 
 
 
 
 
 
 
 
 
Messages go through the system starting from the source 
(sender). We shall only consider senders with a finite number of 
discrete signals (eg. Telegraph) in contrast to continuous 
sources (eg. Radio). In most systems the signals emanating from 
the source cannot be transmitted directly by the channel. For 
instance, a binary channel cannot transmit words in the usual 
Latin alphabet. Therefore an encoder performs the important 
task of data reduction and suitably transforms the message into 
usable form. Accordingly one distinguishes between source 
encoding the channel encoding. The former reduces the message 
to its essential(recognizable) parts, the latter adds redundant 
information to enable detection and correction of possible errors 
in the transmission. Similarly on the receiving end one 
distinguishes between channel decoding and source decoding, 
which invert the corresponding channel and source encoding 
besides detecting and correcting errors. 
 One of the main aims of coding theory is to design methods 
for transmitting messages error free cheap and as fast as 
possible. There is of course the possibility of repeating the 
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message. However this is time consuming, inefficient and crude. 
We also note that the possibility of errors increases with an 
increase in the length of messages. We want to find efficient 
algebraic methods (codes) to improve the reliability of the 
transmission of messages. There are many types of algebraic 
codes; here we give a few of them. 
 Throughout this book we assume that only finite fields 
represent the underlying alphabet for coding. Coding consists of 
transforming a block of k message symbols a1, a2, …, ak; ai   Fq 
into a code word x = x1 x2 … xn; xi  Fq, where n � k. Here the 
first ki symbols are the message symbols i.e., xi = ai; 1 � i � k; 
the remaining n – k elements xk+1, xk+2, …, xn are check symbols 
or control symbols. Code words will be written in one of the 
forms x; x1, x2, …, xn or (x1 x2 … xn) or x1 x2 … xn. The check 
symbols can be obtained from the message symbols in such a 
way that the code words x satisfy a system of linear equations; 
HxT = (0) where H is the given (n – k) × n matrix with elements 
in Fq = Zpn (q = pn). A standard form for H is (A, In–k) with n – k 
× k matrix and In–k, the n – k × n – k identity matrix. 
 
We illustrate this by the following example: 
 
Example 1.2.1: Let us consider Z2 = {0, 1}. Take n = 7, k = 3. 
The message a1 a2 a3 is encoded as the code word x = a1 a2 a3 x4 
x5 x6 x7. Here the check symbols x4 x5 x6 x7 are such that for this 
given matrix  

� �4

0 1 0 1 0 0 0
1 0 1 0 1 0 0

H = A;I
0 0 1 0 0 1 0
0 0 1 0 0 0 1

� �
� �
� � �
� �
� �
� �

; 

 
we have HxT = (0) where x = a1 a2 a3 x4 x5 x6 x7.  

a2 + x4 = 0; a1 + a3 + x5 = 0; a3 + x6 = 0; a3 + x7 = 0. 
 
Thus the check symbols x4 x5 x6 x7 are determined by a1 a2 a3. 
The equation HxT = (0) are also called check equations. If the 
message a = 1 0 0 then, x4 = 0, x5 = 1, x6 = 0 and x7 = 0. The 
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code word x is 1 0 0 0 1 0 0. If the message a = 1 1 0 then x4 =1, 
x5 = 1, x6 = 1 = x7. Thus the code word x = 1 1 0 1 1 0 0.  
 
We will have altogether 23 code words given by  
 
 0 0 0 0 0 0 0    1 1 0 1 1 0 0 
 1 0 0 0 1 0 0    1 0 1 0 0 1 1 
 0 1 0 1 1 0 0    0 1 1 1 1 1 1 
 0 0 1 0 1 1 1    1 1 1 1 0 1 1 
 
DEFINITION 1.2.1: Let H be an n – k × n matrix with elements 
in Zq. The set of all n-dimensional vectors satisfying HxT = (0) 
over Zq is called a linear code(block code) C over Zq of block 
length n. The matrix H is called the parity check matrix of the 
code C. C is also called a linear(n, k) code. 
 If H is of the form(A, In-k) then the k-symbols of the code 
word x  is called massage(or information) symbols and the last 
n – k symbols in x are the check symbols. C is then also called a 
systematic linear(n, k) code. If q = 2, then C is a binary code. 
k/n is called transmission (or information) rate. 
 The set C of solutions of x of HxT = (0). i.e., the solution 
space of this system of equations, forms a subspace of this 
system of equations, forms a subspace of n

qZ of dimension k. 
Since the code words form an additive group, C is also called a 
group code. C can also be regarded as the null space of the 
matrix H. 
 
Example 1.2.2: (Repetition Code) If each codeword of a code 
consists of only one message symbol a1  Z2 and (n – 1) check 
symbols x2 = x3 = … = xn are all equal to a1 (a1 is repeated n – 1 
times) then we obtain a binary (n, 1) code with parity check 
matrix 

1 1 0 0 1
0 0 1 0 0

H = 0 0 0 1 0

1 0 0 0 1

� �
� �
� �
� �
� �
� �
� �� �

�
�
�

� � � � �
�

. 



 30

 
There are only two code words in this code namely 0 0 … 0 and 
1 1 …1. 
 
If is often impracticable, impossible or too expensive to send the 
original message more than once. Especially in the transmission 
of information from satellite or other spacecraft, it is impossible 
to repeat such messages owing to severe time limitations. One 
such cases is the photograph from spacecraft as it is moving it 
may not be in a position to retrace its path. In such cases it is 
impossible to send the original message more than once. In 
repetition codes we can of course also consider code words with 
more than one message symbol. 
 
Example 1.2.3: (Parity-Check Code): This is a binary (n, n – 1) 
code with parity-check matrix to be H = (1 1 … 1). Each code 
word has one check symbol and all code words are given by all 
binary vectors of length n with an even number of ones. Thus if 
sum of the ones of a code word which is received is odd then 
atleast one error must have occurred in the transmission.  

Such codes find its use in banking. The last digit of the 
account number usually is a control digit. 
 
DEFINITION 1.2.2: The matrix G = (Ik, –AT) is called a 
canonical generator matrix (or canonical basic matrix or 
encoding matrix) of a linear (n, k) code with parity check matrix 
H =(A, In–k). In this case we have GHT = (0). 
 
Example 1.2.4: Let  

G = 
1 0 0 0 1 0 0
0 1 0 1 0 0 0
0 0 1 0 1 1 1

� �
� �
� �
� �� �

 

 
be the canonical generator matrix of the code given in example 
1.2.1. The 23 code words x of the binary code can be obtained 
from x = aG with a = a1 a2 a3, ai  Z2, 1 � i � 3. We have the set 
of a = a1 a2 a3 which correspond to the message symbols which 
is as follows:  
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[0 0 0], [1 0 0], [0 1 0], [0 0 1], 
[1 1 0], [1 0 1], [0 1 1] and [1 1 1]. 

 

x = � �
1 0 0 0 1 0 0

0 0 0 0 1 0 1 0 0 0
0 0 1 0 1 1 1

� �
� �
� �
� �� �

 

  = � �0 0 0 0 0 0 0  
 

x = � �
1 0 0 0 1 0 0

1 0 0 0 1 0 1 0 0 0
0 0 1 0 1 1 1

� �
� �
� �
� �� �

  

= � �1 0 0 0 1 0 0  
 

x = � �
1 0 0 0 1 0 0

0 1 0 0 1 0 1 0 0 0
0 0 1 0 1 1 1

� �
� �
� �
� �� �

  

=  � �0 1 0 1 0 0 0  
 

x = � �
1 0 0 0 1 0 0

0 0 1 0 1 0 1 0 0 0
0 0 1 0 1 1 1

� �
� �
� �
� �� �

  

=  � �0 0 1 0 1 1 1  
 

x = � �
1 0 0 0 1 0 0

1 1 0 0 1 0 1 0 0 0
0 0 1 0 1 1 1

� �
� �
� �
� �� �

  

= � �1 1 0 1 1 0 0  
 

x = � �
1 0 0 0 1 0 0

1 0 1 0 1 0 1 0 0 0
0 0 1 0 1 1 1

� �
� �
� �
� �� �
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= � �1 0 1 0 0 1 1  
 

x = � �
1 0 0 0 1 0 0

0 1 1 0 1 0 1 0 0 0
0 0 1 0 1 1 1

� �
� �
� �
� �� �

  

=  � �0 1 1 1 1 1 1  
 

x = � �
1 0 0 0 1 0 0

1 1 1 0 1 0 1 0 0 0
0 0 1 0 1 1 1

� �
� �
� �
� �� �

  

=  � �1 1 1 1 0 1 1 . 
 
The set of codes words generated by this G are  
 
(0 0 0 0 0 0 0), (1 0 0 0 1 0 0), (0 1 0 1 0 0 0), (0 0 1 0 1 1 1), (1 
1 0 1 1 0 0), (1 0 1 0 0 1 1), (0 1 1 1 1 1 1) and (1 1 1 1 0 1 1). 
 
The corresponding parity check matrix H obtained from this G 
is given by  

 

H = 

0 1 0 1 0 0 0
1 0 1 0 1 0 0
0 0 1 0 0 1 0
0 0 1 0 0 0 1

� �
� �
� �
� �
� �
� �

. 

Now  

GH
T
 =  

0 1 0 0
1 0 0 0

1 0 0 0 1 0 0 0 1 1 1
0 1 0 1 0 0 0 1 0 0 0
0 0 1 0 1 1 1 0 1 0 0

0 0 1 0
0 0 0 1

� �
� �
� �
� �� �
� �� �
� �� �
� �� �� � � �
� �
� �� �
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=  
0 0 0 0
0 0 0 0
0 0 0 0

� �
� �
� �
� �� �

. 

 
We recall just the definition of Hamming distance and 
Hamming weight between two vectors. This notion is applied to 
codes to find errors between the sent message and the received 
message. As finding error in the received message happens to be 
one of the difficult problems more so is the correction of errors 
and retrieving the correct message from the received message. 
 
DEFINITION 1.2.3: The Hamming distance d(x, y) between two 
vectors x = x1 x2 … xn and y = y1 y2 … yn in n

qF  is the number of 
coordinates in which x and y differ. The Hamming weight �(x)
of a vector x = x1 x2 … xn in n

qF is the number of non zero co 

ordinates in ix . In short �(x) = d(x, 0).  
 
We just illustrate this by a simple example. 
Suppose x = [1 0 1 1 1 1 0] and y  [0 1 1 1 1 0 1 ] belong to 

7
2F  then D(x, y) = (x ~ y) = (1 0 1 1 1 1 0) ~ (0 1 1 1 1 0 1) = 

(1~0, 0~1, 1~1, 1~1, 1~1, 1~0, 0~1) = (1 1 0 0 0 1 1) = 4.  Now 
Hamming weight � of x is �(x) = d(x, 0) = 5 and �(y) = d(y, 0) 
= 5.  
 
DEFINITION 1.2.4:  Let C be any linear code then the minimum 
distance dmin of a linear code C is given as 

C
 


	

�min u ,v
u v

d min d( u,v ) .

For linear codes we have 
d(u, v) = d(u – v, 0) = �(u –v). 

 
Thus it is easily seen minimum distance of C is equal to the 
least weight of all non zero code words. A general code C of 
length n with k message symbols is denoted by C(n, k) or by a 
binary (n, k) code. Thus a parity check code is a binary (n,  
n – 1) code and a repetition code is a binary (n, 1) code. 
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 If H = (A, In–k) be a parity check matrix in the standard form 
then G = (Ik, –AT) is the canonical generator matrix of the linear 
(n, k) code. 
 The check equations (A, In – k) xT = (0) yield 
 

1 1 1

2 2 2

k

k

n k k

x x a
x x a

A A

x x a

�

�

� � � � � �
� � � � � �
� � � � � �� � � �
� � � � � �
� � � � � �
� � � � � �

� � �
. 

Thus we obtain 
1 1

2 2k

n k

x a
x aI

A
x a

� � � �
� � � �� �� � � �� � �� � � ��� �
� � � �
� � � �

� �
. 

 
We transpose and denote this equation as  

 
(x1 x2 … xn) = (a1 a2 … ak) (Ik, –A7)  

= (a1 a2 … ak) G. 
 

We have just seen that minimum distance  
min u,v C

u v

d min  d(u,v)

	

� . 

  
If d is the minimum distance of a linear code C then the 

linear code of length n, dimension k and minimum distance d is 
called an (n, k, d) code. 
 Now having sent a message or vector x and if y is the 
received message or vector a simple decoding rule is to find the 
code word closest to x with respect to Hamming distance, i.e., 
one chooses an error vector e with the least weight. The 
decoding method is called “nearest neighbour decoding” and 
amounts to comparing y with all qk code words and choosing 
the closest among them. The nearest neighbour decoding is the 
maximum likelihood decoding if the probability p for correct 
transmission is > ½.  
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Obviously before, this procedure is impossible for large k 
but with the advent of computers one can easily run a program 
in few seconds and arrive at the result. 
We recall the definition of sphere of radius r. The set Sr(x) = {y 
 n

qF  / d(x, y) � r} is called the sphere of radius r about x  n
qF . 

In decoding we distinguish between the detection and the 
correction of error. We can say a code can correct t errors and 
can detect t + s, s � 0 errors, if the structure of the code makes it 
possible to correct up to t errors and to detect t + j, 0 < j � s 
errors which occurred during transmission over a channel. 

A mathematical criteria for this, given in the linear code is ; 
A linear code C with minimum distance dmin can correct upto t 
errors and can detect t + j, 0 < j � s, errors if and only if zt + s � 
dmin or equivalently we can say “A linear code C with minimum 

distance d can correct t errors if and only if (d 1)t
2
�� �� � �� �

. The 

real problem of coding theory is not merely to minimize errors 
but to do so without reducing the transmission rate 
unnecessarily. Errors can be corrected by lengthening the code 
blocks, but this reduces the number of message symbols that 
can be sent per second. To maximize the transmission rate we 
want code blocks which are numerous enough to encode a given 
message alphabet, but at the same time no longer than is 
necessary to achieve a given Hamming distance. One of the 
main problems of coding theory is “Given block length n and 
Hamming distance d, find the maximum number, A(n, d) of 
binary blocks of length n which are at distances � d from each 
other”. 
 Let u = (u1, u2, …, un) and v = (v1, v2, …, vn) be vectors in 

n
qF  and let u.v = u1v1 + u2v2 + … + unvn denote the dot product 

of u and v over n
qF . If u.v = 0 then u and v are called 

orthogonal. 
 
DEFINITION 1.2.5: Let C be a linear (n, k) code over Fq. The 
dual(or orthogonal)code C� = {u | u.v = 0 for all v  C}, u 

n
qF . If C is a k-dimensional subspace of the n-dimensional 
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vector space n
qF the orthogonal complement is of dimension n – 

k and an (n, n – k) code. It can be shown that if the code C has a 
generator matrix G and parity check matrix H then C� has 
generator matrix H and parity check matrix G.  
 
Orthogonality of two codes can be expressed by GH

T = (0). 
 
Example 1.1 .5: Let us consider the parity check matrix H of a 
(7, 3) code where  

1 0 0 1 0 0 0
0 0 1 0 1 0 0
1 1 0 0 0 1 0
1 0 1 0 0 0 1

H

� �
� �
� ��
� �
� �
� �

. 

 
The code words got using H are as follows 
 

0  0  0  0  0  0  0
1  0  0  1  0  1  1
0  1  0  0  0  1  0
0  0  1  0  1  0  1
1  1  0  1  0  0  1

   
0  1  1  0  1  1  1
1  0  1  1  1  1  0
1  1  1  1  1  0  0

. 

 
Now for the orthogonal code the parity check matrix H of the 
code happens to be generator matrix, 
 

1 0 0 1 0 0 0
0 0 1 0 1 0 0

G
1 1 0 0 0 1 0
1 0 1 0 0 0 1

� �
� �
� ��
� �
� �
� �

. 

 

T0 1 0 0 1 0 0 0
0 0 0 1 0 1 0 0

x
0 1 1 0 0 0 1 0
0 1 0 1 0 0 0 1

� � � �
� � � �
� � � ��
� � � �
� � � �
� � � �

 = [0 0 0 0 0 0 0]. 
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T1 1 0 0 1 0 0 0

0 0 0 1 0 1 0 0
x

0 1 1 0 0 0 1 0
0 1 0 1 0 0 0 1

� � � �
� � � �
� � � ��
� � � �
� � � �
� � � �

 = [1 0 0 1 0 0 0]. 

 

� �

1 0 0 1 0 0 0
0 0 1 0 1 0 0

x 0 1 0 0
1 1 0 0 0 1 0
1 0 1 0 0 0 1

� �
� �
� ��
� �
� �
� �

 = [0 0 1 0 1 0 0] 

 

� �

1 0 0 1 0 0 0
0 0 1 0 1 0 0

0 0 1 0
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

� �
� �
� ��
� �
� �
� �

 = [1 1 0 0 0 1 0]  

 

� �

1 0 0 1 0 0 0
0 0 1 0 1 0 0

0 0 0 1
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

� �
� �
� ��
� �
� �
� �

 = [1 0 1 0 0 0 1]  

 

� �

1 0 0 1 0 0 0
0 0 1 0 1 0 0

1 1 0 0
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

� �
� �
� ��
� �
� �
� �

 = [1 0 1 1 1 0 0]  

 

� �

1 0 0 1 0 0 0
0 0 1 0 1 0 0

1 0 1 0
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

� �
� �
� ��
� �
� �
� �

 = [0 1 0 1 0 1 0]  
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� �

1 0 0 1 0 0 0
0 0 1 0 1 0 0

1 0 0 1
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

� �
� �
� ��
� �
� �
� �

= [0 0 1 1 0 0 1] 

 

� �

1 0 0 1 0 0 0
0 0 1 0 1 0 0

0 1 1 0
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

� �
� �
� ��
� �
� �
� �

= [1 1 1 0 1 1 0]  

 

� �

1 0 0 1 0 0 0
0 0 1 0 1 0 0

0 1 0 1
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

� �
� �
� ��
� �
� �
� �

 = [1 0 0 0 1 0 1]  

 

� �

1 0 0 1 0 0 0
0 0 1 0 1 0 0

0 0 1 1
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

� �
� �
� ��
� �
� �
� �

 = [0 1 1 0 0 1 1]  

 

� �

1 0 0 1 0 0 0
0 0 1 0 1 0 0

1 1 1 0
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

� �
� �
� ��
� �
� �
� �

 = [0 1 1 1 1 1 0]  

 

� �

1 0 0 1 0 0 0
0 0 1 0 1 0 0

1 1 0 1
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

� �
� �
� ��
� �
� �
� �

 = [0 0 0 1 1 0 1]  
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� �

1 0 0 1 0 0 0
0 0 1 0 1 0 0

1 0 1 1
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

� �
� �
� ��
� �
� �
� �

 = [1 1 1 1 0 1 1]  

 

� �

1 0 0 1 0 0 0
0 0 1 0 1 0 0

0 1 1 1
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

� �
� �
� ��
� �
� �
� �

 = [0 1 0 0 1 1 1]  

 

� �

1 0 0 1 0 0 0
0 0 1 0 1 0 0

1 1 1 1
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

� �
� �
� ��
� �
� �
� �

 = [1 1 0 1 1 1 1] . 

 
The code words of C(7, 4) i.e., the orthogonal code of C(7, 3) 
are  
 
�(0 0 0 0 0 0 0), (1 0 0 1 0 0 0), (0 0 1 0 1 0 0), (1 1 0 0 0 1 0), 
(1 0 1 0 0 0 1), (1 0 1 1 1 0 0), (0 1 0 1 0 1 0), (0 0 1 1 0 0 1), (1 
1 1 0 1 1 0), (1 0 0 0 1 0 1), (0 1 1 0 0 1 1), (0 1 1 1 1 1 0), (0 0 
0 1 1 0 1), (1 1 1 1 0 1 1), (0 1 0 0 1 1 1), (1 1 0 1 1 1 1)� 
  
Thus we have found the orthogonal code for the given code. 
Now we just recall the definition of the cosets of a code C.  
 
DEFINITION 1.2.6: For a  n

qF  we have a + C = {a + x /x 
C}. Clearly each coset contains qk vectors. There is a partition 
of n

qF of the form n
qF = C � {a(1) + C} � {a(2) + C} � … � {at

+ C} for t = qn–k –1. If y is a received vector then y must be an 
element of one of these cosets say ai + C. If the code word x(1)

has been transmitted then the error vector  

e = y – x(1)  a(i) + C – x(1) = a(i) + C. 
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Now we give the decoding rule which is as follows: 
If a vector y is received then the possible error vectors e are 

the vectors in the coset containing y. The most likely error is the 
vector e with minimum weight in the coset of y. Thus y is 
decoded as � �x y e . [18-21] 

Now we show how to find the coset of y and describe the 
above method. The vector of minimum weight in a coset is 
called the coset leader. 

If there are several such vectors then we arbitrarily choose 
one of them as coset leader. Let a(1), a(2), …, a(t) be the coset 
leaders. We first establish the following table  

(1) (2) ( )

(1) (1) (1) (2) (1) ( )

( ) (1) ( ) (2) ( ) ( )

0 0� �
�� � � ��
�
�

� � � ��

�
�

� � �

�

k

k

k

q

q

t t t q

x x x code words inC
a x a x a x

other cosets

a x a x a x
coset
leaders

If a vector y is received then we have to find y in the table. 
Let y = a(i) + x(j); then the decoder decides that the error e is
the coset leader a(i). Thus y is decoded as the code word 

( )jx y e x� � � . The code word x occurs as the first element 
in the column of y. The coset of y can be found by evaluating the 
so called syndrome. 

Let H be parity check matrix of a linear (n, k) code. Then 
the vector S(y) = HyT of length n–k is called syndrome of y. 
Clearly S(y) = (0) if and only if y  C.
S(y(1)) = S(y(2)) if and only if y(1) + C = y(2) + C . 

We have the decoding algorithm as follows: 
If y  n

qF  is a received vector find S(y), and the coset 
leader e  with syndrome S(y). Then the most likely transmitted 
code word is x y e� �  we have ( , )d x y .= min{d(x, y)/x  C}.
 
We illustrate this by the following example: 
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Example 1.2.6: Let C be a (5, 3) code where the parity check 
matrix H is given by 

H =
1 0 1 1 0
1 1 0 0 1
� �
� �
� �

 

and 

G = 
1 0 0 1 1
0 1 0 0 1
0 0 1 1 0

� �
� �
� �
� �� �

. 

 
The code words of C are  
 
{(0 0 0  0 0), (1 0 0 1 1), (0 1 0 0 1), (0 0 1 1 0), (1 1 0 1 0), (1 0 
1 0 1), (0 1 1 1 1), (1 1 1 0 0)}. 
 
The corresponding coset table is  
  
Message 000 100 010 001 110 101 011 111 

code 
words 00000 10011 01001 00110 11010 10101 01111 11100 

10000 00011 11001 10110 01010 00101 11111 01100 
01000 11011 00001 01110 10010 11101 00111 10100 other 

cosets 00100 10111 01101 00010 11110 10001 01011 11000 
 coset 
 leaders 

   
If y = (1 1 1 1 0) is received, then y is found in the coset with 
the coset leader (0 0 1 0 0) 
y + (0 0 1 0 0) = (1 1 1 1 0) + (0 0 1 0 0 ) = (1 1 0 1 0) is the 
corresponding message. 
 
Now with the advent of computers it is easy to find the real 
message or the sent word by using this decoding algorithm.  

A binary code Cm of length n = 2m– 1, m � 2 with m × 2m –1 
parity check matrix H whose columns consists of all non zero 
binary vectors of length m is called a binary Hamming code. 

We give example of them. 
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Example 1.2.7: Let  
 

H = 

1 0 1 1 1 1 0 0 1 0 1 1 0 0 0
1 1 0 1 1 1 1 0 0 1 0 0 1 0 0
1 1 1 0 1 0 1 1 0 0 1 0 0 1 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 1

� �
� �
� �
� �
� �
� �

 

 
which gives a C4(15, 11, 4) Hamming code.  
 
Cyclic codes are codes which have been studied extensively. 

Let us consider the vector space n
qF over Fq. The mapping  

Z: n
qF  � n

qF  
where Z is a linear mapping called a “cyclic shift” if Z(a0, a1, 
…, an–1) = (an–1, a0, …, an–2)  
 A = (Fq[x], +, ., .) is a linear algebra in a vector space over 
Fq. We define a subspace Vn of this vector space by 
 
Vn  =  {v  Fq[x] / degree v < n} 

=  {v0 + v1x + v2x2 + … + vn–1xn–1 / vi  Fq; 0 � i � n –1}. 
 
We see that Vn � n

qF  as both are vector spaces defined over the 
same field Fq. Let � be an isomorphism  
 
�(v0, v1, …, vn–1) � {v0 + v1x + v2x2 + … + vn–1xn–1}. 
w: n

qF  � Fq[x] / xn – 1  
i.e., w (v0, v1, …, vn–1) = v0 + v1x + … + vn–1x n–1.  
 
