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Abstract
The aim of this paper is to apply inductive logic to the field
that, presumably, Carnap never expected: legal causation. Le-
gal causation is expressible in the form of singular causal state-
ments; but it is distinguished from the customary concept of
scientific causation, because it is subjective. We try to express
this subjectivity within the system of inductive logic. Further,
by semantic complement, we compensate a defect found in our
application, to be concrete, the impossibility of two-place pred-
icates (for causal relationship) in inductive logic.
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1 Problem of legal causation

What we call “singular causal statements” in this paper are the state-
ments of the following kind:

(1) The X’s parking on C Street caused the later traffic jam.

Hart and Honoré called this type of causation “legal causation” since
it sometimes develops into a legal dispute (Hart & Honoré, 1985). We
might as well call it “common-sense causation,” considering its wider
applications (cf. Hart & Honoré, 1985, p. 9). But in this paper, we
uniformly call it “legal causation.”

Legal causation is differentiated from scientific causation in that
there are no support, such as general laws in Hempel and Oppen-
heim’s schema1. Thus, here arises a problem: How can we justify
legal causation?

1Cf. Hempel and Oppenheim (1948, especially pp. 138–140). Herein, Hempel
and Oppenheim referred to Carnap’s inductive logic as well (Hempel & Oppen-



78 Yusuke Kaneko

The aim of this paper is to apply Carnap’s inductive logic to this
justification problem. Of course, I know that this is not in accord
with its public image. Besides, legal causation is seemingly outside of
Carnap’s interest.

It was, rather, the theorists of probabilistic causality who treated
this problem. For example, Patrick Suppes took up the statement
very similar to (1), and showed interest in Hart and Honoré’s work
as well (Suppes, 1970, pp. 7–8). Nevertheless, I prefer Carnap’s logic
to probabilistic causality2. Why? To begin with, let me state the
reasons.

2 Why I do not favor probabilistic causality

In appearance, probabilistic causality is suitable to analyze legal cau-
sation. But, in my view, it is still defective for the analysis.

Firstly, following probabilistic causality, we must reduce causal re-
lationship to conditional probability, so that cause and effect are split
into the two arguments of the probability function: P(effect , cause).
Herein, the connection of cause and effect is considered in a mathemat-
ical way. But, I think, we intuit something real in causal connection,
and it is not reducible to any mathematical relations. For instance,
if you heard a dog barking when you tapped a desk, you will perhaps
think: Your tapping the desk caused the barking. In this instance, we
may say, you directly intuit the connection of the two events; and this
intuition is concerned with something real, not reducible to mathe-
matical relations. We must preserve this character of causation, but
regrettably, probabilistic causality disregards it3.

Secondly, most theories of probabilistic causality are practically
comparative4. All they can do is showing the comparison like

heim, 1948, pp. 167f.). However, their reference were exclusively made for their
theory of systematic power, that is, the power of the deductive systematization of
a universal statement T over the data K in question. But it has little to do with
our present interest.

2In this paper, the word “probabilistic causality” means “a theory of probabilis-
tic causality” as well.

3As we shall see, in our application of inductive logic, this character is pre-
served. See (5)–(ii) below.

4According to Salmon, there were at least three theories of probabilistic causal-
ity so far (Salmon, 1980, p. 50): Good’s theory of causal network (Salmon, 1980,
pp. 51f.), Reichenbach’s causal theory of time (Salmon, 1980, pp. 56f.), and Sup-
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P(At, Bt′) ≥ P(At). This analysis is, however, suitable for heuristics
rather than for justification. Taking up Suppes’ theory, for example,
it narrows the class of prima facie causes (Suppes, 1970, p. 12) down
to the genuine cause (Suppes, 1970, p. 24), screening off spurious
causes (Suppes, 1970, p. 21, p. 24). This is an approach of heuristics.
But we need a theory of justification now.

Even if probabilistic causality is regarded as a theory of justifi-
cation, it will certainly not meet our requirements. Suppose, for
example, we calculate the conditional probability of not being at-
tacked, given that an individual was inoculated (cf. Suppes, 1970,
pp. 12f.). For this calculation, probabilistic causality presupposes, in
advance, the data that 749 people were not attacked within a total
of 818 people; by comparison, 276 not attacked within 279 inocu-
lated. And on the basis of this data, the calculation is made this way:
P(not attacked, the total) = 749

818 ≤ P(not attacked, inoculated) = 276
279 .