Now we proceed onto define the notion of a cyclic code. 
 
DEFINITION 1.2.7: A k-dimensional subspace C of n

qF is called 
a cyclic code if Z(v)  C for all v  C that is v = v0, v1, …, vn–1

 C implies (vn–1, v0, …, vn–2)  C for v  n
qF .

 
We just give an example of a cyclic code. 
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Example 1.2.8: Let C  7

2F be defined by the generator matrix  
 

G = 

(1)

(2)

(3)

1 1 1 0 1 0 0 g
0 1 1 1 0 1 0 g
0 0 1 1 1 0 1 g

� �� �
� �� � � � �� �
� �� �� � � �

. 

 
The code words generated by G are �(0 0 0 0 0 0 0), (1 1 1 0 1 0 
0), (0 1 1 1 0 1 0), (0 0 1 1 1 0 1), (1 0 0 1 1 1 0), (1 1 0 1 0 0 1), 
(0 1 0 0 1 1 1), (1 0 1 0 0 1 1)�. 
 
Clearly one can check the collection of all code words in C 
satisfies the rule if (a0 … a5)  C then (a5 a0 … a4)  C i.e., the 
codes are cyclic. Thus we get a cyclic code.  
 
Now we see how the code words of the Hamming codes looks 
like. 
 
Example 1.2.9: Let  

1 0 0 1 1 0 1
H 0 1 0 1 0 1 1

0 0 1 0 1 1 1

� �
� �� � �
� �� �

 

 
be the parity check matrix of the Hamming (7, 4) code.  

 
Now we can obtain the elements of a Hamming(7,4) code.  
We proceed on to define parity check matrix of a cyclic 

code given by a polynomial matrix equation given by defining 
the generator polynomial and the parity check polynomial. 
 
DEFINITION 1.2.8: A linear code C in Vn = {v0 + v1x + … +  
vn–1xn–1 | vi  Fq, 0 � i � n –1} is cyclic if and only if C is a 
principal ideal generated by g  C. 

The polynomial g in C can be assumed to be monic. 
Suppose in addition that g / xn –1 then g is uniquely determined 
and is called the generator polynomial of C. The elements of C 
are called code words, code polynomials or code vectors. 
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Let g = g0 + g1x + … + gmxm  Vn, g / xn –1 and deg g = m < n. 
Let C be a linear (n, k) code, with k = n – m defined by the 
generator matrix, 

0 1

0 1

k-1
0 1

0 0 g
0 0 xg

   =

0 0 x g

m

m m

m

g g g
g g g

G

g g g

�

� � � �
� � � �
� � � ��
� � � �
� � � �

� �� �

� �
� �

� �
.

Then C is cyclic. The rows of G are linearly independent and 
rank G = k, the dimension of C.  
 
Example 1.2.10: Let g = x3 + x2 + 1 be the generator 
polynomial having a generator matrix of the cyclic(7,4) code 
with generator matrix  
 

G = 

1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1

� �
� �
� �
� �
� �
� �

. 

 
The codes words associated with the generator matrix is  
 
0000000, 1011000, 0101100, 0010110, 0001011, 1110100, 
1001110, 1010011, 0111010, 0100111, 0011101, 1100010, 
1111111, 1000101, 0110001, 1101001. 
 
The parity check polynomial is defined to be  

h = 
7x 1
g
�  

h = 
7

3 2

x 1
x x 1

�
� �

 = x4 + x3 + x2 + 1. 

If 
nx 1
g
�  = h0 + h1x + … + hkxk. 
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the parity check matrix H related with the generator polynomial 
g is given by  
 

k 1 0

k k 1 0

k 1 0

0 0 h h h
0 h h h 0

H

h h h 0

�

� �
� �
� ��
� �
� �
� �

� �
�

� � � � �
� �

. 

 
For the generator polynomial g = x3 + x2 +1 the parity check 
matrix  
  

0 0 1 1 1 0 1
H 0 1 1 1 0 1 0

1 1 1 0 1 0 0

� �
� �� � �
� �� �

 

 
where the parity check polynomial is given by x4 + x3 + x2 + 1 = 

7

3 2

x 1
x x 1

�
� �

. It is left for the reader to verify that the parity check 

matrix gives the same set of cyclic codes.  
 
We now proceed on to give yet another new method of 
decoding procedure using the method of best approximations.  

We just recall this definition given by �9, 19-21�. We just 
give the basic concepts needed to define this notion. We know 
that n

qF is a finite dimensional vector space over Fq. If we take 

Z2 = (0, 1) the finite field of characteristic two. 5
2Z  = Z2 × Z2 × 

Z2 × Z2 × Z2 is a 5 dimensional vector space over Z2. Infact {(1 
0 0 0 0), (0 1 0 0 0), (0 0 1 0 0), (0 0 0 1 0), (0 0 0 0 1)} is a 
basis of 5

2Z . 5
2Z  has only 25 = 32 elements in it. Let F be a field 

of real numbers and V a vector space over F. An inner product 
on V is a function which assigns to each ordered pair of vectors 
!, " in V a scalar #! /" $ in F in such a way that for all !, ", % in 
V and for all scalars c in F.  
 

(a) #! + " / %$ = #!/%$ + #"/%$ 
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(b) #c! /"$ = c#!/"$ 
(c) #"/!$ = #!/"$ 
(d) #!/!$ > 0 if ! 	 0.  

 
On V there is an inner product which we call the standard inner 
product. Let ! = (x1, x2, …, xn) and " = (y1, y2, …, yn)  
 

#! /"$ = i i
i

x y& . 

 
This is called as the standard inner product. #!/!$ is defined as 
norm and it is denoted by ||!||. We have the Gram-Schmidt 
orthogonalization process which states that if V is a vector 
space endowed with an inner product and if "1, "2, …, "n be any 
set of linearly independent vectors in V; then one may construct 
a set of orthogonal vectors !1, !2, …, !n in V such that for each 
k = 1, 2, …, n the set {!1, …, !k} is a basis for the subspace 
spanned by "1, "2, …, "k where !1 = "1.  

 
1 1

2 2 12
1

3 1 3 2
3 3 1 22 2

1 2

/
 

/ /
 

" !
! � " � !

!

" ! " !
! � " � ! � !

! !

� �

� � � �

 

 
and so on. 

Further it is left as an exercise for the reader to verify that if 
a vector " is a linear combination of an orthogonal sequence of 
non-zero vectors !1, …, !m, then " is the particular linear 
combination, i.e.,  

m
k

k2
k 1 k

/

�

" !
" � !

!& � �
. 

 
In fact this property that will be made use of in the best 
approximations.  

We just proceed on to give an example. 
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Example 1.2.11: Let us consider the set of vectors "1 = (2, 0, 3), 
"2 = (–1, 0, 5) and "3 = (1, 9, 2) in the space R3 equipped with 
the standard inner product. 
Define !1 = (2, 0, 3)  
 

2
( 1, 0, 5) /(2, 0, 3)

( 1, 0, 5) (2, 0, 3)
13

�
! � � �  

� �13( 1, 0, 5) 2, 0, 3
13

� � �  = (–3, 0, 2) 

3
( 1, 9, 2) /(2, 0, 3)

(1,9,2) (2, 0, 3)
13

�
! � �

(1, 9, 2) /( 3, 0, 2)
( 3,0,2)

13
�

� �  

= 8 1(1,9,2) (2,0,3) ( 3,0,2)
13 13
� � �  

16 24 3 2(1,9,2) , 0, , 0,
13 13 13 13
' ( ' (� � �) * ) *
+ , + ,

 

16 3 24 2(1,9,2) , 0,
13 13

- �� �' (� � . �) *
+ ,/ �

 

= (1, 9, 2) – (1, 0, 2) 
= (0, 9, 0). 

 
Clearly the set �(2, 0, 3), (–3, 0, 2), (0, 9, 0)� is an orthogonal 
set of vectors. 
 Now we proceed on to define the notion of a best 
approximation to a vector " in V by vectors of a subspace W 
where " 0 W. Suppose W is a subspace of an inner product 
space V and let " be an arbitrary vector in V. The problem is to 
find a best possible approximation to " by vectors in W. This 
means we want to find a vector ! for which ||" – !|| is as small 
as possible subject to the restriction that ! should belong to W. 
To be precisely in mathematical terms: A best approximation to 
" by vectors in W is a vector ! in W such that ||" – ! || � ||" – %|| 
for every vector % in W ; W a subspace of V. 

By looking at this problem in R2 or in R3 one sees 
intuitively that a best approximation to " by vectors in W ought 
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to be a vector ! in W such that " – ! is perpendicular 
(orthogonal) to W and that there ought to be exactly one such !. 
These intuitive ideas are correct for some finite dimensional 
subspaces, but not for all infinite dimensional subspaces. 

We just enumerate some of the properties related with best 
approximation. 

Let W be a subspace of an inner product space V and let " 
be a vector in V. 

(i) The vector ! in W is a best approximation to " by 
vectors in W if and only if " – ! is orthogonal to 
every vector in W. 

(ii) If a best approximation to " by vectors in W exists, 
it is unique. 

(iii) If W is finite-dimensional and {!1, !2, …, !n} is 
any orthonormal basis for W, then the vector 

k
k2

k k

/" !
! � !

!& � �
, where ! is the (unique)best 

approximation to " by vectors in W. 
Now this notion of best approximation for the first time is used 
in coding theory to find the best approximated sent code after 
receiving a message which is not in the set of codes used. 
Further we use for coding theory only finite fields Fq. i.e., |Fq| < 
1 . If C is a code of length n; C is a vector space over Fq and C 
� k

qF    n
qF , k the number of message symbols in the code, i.e., 

C is a C(n, k) code. While defining the notion of inner product 
on vector spaces over finite fields we see all axiom of inner 
product defined over fields as reals or complex in general is not 
true. The main property which is not true is if 0 	 x  V; the 
inner product of x with itself i.e., #x / x$ = #x, x$ 	 0 if x 	 0 is 
not true i.e., #x / x$ = 0 does not imply x = 0.  
 To overcome this problem we define for the first time the 
new notion of pseudo inner product in case of vector spaces 
defined over finite characteristic fields [9, 20-1].  
 
DEFINITION 1.2.9: Let V be a vector space over a finite field Fp
of characteristic p, p a prime. Then the pseudo inner product on 
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V is a map #,$ p : V × V � Fp satisfying the following 
conditions:

1. #x, x$p � 0 for all x  V and #x, x$p = 0 does not in 
general imply x = 0.  

 2. #x, y$p = #y, x$p for all x, y  V.
3.  #x + y, z$p = #x, z$p + #y, z$p for all x, y, z  V.

 4. #x, y + z$p = #x, y$p + #x, z$p for all x, y, z  V. 
 5. #!.x, y$p = ! #x, y$p and 
 6. #x, ".y$p = "#x, y$p for all x, y,  V and !, "  Fp .

Let V be a vector space over a field Fp of characteristic p, p is a 
prime; then V is said to be a pseudo inner product space if there 
is a pseudo inner product #,$p defined on V. We denote the 
pseudo inner product space by (V, #,$p).  
 
Now using this pseudo inner product space (V, #,$p) we proceed 
on to define pseudo-best approximation. 
 
DEFINITION 1.2.10: Let V be a vector space defined over the 
finite field Fp (or Zp). Let W be a subspace of V. For "  V and 
for a set of basis {!1, …, !k} of the subspace W the pseudo best 

approximation to ", if it exists is given by 
1

,
�
&

k

i ip
i
" ! ! . If 

1
,

�
&

k

i ip
i
" ! !  = 0, then we say the pseudo best approximation 

does not exist for this set of basis {!1, !2, …, !k}. In this case 
we choose another set of basis for W say {%1, %2, …, %k} and 

calculate
1

,
�
&

k

i ip
i
" % %  and 

1
,

�
&

k

i ip
i
" % %  is called a pseudo best 

approximation to ".
 
Note: We need to see the difference even in defining our pseudo 
best approximation with the definition of the best 
approximation. Secondly as we aim to use it in coding theory 
and most of our linear codes take only their values from the 
field of characteristic two we do not need #x, x$ or the norm to 
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be divided by the pseudo inner product in the summation of 
finding the pseudo best approximation.  
 
Now first we illustrate the pseudo inner product by an example. 
 
Example 1.2.12: Let V = Z2 × Z2 × Z2 × Z2 be a vector space 
over Z2. Define #,$p to be the standard pseudo inner product on 
V; so if x = (1 0 1 1) and y = (1 1 1 1) are in V then the pseudo 
inner product of  

#x, y$p = #(1 0 1 1 ), (1 1 1 1)$p = 1 + 0 + 1 + 1 = 1. 
Now consider  

#x, x$p = #(1 0 1 1), (1 0 1 1)$p = 1 + 0 + 1 + 1 	 0  
but 

#y, y$p = #(1 1 1 1), (1 1 1 1)$p = 1 + 1 + 1 + 1 = 0. 
 
We see clearly y 	 0, yet the pseudo inner product is zero.  
 
Now having seen an example of the pseudo inner product we 
proceed on to illustrate by an example the notion of pseudo best 
approximation. 
 
Example 1.2.13: Let  

V = 8
2 2 2 2

8 times

Z Z   Z  Z� 2 2 2�����	���
  

be a vector space over Z2. Now  
W = �0 0 0 0 0 0 0 0), (1 0 0 0 1 0 11), (0 1 0 0 1 1 0 0), (0 0 1 0 
0 1 1 1), (0 0 0 1 1 1 0 1), (1 1 0 0 0 0 1 0), (0 1 1 0 1 1 1 0), (0 
0 1 1 1 0 1 0), (0 1 0 1 0 1 0 0), (1 0 1 0 1 1 0 0), (1 0 0 1 0  1 1 
0), (1 1 1 0 0 1 0 1), (0 1 1 1 0 0 1 1), (1 1 0 1 1 1 1 1), (1 0 1 1 
0 0 0 1), (1 1 1 1 1 0 0 0)�  
 
be a subspace of V. Choose a basis of W as B = {!1, !2, !3, !4} 
where 

!1 = (0 1 0 0 1 0 0 1), 
!2 = (1 1 0 0 0 0 1 0), 
!3 = (1 1 1 0 0 1 0 1) 

and 
!4 = (1 1 1 1 1 0 0 0). 
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Suppose " = (1 1 1 1 1 1 1 1) is a vector in V using pseudo best 
approximations find a vector in W close to ". This is given by ! 
relative to the basis B of W where  
 

4

k kp
k 1

,
��

! � " ! !&  

 
=  #(1 1 1 1 1 1 1 1), (0 1 0 0 1 0 0 1)$p !1 +  

#(1 1 1 1 1 1 1 1), (1 1 0 0 0 0 1 0)$p !2 +  
#(1 1 1 1 1 1 1 1), (1 1 1 0 0 1 0 1)$p !3 +  
#(1 1 1 1 1 1 1 1), (1 1 1 1 1 0 0 0)$p !4.  

=  1.!1 + 1.!2 + 1.!3 + 1.!4. 
=  (0 1 0 0 1 0 0 1) + (1 1 0 0 0 0 1 0) + (1 1 1 0 0 1 0 1) + (1 1 
 1 1 1 0 0 0)  
=  (1 0 0 1 0 1 1 0)  W.  
 
Now having illustrated how the pseudo best approximation of a 
vector " in V relative to a subspace W of V is determined, now 
we illustrate how the approximately the nearest code word is 
obtained.  
 
Example 1.2.14: Let C = C(4, 2) be a code obtained from the 
parity check matrix  
 

1 0 1 0
H

1 1 0 1
� �

� � �
� �

. 

 
The message symbols associated with the code C are {(0, 0), (1, 
0), (1, 0), (1, 1)}. The code words associated with H are C = {(0 
0 0 0), (1 0 1 1), (0 1 0 1), (1 1 1 0)}. The chosen basis for C is 
B = {!1, !2} where !1 = (0 1 0 1) and !2 = (1 0 1 1). Suppose 
the received message is " = (1 1 1 1), consider H"T = (0 1) 	 (0) 
so " 0 C. Let ! be the pseudo best approximation to " relative 
to the basis B given as 
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2

k kp
k 1

,
�

! � " ! !&   = #(1 1 1 1), (0 1 0 1)$p!1  

+ #(1 1 1 1), (1 0 1 1)$p!2. 
 

= (1 0 1 1) . 
  
Thus the approximated code word is (1 0 1 1). 
 
Now having seen some simple properties of codes we now 
proceed on to define super special vector spaces. This new 
algebraic structure basically makes used of supermatrices. For 
more super linear algebra please refer [10, 21].  
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Chapter Two  

SUPER SPECIAL VECTOR SPACES

In this chapter we for the first time define a new class of super 
special vector spaces. We describe mainly those properties 
essential for us to define super special codes and their properties 
like decoding, etc. Throughout this chapter V denotes a vector 
space over a field F. F may be a finite characteristic field or an 
infinite characteristic field. 

DEFINITION 2.1: Let Vs = [V1 | V2 | … | Vn] where each Vi is a 
vector space of dimension m over a field F; i = 1, 2, …, n, then 
we call Vs to be the super special finite dimensional vector 
space over F. Any element vs  Vs would be of the form 
� �� �� � � �1 1 1 2 2 2 n n n

1 2 m 1 2 m 1 2 mv v v v v v v v v  where t
iv F ; 1 � i � m 

and 1 � t � n and � ��t t t
1 2 mv v v  Vt. Vt a vector space of 

dimension m over F i.e., 
m - times

� ���	��
tV F × F ×…× F  is true for t = 1, 2, 
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…, n. Thus any element vs  Vs is a super row vector with 
entries from the field F. If vs, ws Vs the sum vs + ws is defined 
to be

� � � � � �� � �1 1 1 1 1 1 2 2 2 2 2 2
1 1 2 2 m m 1 1 2 2 m m[ v w v w v w v w v w v w

� � ��n n n n n n
1 1 2 2 m mv w v w v w ]  

where
� � � � �1 1 1 2 2 2 n n n

s 1 2 m 1 2 m 1 2 mw [ w w w w w w w w w ] .
Also

� � � � �1 1 1 2 2 2 n n n
s 1 2 m 1 2 m 1 2 mav [ av av av av av av av av av ],

a  F. 

We illustrate this by a simple example. 

Example 2.1: Let Vs = [V1 | V2 | V3] where each Vi is a 3 
dimensional vector space over Q, the field of rationals. Any 
element 3s Vs would be of the form  

1 1 1 2 2 2 3 3 3
s 1 2 3 1 2 3 1 2 3a  a  a | a  a  a | a  a  a� �3 � � �

 is a super row vector; where i
ja  Q; 1 � i, j � 3. Clearly Vs is a 

super special finite dimensional super vector space over Q.  

Bs = {[0 0 1 | 0 0 1 | 0 0 1], [0 0 1 | 0 0 1 | 0 1 0], 
[0 0 1 | 0 0 1 | 1 0 0], [0 0 1 | 0 1 0 | 0 0 1], 
[0 0 1 | 0 1 0 | 0 1 0], [0 0 1 | 0 1 0 | 1 0 0], 
[0 0 1 | 1 0 0 | 0 0 1], [0 0 1 | 1 0 0 | 1 1 0], 
[0 0 1 | 1 0 0 | 1 0 0], [0 1 0 | 1 0 0 | 0 0 1], 
[0 1 0 | 0 0 1 | 0 0 1], [0 1 0 | 0 0 1 | 0 1 0], 
[0 1 0 | 0 1 0 | 0 1 0], [0 1 0 | 0 1 0 | 1 0 0], 
[0 1 0 | 1 0 0 | 1 0 0], [0 1 0 | 1 0 0 | 0 1 0], 
[1 0 0 | 1 0 0 | 0 1 0], [1 0 0 | 1 0 0 | 0 0 1], 
[1 0 0 | 1 0 0 | 1 0 0], [1 0 0 | 0 1 0 | 0 0 1], 
[1 0 0 | 0 1 0 | 0 1 0], [0 1 0 | 0 0 1 | 1 0 0], 
[0 1 0 | 0 1 0 | 0 0 1], [1 0 0 | 0 1 0 | 1 0 0], 
[1 0 0 | 0 0 1 | 1 0 0], [1 0 0 | 0 0 1 | 0 1 0] 

and
[1 0 0 | 0 0 1 | 0 0 1]}; 
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forms a super basis of Vs. Clearly this Bs will generate Vs over 
Q. It is easily verified Bs 4 Vs and the elements of Bs is a 
linearly independent set in Vs.

We have seen a super special finite dimensional vector space 
over Q. Now we proceed on to define the super special basis of 
a super special vector space over F. 

DEFINITION 2.2: Let Vs = [V1 | V2 | … | Vn] be a super special 
vector space where each Vi is of dimension m over the field F. 
Let ;� 5 ��1 2 t n

s s s sB { v ,v , ,v 0 t m } be the elements from Vs i.e., 
each t

sv  is a super row vector 1 � p � t. We say �1 2 t
s s sv ,v , ,v  

forms a super linearly independent set if, !1, …, !t are scalars 
in F such that  

� � ��1 2 t
1 s 2 s t sv v v! ! !  = (0 …0 | 0 …0 | …| 0 …0) … I 

then each !i = 0. If equation I is true for some non zero scalars 
!1, …, !t in F then we say �1 2 t

s s sv ,v , , v  forms a super linearly 
dependent set. 

If Bs forms a super linearly independent set and if every 
element in Vs can be expressed as a super linear combination 
from the set Bs in a unique way then we call Bs to be a special 
super basis of Vs or super special basis of Vs. If the number of 
elements in Bs is finite then we call Vs to be a finite dimensional 
super special vector space otherwise an infinite dimensional 
super special vector space. 

Example 2.2: Let Vs = [V1 | V2 | V3] where each Vi is a two 
dimensional vector space over Q, i = 1, 2, 3; be the super special 
vector space i.e., Vi � Q × Q; 1 � i � 3. 

We see 
Bs = {[1 0 | 1 1 | 0 1], [2 0 | 1 0 | 3 1], [3 0 | 2 1 | 3 2] 4 Vs

is a super linearly dependent set as [1 0 | 1 1 | 0 1] + [2 0 | 1 0 | 3 
1] = [3 0 | 2 1 | 3 2].  
Suppose we consider a subset  

Cs = {[1 0 | 1 0 | 1 0], [0 1 | 1 0 | 1 0], 
[1 0 | 1 0 | 0 1], [1 0 | 0 1 | 0 1], 
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[1 0 | 0 1 | 1 0] [0 1 | 1 0 | 0 1], 
[0 1 | 0 1 | 1 0], [0 1 | 0 1 | 0 1]} 

of Vs; clearly Cs is a super linearly independent set as well as Cs
is a super basis of Vs.

It is a matter of routine to verify a super special vector space 
which is finite dimensional will have only the same number of 
elements in every super special basis of Vs.

Next we define a super special subvector space of a super 
special vector space Vs = [V1 | V2 | … | Vn]. 

DEFINITION 2.3: Let Vs = [V1 | V2 | … | Vn] be a super special 
vector space; where each Vi is of dimension m. A non empty 
subset Ws = {[W1 | W2 | … | Wn]} of Vs is said to be a super 
special subspace of Vs if each Wi is a subspace of the vector 
space Vi of dimension k, k < m for i = 1, 2, …, n.  

We give an example of a super special subspace of a super 
special vector space. 

Example 2.3: Let Vs = [M2 × 2 | Q × Q × Q × Q] = [V1 | V2] be a 
super special vector space over the field Q. Clearly both V1 and 
V2 are vector spaces of dimension 4 over Q. Let Ws = {[W1 | 
W2]} where  

1

a 0
W a, b Q

0 b
- �' (� �� . �) *
+ ,� �/ �

and
W2 = Q × Q {0} ×{0} 

are subspaces of V1 and V2 respectively of dimension 2. Ws is 
super special subspace of Vs.

Now we define the notion of super special mixed dimension 
vector space. 

DEFINITION 2.4: Let Vs = [V1 | V2 | … | Vn], where each Vi is a 
finite dimensional vector space of dimension mi over a field F ; 
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mi 	 mj for at least one i 	 j for i = 1, 2, …, n, 1 � j � n. Then Vs
is defined to be a super special mixed dimension vector space. 

Example 2.4: Let Vs = [M2 × 2 | Q × Q × Q × Q | V3] where V3 is 
Q[x] and Q[x] is the set of all polynomials of degree less than or 
equal to 3 with coefficients from Q. We see M2 × 2 = V1 is a 
vector space of dimension 4 and V3 is also a vector space of 
dimension 4. 

Thus we see M2 × 2 � Q × Q × Q × Q; V2 � Q × Q × Q × Q 
and V3� Q × Q × Q × Q. So any vs Vs will be of the form  

1 1 1 1 2 2 2 2 3 3 3 3
1 2 3 4 1 2 3 4 1 2 3 4q  q  q  q  | q  q  q  q  | q  q  q  q� �� �

where i
jq  Q with i = 1, 2, 3, 4.  