This is how probabilistic causality concludes that inoculation is a
(prima facie) cause of not being attacked.

However, our present object of study, legal causation, lacks very
much this kind of objective data. Rather, the data used in it is, in
most cases, subjective. And this subjectivity keeps away probabilistic
causality from the analysis of legal causation.

3 Subjectivity of legal causation

But, why is legal causation so subjective? Where does the subjectiv-
ity come from? To clarify these points, let us consider the following
scenario imaginable on the preceding example (=1).

(2) A policeman was searching for the cause of the traffic jam that
occurred on C Street, which he thought was the cause of the
traffic accident investigated. The accident happened at the
moment when a certain driver spun into the opposite lane to
avoid the traffic jam. He remembers that X had parked his car
on this narrow street when he patrolled. A few weeks later,
he judged: the cause of the traffic jam was the X’s parking.5

pes’ probabilistic theory of causality (Salmon, 1980, pp. 59f.). Reichenbach’s and
Suppes’ were altogether comparative (Salmon, 1980, p. 60). Still, Good tried to
make a quantitative theory; but it was ignored because of its “forbidding” style.

5There is a possibility to treat this problem in terms of abnormality (Hart &
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Can we think this judgement objective? Presumably, the policeman
observed C Street for a long time, and then, found that even short-
term parking, such as X’s, sufficiently caused a traffic jam. Again,
based on this observation, he was convinced: the cause of the traffic
jam was the X’s parking (=1). Against this judgement, however, X
can protest that on another street, such as A Street, even long-term
parking rarely causes a traffic jam. In any case, we can say, the
justification of legal causation is subjective.

This subjectivity of legal causation originates from its context. Ac-
cording to Hart and Honoré, the context of legal causation is much
different from that of scientific causation (Hart & Honoré, 1985, p. 24).
To take an example,

(3) The sudden increase of traffic on C Street caused the later
traffic jam.

We can classify this statement into scientific causation6.
In some cases, we can be content with (3) as an explanation for

the traffic jam. But in other cases, we cannot; we are tempted to
ask an additional cause. This is because we cannot help attributing
the harmful traffic jam to somebody else. Hart and Honoré called
the contexts of this latter kind attributive contexts (Hart & Honoré,
1985, p. 24). And it was strictly distinguished from the former cases
called explanatory contexts (Hart & Honoré, 1985, p. 24). It is this
difference of contexts that differentiates legal causation from scientific
causation, and makes legal causation subjective.

4 Similarity

In my opinion, inductive logic is suitable to express this subjectivity.
Surely Carnap refuses this application. However, we can find a passage
where he came close to our problem:

(4) Suppose X owns a house whose value is $10,000, and he won-
ders whether to insure his house against fire. He will then

Honoré, 1985, pp. 37–40). But I leave this possibility aside in this paper.
6Define “traffic jam” as “vehicles slowing down to a specific speed.” Then, “the

increase of traffic” prevents vehicles from passing an intersection with a traffic
light smoothly once. This suffices to cause a slowdown of vehicles, and so a traffic
jam. A general law is of course available in this argument.
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make his decision in view of the probability that his house
will burn down during the next year. But, how can he predict
it? He predicts it with regard to his knowledge e that con-
tains information of previous experiences concerning similar
houses.7

Here, Carnap admits that the evidence of inductive inference is gath-
ered in terms of similarity8. This is true of (2) as well. In that
situation, the policeman gathered the evidence in terms of similar-
ity; concretely, he gathered the evidential events (parking) that all,
similarly, occurred on C Street.

However, this choice is arbitrary. The policeman was certainly in
a position to choose the street other than C. In fact, X can protest,
against the policeman’s judgement, that on another street, such as A,
even long-term parking rarely causes a traffic jam.

The policeman may respond, against this objection of X’s, that
his evidence are all similar to the original case, the X’s parking. But,
against this response, X can further protest that the policeman’s cog-
nition of similarity is, after all, subjective.

5 Inductive logic

In my opinion, this subjectivity with a lax criterion of similarity is well
expressed in inductive logic—this is the original aim of our inquiry.
Let us then design a formal language, which constitutes, in a sense, a
base of the following arguments9.