Let us consider
Bs = 1 2 3 1 2 3 1 2 3 1 2 3

1 1 1 1 1 2 1 1 3 4 4 4{[v  v  v ],[v  v  v ],[v  v  v ], ,[v  v  v ]}�
where

1 1 1 1
1 2 3 4

1 0 0 1 0 0 0 0
v , v , v , v ;

0 0 0 0 0 1 0 1
� � � � � � � �

� � � �� � � � � � � �
� � � � � � � �

2
1v  = [0 0 0 1], 2

2v  = [0 0 1 0], 2
3v  = [0 1 0 0], 2

4v  = [1 0 0 0],  
3
1v  = 1, 3

2v  = x, 3
3v  = x2 and 3

4v  = x3. Clearly |Bs| = 64, 

Bs4 Vs and Bs is a special super basis of Vs over Q.

We may have any other basis for Vs but it is true as in case of 
vector spaces even in special super vector spaces the number of 
elements in each and every superbasis is only fixed and equal. 
Further as in case of usual vector spaces even in case of super 
special vector spaces Vs, every element of Vs can be represented 
by a super row vector when the dimension of each Vi is the 
same and would be represented by a super mixed row vector; in 
case the dimension of each of the vector spaces Vi’s are 
different.
 Now we illustrate by an example the notion of super special 
mixed dimension vector space. 
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Example 2.5: Let Vs = [V1 | V2 | V3 | V4] be a special super 
mixed dimension vector space over Q, where V1 = Q × Q × Q is 
a vector space of dimension 3 over Q, V2 = M3 × 2; the set of all 3 
× 2 matrices with entries from Q is a vector space of dimension 
6 over Q, V3 = Q[x] ; the set of all polynomials of degree less 
than or equal to four and V4 = P2 × 2 the set of all 2 × 2 matrices 
with entries from Q. V4 is a vector space of dimension 4 over Q. 
Thus Vs is a super special mixed dimensional vector space over 
Q. Any element vs Vs is a super mixed row vector given by  

1 1 1 2 2 2 2 2 2
s 1 2 3 1 2 3 4 5 6v {[v  v  v  |  v  v  v  v v  v  | �

3 3 3 3 3 4 4 4 4
1 2 3 4 5 1 2 3 4v  v  v  v  v  | v  v  v  v ]}

where i
jv Vi ; 1 � j � 3, 4, 5 or 6 and 1 � i � 4.

A super special subspace of Vs can be either a super special 
subspace or it can also be a super special mixed dimension 
subspace.
 Now it is important at this point to mention even a super 
special vector space can have a super special mixed dimension 
subspace also a super special mixed dimension vector space can 
have a super special vector subspace. 
 We illustrate this situation now by the following example. 

Example 2.6: Let Vs = [V1 | V2 | V3] where V1 is the set of all 2 
× 3 matrices with entries from Q, V2 is the set of all 1 × 6 row 
vector with entries from Q and V3 is the collection of all 
polynomials of degree less than or equal to five with 
coefficients from Q. All the three vector spaces V1, V2 and V3
are of dimensions 6 over Q. Vs is a super special vector space 
over Q.

Take Ws = [W1 | W2 | W3] to be a proper subset of Vs where

1 2 3
1 1 2 3 4

4

a a a
W a , a , a , a Q

0 0 a
- �� �� �� . �� �
� �� �/ �

.

W1 is a subspace of V1 of dimension 4.  
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W2 = [[x1 0 x2 0 x3 0] | x1, x2 , x3  Q} 
� Q 2 {0} 2 Q 2 {0} 2 Q 2 {0}, 

W2 is a subspace of V2 of dimension 3. Let W3 = {The 
collection of all polynomials of even degree (i.e., degree 2 and 
4) with coefficients from Q}. W3 is a subspace of V3 of 
dimension 3 over Q. 

Clearly Ws is a special super subvector space of varying 
dimension or Ws is a super special mixed dimension subspace of 
Vs but Vs is not a super special mixed dimension vector space, it 
is only a super special vector space over Q.  
Consider Ts = [T1 | T2 | T3] a proper subset of Vs, where

1 2 3
1 1 2 3

a a a
T a , a , a Q

0 0 0
- �� �� �� . �� �
� �� �/ �

a proper subspace of V1 of dimension three.  

T2 = {[a1 a2 a3 0 0 0] | a1, a2, a3  Q}
� Q × Q × Q × {0} × {0} × {0} 

is a proper subspace of V2 of dimension 3 over Q. Let T3 = {all 
polynomials of degree 1 and 3 with coefficients over Q} = {[a0

+ a1x + a2x3] | a0, a1, a2  Q}. T3 is a subspace of V3 of 
dimension three over Q. Thus Ts is a super special subvector 
space of Vs over Q and the dimension of each Ti is three; i = 1, 
2, 3.

Next we proceed on to give an example of a super special mixed 
dimension vector space having subspaces which are super 
special mixed dimension subspace and super special subspace. 

Example 2.7: Let Vs = [V1 | V2 | V3] be a super special mixed 
dimension vector space over Q; where V1 = {M3×3 = (mij) | mij 
Q, 1 � i, j � 3}, vector space of dimension 9 over Q. V2 = {Q × 
Q × Q × Q = (a, b, c, d) | a, b, c, d  Q} a vector space of 
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dimension four over Q and V3 = {M2×2 = (aij) | aij  Q, 1 � i, j �
2} a space of dimension four over Q.

Now let Ws = [W1 | W2 | W3] where W1 is a diagonal matrix of 
the form  

a 0 0
0 b 0 a,  b,  c Q
0 0 c

- �� �
� �� � . �� �
� �� �� �/ �

which is proper subspace of V1 and of dimension 3,  

W2 = {[a b c 0] | a, b, c, 0  Q} � Q 2 Q 2 Q 2 {0} 

is a subspace of V2 of dimension three over Q and  

3

a b
W a, b, c Q

0 c
- �� �� �� . �� �
� �� �/ �

is the proper subspace of dimension three of V3. Ws = [W1 | W2 |
W3] is a super special subspace of Vs. Clearly Ws is not a super 
special mixed dimensional subspace of Vs.

Let Rs = [R1 | R2 | R3], a proper subset of Vs, where R1 = {Set 
of all 3 × 3 upper triangular matrices} i.e.,  

1

a b c
R 0 d e a, b, c, d, e, f Q

0 0 f

- �� �
� �� �� . �� �
� �� �� �/ �

.

R1 is a subspace of V1 of dimension 6 over Q.  

R2 = {[a 0 b 0]| a, b  Q}; � Q 2 {0} 2 Q 2 {0}. 

R2 is a subspace of V2 of dimension 2 over Q.  

Let
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3

a 0
R a, b Q

0 b
- �� �� �� . �� �
� �� �/ �

;

R3 is a subspace of V3 of dimension 2 over Q. We see Rs is a 
super special mixed dimension subspace of Vs.

We mention here only those factors about the super special 
vector spaces which are essential for the study and introduction 
of super special codes.

Now we proceed on to define dot product of super special 
vector spaces. 

DEFINITION 2.5: Let Vs be a real super special vector space 
over the field of reals F. A super special inner product or super 
inner product on Vs is a function which assigns to each ordered 
pair of super row vectors !s, "s in Vs a scalar in F in such a way 
that for !s, "s, %s in Vs and for all scalars c in F we have  

1. (!s + "s / %s) = (!s / %s) + ("s / %s) where 

(!s / %s) = �� �
� �� �1 2 n

1 1 1 2 2 2 n n n
1 2 m 1 2 m 1 2 mv v ...v v v ...v ... v v ...v

�� �� �1 2 n

1 1 1 2 2 2 n n n
1 2 m 1 2 m 1 2 mw w ...w w w ...w ... w w ...w

� � � �� � � � � � � � �
1 1 2 2

1 1 1 1 1 1 2 2 2 2 2 2
1 1 2 2 m m 1 1 2 2 m mv w v w ... v w v w v w ... v w ...

� �� � � �
n n

n n n n n n
1 1 2 2 m mv w v w ... v w

� � � � � 1 2 na a ... a c F .

Here   
� �� � ��

1 2 n

1 1 1 2 2 2 n n n
1 2 m 1 2 ms 1 2 mv v ...v v v ...v v v ...v!

and   
� �� � �� �1 2 n

1 1 1 2 2 2 n n n
s 1 2 m 1 2 m 1 2 mw w ...w w w ...w ... w w ...w% .
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2. c (!s | "s) = (c!s | "s)
3. (!s | "s) = ("s | !s)
4. (!s | !s) > 0; !s 	 0.

We will say a super special vector space endowed with 
super special inner product as a super special inner product 
space. Suppose Vs = [V1 | V2 | … | Vn] is a super special mixed 
dimension vector space on which is endowed an inner product; 
we say ws, vs Vs is orthogonal if (vs | ws) = 0.

While defining super special codes. We may need the notion of 
orthogonality. As in case of usual vector spaces we see (!s | !s)
= || !s ||2 where !s  Vs is defined as the super special norm. 
Also we see Vs is an abelian group with respect to addition. If 
Ws is a subspace of Vs it is necessarily a subgroup of Vs.

Now we can define for any xs  Vs the coset of Ws by xs + 
Ws = {xs + ws | ws  Ws}.

When we are carrying this inner product to super special 
vector spaces over finite fields condition 4 may not in general 
be true.

We may call a super special inner product in which (!s| !s)
= 0 even if !s 	 0 as a pseudo super special inner product, all 
the other conditions 1, 2 and 3 being true. 

We illustrate this by the following example. 

Example 2.8: Let Vs = [V1 | V2 | V3] be a special super vector 
space over Q where  

V1 = Q × Q, V2 = Q × Q × Q and V3 = Q × Q × Q. 

Let Ws = [W1 | W2 | W3]   Vs be a proper special super 
subspace of Vs where

W1 = Q × {0}; W2 = Q × Q × {0} and W3 = Q × {0} × Q.

Now coset of Ws related to xs = {[7 3 | 1 2 3 | 5 7 1]} in Vs

is given by xs + Ws = {xs + ws | ws  Ws}. It is easily verified 
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that xs + Ws with varying xs  Vs partitions Vs as cosets. This 
property will also be used in super special codes. 

 Since we are interested in only finite dimensional super 
special vector spaces that too defined over finite characteristic 
field we give some examples of them. As linear codes in most 
of the cases are binary codes we will be giving examples only 
using the field Z2 = {0, 1}, the prime field of characteristic two. 

Example 2.9: Let Vs = [V1 | V2 | V3] be a super special vector 
space over Z2 = {0, 1}, where V1 = Z2 × Z2 × Z2, V2 = Z2 2 Z2 2
Z2 and V3 = Z2 × Z2 × Z2 are vector spaces over Z2. Each of the 
spaces are of dimension 3 over Z2. Let Ws = [W1 | W2 | W3] be a 
super special subvector space of Vs over Z2 where W1 = Z2 × 
{0} × Z2, W2 = {0} × Z2 × Z2 and W3 = Z2 × Z2 × {0}. Clearly 

Ws = {[0 0 0 | 0 0 0 | 0 0 0], [1 0 0 | 0 0 0 | 0 0 0], 
[1 0 0 | 0 0 0 | 0 1 0], [1 0 0 | 0 1 1 | 0 0 0], 
[1 0 0 | 0 1 0 | 0 0 0], [1 0 0 | 0 0 1 | 0 0 0], 
[1 0 0 | 0 1 0 | 0 1 0], [1 0 0 | 0 1 1 | 1 0 0], 
[1 0 0 | 0 1 1 | 1 1 0], [1 0 0 | 0 1 1 | 0 1 0], 
[1 0 0 | 0 0 1 | 1 1 0], [1 0 0 | 0 0 1 | 1 0 0], 

[1 0 0 | 0 0 1 | 0 1 0]  … and so on}.  

We see the number of elements in Ws is 64. Suppose  

xs = [1 1 1 | 1 1 1 | 1 1 1]  Vs . 

We see xs 0 Ws. We can find xs + Ws = {xs + ws | ws  Ws}.
Clearly Vs is partitioned into 8 disjoint sets relative to the super 
special subspace Ws of Vs.
Let

Bs =  {[1 0 0 | 1 0 0 | 1 0 0], [1 0 0 | 1 0 0 | 0 1 0], 
[1 0 0 | 1 0 0 | 0 0 1], [1 0 0 | 0 1 0 | 1 0 0], 
[1 0 0 | 0 1 0 | 0 1 0], [1 0 0 | 0 1 0 | 0 0 1], 
[1 0 0 | 0 0 1 | 1 0 0], [1 0 0 | 0 0 1 | 0 1 0], 
[1 0 0 | 0 0 1 | 0 0 1], [0 1 0 | 1 0 0 | 1 0 0], 
[0 1 0 | 1 0 0 | 0 1 0], [0 1 0 | 1 0 0 | 0 0 1], 
[0 1 0 | 0 1 0 | 1 0 0], [0 1 0 | 0 1 0 | 0 0 1], 
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[0 1 0 | 0 1 0 | 0 1 0], [0 1 0 | 0 0 1 | 1 0 0], 
[0 1 0 | 0 0 1 | 0 1 0], [0 1 0 | 0 0 1 | 0 0 1], 
[0 0 1 | 1 0 0 | 0 0 1], [0 0 1| 1 0 0 | 0 1 0], 
[0 0 1 | 1 0 0 | 1 0 0], [0 0 1 | 0 1 0 | 0 0 1], 
[0 0 1| 0 1 0 | 0 1 0], [0 0 1 | 0 1 0 | 1 0 0], 
[0 0 1 | 0 0 1 | 1 0 0], [0 0 1 | 0 0 1 | 0 1 0], 

and [0 0 1 | 0 0 1 | 0 0 1]}. 

Bs is a super special basis of the super special vector space Vs.
Let

Ts = {[1 0 0 | 0 1 0 | 1 0 0], [1 0 0 | 0 1 0 | 0 1 0], 
[1 0 0 | 0 0 1 | 1 0 0], [1 0 0 | 0 1 0 | 0 1 0], 
[0 0 1 | 0 1 0 | 1 0 0], [0 0 1 | 0 1 0 | 0 1 0], 

[0 0 1 | 0 0 1 | 1 0 0] and [0 0 1 | 0 0 1 | 0 1 0]} 

Ts is a super special basis of Ws and the number of elements in 
Ts is 8.

Let us take Rs = [R1 | R2 | R3] where R1 = {0} 2 Z2 × Z2, R2 = 
{0} × {0} × Z2 and R3 = {0} × Z2 × Z2. Clearly Rs is a super 
special mixed dimension subspace of Vs. Let

Ms = {[0 0 1 | 0 0 1 | 0 0 1], [0 0 1 | 0 0 1| 0 1 0], 
[0 1 0 | 0 0 1 | 0 0 1] and [0 1 0 | 0 0 1 | 0 1 0], 

Ms is a super special basis of Rs. We see Rs is a subspace of 
dimension 4. Further we see all the super special base elements 
are only super row vectors. 

We give yet another example of a super special mixed 
dimensional vector space over Z2.

Example 2.10: Let Vs = [V1 | V2 | V3] be a super special vector 
space over the field Z2 = {0, 1}  
where

V1 = Z2 × Z2,
V2 = Z2 × Z2 × Z2

and
V3 = Z2 × Z2 × Z2 × Z2.
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It is easily verified that  

Bs = {[1 0 | 1 0 0 | 1 0 0 0], [0 1 | 1 0 0 | 1 0 0 0], 
[1 0 | 0 1 0 | 1 0 0 0], [0 1 | 0 1 0 | 1 0 0 0], 
[1 0 | 0 0 1 | 1 0 0 0], [0 1 | 0 0 1 | 1 0 0 0], 
[1 0 | 1 0 0 | 0 1 0 0], [1 0 | 0 0 1 | 0 1 0 0], 
[0 1 | 1 0 0 | 0 1 0 0], [0 1 | 0 1 0 | 0 1 0 0], 
[1 0 | 0 1 0 | 0 1 0 0], [0 1 | 0 0 1 | 0 1 0 0], 
[1 0 | 1 0 0 | 0 0 1 0], [0 1 | 1 0 0 | 0 0 1 0], 
[1 0 | 0 1 0 | 0 0 1 0], [0 1 | 0 1 0 | 0 0 1 0], 
[1 0 | 0 0 1 | 0 0 1 0], [0 1 | 0 0 1 | 0 0 1 0], 
[1 0 | 1 0 0 | 0 0 0 1], [0 1 | 1 0 0 | 0 0 0 1], 
[1 0 | 0 1 0 | 0 0 0 1], [0 1 | 0 1 0 | 0 0 0 1], 

[1 0 | 0 0 1 | 0 0 0 1] and [0 1 | 0 0 1 | 0 0 0 1]}   Vs;

is a super special basis of Vs and the number of elements in Bs is 
24 = Base elements of V1 × Base elements of V2 × Base 
elements of V3 = 2 × 3 × 4 = 24.  

Let us consider a super special subspace of Vs say

Ws = [W1 | W2 | W3]
where

W1 = Z2 × {0}, 
W2 = Z2 × Z2 × {0} 

and
W3 = {0} × {0} × Z2 × Z2

are vector subspace of V1, V2 and V3 respectively. 
Let

Rs = {[1 0 | 1 0 0 | 0 0 0 1], [1 0 | 1 0 0 | 0 0 1 0],  
[1 0 | 0 1 0 | 0 0 0 1], [1 0 | 0 1 0 | 0 0 1 0]

4 Ws.

Clearly Rs is a super special subvector space of Ws and the 
super special dimension of Ws is 4.
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Now the following factors are easily verified to be true. If Vs = 
[V1 | V2 | … | Vn] is a super special mixed dimension vector 
space over a field F and if Vi is of dimension ni over F, i = 1, 2, 
…, n, then the dimension of Vs = dimension of V1 × dimension 
of V2 × … × dimension of Vn = n1 × n2 × … × nn.

In the next chapter we define the notion of super special codes, 
which are built mainly using these super special vector spaces. 
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Chapter Three  

SUPER SPECIAL CODES

In this chapter for the first time we define new classes of super 
special codes; using super matrices and enumerate some of their 
error correcting and error detecting techniques. However their 
uses and applications would be given only in chapter four. This 
chapter has three sections. Section one introduces super special 
row codes and super special column codes are introduced in 
section two. Section three defines the new notion of super 
special codes and discusses their properties.  

3.1 Super Special Row Codes  

In this section we define two new classes of super special row 
codes using super row matrix and super mixed row matrix.  

We just say a super matrix M = [V1 | V2 | … | Vr] is known 
as the super row vector or matrix if each Vi is a n × m matrix so 
that M can be visualized as a � �

r times

n  m +...+ m
�

2 ��	�
  matrix where 
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partitions are done vertically between the m and (m + 1)th

column, 2m and (2m + 1)th column and so on and lastly (r – 1)m 
and {(r – 1)m +1}th column.  

For example  

1 2 3 1 4 5 6 7 1 0 0 1
4 5 6 2 8 9 0 1 2 1 0 3
1 0 1 3 1 1 0 0 1 1 0 2

� �
� �
� �
� �� �

 is a super row vector or matrix, here r = 3, n = 3 and m = 4.  
A super mixed row vector or matrix V = [V1 | V2 | … | Vs] is 

a super matrix such that each Vi is a n × mi matrix mi 	 mj for at 
least one i 	 j, 1 � i, j � s i.e., V is a n × (m1 + … + ms) matrix 
where vertical partitions are made between m1 and (m1 + 1)th

column of V, m2 and (m2 + 1)th column and so on. Lastly 
partitioned between the ms–1 and (ms–1 + 1)th column. 

For example  

1 0 1 1 0 1 1 7 2 1 2 3 4 5
2 1 2 0 5 0 3 5 1 0 1 0 1 0

V
3 1 1 1 0 1 1 2 3 1 1 1 0 1
4 2 0 0 1 0 4 5 6 0 0 1 1 0

� �
� �
� ��
� �
� �
� �

where n = 4, m1 = 2, m2 = 4, m3 = 3 and m4 = 5 and s = 4. 
Clearly V is a super mixed row matrix or vector. For more refer 
chapter one of this book. 

Now we proceed on to define the new class of super special row 
code.

DEFINITION 3.1.1: Suppose we have to transform some n set of 
k1, …, kn message symbols

1 2

1 1 1 2 2 2
1 2 k 1 2 ka a ...a , a a ...a ,...,

n

n n n
1 2 ka a ...a ,

t
i qa F ; 1 � t � n and 1 � i � ki (q a power of a prime) as a set 

of code words simultaneously into n-code words such that each 
code word is of length ni, i = 1, 2, …, n and n1 – k1 = n2 – k2 = 
… = nn – kn = m say i.e., the number check symbols of every 
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code word is the same i.e., the number of message symbols and 
the length of the code word may not be the same. That is the 
code word consisting of n code words can be represented as a 
super row vector;  

� �� � �� � � �
1 2 n

1 1 1 2 2 2 n n n
s 1 2 n 1 2 n 1 2 nx x x x x x x x x x  

ni > ki, 1 � i � n. In this super row vector �i i
j jx a , 1 � j � ki; i = 

1, 2, …, n and the remaining ni – ki elements � �i i i

i i i
k 1 k 2 nx x ... x

are check symbols or control symbols; i = 1, 2, …, n. 

These n code words denoted collectively by xs will be known as 
the super special row code word. 

As in case of usual code, the check symbols can be obtained 
in such a way that the super special code words xs satisfy a 
super system of linear equations; � �T

s sH x 0�  where Hs is a 
super mixed row matrix given by Hs = [H1 | H2 | … | Hn] where 
each Hi is a m × ni matrix with elements from Fq, i = 1, 2, …, n, 
i.e.,

T
s sH x  = [H1 | H2 | … | Hn]

T1 2 n
s s sx x x� �� ��

= � � � � � �T T T1 2 n
1 s 2 s 2 sH x H x H x� �

� �� �
�

= [|(0) | (0) | … | (0)] 
i.e., each Hi is the partity check matrix of the code words i

sx ; i 
= 1, 2, …, n. Hs = [H1 | H2 | … | Hs] will be known as the super 
special parity check super special matrix of the super special 
row code Cs. Cs will also be known as the linear [(n1 n2 … nn), 
(k1 k2 … kn)] or [(n1, k1), (n2, k2), …, (nn, kn)] super special row 
code.

If each of the parity check matrix Hi is of the form 
� �i ii n kA , I � 6 i = 1, 2, …, n.  

Hs = [H1 | H2 | … | Hn]
= � � � � � �1 1 2 2 n n1 n k 2 n k n n kA , I A , I A , I� � �
� �
� ��     ----        (I) 
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Cs is then also called a systematic linear ((n1 n2 … nn), (k1 k2 … 
kn)) super special code.  

If q = 2 then Cs is a super special binary row code; (k1 + … 
+ kn) | (n1 + n2 + … + nn) is called the super transmission(or 
super information) rate. 
 It is important and interesting to note the set Cs of solutions 
xs of T

s sH x  = (0) i.e., known as the super solution space of the 
super system of equations. Clearly this will form the super 
special subspace of the super special vector space over Fq of 
super special dimension (k1 k2 … kn).

Cs being a super special subspace can be realized to be a 
group under addition known as the super special group code, 
where Hs is represented in the form given in equation I will be 
known as the standard form.  

Now we will illustrate this super special row codes by some 
examples. 

Example 3.1.1: Suppose we have a super special binary row 
code given by the super special parity check matrix HS = [H1 |
H2 | H3] where  

1

0 1 1 1 0 0
H 1 0 1 0 1 0 ,

1 1 0 0 0 1

� �
� �� � �
� �� �

2

0 0 0 1 1 0 0
H 0 1 1 0 0 1 0

1 1 0 1 0 0 1

� �
� �� � �
� �� �

and

3

1 1 0 0 0 1 0 0
H 0 0 1 1 0 0 1 0

1 0 1 0 1 0 0 1

� �
� �� � �
� �� �

i.e., the super row matrix associated with the super special code 
is given by  
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s

0 1 1 1 0 0 0 0 0 1 1 0 0
H 1 0 1 0 1 0 0 1 1 0 0 1 0

1 1 0 0 0 1 1 1 0 1 0 0 1

�
�� �
��

1 1 0 0 0 1 0 0
0 0 1 1 0 0 1 0
1 0 1 0 1 0 0 1

�
�
�
��

= [(A1, I3) | (A2, I3) | (A3, I3)] ; 

i.e., we have given the super special code which is a binary row 
code. The super special code words are given by 

1 1 1 1 1 1 2 2 2 2 2 2 2
s 1 2 3 4 5 6 1 2 3 4 5 6 7x a  a  a  x  x  x |  a  a  a  a  x  x  x |� ��

3 3 3 3 3 3 3 3
1 2 3 4 5 6 7 8a  a  a  a  a  x  x  x �� = 1 2 3

s s sx x x� �� � .
T

s sH x  = (0) gives 3 sets of super linear equations i.e., T
s sH x  = 

(0) is read as  

[H1 | H2 | H3] � � � � � �T T TT1 2 3 1 2 3
s s s 1 s 2 s 3 sx | x | x H x H x H x� �� � �� � � �� �

= [(0) | (0) | (0)]; 
i.e.,

� �T1
1 sH x  = (0) 

 gives      1 1 1
2 3 4a a x 0� � �

1 1 1
1 3 5a a x 0� � �

1 1 1
1 2 6a a x 0� � � .

Therefore    1 1 1
4 2 3x a a� �

1 1 1
5 1 3x a a� � and 1 1 1

6 1 2x a a� � ;

i.e., we have {0 0 0 0 0 0, 1 0 0 0 1 1, 1 1 1 0 0 0, 0 1 0 1 0 1, 1 
0 1 1 0 1, 0 0 1 1 1 0, 1 1 0 1 1 0, 0 1 1 0 1 1} = 1

sC . We define 
1
sC  to be the subcode of the super special rowcode Cs.

2 T
2 sH (x ) = (0) gives  
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2 2
4 5a x 0� �

2 2 2
2 3 6a a x 0� � �

2 2 2 2
1 2 4 7a a a x 0� � � � .

The set of codewords of the super special row subcode is given 
by  

{0 0 0 0 0 0 0, 1 0 0 0 0 0 1, 0 1 0 0 0 1 1, 0 0 1 0 0 1 0, 
0 0 0 1 1 0 1, 1 1 0 0 0 1 0, 0 1 1 0 0 0 1, 0 0 1 1 1 1 1, 
1 0 1 0 0 1 1, 1 0 0 1 1 0 0, 0 1 0 1 1 1 0, 1 1 1 0 0 0 0, 

0 1 1 1 1 0 0, 1 1 0 1 1 1 1, 1 0 1 1 1 1 0, 1 1 1 1 1 0 1} = 2
sC . 

Now the sublinear equation � �T3
3 sH x  = (0) gives

3 3 3
1 2 6a a x 0� � �
3 3 3
3 4 7a a x 0� � �

3 3 3 3
1 3 5 8a a a x 0� � � � .

{0 0 0 0 0 0 0 0, 1 0 0 0 0 1 0 1, 0 1 0 0 0 1 0 1, 0 0 1 0 0 0 1 1, 
0 0 0 1 0 01 0, 0 0 0 0 1 0 0 1, 1 1 0 0 0 0 0 1, 0 1 1 0 0 1 1 1, 
0 0 1 1 0 0 0 1, 0 0 0 1 1 0 1 1, 1 0 1 0 0 1 1 0, 1 0 0 1 0 1 1 1, 
1 0 0 0 1 1 0 1, 0 1 0 1 0 1 1 1, 0 1 0 0 1 1 0 1, 0 0 1 0 1 0 1 1, 
1 1 1 0 0 0 1 0, 0 1 1 1 0 1 0 1, 0 0 1 1 1 0 0 0, 1 1 0 1 0 0 1 1, 
1 1 0 0 1 0 0 0, 1 0 1 1 0 1 0 0, 1 0 0 1 1 1 1 0, 0 1 1 0 1 1 1 0, 
0 1 0 1 1 1 1 1, 1 0 1 0 1 1 1 0, 1 1 1 1 0 0 0 0, 1 1 1 0 1 0 1 1, 

0 1 1 1 1 1 0 0, 1 1 0 1 1 0 1 0, 1 0 1 1 1 1 0 1, 1 1 1 1 1 0 0 1} = 
3
sC . 

3
sC  is a subcode of the super special row code Cs. Any element 

� �1 2 3
s s s sx x x x�  is formed by taking one element from the 

subcode 1
sC , one element from the set of the subcode 2

sC  and 
one from the set 3

sC  i.e., an element xs = [0 0 0 0 1 | 1 0 0 0 0 0 
1 | 1 1 1 1 1 0 0 1] which is clearly a super mixed row vector. 
Thus the number of super special row code words in this 
example of the super special code Cs is 8 2 16 2 32.
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The super transmission rate is 12/21. Thus this code has several 
advantages which will be enumerated in the last chapter of this 
book. We give yet another example of super special code in 
which every super special code word is a super row vector and 
not a super mixed row vector. 

Example 3.1.2: Let Hs = [H1 | H2 | H3] be the super special parity 
check super matrix associated with the super special code Cs.
Here

1

0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0

H ,
1 1 1 0 0 0 1 0
1 0 0 0 0 0 0 1

� �
� �
� ��
� �
� �
� �

2

1 1 0 0 1 0 0 0
1 1 1 0 0 1 0 0

H
0 1 1 0 0 0 1 0
0 1 0 1 0 0 0 1

� �
� �
� ��
� �
� �
� �

and

3

0 1 1 1 1 0 0 0
0 0 1 0 0 1 0 0

H
0 0 1 1 0 0 1 0
1 0 1 0 0 0 0 1

� �
� �
� ��
� �
� �
� �

6

i.e.,
Hs = [H1 | H2 | H3] = 

0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0
1 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0
1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0
1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1

�
�
�
�
�
��
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0 1 1 1 1 0 0 0
0 0 1 0 0 1 0 0
0 0 1 1 0 0 1 0
1 0 1 0 0 0 0 1

�
�
�
�
�
��

is the super special parity check matrix of the super special code 
Cs. Now the super special system of equations is given by  

T
s sH x = (0)  i.e., 

T31 2
1 2 3 s s s

H H H x x x� �� � �� � � �  [(0) | (0) | (0)] 

� � � � � �T T T1 2 3
1 s 2 s 3 sH x H x H x� �� � �� �

.

We call the linear equations given by � �Ti
i sH x = (0) to be 

subequations of the super linear equations. Now the sublinear 
equations given by � �T1

1 sH x = (0) is

1 1 1
2 3 1a a x 0� � �
1 1 1
1 4 2a a x 0� � �

1 1 1 1
1 2 3 3a a a x 0� � � �

1 1
1 4a x 0� � ;

where 1 1 1 1
1 2 3 4a  a  a  a  is the set of message symbols and 

1 1 1 1
1 2 3 4x  x  x  x  the check symbols and the check equations using 

H1 is given above. The subcode associated with super code Cs is

1
sC  = {0 0 0 0 0 0 0 0, 1 0 0 0 0 1 1 1, 0 1 0 0 1 0 1 0, 

0 0 1 0 1 0 1 0, 0 0 0 1 0 1 0 0, 1 1 0 0 1 1 0 1, 
0 1 1 0 0 1 0 0, 0 0 1 1 1 1 0 0, 1 0 0 1 0 0 1 1, 
1 0 1 0 1 1 0 1, 0 1 0 1 1 1 1 0, 1 1 1 0 0 1 1 1, 
0 1 1 1 0 1 0 0, 1 1 0 1 1 0 1 1, 1 0 1 1 1 0 0 1, 

1 1 1 1 0 0 1 1} . 
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Now we use the sublinear equation of the super linear equation 
got from T

s sH x  = (0), we get � �T2
2 sH x  = (0). This gives 

2 2 2
1 2 1a a x 0� � �

2 2 2 2
1 2 3 2a a a x 0� � � �

2 2 2
2 3 3a a x 0� � �
2 2 2
2 4 4a a x 0� � � .

The super special subcode 2
sC  associated with the above set of 

equations is given by : 

2
sC  = {0 0 0 0 0 0 0 0, 1 0 0 0 1 1 0 0, 0 1 0 0 1 1 1 1, 

0 0 1 0 0 1 1 0, 0 0 0 1 0 0 0 1, 1 1 0 0 0 0 1 1, 
0 1 1 0 1 0 0 1, 0 0 1 1 0 1 1 1, 1 0 1 0 1 0 0 1, 
1 0 0 1 1 1 0 1, 0 1 0 1 1 1 1 0, 1 1 1 0 0 1 0 1, 
0 1 1 1 1 0 0 0, 1 1 0 1 0 0 1 1, 1 0 1 1 1 0 1 1, 

1 1 1 1 0 1 0 0}. 

Now using the sublinear equation � �T3
3 sH x  = (0) we get

3 3 3 3
2 3 4 1a a a x 0� � � �

2 3
3 2a x 0� �

3 3 3
3 4 3a a x 0� � �
3 3 3
1 3 4a a x 0� � � .

3
sC  = {0 0 0 0 0 0 0 0, 1 0 0 0 0 0 0 1, 0 1 0 0 1 0 0 0, 

0 0 1 0 1 1 1 1, 0 0 0 1 1 0 1 0, 1 1 0 0 1 0 0 1,  
0 1 1 0 0 1 1 1, 0 0 1 1 0 1 0 1, 1 0 0 1 1 0 1 1,  
0 1 0 1 0 0 1 0, 1 0 1 0 1 1 1 0, 1 1 1 0 0 1 1 0,  
0 1 1 1 1 1 0 1, 1 1 0 1 0 1 1 1, 1 0 1 1 0 1 0 0, 

1 1 1 1 1 1 0 0}. 
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Thus the super special code word of the super special code Cs

will be 1 2 3
s s s sC C C C� �� � �  i.e., it is formed by taking one code 

word from each one of the i
sC ; i = 1, 2, 3. Thus if xs  Cs then 

any xs = [1 1 1 1 0 0 1 1 | 1 1 1 1 0 1 0 0| 1 1 1 1 1 1 0 0]. 

So we can realize the super special row code to be codes in 
which each and every subcode i

sC  of Cs have the same number 
of check symbols. 

Now we proceed on to define the notion of super special row 
repetition code. 

DEFINITION 3.1.2: Let � �� � ��1 2 n
s s s sC C C C  be a super 

special row code in which each of the i
sC  is a repetition code, i 

= 1, 2, …, n, then we define Cs to be a super special repetition 
row code. Here if Hs = [H1|H2| …|Hn] is the super special parity 
check matrix of Cs, then each Hi is a t – 1 2 t matrix that is we 
have

H1 = H2 = … = Hn

 t� 2

� �
� �
� ��
� �
� �
� �

�
�

� � � �
� t 1

1 1 0 0
1 0 1 0

1 0 0 1

is the parity check matrix. The super special code words 
associated with Cs are just super row vectors only and not super 
mixed row vectors. The number of super special code words in 
Cs is 2n.

We illustrate a super special row repetition code by the 
following example. 

Example 3.1.3: Let 1 2 3 4
s s s s sC C C C C� �� � �  be a super row 

repetition code with associated super special row matrix Hs =
[H1 | H2 | H3 | H4]
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1 1 0 0 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 1 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 1 0 0 0 1 0
1 0 0 0 0 1 1 0 0 0 0 1

�
�
�
��
�
�
��

1 1 0 0 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 1 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 1 0 0 0 1 0
1 0 0 0 0 1 1 0 0 0 0 1

�
�
�
�
�
�
��

.

Thus

Cs = {[0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0], 
[1 1 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 1 1], 
[0 0 0 0 0 0 | 1 1 1 1 1 1 | 0 0 0 0 0 0 | 1 1 1 1 1 1], 
[0 0 0 0 0 0 | 1 1 1 1 1 1 | 0 0 0 0 0 0 | 0 0 0 0 0 0], 
[0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 1 1 1 1 1], 
[1 1 1 1 1 1 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0], 
[0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 1 1 1 1 1 | 0 0 0 0 0 0], 
[1 1 1 1 1 1 | 1 1 1 1 1 1 | 0 0 0 0 0 0 | 0 0 0 0 0 0], 
[1 1 1 1 1 1 | 0 0 0 0 0 0 | 1 1 1 1 1 1 | 0 0 0 0 0 0], 
[1 1 1 1 1 1 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 1 1 1 1 1], 
[0 0 0 0 0 0 | 1 1 1 1 1 1 | 1 1 1 1 1 1 | 0 0 0 0 0 0], 
[0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 1 1 1 1 1 | 1 1 1 1 1 1], 
[1 1 1 1 1 1 | 0 0 0 0 0 0 | 1 1 1 1 1 1 | 0 0 0 0 0 0], 
[1 1 1 1 1 1 | 1 1 1 1 1 1 | 0 0 0 0 0 0 | 1 1 1 1 1 1], 
[1 1 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 1 1 | 0 0 0 0 0 0], 
[0 0 0 0 0 0 | 1 1 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 1 1]}. 

Clearly |Cs| = 24 = 16. 
Now having seen an example of a super special repetition 

row code we proceed on to define the super special parity check 
row code. We have two types of super special row parity check 
codes.
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DEFINITION 3.1.3: Let Cs be a super special parity check mixed 
row code i.e., � �� � ��1 2 n

s s s sC C C C  where Cs is obtained 
using the super special mixed row matrix Hs = [H1 | H2 | … | Hn]
where each Hi is a unit row vector having ti number of elements 
i.e.,

 times  times  times

� �� � �� �
� � � ���	�
 ��	�
 ��	�


1 2 n
s

t t t

1 1 1 1 1 1 1 1 1H

where at least one ti 	 tj for i 	 j. Any super special code word in 
Cs would be of the form  

� � � �� � � �� � � �� �1 2 n

1 1 1 2 2 2 n n n 1 2 n
s 1 2 t 1 2 t 1 2 t s s sx x x ... x x x ... x ... x x ...x x x ... x  

with T
s sH x  = (0); i.e., each i

sx  would contain only even number 
of ones and the rest are zeros. 

Cs = [C1 | C2 | … | Cn] is defined to be super special parity check 
row code. Cs is obtained from the parity check row matrix / 
vector Hs = [H1 | H2 | … | Hn ] where H1 = H2 = … = Hn

m times

1 1 1
� �

� � �
� �� �

���	�
 . Here a super special codeword in Cs would be 

a super row vector of the form 1 2 n
s s sx x x� �� ��  with each 

i i i i
s 1 2 mx x  x  ... x� �� � �  where only even number of i

jx  are ones and 

the rest zero, 1 � j � m and i = 1, 2, …, n.  

Now we will illustrate the two types of super special parity 
check (mixed) row codes. 

Example 3.1.4: Let 1 2 3
s s s sC C C C� �� � �  be a super special parity 

check code having Hs = [H1 | H2 | H3] = [1 1 1 | 1 1 1 | 1 1 1] to 
be the super special parity check matrix associated with it.  

Cs = {[0 0 0 | 0 0 0 | 0 0 0], [0 0 0 | 0 0 0 | 1 1 0],  
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[0 0 0 | 0 0 0 | 1 0 1], [0 0 0 | 0 0 0 | 0 1 1], [0 0 0 | 1 1 0 | 0 0 0], 
[0 0 0 | 1 1 0 | 1 1 0], [0 0 0 | 1 1 0 | 1 0 1], [0 0 0 | 1 1 0 | 0 1 1], 
[0 0 0 | 0 1 1 | 0 0 0], [0 0 0 | 0 1 1 | 1 0 1], [0 0 0 | 0 1 1 | 1 1 0], 
[0 0 0 | 0 1 1 | 0 1 1], [0 0 0 | 1 0 1 | 1 1 0], [0 0 0 | 1 0 1 | 0 0 0], 
[0 0 0 | 1 0 1 | 0 1 1], [0 0 0 | 1 0 1 | 1 0 1], [1 1 0 | 0 0 0 | 0 0 0], 
[1 1 0 | 0 0 0 | 1 0 1], [1 1 0 | 0 0 0 | 1 1 0], [1 1 0 | 0 0 0 | 0 1 1], 
[1 1 0 | 1 1 0 | 0 0 0], [1 1 0 | 1 1 0 | 0 1 1], [1 1 0 | 1 1 0 | 1 0 1], 
[1 1 0 | 1 1 0 | 1 1 0], [1 1 0 | 1 0 1 | 0 0 0], [1 1 0 | 1 0 1 | 1 0 1], 
[1 1 0 | 1 0 1 | 0 1 1], [1 1 0 | 1 0 1 | 1 1 0], [1 1 0 | 0 1 1 | 0 0 0], 
[1 1 0 | 0 1 1 | 1 1 0], [1 1 0 | 0 1 1 | 1 0 1], [1 1 0 | 0 1 1 | 0 1 1], 
[0 1 1 | 0 0 0 | 0 0 0], [0 1 1 | 0 0 0 | 0 1 1], [0 1 1 | 0 0 0 | 1 1 0], 
[0 1 1 | 0 0 0 | 1 0 1], [0 1 1 | 1 1 0 | 0 0 0], [0 1 1 | 1 1 0 | 1 1 0], 
[0 1 1 | 1 1 0 | 0 1 1], [0 1 1 | 1 1 0 | 1 0 1], [0 1 1 | 0 1 1 | 0 0 0], 
[0 1 1 | 0 1 1 | 1 0 1], [0 1 1 | 0 1 1 | 1 1 0], [0 1 1 | 0 1 1 | 0 1 1], 
[0 1 1 | 1 0 1 | 0 0 0], [0 1 1 | 1 0 1 | 0 1 1], [0 1 1 | 1 0 1 | 1 0 1], 
[0 1 1 | 1 0 1 | 1 1 0], [1 0 1 | 0 0 0 | 0 0 0], [1 0 1 | 0 0 0 | 0 1 1], 
[1 0 1 | 0 0 0 | 1 1 0], [1 0 1 | 0 0 0 | 1 0 1], [1 0 1 | 0 1 1 | 0 0 0], 
[1 0 1 | 0 1 1 | 1 1 0], [1 0 1 | 0 1 1 | 1 0 1], [1 0 1 | 0 1 1 | 0 1 1], 
[1 0 1 | 1 0 1 | 0 0 0], [1 0 1 | 1 0 1 | 1 0 1], [1 0 1 | 1 0 1 | 0 1 1], 
[1 0 1 | 1 0 1 | 1 1 0], [1 0 1 | 1 1 0 | 0 0 0], [1 0 1 | 1 1 0 | 1 1 0], 
[1 0 1 | 1 1 0 | 0 1 1],[1 0 1 | 1 1 0 | 1 0 1]}. 

Thus |Cs| = 43 = 64. We see in every super row vector the 
number of non zero ones is even. 

Next we give an example of a super special parity check 
row code Cs.

Example 3.1.5: Let 1 2
s s sC C C� � �� �  be a super special parity 

check mixed code with the associated super special parity check 
mixed row vector Hs = [H1 | H2] = [1 1 1 1 | 1 1 1]. The super 
special codewords given by Hs is

Cs = {[0 0 0 0 | 0 0 0], [0 0 0 0 | 1 1 0], [0 0 0 0 | 1 0 1], 
[0 0 0 0 | 0 1 1], [1 0 1 0 | 0 0 0], [1 0 1 0 | 0 1 1], 
[1 0 1 0 | 1 0 1], [1 0 1 0 | 1 1 0], [1 0 0 1 | 0 0 0], 
[1 0 0 1 | 0 1 1], [1 0 0 1 | 1 1 0], [1 0 0 1 | 1 0 1], 
[0 1 0 1 | 0 1 1], [0 1 0 1 | 0 0 0], [0 1 0 1 | 1 0 1], 
[0 1 0 1 | 1 1 0], [1 1 0 0 | 0 0 0], [1 1 0 0 | 0 1 1], 
[1 1 0 0 | 1 0 1], [1 1 0 0 | 1 1 0], [0 1 1 0 | 0 0 0], 
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[0 1 1 0 | 1 1 0], [0 1 1 0 | 1 0 1], [0 1 1 0 | 0 1 1], 
[0 0 1 1 | 0 0 0], [0 0 1 1 | 1 0 1], [0 0 1 1 | 1 1 0], 
[0 0 1 1 | 0 1 1], [1 1 1 1 | 0 0 0], [1 1 1 1 | 1 1 0], 

[1 1 1 1 | 0 1 1], [1 1 1 1 | 1 0 1]}. 

Clearly |Cs| = 8 2 4 = 32.
Now having seen examples of the two types of super special 

parity check codes, we now proceed on to define super special 
Hamming distance, super special Hamming weight and super 
special errors in super special codes Cs.

DEFINITION 3.1.4: Let � � �� ��1 2 n
s s s sC C C C  be a super 

special row code. Suppose 1 2� � �� �� n
s s s sx x x x is a 

transmitted super code word and 1 2� � �� �� n
s s s sy y y y  is 

the received supercode word then es = ys – xs = 
1 1 2 2 n n 1 2 n
s s s s s s s s sy x y x y x e e e�� � � �� � �� � � �� �  is called 

the super error word or the super error vector. 

 We first illustrate how the super error is determined. 

Example 3.1.6: Let 1 2 3 4
s s s s sC C C C C� � �� �  be a super special 

code with associated super parity check row matrix Hs = [H1 | H2
| H3 | H4]

1 0 0 1 0 0 0 1 0 1 0 1 0 0 0
1 1 0 0 1 0 0 0 1 0 1 0 1 0 0
0 1 0 0 0 1 0 1 1 0 0 0 0 1 0
0 0 1 0 0 0 1 0 1 1 0 0 0 0 1

�
�
�� �
�
��

1 0 1 0 0 0
1 1 0 1 0 0
0 1 0 0 1 0
1 1 0 0 0 1

1 0 1 0 0 1 0 0 0
1 1 0 1 0 0 1 0 0
0 1 1 0 1 0 0 1 0
0 0 1 1 0 0 0 0 1

�
�
�
�
�
�

.
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Let xs = 1 2 3 4
s s s sx x x x� �� �  = [1 1 0 1 0 1 0 | 1 1 1 1 0 0 0 0 | 1 

1 1 0 1 0 | 1 1 1 1 0 0 1 0 0]  Cs be the sent super special code. 
Suppose ys = 1 2 3 4

s s s sy y y y� �� �  = [1 0 1 0 1 1 0 | 1 1 1 1 1 1 0 
0| 1 1 0 1 0 1| 1 1 1 0 1 0 1 0 0] be the received super code 
word. The super error vector is given by  

ys – xs  =  1 2 3 4
s s s sy y y y� �� �  – 1 2 3 4

s s s sx x x x� �� �
= 4 41 1 2 2 3 3

s ss s s s s s y xy x y x y x� ��� � �� �
=  [0 1 1 1 1 0 0 | 0 0 0 0 1 1 0 0 | 0 0 1 1 1 1 | 0 0 0 1 

  1 0 0 0 0] 
= 1 2 3 4

s s s se e e e� �� �
= es.

Clearly ys + es = xs.

DEFINITION 3.1.5: The super Hamming distance � �s s sd x , y  
between two super row vectors of the super special vector space 
Vs, where xs = 1 2 n

s s sx x x� �� �� and ys = 1 2 n
s s sy y y� �� ��

is the number of coordinates in which i
sx  and i

sy  differ for i = 
1, 2, …, n. The super Hamming weight ws(xs) of the super vector 
xs = 1 2 n

s s sx x x� �� ��  in Vs is the number of non zero 

coordinates in each i
sx ; i = 1, 2, …, n. In short ws(xs) = d(xs,

(0)).

As in case of usual linear codes we define super minimum 
distance s

mind  of a super special linear row code Cs as

� �
s s s

s s

s
min s s su , C

u

d min  d u ,
3 
	3

� 3 ,

ds (us, 3s) = ds (us – 3s , (0)) = ws (us – 3s). 

Thus the super minimum distance of Cs is equal to the least 
super weights of all non zero super special code words. 
 Now the value of  
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s
mind  = 

s s s
s s

u , C
u

min
3 
	3

ds (us, 3s)

� �
s s s

s s

1 2 n 1 2 n
s s s s s s su , C

u

min d ,u u u v v v
3 
	3

� � � �� � � � �� �

� � � � � �1 1 2 2 n n
s s s s s smin  d u ,  d u ,  ... d u ,  � �� 3 � 3 � � 3� � .

Now s
mind  of the super special row code given in example 3.1.2 

is 7 verified using the fact in 1 2 3
s s s sC C C C� � �� � ; s 1

min sd C  = 3,  
s 2 s 3
min s min sd C 2 and d C 2� � . Hence � �s

min sd C  = 3 + 2 + 2 = 7. So 
we will denote � �s

min s s sd min  d u ,� 3  by � �s
min sd C , us, 3s  Cs,

us 	 3s.
S 1 2 n
min s s sd C C C� �� �� � � � � � �S 1 2 n

min s s sd C C ... C� �� � � �� �

� � � � � �1 1 1 2 2 2 n n n
s s s s s ss s s

1 1 2 2 n n
s s s s s s

1 1 2 2 n n
s s s s s s

x ,y C x ,y C x ,y C
x y x y x y

min d x ,  y min d x ,  y ... min d x ,  y
  
	 	 	

� � � � .

Now we proceed on to define the dual of a super special row 
code.