(5) The Design of Language L2
3

(i) “ε1,” “ε2,” and “ε3” are the individual constants in L2
3.

(ii) “ is parking” and “ causes a traffic jam” are the pred-
icate constants in L2

3.
7(Cf. Carnap, 1962, p. 256, p. 263). The sentences are modified by Kaneko.
8Similarity is dealt with in the argument of the inference by analogy as

well (Carnap, 1962, pp. 207–208, pp. 567–571). But the similarity concept in
our argument is about individuals. In contrast, the similarity in the inference by
analogy is about properties.

9Carnap called this step a “classification of the signs” (Carnap, 1942,
p. 24; Carnap, 1962, p. 65). Again, I want the readers to take note that “LπN ”
below means the language with N individual constants and π predicates (Carnap,
1962, p. 123).
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L2
3 is a language of first-order logic including Davidson’s logic of

event (Davidson, 1967). Its informal explanation is as follows. “ε3” is
considered to be the X’s parking on C Street. “ε1” and “ε2” are the
evidential events gathered by the policeman. We can regard “ε1” as
the Y’s parking on C street, and “ε2” as the Z’s parking on C street,
for example. With this evidence, we can formulate the justification of
the policeman’s judgement (=1) as follows:

(6) c∗((ε3 causes a traffic jam), {(ε1 is parking) ∧ (ε1 causes a
traffic jam)} ∧ {(ε2 is parking) ∧ (ε2 causes a traffic jam)} ∧
(ε3 is parking))

Here, “c∗” is a probability function peculiar to Carnap, which is called
a c-function10. Its second argument, “{(ε1 is parking) ∧ (ε1 causes a
traffic jam)}∧. . .∧(ε3 is parking)),” expresses evidence, which is called
an individual distribution (cf. (13) below).

How to assign concrete values to this formula is the core of the
present study. Carnap’s answer is this11:

(7) Let “sM” be the number of individual constants of which mo-
lecular predicate M is predicated in evidence e. Further let
“wM” be the width of M, and “s” the number of individual
constants observed up to then, “κ” the number of Q-predicates
in LπN . Then, the probability that M is predicated of the

10Strictly speaking, c∗ is no more than one option among many c-functions.
In Foundations, Carnap narrowed all of possible c-functions down to this
one (Carnap, 1962); its definition is (7) below.

11We think of this definition of c∗ as an expression of the subjectivity of inductive
logic. But some might object that the subjectivity of inductive logic is adequately
expressed in λ-system:

(†) cλ(M(εs+1), i) =
sM+

wM
κ
λ

s+λ
(Carnap, 1951, p. 33)

My answer to this objection is as follows. It is true that each person freely chooses
λ’s argument in (†), and we may perhaps attribute the subjectivity of inductive
logic to that choice. However, the choice of λ is merely a choice of the inferential
system (Laplace’s system, Reichenbach’s system, etc.); after the choice, however,
everything works objectively. But our problem is why our inductive reasoning is
subjective even after the choice. And my solution to this problem is: “Because
Carnap’s inductive logic is based on his possible world semantics. Considered
in terms of this semantics, his inductive logic is likely regarded as the reflection
of a personal view of the world.” This opinion of mine is derivable only from
Foundation. This is why now we stick to Carnap’s former system, although the
detailed argument is put off to another paper (Kaneko, 2010).
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next individual constants εs+1 iscalculated with the following
formula:

c∗(M(εs+1), e) =
sM + wM

s+ κ
(Carnap, 1962, p. 568)

We must follow up the unfamiliar words herein. For the explanation,
we may as well divide the formula into two components: the logical
factor wM

κ and the empirical factor sMs (Carnap, 1962, p. 568). Firstly,
the explanation of “κ” in wM

κ is provided.