DEFINITION 3.1.6: Let � � �� ��1 2 n
s s s sC C C C  be a super 

special row [(n1, …, nn), (k1, …, kn)] binary code. The super 
special dual row code of Cs denoted by

� � � � � �� � �� � �� � ��1 2 n
s s s s

C C C C

where � ��i
sC = { i

su  | 7 �i i
s su 03  for all i i

s sC3 }, i = 1, 2, …, n.  
Since in Cs we have n1 – k1 = n2 – k2 = …= nn – kn i.e., the 
number of check symbols of each and every code in i

sC  is the 
same for i = 1, 2, …, n. Thus we see n = 2ki alone can give us a 
dual, in all other cases we will have problem with the 
compatibility for the simple reason the dual code of i

sC  being 
the orthogonal complement will have ni – ki to be the dimension, 
where as i

sC  will be of dimension ki, i = 1, 2, …, n. Hence we 
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can say the super special dual code would be defined if and only 
if ni = 2ki and such that n1 = n2 = … = nn.

We can define the new notion of super special syndrome to 
super code words of a super special row code which is 
analogous to syndrome of the usual codes. 

DEFINITION 3.1.7: Let Cs be a super special row code. Let Hs
be the associated super special parity check matrix of Cs the 
super special syndrome of any element ys  Vs where Cs is a 
super special subspace of the super special vector space Vs is 
given by S(ys) = T

s sH y . S(ys) = (0) if and only if ys  Cs.
 Thus this gives us a condition to find out whether the 
received super code word is a right message or not. Suppose ys

is the received super special code word, we find S(ys) = T
s sH y ;

if S(ys) = (0) then we accept ys as the correct message if S(ys) = 
T

s sH y 	 (0) then we can declare the received word has error.  

We can find the correct word by the following method. Before 
we give this method we illustrate how the super special 
syndrome is calculated. 

Example 3.1.7: Let 1 2 3 4
s s s s sC C C C C� � �� � be a super special 

row code. Let Hs = [H1 | H2 | H3 | H4] be the super special parity 
check matrix of Cs.
 Let  

s

1 0 0 0 1 0 0 0 1 0 1 0 0
H 1 0 0 1 0 1 0 1 0 1 0 1 0

0 1 1 0 0 0 1 0 1 1 0 0 1

�
�� �
��

0 1 1 0 0 0 0 1 1 0 1 0 0
1 0 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 1 0 1 0 0 0 0 0 1

�
�
�
��

.

Suppose
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1 2 3 4
s s s s sx x x x x� � �� �

= [1 0 0 0 1 1 0 | 0 1 0 1 0 1 | 1 1 1 1 0 | 0 0 0 0 1 0 1 0]  Cs.

Now the super special syndrome of xs is given by  
S(xs)  = T

s sH x

= [H1 | H2 | H3 | H4]
T1 2 3 4

s s s sx x x x� �� �

= � � � � � � � �T T T T1 2 3 4
1 s 2 s 3 s 4 sH x H x H x H x� �

� �
   =  [0 0 0 | 0 0 0 | 0 0 0 | 0 0 0].  

Let ys = [1 1 1 0 0 1 1 | 0 1 1 1 1 0 | 1 0 1 0 1 | 1 1 1 0 0 1 1 1] 
Vs where Cs is a proper super special subspace of the super 
special vector space Vs.
 Now  
S(ys)  = T

s sH y   

= [H1 | H2 | H3 | H4]
T1 2 3 4

s s s sy y y y� �� �

= � � � � � � � �T T T T1 2 3 4
1 s 2 s 3 s 4 sH y H y H y H y� �

� �
=  [1 0 1 | 0 0 0 | 1 1 0 | 0 1 0]  
	 [0 0 0 | 0 0 0 | 0 0 0 | 0 0 0].  

Thus ys0 Cs.

Now we have to shown how to find whether the received super 
special code word is correct or otherwise. It is important to note 
that what ever be the super special code word xs  Cs (i.e., it 
may be a super special mixed row vector or not) but the 
syndrome S(xs) = T

s sH x  is always a super special row vector 
which is not mixed and each row vector is of length equal to the 
number of rows of Hs.
 Now we know that every super special row code Cs is a 
subgroup of the super special vector space Vs over Z2 = {0, 1}. 
Now we can for any xs  Vs define super special cosets as  

xs + Cs = {xs + cs | cs  Cs}.
 Thus

Vs = {Z2 2 Z2 2…2 Z2 | Z2 2 … 2 Z2 | … | Z2 2 Z2 2 … 2 Z2}
= Cs� [ 1

sx  + Cs] � … � [ t
sx  + Cs]
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where     1 2 n
s s s sC C C C� � �� ��

and
xs  =  

1 2 n

1 1 2 2 n n
1 n 1 n 1 nx x x x x x� �

� �� � ��

= 1 2 n
s s sx x x� �� ��

and
xs + Cs = 1 1 2 2 n n

s s s s s sx C x C x C� �� � �� �� .

Now we can find the coset leader of every i i
s sx C�  as in case of 

usual codes described in chapter one of this book. Now if  
ys = 1 2 n

s s sy y y� �� ��

is the received message and 1 2 n
s s se (0) e (0) e (0)� �� � �� ��  is a 

special super coset leaders then using the relation ys – es we get 
ys – es to be super special corrected code word. It is interesting 
to note that each i

se  + (0) has a stipulated number of coset 
leaders depending on ni, i = 1, 2, …, n.  

We will illustrate this by the following example. 

Example 3.1.8: Let 1 2
s s sC C C� �� � �  be a super special row code. 

Suppose Hs = [H1 | H2] be the super special row matrix 
associated with Cs. Let

Hs = [H1 | H2] = 
1 0 1 0 1 0 1 1 0
1 1 0 1 0 1 1 0 1
� �
� �
� �

.

Now 1 2
s s sC C C� �� � �  with 1

sC  = {(0 0 0 0), (1 0 1 1), (0 1 0 1),  

(1 1 1 0)}and 2
sC  = {( 0 0 0 0 0), (1 0 0 1 0), (0 1 0 0 1), (0 0 1 1 

1), (1 1 0 1 1), (0 1 1 1 0), (1 0 1 0 1), (1 1 1 0 0)}. 

Cs = {[0 0 0 0 | 0 0 0 0 0], [1 0 1 1 | 0 0 0 0 0], 
[0 1 0 1 | 0 0 0 0 0], [1 1 1 0 | 0 0 0 0 0], [0 0 0 0 | 1 0 0 1 0], 
[0 0 0 0 | 0 1 0 0 1], [1 1 1 0 | 0 1 0 0 1], [0 1 0 1 | 0 1 0 0 1], 
[1 0 1 1 | 1 0 0 0 1], [0 0 0 0 | 0 0 1 1 1], [1 1 1 0 | 0 0 1 1 1], 
[0 1 0 1 | 0 0 1 1 1], [1 0 1 1 | 0 0 1 1 1], [0 0 0 0 | 1 1 0 1 1], 
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[1 1 1 0 | 1 1 0 1 1], [1 0 1 1 | 1 1 0 1 1], [0 1 0 1 | 1 1 0 1 1], 
[0 0 0 0 | 0 1 1 1 0], [1 0 1 1 | 0 1 1 1 0], [0 1 0 1 | 0 1 1 1 0], 
[0 0 0 0 | 1 0 1 0 1], [1 0 1 1 | 1 0 1 0 1], [0 1 0 1 | 1 0 1 0 1], 
[0 0 0 0 | 1 1 1 0 0], [1 1 1 0 | 1 1 1 0 0], [1 0 1 1 | 1 1 1 0 0], 

[0 1 0 1 | 1 1 1 0 0] and so on}. 

Clearly |Cs| = 32 . Now the coset table of 1
sC  is given by  

Message       code      words  

0 0                       1 0                     0 1                       1 1
0 0 0 0            1 0 1 1          0 1 0 1          1 1 1 0

Other cosets 
1 0 0 0        0 0 1 1       1 1 0 1       0 1 1 0
0 1 0 0         1 1 1 1       0 0 0 1       1 0 1 0
0 0 1 0       1 0 0 1       0 1 1 1        1 1 0 0

coset leaders
��	�


.

Now the coset table of 2
sC  is given by  

message 0 0 0
codewords 0 0 0 0 0

1 0 0 0 0
other cosets 0 1 0 0 0

0 0 1 0 0

-
�
.
�
/

1 0 0
1 0 0 1 0
0 0 0 1 0
1 1 0 1 0
1 0 1 1 0

message 0 1 0
codewords 0 1 0 0 1

1 1 0 0 1
other cosets 1 0 0 0 1

0 1 1 0 1

-
�
.
�
/

0 0 1
0 0 1 1 1
1 0 1 1 1
0 1 1 1 1
0 0 0 1 1
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message 1 1 0
codewords 1 1 0 1 1

0 1 0 1 1
other cosets 1 0 0 1 1

1 1 1 1 1

-
�
.
�
/

0 1 1
0 1 1 1 0
1 1 1 1 0
0 0 1 1 0
0 1 0 1 0

message 1 0 1
codewords 1 0 1 0 1

0 0 1 0 1
other cosets 1 1 1 0 1

1 0 0 0 1

-
�
.
�
/

1 1 1
1 1 1 0 0
0 1 1 0 0
1 0 1 0 0
1 1 0 0 0 .

Suppose ys = [1 1 1 1 | 1 1 1 1 1] is the received word then S(ys)
= T

s sH y  	 [(0) | (0)]. es = [0 1 0 0 | 0 0 1 0 0] is the super set 
coset leader. Thus xs = ys + es = [1 0 1 1 | 1 1 0 1 1]  Cs.

With the advent of computers calculating the super special coset 
leaders is not a very tedious job. Appropriate programs will 
yield the result in no time.  

Now we proceed on to describe/define the super special row 
cyclic code.  

DEFINITION 3.1.8: Let Cs = [C1 | C2 | … | Cn] be a super 
special row code. If every i

sC  is a cyclic code in Cs we call Cs to 
be a super special cyclic row code. Hs = [H1 | H2 | …|Hn]
denotes the super special parity check row matrix of the super 
special cyclic code. 

We illustrate this by the following example. 

Example 3.1.9: Let 1 2 3
s s s sC C C C� � �� �  be a super special 

cyclic code with an associated super special parity check matrix  

Hs = [H1 | H2 | H3]
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1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1

�
�� �
��

0 0 1 0 1 1 1 0 0 1 0 0 1
0 1 0 1 1 1 0 0 1 0 0 1 0
1 0 1 1 1 0 0 1 0 0 1 0 0

�
�
�
��

.

We see each of 1 2
s sC ,  C  and 3

sC  are cyclic codes. 
 Now we see in general for any super special mixed row 
code with an associated super special parity check matrix Hs
which happens to be a super mixed row matrix we cannot define 
the super special generator row matrix Gs. The simple reason 
being if the code words in each of the i

sC  in Cs where 
1 2 n

s s s sC C C C� � �� �� , i = 1, 2, …, n happens to be of 
different length then it would be impossible to define a super 
generator matrix. So we shall first define the notion of super 
special generator row matrix of a super special row code(mixed 
row code). 

DEFINITION 3.1.9: Let � � �� ��1 2 n
s s s sC C C C  be a super 

special row code. A super special row matrix which generates 
Cs exists if and only if in each i

sC  the codes in Cs have the same 
number of message symbols, that is if Cs has a super special 
parity check row matrix Hs = [H1 | H2 | … | Hn] then we 
demanded each i

sC  must have the same number of check 
symbols. Likewise for the super special generator row matrix to 
exist we must have Gs = [G1 | G2 | … | Gn] where i

sC  have the 
same number of message symbols which forms the number of 
rows of the super row generator matrix Gs.

We shall first illustrate this by an example. 

Example 3.1.10: Cs = 1 2
s sC C� �� �  be a super special row code.  
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Let       1 2
s s sG G G� � �� �

1 1 0 1 0 0 0 1 0 0 0 1 0 1
0 1 1 0 1 0 0 0 1 0 0 1 1 1
0 0 1 1 0 1 0 0 0 1 0 1 1 0
0 0 0 1 1 0 1 0 0 0 1 1 0 1

� �
� �
� ��
� �
� �
� �� �

be the super row generator matrix which generates Cs.
 The code words of 1

sC  generated by G1 is given by  

1
sC  = {(0 0 0 0 0 0 0), (1 1 0 1 0 0 0), (0 1 1 0 1 0 0),  

(0 0 1 1 0 1 0), (0 0 0 1 1 0 1), (1 0 1 1 1 0 0),  
(0 1 0 1 1 1 0), (0 0 1 0 1 1 1), (1 1 1 0 0 1 0),  
(1 1 0 0 1 0 1), (0 1 1 1 0 0 1), (1 0 0 0 1 1 0),  

(0 1 0 0 0 1 1), (1 0 1 0 0 0 1), (1 1 1 1 1 0 1), (1 0 0 1 0 1 1)}. 

2
sC  = {(0 0 0 0 0 0 0), (1 0 0 0 1 0 1), (0 1 0 0 1 1 1),  

(0 0 1 0 1 1 0), (0 0 0 1 0 1 1), (1 1 0 0 0 1 0),  
(0 1 1 0 0 0 1), (0 0 1 1 1 0 1), (1 0 0 1 1 1 0),  
(1 0 1 0 0 1 1), (0 1 0 1 1 0 0), (1 1 1 0 1 0 0),  

(0 1 1 1 0 1 0), (1 1 0 1 0 0 1), (1 0 1 1 0 0 0), (1 1 1 1 1 0 1)}. 

If 1 2
s s sx x x� � �� �  by taking 1 1

s sx C  and 2 2
s sx C  we get Cs.

Clearly elements in Cs are super row vectors.

Now we proceed to define super special mixed row code of Cs
and its super special generator mixed row matrix. 

DEFINITION 3.1.10: Let 1 2� � �� �� n
s s s sC C C C  be a super 

special mixed row code. If each of the codes i
sC  have the same 

number of message symbols then we have the super special 
generator mixed row matrix 1 2� � �� �� n

s s s sG G G G
associated with Cs. Number of message symbols in each of the 

i
sG are equal and is the super special mixed row matrix Gs; 1 �

i � n.
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 We illustrate this by the following example. 

Example 3.1.11: Let 1 2 3 4
s s s s sC C C C C� � �� �  be a super 

special mixed row code. Let 1 2 3 4
s s s s sG G G G G� � �� �  be the 

associated super special mixed row generator matrix given by  

1 2 3 4
s s s s sG G G G G� � �� �

1 0 0 0 1 1 0 0 1 1 0
0 1 0 1 0 0 1 0 0 1 1
0 0 1 1 1 0 0 1 1 0 1

�
�� �
��

1 0 0 0 0 1 0
0 1 0 1 0 0 0
0 0 1 0 1 0 1

1 0 0 1 0 0 1
0 1 0 0 1 1 0
0 0 1 1 0 1 0

�
�
�
��

.

Clearly Gs is a super mixed row matrix. All the codes generated 
by G1, G2, G3 and G4 have the same number of message 
symbols. The code 1

sC  = {(0 0 0 0 0), (1 0 0 0 1), (0 1 0 1 0), (0 
0 1 1 1), (1 1 0 1 1), (0 1 1 0 1), (1 0 1 1 0), (1 1 1 0 0)}. The 
codewords given by 2

sC  = {(0 0 0 0 0 0), (1 0 0 1 1 0), (0 1 0 0 
1 1), (0 0 1 1 0 1), (1 1 0 1 0 1), (0 1 1 1 1 0), (1 0 1 0 1 1), (1 1 
1 0 0 0)}. The codes associated with 3

sC  = {1 0 0 0 0 1 0), (0 0 0 
0 0 0 0), (0 1 0 1 0 0 0), (0 0 1 0 1 0 1), (1 1 0 1 0 1 0), (1 0 1 0 
1 1 1), (0 1 1 1 1 0 1), (1 1 1 1 1 1 1)} and 4

sC  = {(0 0 0 0 0 0 
0), (1 0 0 1 0 0 1), (0 1 0 0 1 1 0), (0 0 1 1 0 1 0), (1 1 0 1 1 1 1), 
(0 1 1 1 1 0 0), (1 0 1 0 0 1 1), (1 1 1 0 1 0 1)}.  

We see the number of code words in each and every code i
sC , i 

= 1, 2, 3, 4 is the same; equal to 8. Further the number of super 
code words in Cs is 8 2 8 2 8 2 8 i.e., |Cs| = 84. We give a 
necessary and sufficient condition for Hs to have an associated 
generator matrix Gs for a super special row code Cs.
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THEOREM 3.1.1: Let 1 2� � �� �� n
s s s sC C C C be a super special 

row code with Hs = [H1 | H2 | …| Hn] , the super special parity 
check matrix. If each Hi = (Ai, In–k), i = 1, 2, …, n then Gs = [G1

| G2 | …| Gn] with Gi = (Ik, – AT); 1 � i � n if and only if the 
length of each code word in i

sC  is the same for i = 1, 2, …, n.

Proof: Suppose we are given Hs = [H1 | H2 | … |Hn] to be the 
super special parity check matrix of the super special row code 
Cs = [C1 | C2 | … | Cn]. We know every subcode Ci of Cs have 
the same number of check symbols. Suppose we have for this 
super special row code Cs the super special generator row 
matrix Gs with T

s sG H  = [(0) | (0) | … | (0)] . Then we have n1 – 
k1 = n2 – k2 = … = nn – kn and k1 = k2 = k3 = … = kn this is 
possible if and only if n1 = n2 = … = nn. Hence the result. 
 Thus we see in this situation we have both the super special 
generator row matrix of the code Cs as well as the super special 
parity check matrix of the code Cs are not super special mixed 
row matrices; we see both of them have the same length n for 
each row. 

We illustrate this situation by an example before we 
proceed on to define more concepts. 

Example 3.1.12: Let 1 2 3 4
s s s s sC C C C C� � �� �  be a super special 

row code. Hs = [H1 | H2 | H3 | H4]

0 1 1 1 0 0 0 1 0 0 1 0 0 0
1 0 1 0 1 0 0 0 1 1 0 1 0 0
1 1 1 0 0 1 0 1 1 1 0 0 1 0
1 1 0 0 0 0 1 1 0 1 0 0 0 1

�
�
��
�
�
��

1 1 1 1 0 0 0 1 0 1 1 0 0 0
0 0 1 0 1 0 0 0 1 0 0 1 0 0
1 0 0 0 0 1 0 1 1 1 0 0 1 0
0 1 0 0 0 0 1 1 1 0 0 0 0 1

�
�
�
�
�
��
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the super special row parity check matrix; then the related super 
special row generator matrix  

Gs = [G1 | G2 | G3 | G4]

1 0 0 0 1 1 1 1 0 0 1 0 1 1
0 1 0 1 0 1 1 0 1 0 0 1 1 0
0 0 1 1 1 1 0 0 0 1 0 1 1 1

�
�� �
��

1 0 0 1 0 1 0 1 0 0 1 0 1 1
0 1 0 1 0 0 1 0 1 0 0 1 1 1
0 0 1 1 1 0 0 0 0 1 1 0 1 0

�
�
�
�
�

.

 Now we find
T

s sG H  = [G1 | G2 | G3 | G4] 2 [H1 | H2 | H3 | H4]T

= [G1 | G2 | G3 | G4] 2 1 2 3 4

T T T TH H H H� �
� �

= T T T T
1 1 2 2 3 3 4 4G H G H G H G H� �� �

=

0 1 1 1
1 0 1 1

1 0 0 0 1 1 1 1 1 1 0
0 1 0 1 0 1 1 1 0 0 0
0 0 1 1 1 1 0 0 1 0 0

0 0 1 0
0 0 0 1

� � �
� � �
� � �
� � �� �
� � �� �
� � �� �
� � �� �� �� � �
� � �
� � �� ��

1 0 0 1 0 1 1
0 1 0 0 1 1 0
0 0 1 0 1 1 1

� �
� �
� �
� �� �
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1 0 1 1 1 0 1 0
0 1 1 0 1 0 0 1

1 0 0 1 0 1 00 1 1 1 1 1 0 0
0 1 0 1 0 0 11 0 0 0 1 0 0 0
0 0 1 1 1 0 00 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

� � � �
� � � �
� � � �
� � � �� �
� � � �� �� � � � �� �
� � � �� �� �� � � �
� � � �
� � � �� � � �

1 0 1 1
0 1 1 1

1 0 0 1 0 1 1 1 0 1 0
0 1 0 0 1 1 1 1 0 0 0
0 0 1 1 0 1 0 0 1 0 0

0 0 1 0
0 0 0 1

�� �
�� �
�� �
�� �� � �� �� � �� �� � �� �� �� � �� �
�� �
�� �� ���

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

� �
� �� � �
� �� �

which is a super special zero row vector.  

Now we shall illustrate by an example, in which T
s sG H 	

[(0) | (0) | … | (0)]. 

Example 3.1.13: Let Cs = [C1 | C2 | C3] be a super special row 
code where Hs = [H1 | H2 | H3], is the associated super special 
parity check row matrix. 
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s

1 0 1 1 0 0 0 1 1 0 0 1 0 0 0
1 1 1 0 1 0 0 0 0 1 1 0 1 0 0

H
0 1 0 0 0 1 0 1 0 0 1 0 0 1 0
1 0 0 0 0 0 1 1 1 1 1 0 0 0 1

�
�
��
�
�
��

1 0 1 0 0 0
0 1 0 1 0 0
1 1 0 0 1 0
1 0 0 0 0 1

�
�
�
�
�
��

.

Now

1

1 0 0 1 1 0 1
G 0 1 0 0 1 1 0

0 0 1 1 1 0 0

� �
� �� � �
� �� �

a 3 2 7 matrix, with T
1 1G H  = (0).

2

1 0 0 0 1 0 1 1
0 1 0 0 1 0 0 1

G
0 0 1 0 0 1 0 1
0 0 0 1 0 1 1 1

� �
� �
� ��
� �
� �
� �

a 4 2 8 generator matrix got from H2 with T
2 2G H  = (0) and  

3

1 0 1 0 1 1
G

0 1 0 1 1 0
� �

� � �
� �

is a 2 2 6 matrix with T
3 3G H  = (0).  

We see G1, G2 and G3 cannot be formed into a super mixed 
row matrix. So this example clearly shows to us that even if Cs
= [C1 | C2 | C3] is a super special mixed row code with Hs a super 
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special parity check mixed row matrix of Cs yet Gs is undefined 
for this Cs. This is in keeping with the theorem. 
 Likewise if we have a super special row code Cs we may 
have the super special row matrix which generates Cs yet Hs
may not exist.  
 This is the marked difference between the super special row 
codes and usual linear codes. 

Example 3.1.14: Let Cs = [C1 | C2 | C3] be a super special code 
with super special row generator matrix  

s

1 0 0 0 1 1 1 0 0 1 1 1 1
G 0 1 0 1 0 1 0 1 0 0 0 1 1

0 0 1 1 1 0 0 0 1 1 0 0 1

�
�� �
��

1 0 0 1 1
0 1 0 0 1
0 0 1 1 0

�
�
�
��

= [G1 | G2 | G3].  

Clearly Gs is a super special row mixed matrix. Now  

1

0 1 1 1 0 0
H 1 0 1 0 1 0

1 1 0 0 0 1

� �
� �� � �
� �� �

got from G1 and we have T
1 1G H  = (0). The parity check matrix 

got from G2 is

2

1 0 1 1 0 0 0
1 0 0 0 1 0 0

H
1 1 0 0 0 1 0
1 1 1 0 0 0 1

� �
� �
� ��
� �
� �
� �
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where T
2 2G H  = (0). Also  

3

1 0 1 1 0
H

1 1 0 0 1
� �

� � �
� �

and is such that T
3 3G H  = (0). We see H1, H2 and H3 cannot be 

made into a super special row matrix. Hence the claim. 
 Now having defined the new class of super special row 
(mixed row) codes we will now define new classes of mixed 
super classes of mixed super special row codes Cs i.e., we may 
have the super special row code to contain classical subcodes as 
Hamming code or cyclic code or code and its orthogonal 
complement and so on. 

DEFINITION 3.1.11: Let Cs = [C1 | C2 | …| Cn] be a super 
special row code. If some of the Ci’s are Hamming codes, some 
Cj’s are cyclic codes i 	 j, some Ck’s are repetition codes and 
some Ct’s are codes and Cp’s are dual codes of Ct’s ; 1 � j, k, t, 
i, p < n then we call Cs to be a mixed super special row code.  

It is important to mention here that even if two types of classical 
codes are present still we call Cs as a mixed super special row 
code.

We will illustrate them by the following examples. 

Example 3.1.15: Let Cs = [C1 | C2 | C3 | C4] be a mixed super 
special row code. Here C1 is a Hamming code, C2 the repetition 
code, C3 a code of no specific type and C4 a cyclic code.  
 Let the mixed super special parity check matrix Hs
associated with Cs be given by  

Hs = [H1 | H2 | H3 | H4]

0 0 0 1 1 1 1 1 1 0 0
0 1 1 0 0 1 1 1 0 1 0
1 0 1 0 1 0 1 1 0 0 1

�
�� �
��
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0 1 1 1 0 0 1 1 1 0 1 0 0
1 0 1 0 1 0 0 1 1 1 0 1 0
1 1 0 0 0 1 0 0 1 1 0 0 1

�
�
�
��

.