(8) Only for abbreviation, we write “P1 ∧ P2(e1)”12 instead of
“P1(e1) ∧ P2(e1),” for example, and call it a molecular predi-
cate expression. Moreover, we can give the name “M(e1)” to
“P1 ∧ P2(e1),” for example, and call it a molecular predicate.
(Carnap, 1962, pp. 104–105)

Here, “P1” and “P2” are primitive monadic predictates, such as “ is
parking” and “ causes a traffic jam” in L2

3. In L2
3, we can form four

molecular predicates:

(9) ∀e[Q1(e)←→ (e is parking) ∧ (e causes a traffic jam)]
∀e[Q2(e)←→ (e is parking) ∧ ¬(e causes a traffic jam)]
∀e[Q3(e)←→¬(e is parking) ∧ (e causes a traffic jam)]
∀e[Q4(e)←→¬(e is parking) ∧ ¬(e causes a traffic jam)]

These four molecular predicates “Q1”∼“Q4” are called Q-predicates.
Their formal definition is as follows:

(10) The molecular predicates defined in the following way are
called Q-predicates.

∀e[Qi(e)←→ (¬)P1(e) ∧ . . . ∧ (¬)Pπ(e)]
(Carnap, 1962, p. 125)

“P1”∼“Pπ” are π primitive predicates in LπN. “(¬)” stands for affirma-
tion or negation. In general, there are 2π Q-predicates in LπN (Carnap,
1962, p. 125). “κ” in wM

κ expresses this number, 2π.
Next, we take up the numerator of wM

κ , that is, “wM.”

12This is also expressible as “λe[P1(e) ∧ P2(e)],” using Church’s lambda opera-
tor (Carnap, 1956, p. 3, p. 14).
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(11) Any formula M(e) in LπN is expressed by a disjunction of
Q-predicates as follows:

∀e[M(e)←→Qi1(e)∨Qi2(e)∨. . .∨Qiw(e)] (Carnap, 1962)13

By this theorem, we can substitute “Q1(ε3) ∨ Q2(ε3)” for “(ε3 is
parking),” for example. The number of Q-predicates which we substi-
tute for formula M is called the width of M (Carnap, 1962, p. 127).
It is marked with the second subscript “w” of the last disjunct in (11).
“wM” expresses it.

In this way, the logical factor is explained. Let us then proceed to
the other factor, that is, the empirical factor.

(12) If molecular predicatesM1, . . . , Mp fulfill the following condi-
tions, then they are called forming a division (Carnap, 1962,
pp. 107–108).

(i) |= 14∀e[M1(e) ∨ . . . ∨Mp(e)] (exhaustiveness)
(ii) For any Mi, Mj (1 ≤ i, j ≤ p), |= ∀e¬[Mi(e) ∧Mj(e)]

(exclusiveness)
(iii) For no Mi (1 ≤ i ≤ p), |= ¬∃eMi(e)

(Mi is not logically empty)

(13) The conjunction, in the following way, stating, over s individ-
ual constants and p molecular predicates forming a division,
which predicate is predicated of which individual constant is
called an individual distribution.

ek = dMk1(εj1) ∧Mk2(εj2) ∧ . . . ∧Mks(εjs)e
(Carnap, 1962, p. 111)15

In L2
3, one of the four Q-predicates in (9) occupies each position of

“Mk1”∼“Mks.”
“s” in the empirical factor expresses the number of individual con-

stants in this individual distribution, and “sM” expresses the number
of individual constants in s that exemplify M, the predicate in ques-
tion, which is one of “Mk1”∼“Mks.”

13The proof was made in (Kaneko, 2010, (18)).
14“ |=” means “logically true” though Carnap used “`.”
15“d e” is Quine’s quasi-quotes. But I place legibility prior to strictness in this

paper.
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6 Subjectivity

Now that we obtained the minimum knowledge of inductive logic, we
can proceed to the calculation of (6), that is, the confirmation of legal
causation.

(14) c∗((ε3 causes a traffic jam),Q1(ε1)∧Q1(ε2)∧(ε3 is parking))

from (9)

=
c∗(Q1(ε3),Q1(ε1) ∧Q1(ε2))

c∗(Q1(ε3) ∨Q2(ε3),Q1(ε1) ∧Q1(ε2))

from def. of conditional probability and (11)

=

2 + 1

2 + 4
2 + 2

2 + 4

from (7); note that both Q1(ε1) and
Q1(ε2) exemplifies Q1(e) ∨Q2(e)

=
3

4

In this way, we can trace the process of the policeman’s judgement
(=1). But I do not mean this is the actual process. My emphasis is,
rather, on another point; that is, the policeman’s conception over the
evidence directly affected his reasoning. In other words, (14) is no
more than the result of (5)16. To see this, let us consider another for-
mation of language. Suppose, for example, X conceived the following
formation in order to object against the policeman’s judgement:

(15) The Design of Language L2
3X

(i) “ε0,” “ε2,” and “ε3” are the individual constants in L2
3X.

(ii) “ is parking” and “ causes a traffic jam” are the
predicate constants in L2

3X.

Here, “ε2” and “ε3” are the same as in L2
3. (X concedes in this respect.)

But X removes “ε1,” and instead, puts “ε0,” which means the W’s
parking on A Street, for example. Thereby, he protests that ε0 did
not cause any traffic jam at all.

In this language, the probability of (6) is calculated as follows:
16Carnap also admitted that the design of language played an important role in

inductive logic (Carnap, 1962, p. 54).
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(16) c∗((ε3 causes a traffic jam ),Q2(ε0) ∧ Q1(ε2) ∧ (ε3 is park-

ing)) =
1

2

This is how the probability of the policeman’s judgement is lowered
below 3

4 (=14).
This comparison of L2

3X with L2
3 shows how influential the design

of a language is in inductive logic. And the design is due to the person
who wants to or refuses to confirm the legal causation in question. In
this very respect, the subjectivity of inductive logic is brought to light.

7 The first criticism: on my subjective interpreta-
tion of inductive logic

In this way, Carnap’s inductive logic gives a good framework to legal
causation, which was advanced at the beginning of this paper. Let us
then review this conclusion in the rest; that is, we scrutinize it from
other viewpoints, especially from those of critics.

Firstly, let us take up our subjective interpretation of inductive
logic. Some experts may say: “Carnap’s inductive logic is concerned
with the objective confirmation procedure in natural science. So your
interpretation is besides the mark.” However, it is relatively easy to
respond to this criticism. As stated in Section 3, we have already
entered an unexplored field, namely legal causation. And it is much
different from the customary field of scientific causation. Thus, we
may say, we have dealt with a completely new problem that Carnap
never expected17.

On the other hand, some experts on philosophy of probability may
ask about the relationship between our subjective interpretation of
inductive logic and Ramsey’s subjective theory. As for this question,
we can refer to Carnap’s treatment of Ramsey’s theory (Carnap, 1962,
pp. 45–47). Therein, Carnap reduced Ramsey’s subjective theory to
his logical theory. Ramsey, in turn, admitted that probability theory
is, in general, a branch of logic (Ramsey, 1926, p. 82 etc.).

17It is true that Canap had some ethical perspectives in his application of in-
ductive logic to decision theory (Carnap, 1962, p. vii, pp. 252–279; Carnap, 1971);
and, previously, I also followed this line (Kaneko, 2011). But now I came to think
Hart and Honoré’s distinction—between scientific causation and legal causation,
or between explanatory context and attributive context—is more crucial for our
argument.
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Later, Carnap characterized his inductive logic as the pure and
theoretical part of normative decision theory (Carnap, 1971, p. 26).
Thereby, he regarded the agents following inductive logic as a kind
of rational robot (Carnap, 1971, p. 17, p. 26). But, according to our
analysis, even such agents cannot be perfect robots because, as we
saw in Section 6, the source of their inference, the design of language,
is far from mechanical objective procedures.

8 The second criticism: on my treatment of causal
relation

The second criticism is against our awkward formulation of causation.
In L2

3 (=5), we formulated causation in the following way:

(17) (ε3 causes a traffic jam)

This formula is composed of one individual constant “ε3” and a one-
place predicate “ causes a traffic jam.” However, causation is noth-
ing but causal relationship; so its formulation must be made with a
two-place predicate like “ causes .” Nevertheless, we have hith-
erto persisted in the one-place predicate.

To tell the truth, Carnap admitted two-place predicates in his
system (Carnap, 1962, p. 114). But the problem is that he did not
develop this idea any further18.

In my opinion, it is impossible to develop the language with two-
place predicates in inductive logic. One of the reasons is that Carnap
confined his arguments to the language only with one-place predi-
cates (Carnap, 1962, pp. 123f.). Therefore, all items, such as Q-
predicate (cf. 10), were defined only by one-place predicates.