Clearly Cs is a mixed super special mixed row code. Any super 
code word xs of Cs will be of a form xs = [1 0 0 0 1 0 0 | 1 1 1 1 | 
0 1 1 0 1 1 | 1 1 1 1 1 1 0] which is clearly a super mixed row 
vector.

Example 3.1.16: Let Cs = [C1 | C2 | C3] be a mixed super special 
row code. Let Hs = [H1 | H2 | H3] be the associated super special 
parity check mixed row matrix. C1 is the Hamming code, C2 any 
code and C3 a repetition code.  

s

1 1 1 1 1 1 1 1 1 0 1 1 0 0 0
0 0 0 1 1 1 1 0 1 1 1 0 1 0 0

H
0 1 1 0 0 1 1 0 1 0 0 0 0 1 0
1 0 1 0 1 0 1 0 0 1 1 0 0 0 1

�
�
��
�
�
��

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

�
�
�
�
�
��

is the mixed super special parity check mixed row matrix for 
which Gs does not exist. 
We define the new notion of super special Hamming row code. 

DEFINITION 3.1.12: Let CS = � �� ��1 2 n
S S SC C C  where each 

i
sC  is a (2m – 1, 2m – 1 – m) Hamming code for i = 1, 2, …, n. 

Then we call Cs to be a super special Hamming row code. If 
Hs= [H1 | H2 | … | Hn] be the super special parity check matrix 
associated with Cs we see Hs is a super special row matrix 
having m rows and each parity check matrix Hi has m rows and 
2m – 1 columns, i =1, 2, …, n. 
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Further the transmission rate can never be equal to ½. If m > 2 
then will the transmission rate be always greater than ½ ?  

We will just illustrate a super special Hamming row code by the 
following example. 

Example 3.1.17: Let Cs = 1 2 3
s s sC C C� �� �  be a super special 

Hamming row code where

Hs = 
0 0 0 1 1 1 1 1 1 1 0 1 0 0
0 1 1 0 0 1 1 0 1 1 1 0 1 0
1 0 1 0 1 0 1 0 0 1 1 1 0 1

�
�
�
��

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

�
�
�
��

= [H1 | H2 | H3]

is the super special matrix associated with Cs. We see i
sC  is a 

(7, 4) Hamming code; i = 1, 2, 3. Here m = 3 and n = 23 – 1 = 7. 
The code words associated with 1

sC  is  

{(0 0 0 0 0 0 0), (1 0 0 0 0 0 1 1), (0 1 0 0 1 0 1), (0 0 1 0 1 1 0), 
(0 0 0 1 1 1 1), (1 1 0 0 1 1 0), (0 1 1 0 0 1 1), (0 0 1 1 0 0 1), 
(1 0 1 0 1 0 1), (0 1 0 1 1 1 1), (1 0 0 1 1 0 0), (1 1 1 0 0 0 0), 
(0 1 1 1 1 0 0), (1 1 0 1 0 0 1), (1 0 1 1 1 0 1), (1 1 1 1 1 1 1)}. 

2
sC  = {(0 0 0 0 0 0 0), (10 0 0 1 0 1), (0 1 0 0 1 1 1), 
(0 0 1 0 1 1 1), (0 0 0 1 0 1 1), (1 1 0 0 0 1 0),  
(0 1 1 0 0 0 1), (0 0 1 1 1 0 1), (1 0 0 1 1 1 1),  
(1 0 1 0 0 1 1), (0 1 0 1 1 0 1), (1 1 1 0 1 0 1),  

(1 1 0 1 0 0 1), (0 1 1 1 0 1 1), (1 0 1 1 0 0 0), (1 1 1 1 1 1 1)}. 

3
sC  = {(0 0 0 0 0 0 0), (1 0 0 0 0 1 1), (0 1 0 0 1 0 1), 
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(0 0 1 0 1 1 1), (0 0 0 1 1 1 0), (1 1 0 0 1 1 0), 
(0 1 1 0 0 1 0), (0 0 1 1 0 0 1), (1 0 0 1 1 1 0), 
(1 0 1 0 1 0 0), (0 1 0 1 0 1 1), (1 1 1 0 0 0 1), 

(0 1 1 1 1 0 0), (1 1 0 1 0 1 1), (1 0 1 1 0 1 0), (1 1 1 1 1 1 1)}. 

By taking one code word from 1
sC , one code word from 2

sC  and 
one from 3

sC  we form the super special Hamming row code. 
Any xs = 1 2 3

s s s(x x x )  where 1
sx  1

sC , 2 2
s sx C  and 3 3

s sx C� .
We see

Hs
T
sx   = [H1 | H2 | H3] 1 2 3

s s s(x x x )  
= [H1

1 T
s(x ) | H2

2 T
s(x ) | H3

3 T
s(x ) ]

= [(0) | (0) | (0)]  
for every xs  Cs.

3.2 New Classes of Super Special Column Codes  

Suppose we are interested in finding super special codes in 
which the number of check symbols will be different for the 
subcodes. In such a situation we see certainly we cannot work 
with the super special row codes Cs, for in this case we demand 
always the number of check symbols to be the same for every 
subcode in Cs, so we are forced to define this special or new 
classes of super special codes. 

DEFINITION 3.2.1: Suppose we have to describe n codes each of 
same length say m but with varying sets of check symbols by a 
single matrix. Then we define it using super column matrix as 
the super code parity check matrix. Let 

Cs = 

� �
� �
� �
� �
� �
� �� �

�

1

2

m

C
C

C
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be a set of m codes, C1, C2, ..., Cm where all of them have the 
same length n but have n – k1, n – k2, ..., n – km to be the number 
of check symbols and k1, k2, ..., km are the number of message 
symbols associated with each of the codes C1, C2, ..., Cm
respectively. 

Let us consider

Hs =

1

2

m

H
H

H

� �
� �
� �
� �
� �
� �� �

�

where each Hi is the n – ki 2 n parity check matrix of the code 
Ci; i = 1, 2, ..., m. We call Hs to be the super special parity check 
mixed column matrix of Cs and Cs is defined as the super 
special mixed column code.  

The main difference between the super special row code 
and the super special column code is that in super special row 
codes always the number of check symbols in every code in Cs
is the same as the number of message symbols in Ci and the 
length of the code Ci can vary where as in the super special 
column code, we will always have the same length for every 
code Ci in Cs but the number of message symbols and the 
number check symbols for each and every code Ci in Cs need 
not be the same. In case if the number of check symbols in each 
and every code Ci is the same. Then we call Cs to be a super 
special column code.  

In case when we have varying number of check symbols 
then we call the code Cs to be a super special mixed column 
code.

In the case of super special column code Cs = [C1 | C2 | … | 
Cm]t we see every code Ci in Cs have the same number of 
message symbols. Thus every code is a (n, k) code. It may so 
happen that some of the Ci and Cj are identical codes. Now we 
proceed on to give examples of the two types of super special 
column codes. 
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Example 3.2.1: Let

Cs =

1

2

3

4

C
C
C
C

� �
� �
� �
� �
� �
� �� �

be a super special column code.  
Let

Hs = 

1

2

3

4

H
H
H
H

� �
� �
� �
� �
� �
� �� �

where each Hi is a 3 2 7 parity check matrix. 

Hs = 

1 0 1 0 1 0 0
0 1 0 1 0 1 0
1 1 1 0 0 0 1
0 1 1 0 1 0 0
1 0 0 1 0 1 0
1 0 1 0 0 0 1
1 0 0 1 1 0 0
1 1 1 0 0 1 0
1 0 0 1 0 0 1
0 1 1 0 1 0 0
1 1 1 1 0 1 0
1 0 1 1 0 0 1

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

is a super column matrix. We see if  

Hs [x1 | x2 | x3 | x4]T = (0) = 

1

2

3

4

H
H
H
H

� �
� �
� �
� �
� �
� �� �

T T T T
1 2 3 4x x x x� �� �
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=

T
1 1

T
2 2

T
3 3

T
4 4

0
0
0
0

H x 0
0H x
0H x
0H x
0
0
0
0

� �
� �
� �
� �
� �
� �
� �� �
� �� �
� �� � � � �� �
� �� �
� �� �� � � �
� �
� �
� �
� �
� �� �

.

As in case of super special row codes we get any super 
special column code, the main criteria being every code Ci in Cs
= [C1 | C2 | ... |Cm] would have the same length. It can have any 
number of message symbols and any arbitrary number of check 
symbols. 

Just we saw in example 3.2.1 a super special column code. 
One of the main reason for us to have this new class of codes is 
that when we have super special row codes we see if the length 
of the code words are the same then automatically it is such that 
the number of message symbols become equal to the number of 
check symbols Thus the transmission rate becomes fixed equal 
to 1/2. But if we wish to have lesser transmission rate we cannot 
get it from these codes, the super special column codes comes 
handy. 
 We now describe yet another super special column code Cs.

Example 3.2.2: Let Cs = [C1 | C2 | … | Cn]t be a super special 
column code. Here n = 3 i.e., Cs = [C1 | C2 | C3]t. Let
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Hs = 

0 0 1 1 0 0 0
0 1 0 0 1 0 0
1 1 1 0 0 1 0
1 0 0 0 0 0 1
1 1 0 0 0 1 0
1 1 0 1 0 0 1
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 1 1 0 0 1

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

.

 We see every code word in Ci are of length 7. But the 
number of message symbols in C1 is 3 and the number of check 
symbols is 4 i.e., C1 is a (7, 3) code where as C2 is a (7, 5) code 
and C3 is a (7, 4) code. The number of super code words in the 
code Cs is 23 2 25 2 24 = 212.
The code words in

C1 = {(0 0 0 0 0 0 0), (1 0 0 0 0 1 1), (0 1 0 0 1 1 0), 
(0 0 1 1 0 1 0), (1 1 0 0 1 0 1), (0 1 1 1 1 0 0), 

(1 0 1 1 0 0 1), (1 1 1 1 1 1 1)}. 
The code

C2 = {(0 0 0 0 0 0 0), (1 0 0 0 0 1 1), (0 1 0 0 0 1 1), 
(0 0 1 0 0 0 0), (0 0 0 1 0 0 1), (0 0 0 0 1 0 0), 
(1 1 0 0 0 0 0), (0 1 1 0 0 1 1), (0 0 1 1 0 0 1), 
(0 0 0 1 1 0 1), (1 0 1 0 0 1 1), (1 0 0 1 0 1 0), 
(1 0 0 0 1 1 1), (0 1 0 1 0 0 1), (0 0 1 0 1 0 0), 
(0 1 0 0 1 1 1), (1 1 1 0 0 0 0), (0 1 1 1 0 1 1), 
(0 0 1 1 1 0 1), (1 1 0 1 0 0 1), (1 1 0 0 1 0 0), 
(1 0 1 1 0 1 0), (1 0 0 1 1 1 0), (0 1 1 0 1 1 0), 
(1 0 1 0 1 1 1), (0 1 0 1 1 1 0), (1 1 1 1 0 0 1), 
(0 1 1 1 1 1 0), (1 1 1 0 1 0 0), (1 1 0 1 1 0 1), 

(1 0 1 1 1 1 0), (1 1 1 1 1 0 1)} 
and

C3 = {(0 0 0 0 0 0 0), (1 0 0 0 1 0 1), (0 1 0 0 0 1 1), 
(0 0 1 0 1 1 1), (0 0 0 1 0 0 1), (1 1 0 0 1 1 0), (0 1 1 0 1 0 0), 
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(0 0 1 1 1 1 0), (1 0 1 0 0 1 0), (0 1 0 1 0 1 0), (1 0 0 1 1 0 0), 
(1 1 1 0 0 0 1), (0 1 1 1 1 0 1), (1 1 0 1 1 1 1), 

(1 0 1 1 0 1 1), (1 1 1 1 0 0 0)}. 

Thus by taking one code word from each of the Ci’s we get 
the super special code word which is super row vector of length 
7. Thus Cs has 8 2 32 2 16 = 4096 super code words.  

Unlike in the case of super special row codes given a super 
special column code Cs with associated super special parity 
check column matrix Hs we will always be in a position to a get 
the super special generator matrix Gs. We see in the example 
3.2.2 just given we do not have for that Hs an associated 
generator matrix Gs though clearly each Hi in Hs is only in the 
standard form. 

However for the example 3.2.1 we have an associated 
generator matrix Gs for the  

Hs = 

1

2

3

4

H
H
H
H

� �
� �
� �
� �
� �
� �� �

=

1 0 1 0 1 0 0
0 1 0 1 0 1 0
1 1 1 0 0 0 1
0 1 1 0 1 0 0
1 0 0 1 0 1 0
1 0 1 0 0 0 1
1 0 0 1 1 0 0
1 1 1 0 0 1 0
1 0 0 1 0 0 1
0 1 1 0 1 0 0
1 1 1 1 0 1 0
1 0 1 1 0 0 1

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

.
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1

2
5

3

4

1 0 0 0 1 0 1
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 0 1 0
1 0 0 0 0 1 1
0 1 0 0 1 0 0

G0 0 1 0 1 0 1
G0 0 0 1 0 1 0

G .G1 0 0 0 1 1 1
G0 1 0 0 0 1 0

0 0 1 0 0 1 0
0 0 0 1 1 0 1
1 0 0 0 0 1 1
0 1 0 0 1 1 0
0 0 1 0 1 1 1
0 0 0 1 0 1 1

� �
� �
� �
� �
� �
� �
� �
� �
� �
� � � �
� � � �
� � � �� �� � � �
� � � �
� � � �� �� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

Clearly  

Gs
T
sH =

1

2

3

4

G
G
G
G

� �
� �
� �
� �
� �
� �� �

T T T T
1 2 3 4H H H H� �� � .

=

T
1 1

T
2 2

T
3 3

T
4 4

G H
G H
G H
G H

� �
� �
� �
� �
� �
� �� �
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1 0 0 0 1 0 1
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 0 1 0
1 0 0 0 0 1 1
0 1 0 0 1 0 0
0 0 1 0 1 0 1
0 0 0 1 0 1 0
1 0 0 0 1 1 1
0 1 0 0 0 1 0
0 0 1 0 0 1 0
0 0 0 1 1 0 1
1 0 0 0 0 1 1
0 1 0 0 1 1 0
0 0 1 0 1 1 1
0 0 0 1 0 1 1

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

2

1 0 1 0 1 1 1 1 1 0 1 1
0 1 1 1 0 0 0 1 0 1 1 0
1 0 1 1 0 1 0 1 0 1 1 1
0 1 0 0 1 0 1 0 1 0 1 1
1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �
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0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

.
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

We find conditions under which we have a super special column 
code Cs with an associated super special parity check column 
matrix Hs in the standard form to have a super special generator 

column matrix Gs with Gs
T
sH = 

0

0

� �
� �
� �
� �
� �

� .

Before we prove a result of this nature we define the two 
types of super special generator column matrix for a super 
special column code Cs.

DEFINITION 3.2.2: Let Cs = [C1| C2 | ... |Cn]t where Ci’s are 
codes of same length m. Suppose each Ci is generated by a 
matrix Gi, i = 1, 2, …, n, then  

Gs = 
� �
� �
� �
� �
� �

�
1

n

G

G



108

generates the super special column code Cs. We call Gs the 
super special generator column matrix which generates Cs. If in 
each of the codes Ci in Cs, we have same number of message 
symbols then we call Gs to be a super special generator column 
matrix; i = 1, 2, …, n. If each of the codes Ci’s in Cs have 
different number of message symbols then we call Gs to be a 
super special generator mixed column matrix.

We say Gs is in the standard form only if each Gi is in the 
standard form. Further only when Gs is in the standard form and 
Gs is a super special column matrix which is not a mixed matrix 
we have Hs the super special parity check column matrix of the 
same Cs with

Gs
T
sH =

0
0

0

� �
� �
� �
� �
� �
� �� �

� .

Now we illustrate both the situations by examples. 

Example 3.2.3: Let Cs = [C1 | C2 | C3 | C4]t be a super special 
column code generated by  

Gs =

1 0 0 1 1 0 1
0 1 0 0 1 1 0
0 0 1 1 0 0 1
1 0 0 0 1 0 1
0 1 0 1 0 0 0
0 0 1 0 0 1 1
1 0 0 1 1 1 1
0 1 0 0 1 0 1
0 0 1 1 0 1 0
1 0 0 1 0 1 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

 = 

1

2

3

4

G
G
G
G

� �
� �
� �
� �
� �
� �� �
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the super special column matrix. Now the related Hs of Gs exists 
and is given by  

1

2

3

4

1 0 1 1 0 0 0
1 1 0 0 1 0 0
0 1 0 0 0 1 0
1 0 1 0 0 0 1
0 1 0 1 0 0 0
1 0 0 0 1 0 0

H 0 0 1 0 0 1 0
H 1 0 1 0 0 0 1

H .H 1 0 1 1 0 0 0
H 1 1 0 0 1 0 0

1 0 1 0 0 1 0
1 1 0 0 0 0 1
1 0 0 1 0 0 0
0 1 0 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �
� �� �
� �� �� � � �� �
� �� �
� �� �� � � �
� �
� �
� �
� �
� �
� �
� �
� �
� �

Now

Gs
T
sH  = 

1

2

3

4

G
G
G
G

� �
� �
� �
� �
� �
� �� �

T
1

2

3

4

H
H
H
H

� �
� �
� � �� �
� �
� �� �

T
1 1

T
2 2

T
3 3

T
4 4

G H
G H
G H
G H

� �
� �
� �
� �
� �
� �� �

 = 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

.
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Example 3.2.4:   Let Cs = [C1 | C2 | C3]t be a super special 
column code. Suppose  

Gs = 

1 0 0 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
1 0 1 1 0 0 1
0 1 0 0 1 1 0
1 0 0 0 0 1 0
0 1 0 0 1 1 0
0 0 1 0 1 1 1
0 0 0 1 0 1 1

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

=
1

2

3

G
G
G

� �
� �
� �
� �
� �

be the super special column matrix which generates Cs.

H1 = 

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 0 0 1 0
0 0 0 0 0 0 1

� �
� �
� �
� �
� �
� �

,

H2 = 

1 0 1 0 0 0 0
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 1 0 0 0 1 0
1 0 0 0 0 0 1

� �
� �
� �
� �
� �
� �
� �� �

and

H3 = 
0 1 1 0 1 0 0
1 1 1 1 0 1 0
0 0 1 1 0 0 1

� �
� �
� �
� �� �

.

Thus
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Hs = 

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 0 0 1 0
0 0 0 0 0 0 1
1 0 1 0 0 0 0
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 1 0 0 0 1 0
1 0 0 0 0 0 1
0 1 1 0 1 0 0
1 1 1 1 0 1 0
0 0 1 1 0 0 1

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

is the super special column matrix which is the super parity 
check column matrix of Cs. Clearly Gs

T
sH  = (0), super column 

zero matrix. As in case of usual codes given the parity check 
matrix H or the generator matrix G in the standard form we can 
always get G from H or H from G and we have GHT = (0). Like 
wise in the case of super special (mixed column) column code 
Cs if Gs is the super special column generator matrix in the 
standard form we can always get the super special column 
parity check matrix Hs from Hs and we have Gs

T
sH  is always a 

super special zero column matrix. 
As in case of super special row code we can define classical 

super special column codes. 

DEFINITION 3.2.3: Let Cs = [C1 | C2 | …| Cn]t be a super special 
column code if each of the code Ci is a repetition code of length 
n then Cs is a super special repetition column code with C1 = C2
=…= Cn. The super special column parity check matrix  

Hs =
� �
� �
� �
� �
� �

�
H

H
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=

1 1 0 0 ... 0
1 0 1 0 ... 0

1 0 0 0 ... 1

1 1 0 0 ... 0
1 0 1 0 ... 0

1 0 0 0 ... 1

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � � � �

�

� � � � �

where

H = 

1 1 0 0 ... 0
1 0 1 0 ... 0

1 0 0 0 ... 1

� �
� �
� �
� �
� �
� �

� � � � �
.

 It is important to note that unlike the super special repetition 
row code which can have different lengths the super special 
repetition column code can have only a fixed length and any 
super special code word 

xs = 1 2 n
s s sx x x� �� ��

where j
sx  = (1 1 … 1), n-times or (0 0 … 0) n-times only; 1 � j 

� n. 

Example 3.2.5: Let

Cs = 
1

2

3

C
C
C

� �
� �
� �
� �
� �

be a super special repetition column code where the related 
super special column parity check matrix  
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s

1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 1 0 0 0 0
1 0 1 0 0 0

H 1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

.

Thus
Cs = {[0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0], 

[1 1 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 1 1], 
[0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 1 1 1 1 1], 
[0 0 0 0 0 0 | 1 1 1 1 1 1 | 1 1 1 1 1 1], 
[1 1 1 1 1 1 | 0 0 0 0 0 0 | 0 0 0 0 0 0], 
[1 1 1 1 1 1 | 1 1 1 1 1 1 | 0 0 0 0 0 0], 
[1 1 1 1 1 1 | 0 0 0 0 0 0 | 1 1 1 1 1 1], 
[0 0 0 0 0 0 | 1 1 1 1 1 1 | 0 0 0 0 0 0]}. 

Thus if Cs = [C1| C2 | … | Cn ] then | Cs | = 2n where every super 
code word in Cs takes entries from the two code words {(0 0 0 
… 0), (1 1 1 1 … 1)}. 

Thus we see in case of super special column code it is 
impossible to get repetition codes of different lengths. However 
this is possible as seen earlier using super special row codes.  

Similarly we can get only parity check super special codes 
to have same length. 
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DEFINITION 3.2.4: Let Cs = [C1 | C2 | …| Cn]t be a super special 
parity check column code . Let the super special parity check 
column matrix associated with Cs be given by  

Hs = 

� �
� �
� �
� �
� �
� �� �

�

1

2

n

H
H

H

where
H1 = H2 = … = Hn = � �

�
��	�


m times

1 1 ... 1 .

Thus we see we cannot get different lengths of parity check 
codes using the super special column code. However using 
super special row code we can get super special parity check 
codes of different lengths. 

We illustrate super special parity check column codes.  

Example 3.2.6: Let Cs = [C1| C2 | C3 | C4]t be a super special 
parity check column code with super special parity check matrix  

H =

1

2

3

4

H
H
H
H

� �
� �
� �
� �
� �
� �� �

 = 

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

� �
� �
� �
� �
� �
� �� �

.

The codes associated with  

H1 is C1 = {(0 0 0 0 0), (1 1 0 0 0), (0 1 1 0 0), (0 0 1 1 0), 
(0 0 0 1 1), (1 0 1 0 0), (1 0 0 1 0), (1 0 0 0 1), (0 1 0 1 0), 
(0 1 0 0 1), (0 0 1 0 1), (1 1 1 1 0), (1 1 1 0 1), (1 1 0 1 1), 

(1 0 1 1 1), (0 1 1 1 1)} = C2 = C3 = C4.

Thus Cs has 16 2 16 2 16 2 16 super special code words in it. 
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Example 3.2.7: Let Cs = [C1 | C2 | C3]t be a super special column 
parity check code. The super special column parity check matrix  

Hs = 
1

2

3

H 1 1 1 1
H 1 1 1 1
H 1 1 1 1

� � � �
� � � �

�� � � �
� � � �
� � � �

.

The codes related with H1 is C1 = {(0 0 0 0), (1 1 0 0), (0 1 1 0), 
(0 0 1 1), (1 0 0 1), (1 0 1 0), (0 1 0 1), (1 1 1 1)} = C2 = C3.

Thus Cs contains 8 2 8 2 8 = 512 number of super special code 
words.

Thus only when the user wants to send messages generated 
by the same parity check matrix he can use it. However the 
main advantage of this special parity check column code Cs = 
[C1 | C2 | … | Cn]; has each code word in Ci which is of length m 
then Cs has n2m–1 number of code words hence one can use it in 
channels were one is not very much concerned with the 
transmission rate; for the transmission rate increases with 
increase in the length of the code words in Cs.

Now having seen this new class of codes using the parity 
check column code. We proceed on to built another new class of 
column codes using Hamming codes. 

DEFINITION 3.2.5: Let Cs = [C1 | C2 | … | Cn]t be a super 
special column code if each of the codes Ci in Cs is a (2m – 1, 2m

– 1 – m) Hamming code for i = 1, 2, … , n then we call Cs to be 
a super special column Hamming code . It is pertinent to 
mention that each code Ci is a Hamming code of same length; i 
= 1, 2, … , n.

Now we shall illustrate this by the following example. 

Example 3.2.8: Let Cs = [C1 | C2 | C3]t be a super special column 
Hamming code.

Suppose
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Hs = 
1

2

3

H
H
H

� �
� �
� �
� �
� �

be the associated super special parity check column matrix of 
Cs, where

H1 = H2 = H3 = 
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

� �
� �
� �
� �� �

.