The theory that lies behind inductive logic is combinatorics
(Carnap, 1962, pp. 156f.; Carnap, 1966, p. 23). If two-place predi-
cates are introduced to inductive logic, the number of items, such as
Q-predicate, will be extravagantly large19.

18In “Meaning Postulates,” Carnap touched on this problem once again. But it
seems to me that he did not make any significant progress (Carnap, 1956, pp. 226–
229).

19We can see this complexity even on one-place predicates. See (Carnap, 1962,
p. 139)
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However, this reason is not decisive. The true reason was the lack
of theory. Carnap complained that there was no “theory for rela-
tions” in inductive logic, stating in parallel to the history of deductive
logic (Carnap, 1962, pp. 123–124). Although he showed an optimistic
attitude to this problem (Carnap, 1966, p. 33), such a theory for re-
lations has not been developed yet. In my opinion, it is not necessary
to invent such a theory for inductive logic. Instead, the lack of theory
can be complemented by semantics. Let me elaborate on this idea
below.

9 Carnap’s semantics

As we shall see in the next section, however, our semantic complement
is a kind of model-theoretic semantics. But the relationship between
Carnap’s system and model-theoretic semantics is not so clear. We
must hence clarify the relationship between these two theories in ad-
vance.

Regarding this problem, two points are to be noted. Firstly, Car-
nap presumably did not know such model-theoretic semantics as we
know today. Secondly, inductive logic is also classified into Carnap’s
semantics. Let us begin with this second point.

Carnap’s semantics has two faces. One is the face obedient to
Tarski’s tradition: from the definition of truth (Tarski, 1933) to a
theory of meaning (a truth-conditional theory of meaning)20. This
face appears in Carnap’s earlier studies of semantics (e.g. Carnap,
1942, pp. v–55).

The other face is L-semantics. This is the field for the explication
of logical concepts, such as logical truth, logical consequence, and so
on. The noteworthy here is the introduction of state-descriptions,
Carnap’s peculiar notion of possible worlds21. Based on this notion,

20But we must note: Tarski’s concept of semantics is somewhat different from
a theory of meaning (Tarski, 1944, p. 345). So we must take Davidson’s pro-
gram into consideration when we think about “Tarski’s tradition” mentioned
above (Davidson, 1962, p. 23).

21Let me define this notion for the subsequent arguments.

(†) The conjunctions introduced, as follows, by predicating one Q-predicate of
each individual constants in LπN are called state-descriptions:

Zi = dQi1(ε1) ∧Qi2(ε2) ∧ . . . ∧Qic(εN ) (Carnap, 1962, p. 116)
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Carnap thought, we could explicate the concept of probability as well
(Carnap, 1942, pp. 96–97; Carnap, 1956, p. iii). That is why our
present object of study, inductive logic, is classified into L-semantics22.

In contrast, our semantic complement in the next section is a part
of Tarski’s tradition. To complicate matters further, it is stated in
the form of model-theoretic semantics. It is true Tarski opened up the
modern semantics23; but, even so, it still seems difficult to imagine
model-theoretic semantics from Carnap’s peculiar style.

As for this problem, Hintikka daringly severed the connection be-
tween these two theories (Hintikka, 1973). Presumably influenced by
Church’s criticism (Church, 1943), Carnap moved on to the study
of intensional logic in Meaning and Necessity. Therein, according to
Hintikka, model-theoretic semantics was closest at hand to Carnap’s
thought (Hintikka, 1973, p. 375)24. Nevertheless, Carnap did not lay
his hand on it. This is because the model-theoretic semantics ex-
pected of him was Kripke-style possible world semantics (Hintikka,
1973, p. 374 etc.); Carnap adhered to his syntactic formulations of
possible worlds—state-descriptions, so that he did not come up with
Kripke-style semantics. That was why he failed in developing his
theory to model-theoretic semantics (Hintikka, 1973, pp. 374–375,
pp. 377–378)25.

22Actually, Carnap regarded the c-function as a semantical function (Carnap,
1962, p. 164, p. 283, p. 522).

23As for the relationship between Tarski’s argument and model-theoretic seman-
tics, we can learn a lot from Raatikainen (2008). Therein, he indicated two points
that differentiate Tarski’s argument from model-theoretic semantics on the two
parts of model-theoretic semantics: M = 〈D, I〉. Regarding D, he pointed out:
Tarski’s approach is possibly differentiated from the customary concept of domain
in model-theoretic semantics, since Tarski seemingly considered only one fixed
domain referred by an infinite sequence of objects (Raatikainen, 2008, p. 109).
Regarding I, he pointed out: I is possibly in contradiction with Tarski’s commit-
ment that he never presupposes any semantical concepts, since we can regard I
as a semantical concept of designation (Raatikainen, 2008, pp. 112–113). But at
the same time, in his article, a relief measure is also provided to reconcile these
two theories (Raatikainen, 2008, p. 109, pp. 112–113).

24For example, like model-theoretic semantics, Carnap adopted classes as se-
mantic values of predicate constants (Carnap, 1956, p. 19, p. 83). This idea is not
found in his earlier system (Carnap, 1956, p. 166; Carnap, 1942, p. 18).

25Let us take an individual concepts as an example (Carnap, 1956, p. 41). This
intensional object is considered to be a function that assigns one object in the
discourse of universe D to each individual expression Ai (e.g. “WBA boxing cham-
pion”) with regard to a possible world wj : Intension(Ai, wj) ∈ D (Hintikka, 1973,
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10 Semantic complement

Nevertheless, it was the same idea, state-descriptions, that enabled
Carnap to complete his inductive logic. Should we then abandon
model-theoretic semantics? My answer is, “No.” If only L-semantics
is narrowed down (not to include model-theoretic semantics in it), we
may allocate model-theoretic semantics to the other face of Carnap’s
semantics: a truth conditional theory of meaning. This is how we
may classify the following argument into the first face of Carnap’s
semantics, which gives a meaning to each expression of L2

3 in the
manner differentiated from inductive logic.

Now then, let us embark on the semantic complement26. Therein,
we aim at proving the following conditionalized T-sentence in context
γ and in modelM:

(18) ((19) and (20)) =⇒ [{(17) is true inM in γ}←→ (21)]

(17) is the sentence in question. (19), (20) and (21) are as follows:

(19) ∃!e[(e is a traffic jam of C street) ∧ (T(e) ⊆ D-Term(γ)) ∧
(T(e) < 〈now〉(γ)]

(20) ∃!e[∃!x{(e is parking of x by X)∧ (x is a car)} ∧ (e occurs on
C street) ∧ (T(e) ⊆ D-Term(γ)) ∧ (T(e) < 〈now〉(γ))]

(21) ιe[∃!x{(e is parking of x by X) ∧ (x is a car)} ∧ (e occurs on
C street) ∧ (T(e) ⊆ D-Term(γ)) ∧ (T(e) < 〈now〉(γ))]
causes ιe[(e is a traffic jam of C street)∧(T(e) ⊆ D-Term(γ))∧
(T(e) < 〈now〉(γ))]

Here, “ ι” is the iota operator, “T” expresses a function that assigns
each event the time when it happens. “D-Term” expresses a function
that assigns each context a discourse term27.“γ” is an individual con-
stant that designates the context in situation (2). “〈now〉” is Kaplan’s

p. 376). To a certain extent, Carnap had this idea (Carnap, 1956, p. 181). Nev-
ertheless, it was not developed; as just stated, his syntactical notion of possible
worlds prevented him from introducing the primitive concept of wj .

26It was already examined twice: in (Kaneko, 2009) and in (Kaneko, 2011).
27Tense expression is always concerned with a specific length of time. Suppose,

for example, you ask, “Did he lock the door?” Then, it is not likely that you
intended to ask whether he had ever locked the door. Like this example, when
we use tense expression, we are supposed to have a specific length of time in
mind. This is nothing but the discourse term stated in the text. See (Iida, 2002,
pp. 338–339).
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character (Kaplan, 1989, pp. 505f., p. 548).“(t1 < t2)” means that t1 is
earlier than t2. It is to be noted that these are not Carnap’s devices.

Let me explain (18) further. It says: “Provided that X parked his
car on C Street in fact (=20) and there was a traffic jam on the street
in fact (=19), then the expression ‘(ε3 causes a traffic jam)’ (=17)
actually means, ‘the X’s parking caused the traffic jam’ (=21=1).”
Recall that (17) was composed of a one-place predicate “ causes a
traffic jam.” On the contrary, (21) is composed of a two-place pred-
icate “ causes .” Hence, we can say, (17) actually means causal
relationship represented by (21) if (18) is proved. This is the role of
truth condition (18), which follows Tarski’s tradition.