The code
Ci = {(0 0 0 0 0 0 0), (1 0 0 0 0 1 1), (0 1 0 0 1 0 1), 

(0 0 1 0 1 1 0), (0 0 0 1 1 0 1), (1 1 0 0 1 0 1), (0 1 1 0 0 1 1),  
(0 0 1 1 1 0 0), (1 0 1 0 1 0 1), (1 0 0 1 1 0 0), (0 1 0 1 0 1 0),  

(1 1 1 0 0 0 0), (0 1 1 1 1 0 0), (1 1 0 1 0 1 1),  
(1 0 1 1 1 1 1), (1 1 1 1 1 1 1)}; 

i = 1, 2, 3. Thus Cs has 163 super special code words in it.  
We can yet have different codes using different parity check 

matrices.

We just illustrate this by the following example. 

Example 3.2.9: Let Cs = [C1 | C2]t be a super special Hamming 
column code of length seven. 

Suppose

Hs = 1

2

H
H
� �
� �
� �� �

=

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

be the associated super special parity check column matrix of 
Cs. Then
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C1 = {(0 0 0 0 0 0 0), (1 0 0 0 0 1 1), (0 1 0 0 1 0 1), 
(0 0 1 0 1 1 0), (0 0 0 1 1 0 1), (1 1 0 0 1 0 1), (0 1 1 0 0 1 1), 
(0 0 1 1 1 0 0), (1 0 1 0 1 0 1), (1 0 0 1 1 0 0), (0 1 0 1 0 1 0), 

(1 1 1 0 0 0 0), (0 1 1 1 1 0 0), (1 1 0 1 0 1 1),  
(1 0 1 1 1 1 1), (1 1 1 1 1 1 1)} 

and

C2 = {(0 0 0 0 0 0 0), (1 0 0 0 1 0 1), (0 1 0 0 1 1 1), 
(0 0 1 0 1 1 0), (0 0 0 1 0 1 1), (1 1 0 0 0 1 0), (0 1 1 0 0 0 1), 
(0 0 1 1 1 0 1), (1 0 1 0 0 1 1), (1 0 0 1 1 1 1), (0 1 0 1 1 0 0), 

(1 1 1 0 1 0 1), (0 1 1 1 0 1 0), (1 1 0 1 0 0 1), 
(1 0 1 1 0 0 0), (1 1 1 1 1 1 1)}. 

Thus we see C1 and C2 are different Hamming codes but C1

8 C2 	 9 as well as C1 	 C2.
So we can get different sets of codes and the number of 

elements in Cs is 256.  
Now as in case of super special row codes we can in case of 

super special column codes have mixed super special column 
codes. The only criteria being is that each code Ci in Cs will be 
of same length.  

Now we proceed on to define them.  

DEFINITION 3.2.6: Cs = [C1 | C2 | …| Cn]t is a mixed super 
special column code if some Ci’s are repetition codes of length 
n some Cj’s are Hamming codes of length n, some Ck’s parity 
check codes of length n and others are arbitrary codes, 1� i, j, k 
� n.   

We illustrate this by the following example. 

Example 3.2.10: Let Cs = [C1 | C2 | C3 | C4]t be a mixed super 
special column code. Let  

Hs = 

1

2

3

4

H
H
H
H

� �
� �
� �
� �
� �
� �� �
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be the super special parity check column matrix associated with 
Cs. Here

Hs = 

1

2

3

4

H
H
H
H

� �
� �
� �
� �
� �
� �� �

 = 

1 1 1 1 1 1 1
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
1 0 0 1 0 0 0
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 1

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

;

here H1 is a parity check code of length 7, H2 is a repetition 
code with 6 check symbols, H3 is the Hamming code of length 7 
and H4 a code with 3 message symbols. The transmission rate of  

Cs = 6 1 4 3 14 1
7 7 7 7 28 2
� � �

� �
� � �

.

Now we proceed on to define the super special column cyclic 
code.

DEFINITION 3.2.7: Let Cs = [C1 | C2 | … | Cm]t be a super 
special column code if each of the codes Ci is a cyclic code then 
we call Cs to be a super special cyclic column code. However 
the length of each code Ci; i = 1, 2, …, n will only be a cyclic 
code of length n, but the number of message symbols and check 
symbols can be anything. 
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Now we illustrate this by an example. 

Example 3.2.11: Let Cs = [C1 | C2 | C3]t be a super special cyclic 
column code where each Ci is of length six. 

Now the associated super special parity check column matrix  

Hs =
1

2

3

H
H
H

� �
� �
� �
� �
� �

 = 

0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 0 0 0 1 1
0 0 0 1 1 0
0 0 1 1 0 0
0 1 1 0 0 0
1 1 0 0 0 0

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

.

The cyclic codes given by the parity check matrix H1 is

C1 = {(0 0 0 0 0 0), (1 0 0 1 0 0), (0 1 0 0 1 0), (0 0 1 0 0 1), 
(1 1 0 1 1 0), (0 1 1 0 1 1), (1 0 1 1 0 1), (1 1 1 1 1 1)}, 

C2 = {(1 1 1 1 1 1), (0 0 0 0 0 0)} 
and    C3 = {(0 0 0 0 0 0), (1 1 1 1 1 1)}. 

Thus Cs contains 8 2 2 2 2 = 32 elements. 
Now in the mixed super special column code Cs = [C1 | C2 | 

… | Cn]t code we can have some of the Ci’s to be cyclic codes 
also. Now in case of super special column code for any given Cs
if we have a super special parity check matrix Hs to be in the 
standard form we can always get Gs and we have Gs

T
sH  = a zero 

super special column matrix. 
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3.3 New Classes of Super Special Codes  

We have given the basic definition and properties of super 
matrices in chapter one. In this section we proceed on to define 
new classes of supper special codes and discuss a few properties 
about them.  

DEFINITION 3.3.1: Let

C(S) = 

� �
� �
� �
� �
� �
� �� �

�
�

� � � �
�

1 1 1
1 2 n
2 2 2
1 2 n

m m m
1 2 n

C C C
C C C

C C C

where i
jC  are codes 1 � i � m and 1 � j � n. Further all codes 

�1 2 m
1 1 1C ,C , ,C  are of same length �1 2 m

2 2 2C ,C , , C  are of same 
length and  �1 2 m

n n 2C ,C , , C  are of same length. �1 1 1
1 2 nC ,C , ,C

have same number of check symbols, �2 2 2
1 2 nC ,C , ,C  have same 

number of check symbols and m m m
1 2 nC ,C ,...,C have same number 

of check symbols. 
 We call C(S) to be a super special code. We can have the 
super parity check matrix

H(S) = 

� �
� �
� �
� �
� �
� �� �

�
�

� � � �
�

1 1 1
1 2 n
2 2 2
1 2 n

m m m
1 2 n

H H H
H H H

H H H

where i
jH ’s are parity check matrices 1 � i � m and 1 � j � n.  

Further �1 1 1
1 2 nH ,H , ,H  have the same number of rows, 

�2 2 2
1 2 nH ,H , ,H  have same number of rows and so on. 

�m m m
1 2 nH ,H , ,H  have the same number of rows. Likewise 

�1 2 m
1 1 1H ,H , ,H  have the same number of columns, 
1 2 m
2 2 2H ,H ,...,H  have the same number of columns and so on. 
1 2 m
n n nH ,H ,...,H  have same number of columns.  
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Now this super special code has two types of messages i.e., 

1. Array of super row vector messages i.e., 

1 1 1
1 2 n

2 2 2
1 2 n

m m m
1 2 n

C C C

C C C

      

;C C C

� �� �
� �� �

� �� �

�

�

� �

�
we have m rows of super row vectors and one by one rows are 
sent at the receiving end; one after decoding puts it only in the 
form of the same array of rows. 

2. Array of super column vector messages 

1 1 1
1 2 n
2 2 2
1 2 n

m m m
1 2 n

C C C
C C C

C C C

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �� � � � � �

�
� � �

.

Now we have n columns of super column vectors and these after 
taking transposes of each column the messages are sent one by 
one as

t1
1
2
1

m
1

C
C

C

� �
� �
� �
� �
� �
� �� �

�
 which is a super row vector, 

t2
1
2
2

m
2

C
C

C

� �
� �
� �
� �
� �
� �� �

�
a super row vector

and so on. At the receiving end once again they are arranged 
back as the array of the column vectors which will be termed as 
the received message. Thus we can have transmission of two 
types at the source and the received message will accordingly be 
of two types viz. array of super row vectors or array of super 
column vectors. 

We will illustrate this by the following example. 
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Example 3.3.1: Let

� �

1 1
1 2
2 2
1 2
3 3
1 2

C C
C S C C

C C

� �
� �

� � �
� �
� �

be a super special code.
Suppose

� �

1 1
1 2
2 2
1 2
3 3
1 2

H H
H S H H

H H

� �
� �

� � �
� �
� �

be the super special parity check matrix associated with C(S). 

� �

0 0 1 1 0 0 1 0 0 1 1 0 0
0 1 1 0 1 0 0 1 0 1 0 1 0
1 1 1 0 0 1 1 1 1 0 0 0 1
1 0 1 0 0 0 1 1 1 1 0 0 0
1 1 0 1 0 0 0 1 1 0 1 0 0

H S
0 1 0 0 1 0 1 0 1 0 0 1 0
1 0 0 0 0 1 1 1 0 0 0 0 1
1 0 0 1 0 0 1 1 0 1 1 0 0
1 1 0 0 1 0 0 1 1 0 0 1 0
1 0 1 0 0 1 1 1 1 1 0 0 1

� �
� �
� �
� �
� �
� �
� �

� � �
� �
� �
� �
� �
� �
� �
� �� �

.

Now using the parity check matrices one can get the codes 
associated with each i

tH ; 1 � i � 3 and 1 � t � 2.
A typical super code word is a block

1 0 0 0 0 1 0 1 0 0 1 0 1
1 1 1 0 1 1 1 0 1 0 1 0 1
1 1 1 1 0 0 1 1 1 1 1 0 0

� �
� �
� �
� �
� �

if we take it as array of super row vectors we have  



123

[1 0 0 0 0 1 0 1 0 0 1 0 1],
[1 1 1 0 1 1 1 0 1 0 1 0 1],
[1 1 1 1 0 0 1 1 1 1 1 0 0].

As an array of the super column vector we have  

0
1

1 0
0 0
0 1
0 0
0 1
1 1
1 0
1 1

, .1 0
0 1
1 0
1 1
1 1
1 1
1 1
1 1
0 1

0
0

� �
� �
� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �� �
� �
� �
� �� �

When we send it as message the array of super row vectors it 
would be sent as [1 0 0 0 0 1 | 0 1 0 0 1 0 1], [1 1 1 1 0 0 | 1 1 1 
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1 1 0 0] and [1 1 1 0 0 1 | 1 1 1 1 1 0 0] after receiving the 
message; the received message would be given the array super 
row representation. While sending the array of super columns 
we send the message as 

t

t

0
1

1 0
0 0
0 1
0 0
0 1
1 1
1 0
1 1

,1 0
0 1
1 0
1 1
1 1
1 1
1 1
1 1
0 1

0
0

� �
� �
� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �� � � �
� �
� �� �

that is as [1 0 0 0 0 1 | 1 1 1 0 1 1 | 1 1 1 1 0], [0 1 0 0 1 0 1 | 1 0 
1 0 1 0 1| 1 1 1 1 0 0] after receiving the message it is given the 
array super column representation.  

Now we would show how the received message is verified 
or found to be correct one or not by the following method. 
Though one can have other methods also to check whether the 
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received message is correct or not. Now we first describe the 
method using the general case before we proceed to explain 
with specific examples. Suppose  

� �

1 1 1
1 2 n
2 2 2
1 2 n

m m m
1 2 n

C C C
C C C

C S

C C C

� �
� �
� �� � �
� �
� �� �

�
�

� � � �
�

be the super special super code. Any super special super code 
word of C(S) say x(S)  C(S) would be of the form i.e.,  

� �

1 1 1
1 2 n
2 2 2
1 2 n

m m m
1 2 n

x x x
x x x

x S

x x x

� �
� �
� �� � �
� �
� �� �

�
�

� � � �
�

where each j
ix is a row vector; 1 � j � m and 1 � i � n.

Suppose

� �

1 1 1
1 2 n
2 2 2
1 2 n

m m m
1 2 n

H H H
H H H

H S

H H H

� �
� �
� �� � �
� �
� �� �

�
�

� � � �
�

be the super special parity check matrix associated with C(S). 
Now R(S) be the received super special super code word given 
by  

� �

1 1 1
1 2 n
2 2 2
1 2 n

m m m
1 2 n

y y y
y y y

R S

y y y

� �
� �
� �� � �
� �
� �� �

�
�

� � � �
�

.

To check whether the received super code word R(S) is correct 
or not, we make use of the super special syndrome technique.  
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We define super special syndrome of C(S) as  

� �� � � � � � t
S x S H S x S� � � �� �

� � � � � �
� � � � � �

� � � � � �

t t t1 1 1 1 1 1
1 1 2 2 n n

t t t2 2 2 2 2 2
1 1 2 2 1 1

t t tm m m m m m
1 1 2 2 n n

H x H x H x

H x H x H x

H x H x H x

� �
� �
� �
� �
� �
� �
� �
� �
� �

�

�

� � � �

�

=

� � � � � �
� � � � � �

� � � � � �

0 0 0
0 0 0

0 0 0

� �
� �
� �
� �
� �
� �� �

�
�

� � � �
�

then we take  x (S)  C(S); if

H(S) [x(S)]t 	

� � � � � �
� � � � � �

� � � � � �

0 0 0
0 0 0

0 0 0

� �
� �
� �
� �
� �
� �� �

�
�

� � � �
�

then we declare x(S) 0 C(S) so if  y(S) is the received message 
one calculates 

H(S) [y(S)]t = 

� � � � � �
� � � � � �

� � � � � �

0 0 0
0 0 0

0 0 0

� �
� �
� �
� �
� �
� �� �

�
�

� � � �
�

,

then y(S) is a code word of C(S); other wise we can declare the 
received message has an error in it. We can find 

� � � �ti i i
j j jS y H ;y�  1 � i � m; 1 � j � n. If � �i

jS y 0	  then we use 

the technique of coset leader to find the error. We can also use 
the method of best approximations and find the approximate 
sent message.  
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Chapter Four  

APPLICATIONS
OF THESE NEW CLASSES
OF SUPER SPECIAL CODES 

We enumerate in this chapter a few applications and advantages 
of using the super special codes. Now the following will show 
why this super special super code is better than other usual 
code. These codes can also be realised as a special type of 
concatenated codes. We enumerate them in the following: 

1. Instead of using ARQ protocols we can use the same code 
C, in the super special super code  

1 1 1
1 2 n
2 2 2
1 2 n

m m m
1 2 n

C C C
C C C

C C C

� �
� �
� �
� �
� �
� �� �

�
�

� � � �
�

;

replace every j
iC  by C, m can be equal to n or greater than n or 

less than n. So that if the same message is sent from 
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C(S) = 

C C C
C C C

C C C

� �
� �
� �
� �
� �
� �� �

�
�

� � � �
�

.

We can take the correct message. This saves both money 
and time. We can also send it is as array of super row 
vectors i.e., if x  is the message to be sent then,  

x x ... x

x x ... x

x x ... x ;

� �
� �
� �
� �

� �
� �

�

As an array of row super vector or the array of the column 
super vectors as

x x x
x x x

x x x

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �� � � � � �

�� � �

where
tx

x

x

� �
� �
� �
� �
� �
� �� �

�

is sent. In case the receiver wants to get the very correct 
message he can transmit both as an array of super row codes 
as well as, an array of super column codes the same code x
and get the correct sent message. 

2. This super special super code C(S) has another advantage 
for if
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C(S) = 

C C C
C C C

C C C

� �
� �
� �
� �
� �
� �� �

�
�

� � � �
�

then if one wishes to study the changes in terms of time the 
same message can be sent in all cells and the gradual stage by 
stage transformation can be seen (observed) and the resultant 
can be got.

Here it is not sending a message and receiving a message 
but is a study of transformation from time to time. It can be 
from satellite or pictures of heavenly bodies. Even in medical 
field this will find an immense use. Also these types of super 
special super codes can be used in scientific experiments so that 
changes can be recorded very minutely or with high sensitivity. 
What one needs is a proper calibration linking these codes with 
those experiments were one is interested in observing the 
changes from time to time were the graphical representation is 
impossible due to more number of variables. 

3. Another striking advantage of the super special super code 
C(S) is that if one has to be doubly certain about the accuracy of 
the received message or one cannot request for second time 
transmission in those cases the sender can send super array of 
row codes and send the same codes as the super array of column 
codes.

After receiving both the messages, if both the received 
codes are identical and without any error one can accept it; 
otherwise find the error in each cell and accept the message 
which has less number of errors. If both the received messages 
have the same number of errors then if the machine which sends 
the code has a provision for a single or two or any desired 
number of cells alone can be non empty and other cells have 
empty code and send the message; in that case the super special 
code is taken as 
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� �C S

9 9 9� �
� �9 9 9� �� � �
� �9 9 9� �� �

�
�

� � � �
�

or
� � i i i

1 2 nC S C C C� � �� ��

itself has the empty code word 9 in each of the i
jC ’s in C(S) for 

i = 1, 2, …, n and 1 � j � m. 

4. At times the super special code C(S) may be of a special 
type i.e., if

C(S) = 

1 1 1
1 2 n
2 2 2
1 2 n

m m m
1 2 n

C C C
C C C

C C C

� �
� �
� �
� �
� �
� �� �

�
�

� � � �
�

is such that
1 2 m 1 2 m 1 2 m
1 1 1 2 2 2 n n nC C C ,C C C , ,C C C� � � � � �� � � �

i.e., each row in C(S) i.e.,  
1 1 1
1 2 nC C C� �� �� ��

2 2 2
1 2 n ...C C C � �� �� ��

m m m
1 2 n ;C C C� �� ��

 i.e., 

C(S) = 

1 1 1
1 2 n
1 1 1
1 2 n

1 1 1
1 2 n

C C C
C C C

C C C

� �
� �
� �
� �
� �
� �� �

�
�

� � � �
�

so that any one message is sent one can test if not all the super 
row vectors received as a message is not identical one can guess 
the error has occurred during transmission. The maximum 
number of super row vectors which happen to repeat would be 
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accepted as the approximately correct message. If there is not 
even a single pair of coinciding super row vectors then we 
choose a super row which has a minimum number of errors. i.e., 
if

� �

1 1 1
1 2 n
1 1 1
1 2 n

1 1 1
1 2 n

H H H
H H H

H S

H H H

� �
� �
� �� � �
� �
� �� �

�
�

� � � �
�

then we say ith super row has least number of errors if  
xi(s) = 1 1 1

1 2 nx x x� �� ��
we find out

� � � � � �t t t1 1 1 1 1 1
1 1 2 2 n nH x ,H x , , H x� ; 1 � i � m; 

we choose the super row which has the maximum number of 
zeros i.e., that super row consequently has minimum number of 
error. We find the correct code word from those cells in the ith

row and accept it as the approximately correct received row. If 
already we have a super row in which � � � �

t1 1
1 1H x 0�  for 1 � i �

n then we accept that as the correct message. This form of 
transformation helps the receiver to study the real error pattern 
and the cells in C(S) which misbehave or that which always has 
an error message. Thus one can know not only more about the 
sent message but also know more about the problems (in the 
machine) while the message is transmitted; consequently 
corrections can be made so as to guarantee an approximately 
correct message is received. 

5. Suppose we have a super special super code C(S) where  

� �

1 1 1
1 1 1
1 1 1
2 2 2

1 1 1
m m m

C C C
C C C

C S

C C C

� �
� �
� �� � �
� �
� �� �

�
�

� � � �
�



132

with n columns where 1
jC  are linear codes 1 � j � m; i.e., we 

have only m distinct codes filled in the n column in a way 
shown above. The transmission can also take place in two ways 
simultaneously or by either array of super row transmission 
alone or array of super column transmission; only when we say 
the simultaneous transmission, we will first send the message 
x(S) in array of super row vector  

1 1 1
1 1 1

1 1 1
2 2 2

1 1 1
m m n

x x x

x x x

x x x

� �� �
� �� ��

� �� �

�
�

� � �
�

and then send the same x(S) in the array of super column vector 
as

1 1 1
1 1 1
1 1 1
2 2 2

1 1 1
m m m

x x x
x x x

x x x

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �� � � � � �

�
� � �

and the transmission is made as  
tt t1 1 1

1 1 1
1 1 1
2 2 2

1 1 1
m m m

x x x
x x x

x x x

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �� � � � � �

�
� � �

i.e., when we send both super column vector as well as the super 
row vector we call it as the simultaneous transmission here  

� �

1 1 1
1 1 1
1 1 1
2 2 2

1 1 1
m m m

x x x
x x x

x S

x x x

� �
� �
� �� � �
� �
� �� �

�
�

� � � �
�

.
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When we send only array super row transmission, every 
received code word in the ith row (say) 1 1 1

i i iy y y� �� ��  must 
be the same. This is true for i = 1, 2, …, m. If they are different 
for any row just by observation we can conclude the received 
message has an error and choose the row which has least 
number of differences. 
 Now when array of column transmission takes place we see 
if y(S) is the received message then 

� �

t1 1 1
1 2 m

t1 1 1
1 2 m

t1 1 1
1 2 m

y y y

y y yy S

y y y

� �� �

� �� ��

� �� �

�

�
�

�

.

We take that column which has least number of errors or which 
has no error as the received message. The main advantage of 
simultaneous transmission is we can compare each cell of the 
received array of super row vectors and array of super column 
vectors.

6. This type of code can be used when the ARQ process is 
impossible so that the same message can be filled in each cell of 
the super special code C(S) i.e.,  

� �

x x x
x x x

x S

x x x

� �
� �
� �� � �
� �
� �� �

�
�

� � � �
�

where x is the code word in C, which is in every cell of C(S) so 
that the approximate correct message is always retrieved 
without any difficulty. That is if we have say for example a code 
C of length 8 with 16 code words only then we can choose C(S) 
to be a super special code with 16 rows and 17 columns. 
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C C C
C C C

16 rows

C C C

17 columns

� �-
� ��

� � �. � �� � �� � �/ � �

�
�

� � � �
�

���	��


,

thus if x is sent message then  

� �

x x x
x x x

x S

x x x

� �
� �
� �� � �
� �
� �� �

�
�

� � � �
�

so when

� �

1 2 17

1 2 17

16 16 16

y y y
y y y

y S

y y y

� �
� �
� �� � �
� �
� �� �

�
�

� � � �
�

is the received super special code then we see if every cell 
element in y(S) is the same or that element in y(S) which 
repeats itself is taken as the approximate correct message and 
ARQ protocols can be avoided thus saving both time and 
money. Also when the number of cells in C(S) is increased and 
is greater than that of the number of elements in the space Vn

where C is the code then we can easily be guaranteed that the 
same message is sent mn times (where m > n) we are sure to 
retrieve the correct message. When these super special codes 
C(S) are used the user is certain to get marvellous results be it in 
any discipline. 

7. The class of super special super codes C(S) will be very 
beneficial in the cryptography for two main reasons. 

a. It is easy to be operated or transmitted and  
b. The intruder can be very easily misled and his guess can 

never give him/her the true transmitted message. We just show 
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how the super special code C(S) functions so that the intruder 
can never guess the same or break the message.  
Suppose

� �

1 1 1 1
1 2 3 n
2 2 2 2
1 2 3 n

1 1 1 1
1 2 3 n

m 1 m 1 m 1 m 1
1 2 3 n

1 1 1 1
1 2 3 n

C C C C
C C C C

C C C CC S
C C C C

C C C C

� � � �

� �
� �
� �
� �
� �

� � �
� �
� �
� �
� �
� �� �

�
�

� � � � �
�
�

� � � � �
�

.

The real message carrying code is say in 1st row, (m + 1)th row 
and so on and the last row. Very different codes which do not 
carry the message will also be repeated so that even by the 
frequency of the repetition intruder even cannot guess. Only the 
concerned who are the reliable part and parcel of the 
communication work knows the exact super rows which carry 
the messages so they would only look into that super row to 
guarantee the error freeness during transmission. Several super 
rows carry the same message. In our opinion this method with 
larger number of rows and columns in C(S) would make it 
impossible for the intruder to break it.  

We give yet another super special code C(S), which is 
impossible for any intruder to break and which guarantees the 
maximum security. 

8. Let

� �

1 1 1 1 1 1
1 1 1 2 2 m
2 2 2 2 2 2
2 2 2 2 2 m

t t t t t t
t t t t 1 t 1 m

n n n n n n
r r r r 1 r 1 m

C C C C C C
C C C C C C

C S
C C C C C C

C C C C C C

� �

� �

� �
� �
� �
� �
� ��
� �
� �
� �
� �� �

� �
� �

� � � � � � � �
� �

� � � � � � � �
� �
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that C(S) has some number of codes repeated a few times (say 
p1) then another code repeating (say some p2) times and some 
other code repeating p3 times and so on finally yet another code 
repeating some pr times. This is done for each and every row. 
Only the concerned persons who are part and parcel of the 
group know at what stages and which codes carry the message 
and such keys are present only with the group who exchange the 
information so it is impossible for any intruder to break it and 
high percentage of confidentiality and security is maintained.  

We give yet another type of super special code C(S). 

9. Let C(S) be a super special super code. Suppose there are n 
codes arranged in the column and m codes along the rows of the 
super matrix of the code C(S). Now the m × n codes are 
arranged in special super blocks where by a block we mean a p 
2 q array of same code i.e., say if C is the code then the special 
super block has  

q columns

C C C
C C C

p-rows

C C C

-� �
�� �
�� �.� ��� ��� �� �/

�
�

� � � �
�

����	���


.

Thus the code C(S) has 

1 1

2 2

s s

1 1 2 2 s s

q q1 1 2 1
1 1 1 1 1 1

q q1 1 2 2
2 2 2 2 2 2

q q1 1 2 2
p p p p p p

r   s , r   s , , r   s ,

r   s , r   s , , r   s ,
,

r   s , r   r , , r   s

2 2 2

2 2 2

2 2 2

�
�

�
�

block such that 1

1

q1 1 1 1 2
1 2 p 1 1 1r r r m,  s s s n� � � � � � � �� �  and so 

on s

1 2 s

q1 2
p p pr r r m � � � ��  and s

1 2 s

q1 2
p p ps s s n� � � �� .
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Now each of these blocks contain the same code i.e., codes can 
vary only with the varying blocks. 

The cryptographer can choose some blocks in C(S) to carry 
the messages and rest of the blocks may be used to mislead the 
intruder. When this type of super special codes are used it is 
impossible for any one to break and get into the structure.  

Now even in this block the cryptographer can use only 
certain rows and columns to carry true message and the rest 
only to mislead the intruder. 

We will illustrate these by some simple examples. 

Example 4.1: Let C(S) be a super special code given by  

� �

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

C C C C C C
C C C C C C
C C C C C C

C S C C C C C C
C C C C C C
C C C C C C

� �
� �
� �
� �

� � �
� �
� �
� �
� �� �

.

Here C is say a (n, k) code. C1 is also only a (n, k) code but C 	
C1. The codes C is assumed to carry the true messages. C1 also 
carries messages but only to mislead the intruder so C1’s can be 
called as misleading codes.  

Now this key will be known to every one in the group who 
is sending or receiving the messages. Thus any one in the group 
only will be interested in the rows 1, 4 and 5 and ignore the 
messages in the rows 2, 3 and 6.  

Thus when the number of rows and columns used are 
arbitrarily large it will be impossible for the intruder to guess at 
the codes and their by brake the key. 

Similarly one can use a  
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� �

1 1 1

1 1 1

1 1 1

1 1 1

1 1

1 1 1

1 1 1

C C C C C C
C C C C C C
C C C C C C
C C C C C CC S
C C C C C C
C C C C C C
C C C C C C

� �
� �
� �
� �
� �

� � �
� �
� �
� �
� �
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where C(S) is a 7 2 6 super special super code. Now both C and 
C1 are only (n, k1) codes or (n, k2) codes k1 	 k2. The group 
which uses this super special codes can agree upon to use the 
code C to carry the messages and C1 are misleading codes. So 
anyone in this group will analyse only the codes in columns 2, 5 
and 6 ignore columns 1, 3 and 4. 

We give now the example of a block and misleading block code 
for the cryptographist. 

Example 4.2: Let the super special super code

� �

1 1 1 2 2 3 3 3 3

1 1 1 2 2 3 3 3 3

1 1 1 2 2 8 8 8 9

4 4 5 2 2 8 8 8 9

4 4 5 10 10 8 8 8 9

4 4 5 10 10 8 8 8 9

4 4 5 11 11 11 11 12 12

4 4 5 11 11 11 11 12 12

6 6 5 11 11 11 11 12 12

6 6 7 7 7 7

C C C C C C C C C
C C C C C C C C C
C C C C C C C C C
C C C C C C C C C
C C C C C C C C C

C S C C C C C C C C C
C C C C C C C C C
C C C C C C C C C
C C C C C C C C C
C C C C C C C

�

7 12 12C C
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� �
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� �
� �� �

.

The related super matrix which is the parity check matrix H(S) 
of C(S) would be of the form 
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1 1 1 2 2 3 3 3 3

1 1 1 2 2 3 3 3 3

1 1 1 2 2 8 8 8 9

4 4 5 2 2 8 8 8 9

4 4 5 10 10 8 8 8 9

4 4 5 10 10 8 8 8 9

4 4 5 11 11 11 11 12 12

4 4 5 11 11 11 11 12 12

6 6 5 11 11 11 11 12 12

6 6 7 7 7 7

H H H H H H H H H
H H H H H H H H H
H H H H H H H H H
H H H H H H H H H
H H H H H H H H H

H S H H H H H H H H H
H H H H H H H H H
H H H H H H H H H
H H H H H H H H H
H H H H H H H

�

7 12 12H H

� �
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� �
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� �
� �
� �
� �
� �
� �
� �
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where each Hi is the parity check matrix of a code Ci , i = 1, 2, 
…, 12. Further all the code C1, C4, C5, C6, C7, C11, C8, C10, C2,
C3, C12, C9 have the same length. 

Further all codes given by H1, H2, H8, H3, H9, H4, H5, H11,
H6, H12, H7 and H10 have the same number of check symbols. 
Now any super code word x(S) in C(S) would be of the form  

� �

1 1 1 2 2 3 3 3 3
1 2 3 1 2 1 2 3 4
1 1 1 2 2 3 3 3 3
4 5 6 3 4 5 6 7 8
1 1 1 2 2 8 8 8 9
7 8 9 5 6 1 2 3 1
4 4 5 2 2 8 8 8 9
1 2 1 7 8 4 5 6 2
4 4 5 10 10 8 8 8 9
3 4 2 1 2 7 8 9 3
4 4 5 10 10 8 8 8 9
5 6 3 3 4 10 11 12 4
4 4 5 11 11 11 11 1
7 8 4 1 2 3 4 5

x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x

x S
x x x x x x x x x
x x x x x x x x

�

2 12
1

4 4 5 11 11 11 11 12 12
9 10 5 5 6 7 8 6 2
6 6 5 11 11 11 11 12 12
1 2 6 9 10 11 12 7 3
6 6 7 7 7 7 7 12 12
3 4 1 2 3 4 5 8 4

x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x

� �
� �
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� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

where i
jx  Ci; i = 1, 2, …, 12 and j varies according to the 

number of code words used. If y(S) is the received message 



140

� �ti
i pH y  = (0) will make the receiver accept it otherwise correct 

it or find the error using some techniques discussed earlier. 
Now only few blocks are real blocks for which we have to 

work and other blocks are misleading blocks. Since all the codes 
have the same number of check symbols and the length of all 
the 12 codes are the same the intruder will not be in a position 
to make any form of guess and break the message. In fact he 
will not even be in a position to find out which of the blocks are 
misleading block of C(S) and which of them really carries the 
message. 
 Thus this provides a very high percentage of confidentiality 
and it is very difficult to know or break the message. This code 
when properly used will be a boon to the cryptography.  

We give yet another example of a super special code C(S) 
which would be of use to the cryptographist. 

Example 4.3: Let C(S) be a super special super code;

� �

1 1 1 1 1 2 2 2 2 3 3

2 2 2 2 3

1 1 1 1 1 2 2 3

1 1 1 1 1 2 2 3 3 3

5 5 5 6 6 6 6

6 6 6 4 4 4

5 5 4 4 4 4

5 6 6 6 4

C C C C C C C C C C C
C C C C C C C C C C C
C C C C C C C C C C C
C C C C C C C C C C C

C S .C C C C C C C C C C C
C C C C C C C C C C C
C C C C C C C C C C C
C C C C C C C C C C C

� �
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� �
� �
� �
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.

Now we have 7 sets of codes given by C, C1, C2, C3, C4, C5 and 
C6. All the seven codes are of same length and same number of 
check symbols and message symbols. Here only C is true, all 
the other 6 codes C1, C2, …, C6 are only misleading codes. The 
super special parity check matrix H(S) is given by  
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H(S) =

1 1 1 1 1 2 2 2 2 3 3

2 2 2 2 3

1 1 1 1 1 2 2 3

1 1 1 1 1 2 2 3 3 3

5 5 5 6 6 6

6 6 6 4 4 4

5 5 4 4 4 4

5 6 6 6 4

H H H H H H H H H H H
H H H H H H H H H H H
H H H H H H H H H H H
H H H H H H H H H H H

.H H H H H H H H H H H
H H H H H H H H H H H
H H H H H H H H H H H
H H H H H H H H H H H

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

Here only the parity check matrix H gives the needed message, 
all other parity check matrices H1, H2, H3, H4, H5 and H6 need 
not be even known to the owner of this system of cryptography. 
Now everyone in group will be given a true/false chart as 
follows:

F F F F F F F F F F F
T T T T T F F F F T F
F F F F F T F T F F T
F F F F F F T F F F F
F F F F F F T T T T T
T T T F F F F T T F F
F T F T T T F F T F F
T F T F F F T T F T T

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

or equivalently they can be supplied with a true chart or key. 

� �
� �: : : : : :
� �: : :� �

:� �
: : : : :� �

� �: : : : :
� �: : : : :� �
: : : : : :� �� �

.
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The receiver would only decode the *’s of the table and will 
ignore the blanks. This will be known as the true chart of C(S). 
 These types of super special super codes C(S) can be 
thought of as special steganography. Unlike in a stegnanography 
where a secret message would be hidden with other messages 
here only the secret message is the essential message and all 
other messages are sent as misleading messages so that the 
intruder is never in a position to break the key or get to know 
the message.  

We give some super special codes which are stegnanographic 
super special codes. 

Example 4.4: Let C(S) be a super special super code. We call 
this to be a steganographic super special code.  

For instance we have a group which works with some name 
which starts in T and the messages sent to one another is highly 
confidential for it involves huge amount of money transactions 
or military secrets.  

So if any intruder breaks open the message the company 
may run a very big loss or the nation’s security would be in 
danger.

Now the super special code C(S) is given by  

� �

C C C C C C C C C
C C C C C C C C C
C C C C C C C C C
C C C C C C C C CC S
C C C C C C C C C
C C C C C C C C C
C C C C C C C C C

� �
� �
� �
� �
� �

� � �
� �
� �
� �
� �
� �

where C is the code used. The hidden message is that the 
receiver is advised to use the truth table or a steganographic 
image of T in C(S) i.e.,  
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2 2 2 2 2 2 2 2 2� �
� �2� �
� �2
� �2� �
� �2
� �

2� �
� �2� �

i.e., the group is advised to read only the messages present in 
the first row and the 5th column of C(S) all other messages do 
not carry any sense to them for they are only misleading 
messages or the messages can take place as the first alphabet of 
every member of the group.  

For instance K is the first alphabet of some member of the 
group then we need to decode the message from  

2 2� �
� �2 2� �
� �2 2
� �2 2� �
� �2 2
� �
2 2� �
� �2 2� �
2 2� �
� �2 2� �� �

i.e., first column and one of the opposite diagonals of the two 5 
2 5 matrices so that letter K is formed.  

This will be the key he has to use to decode the received 
message  
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� �

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47 48

49 50 51 52 53 54

y y y y y y
y y y y y y
y y y y y y
y y y y y y
y y y y y yy S
y y y y y y
y y y y y y
y y y y y y
y y y y y y

� �
� �
� �
� �
� �
� �
� ��
� �
� �
� �
� �
� �
� �
� �� �

.

He needs to decode only the messages y1, y7, y13, y19, y25, y31,
y37, y43, y49, y26, y21, y16, y11, y6, y33, y40, y47 and y54 which is 
easily seen to form the letter K.  

It can also be at times symbols like ‘cross’ or asterisk or 
star.
 For instance if y(S) is the received message given by  

� �

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

y y y y y y y
y y y y y y y
y y y y y y y
y y y y y y yy S
y y y y y y y
y y y y y y y
y y y y y y y

� �
� �
� �
� �
� �

� � �
� �
� �
� �
� �
� �

each yi is a code word from the code C, 1 � i � 49. The receiver 
should and need to decode only y4 y11 y18 y25 y32 y38 y46 y15 y16
y17 y19 y15 y20 and y21. This forms the cross. Thus these can also 
be given as finite series or a finite arithmetic progression for 
instance arithmetic progression with first term 4 and difference 
7 last term 46 and arithmetic progression with first term 15 
common difference 1 and last term 21. Any nice mathematical 
technique can be used to denote the codes which is essential for 
the member to be decoded to get the message. 
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DEFINITION 4.1: Let C(S) be a super special super code if each 
of the codes Ci in C(S) is cyclic then we call C(S) to be super 
special super cyclic code. 

We illustrate this by the following example. 

Example 4.5: Let C(S) be a super cyclic code. Let  

� �
1 1
1 2
2 2
1 2

C C
C S

C C
� �

� � �
� �� �

 where each i
jC  is a cyclic code 1 � i � 2 and 1 � j � 2.

� �
1 1
1 2
2 2
1 2

H H
H S

H H
� �

� � �
� �� �

 where

1 2
1 1

0 0 1 0 1 1 1
H 0 1 0 1 1 1 0 H

1 0 1 1 1 0 0

� �
� �� �� �
� �� �

 and

1 2
2 2

0 0 1 0 0 1
H 0 1 0 0 1 0 H

1 0 0 1 0 0

� �
� �� �� �
� �� �

i.e.,

� �

0 0 1 0 1 1 1 0 0 1 0 0 1
0 1 0 1 1 1 0 0 1 0 0 1 0
1 0 1 1 1 0 0 1 0 0 1 0 0

H S
0 0 1 0 1 1 1 0 0 1 0 0 1
0 1 0 1 1 1 0 0 1 0 0 1 0
1 0 1 1 1 0 0 1 0 0 1 0 0

� �
� �
� �
� �

� � �
� �
� �
� �
� �� �

is a super matrix given.  
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Given a super special cyclic code  

x(S) = 
1 1
1 2
2 2
1 2

x x
x x
� �
� �
� �� �

where each i
jx  is a cyclic code 1 � i, j � 2. Any super code word 

x(S) in C(S) is of the form  

1 2
1 1
1 2
2 2

x x
x x
� �
� �
� �� �

= � � � � t1 0 0 0 1 1 0 1 1 0 1 1 0
. H S x S1 1 1 1 1 1 1 1 1 1 1 1 1

� �
� �� � � �

� �� �

T1 1 1 1
1 2 1 2
2 2 2 2
1 2 1 2

H H x x
H H x x
� � � �

� � � � �
� � � �� � � �

� � � �
� � � �

t t1 11 1
1 21 2

2 2 t t2 21 2 1 2

x xH H
H H x x

� �� � � �� � � � �� �� � � �� �

� � � �
� � � �

t t1 1 1 1
1 1 2 2

t t2 2 2 2
1 1 2 2

H x H x

H x H x

� �
� �� � �
� �� �

0 0 0 0 0 0
0 0 0 0 0 0
� �

� � �
� �� �

so x(S)  C(S).

Thus we see in general if C(S) is a super special super code then 
any super code x(S)  C(S) will be of the form  
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1 2 n
1 1 1
1 2 n
2 2 2

1 2 n
m m m

x x x
x x x

x x x

� �
� �
� �
� �
� �
� �� �

�
�

� � � �
�

,

where each j
ix is a row vector 1 � i � n and 1 � j � m. This type 

of super matrix from now on wards will be known as super row 
cell matrix i.e., each cell in x(S) is a row vector.  
 Now we say two super row cell matrices x(S) and y(S) are 
equal if and only if each j j

i ix y� . We see two super row cell 
matrices are of same order if and only if number of row cells in 
x(S) is equal to number of row cells in y(S) and number of 
columns cells in x(S) is equal to number of column cells in y(S) 
and further the number of elements in the row cell i

jx is the 

same as the number of elements in the row cell i
jy  ; 1 � i � n 

and 1 � j � m where 

1 2 n
1 1 1
1 2 n
2 2 2

1 2 n
m m m

y y y
y y y

y(S)

y y y

� �
� �
� �� � �
� �
� �� �

�
�

� � � �
�

.

We will illustrate this situation by examples. 

Example 4.6: Let

� �

1 2 3
1 1 1
1 2 3
2 2 2
1 2 3
3 3 3

x x x
x S x x x

x x x

� �
� �

� � �
� �
� �

1 1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1
1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1

� �
� �

� � �
� �
� �
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be a super cell matrix.  
1 2 3
1 1 1
1 2 3
2 2 2
1 2 3
3 3 3

y y y
y(S) y y y

y y y

� �
� �

� � �
� �
� �

be a super cell row matrix i.e., let  

� �
0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 

y S  0 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 1
 1 1 1 1 0 0 1 0 1 1 0 1 0 1 0 1 1

� �
� �

� � �
� �
� �

we say y(S) and x(S) are of same order of same type. However 
y(S) 	 x(S). Suppose  

� �
1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0

x S 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 01
1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1

� �
� �

� � �
� �
� �

and

� �
1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0

y S 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 01
1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1

� �
� �

� � �
� �
� �

x(S) = y(S) if each row cell in them are identical. Thus x(S) = 
y(S). Now x(S), y(S) can also be called as super row cell 
vectors. Now we define the dot product of two super cell 
vectors if and only if they are of same order i.e., each row 
vector in the corresponding cells of x(S) and y(S) are of same 
length. Let

� �

1 2 m
1 1 1
1 2 m
2 2 2

1 2 m
n n n

x x x
x x x

x S

x x x

� �
� �
� �� � �
� �
� �� �

�
�

� � � �
�

and
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� �

1 2 m
1 1 1
1 2 m
2 2 2

1 2 m
n n n

y y y
y y y

y S

y y y

� �
� �
� �� � �
� �
� �� �

�
�

� � � �
�

.

Then we define the dot product of x(S) with y(S) as  

� �

� � � � � �
� � � � � �

� � � � � �

1 1 2 2 m m
1 1 1 1 1 1

1 1 2 2 m m
2 2 2 2 2 2

1 1 2 2 m m
n n n n n n

x , y x , y x , y

x , y x , y x , y
(x(S), y )S

x , y x , y x , y

� �
� �
� �
� ��
� �
� �
� �� �

�

�

� � � �

�

where � �i i
j jx , y  is the usual inner (dot) product of two vectors 1 

� i � m, 1 � j � n. Basically all these row vectors are from the 
subspaces of the vector spaces.  

Now we illustrate this situation by the following example. 

Example 4.7: Let

� �

110 111101
111 011101

x S 001 100010
010 011001

� �
� �
� �� � �
� �
� �� �

and

� �

010 110001
101 100011

y S 011 101010
110 010101

� �
� �
� �� � �
� �
� �� �

be any two super cell row vectors of same order. Now how does 
the dot or inner product of x(S) with y(S) look like  
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� � � �� �

� � � �� � � � � �
� � � �� � � � � �� �
� � � �� � � � � �� �
� � � �� � � � � �� �

1 1 0 , 0 1 0 1 1 1 1 0 1 , 1 1 0 0 0 1

1 1 1 , 1 0 1 0 1 1 1 0 1 , 1 0 0 0 1 1
x S , y S

0 0 1 , 0 1 1 1 0 0 0 1 0 , 1 0 1 0 1 0

0 1 0 , 1 1 0 0 1 1 0 0 1 , 0 1 0 1 0 1

� �
� �
� �

� � �
� �
� �
� �� �

1 1
0 1
1 0
1 0

� �
� �
� �� � �
� �
� �� �

is just a super matrix which can be called as a super cell matrix 
as usual 4 2 2 matrix is divided as cells.  

Now having defined the notion of inner product of super 
row cell vectors or matrices, we proceed to define super 
orthogonal super code. 

DEFINITION 4.2: Let C(S) be a super special super binary code 
i.e., the code words are from the field of characteristics two i.e., 
from Z2 = {0, 1}. Let

� �

� �
� �
� �� � �
� �
� �� �

�
�

� � � �
�

1 2 m
1 1 1
1 2 m
2 2 2

1 2 m
n n n

x x x
x x x

x S

x x x

be a super code word in C(S). Suppose there exists a super code 
word y(S) in C(S) where  

� �

� �
� �
� �� � �
� �
� �� �

�
�

� � � �
�

1 2 m
1 1 1
1 2 m
2 2 2

1 2 m
n n n

y y y
y y y

y S

y y y
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is such that

� � � �� �

� �
� �
� �� � �
� �
� �� �

�
�

� � � �
�

0 0 0
0 0 0

x S ,y S

0 0 0

,

then we say the super code words are orthogonal to each other. 
Now suppose C(S) is a super special super code then the set of 
all super codes {w(S) / (w(S), (x(S)) = (0)(S) for all x(S)  C(S)} 
is defined to be the super special orthogonal code of the super 
special code C(S). 
 Here w(S)   {The collection of all n 2 m super cell row 
vectors of same order as x(S) with entries from {0, 1}} =V(S). In 
fact this collection can be realised as super special vector space 
over Z2 = {0, 1}. We denote this super special orthogonal super 
code by (C(S))�. We see 0(S) is the only code word in C(S), then 
the whole space V(S) is orthogonal to 0(S).  

 We will illustrate this situation by the following example. 

Example 4.8: Let

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
, ,0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 0 0

-� � � � � ��
.� � � � � �
� � � � � ��� � � � � �/

1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1
;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

� � � �
� � � �
� � � �� � � �

,

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
, ,0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

� � � �
� � � �
� � � �� � � �

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1
, ,0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0

�� � � � � ��
� � � � � ��
� � � � � ��� � � � � ��
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Thus
C C

C(S) C C
� �

� � �
� �� �

where C is the linear binary (4, 2) code given by {(0 0 0 0 ), (1 0 
1 1), (0 1 0 1), (1 1 1 0)}. C� = {(0 0 0 0), (1 1 0 1), (0 1 1 1), (1 
0 1 0)} is the orthogonal code of C. 
 The super special orthogonal code of C(S) given by C(S)� is 
given by 

(C(S)�) = 
C C
C C

� �

� �

� �
� �
� �� �

.

Clearly  
(C(S)), (C(S)�) = 0(S). 

We give a general method of finding (C(S)�) given C(S).  
Let

(C(S)) = 

1 1 m
1 2 n
2 2 m
1 2 2

1 2 m
n n n

C C C
C C C

C C C

� �
� �
� �
� �
� �
� �� �

�
�

� � � �
�

 ; 

i
jC  are linear codes 1 � i � m and 1 � j � n.  

� �� �

� � � � � �
� � � � � �

� � � � � �

1 1 m
1 2 1

2 2 m
1 2 2

1 2 m
n n n

C C C

C C C
C S

C C C

� � �

� � �
�

� � �

� �
� �
� �
� �� � �
� �
� �
� �� �

�

�

� � � �

�

(C(S)), (C(S)�) = 0(S). 

Now having defined cyclic orthogonal super special super codes 
C(S) we just indicate how error is detected and corrected. 
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We just illustrate this by the following example. 

Example 4.9: Let

� �� �

1 1 m
1 2 1
2 2 m
1 2 2

1 2 m
n n n

C C C
C C C

C S

C C C

� �
� �
� �� � �
� �
� �� �

�
�

� � � �
�

be a super special super code.  
Let the super parity check matrix H(S) be associated with it, 

that is 

� �

1 1 m
1 2 1
2 2 m
1 2 2

1 2 m
n n n

H H H
H H H

H S

H H H

� �
� �
� �� � �
� �
� �� �

�
�

� � � �
�

.

Any super special code word x(S)  C(S) is of the form  

� �

1 2 m
1 1 1
1 2 m
2 2 2

1 2 m
n n n

x x x
x x x

x S

x x x

� �
� �
� �� � �
� �
� �� �

�
�

� � � �
�

.

If H(S)(x(S))t = 0(S) then we assume x(S)  C(S).
If H(S)(x(S))t 	 0(S) for a received code word x(S) then we 

assume the received message has an error.  
Thus we have

� � � �� � t
H S x S� �� �
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� � � � � �
� � � � � �

� � � � � �

� �� �

t t t1 1 2 2 m m
1 1 1 1 1 1

t t t1 1 2 2 m m
2 2 2 2 2 2

t t t1 1 2 2 m m
n n n n n n

H x H x H x

H x H x H x
0 S ;

H x H x H x

� �
� �
� �
� �� �� �
� �
� �
� �� �

�

�

� � � �

�

 x(S)  C(S) otherwise we use the usual error correcting 
techniques to each cell i.e., to each � �

j

ti i
jH x  to obtain the 

corrected code word; 1 � i � n; 1 � j � m. 
Thus we have indicated how these super special codes can 

be used when ARQ is impossible. Also these codes will be very 
useful in cryptology. Further use of these codes can spare both 
time and economy. The applications of super special row codes 
and super special column codes can be obtained from super 
special codes with appropriate modifications.   
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H
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Super mixed special column code, 117 
Super row vector, 54-5 
Super special basis, 55 
Super special binary code, 150-1 
Super special codes, 120 
Super special column code, 99-101 
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