Hereafter, we make use of model-theoretic semantics to prove (18).
Concretely, we introduce an intended model of L2

3 :M = 〈D, I〉. The
statements below are parts of this model necessary for our proof:

(22) I(“ε3”) = ιe[∃!x{(e is parking of x by X)∧(x is a car)}∧(e oc-
curs on C street)∧ (T(e) ⊆ D-Term(γ))∧ (T(e) < 〈now〉(γ))]

(23) I(“ causes a traffic jam”) = { e1 | ∀y[(e1 occurs on y) →
∃!e2((e2 is a traffic jam of y) ∧ (T(e1) < T(e2)) ∧ (T(e1) ⊆
D-Term(γ)) ∧ (T(e2) ⊆ D-Term(γ)) ∧ (T(e1) < 〈now〉(γ)) ∧
(T(e2) < 〈now〉(γ)) ∧ (e1 causes e2))] } = {I(“ε1”), I(“ε2”),
I(“ε3”)}

(24) I(“ is parking”) = { e | ∃s∃x(e is parking of x by s) } =
{I(“ε1”), I(“ε2”), I(“ε3”)}

By the way, earlier, we made sure: the present semantics is classified
into the first face of Carnap’s semantics. Indeed, these statements are
translatable into the language of that semantics under the name of
“extensional neutral language Me” (Cf. Carnap, 1956, pp. 168f.). Let
us see the translation as well:

(25) “ε3” designates the X’s parking on C street.

(26) “ causes a traffic jam” designates a cause of a traffic jam.

(27) “ is parking” designates parking.

(25) corresponds to (22), (26) to (23), and (27) to (24), respectively.
The translation of (25) to (22) is not so problematic. If only we

adopt the first-order language as Me, we can somehow translate or-
dinary expression (25) into (22). Then, however, two points are to
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be noted: First, interpretation function I in (22) is the translation of
the designation in (25)28. Second, the definite description appearing
in (22) is not the expression of an individual concept (cf. note 25).

In contrast, the translation of (26) to (23) is more problematic.
This is because the class expressions—besides, two—appear on the
right side of (23). We can, however, make use of Carnap’s notion of a
neutral entity in this case (Carnap, 1956, pp. 153f.).

Let us regard “a cause of a traffic jam” in (26) as such a neutral
entity. On the one hand, it is supposed to have an intensional property,
which is expressed as the connotation on the first right side of (23).
On the other hand, it is also supposed to have an extension, which is
expressed as the extensional class expression on the second right side
of (23).

In this way, we can interpret the two class expressions on the right
side of (23) as the two aspects of one and the same neutral entity
in (26). The same explanation is true of the translation of (27) to
(24) as well. This is how we may say: the present model-theoretic
semantics (semantic complement) is classified into the first face of
Carnap’s semantics.

Let us then return to the proof of (18). In this proof, firstly, we
premise (19) and (20). These are factual statements. But premising
factual statements in semantics is not question-begging. We can in-
clude empirical information in semantics, which was already shown in
the extensional class expression in (23) and (24)29.

On these premises (19) and (20), it suffices for the proof of (18)
only to deduce its consequential part: the biconditional “ ‘(ε3 causes
a traffic jam)’ is true inM in γ ←→ (21).”

For the proof of this biconditional, we can refer to the empiri-
cal information stated in (23): I(“ε1”) ∈ I(“ causes a traffic jam”).
With this factual information, and from the customary definition of
truth in model-theoretic semantics30, we obtain the following:

(28) “(ε1 causes a traffic jam)” is true inM in γ

Based on this fact, we can move on to the proof of ⇐= in the bicon-
28This is recognizable from the past controversy on Kripke semantics of the

first-order modal logic.
29Cf. (Carnap, 1956, p. 70, pp. 163–164) and (Carnap, 1962, pp.126–127).
30“(ε3 causes a traffic jam)” is true in M in γ ←→ I(“ε1”) ∈ I(“ causes a

traffic jam”)
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ditional (in short, (28) ←→ (21)). It is clear from the definition of
material conditional that the problem for the proof of ⇐= is whether
we can obtain (28) on the assumption of (21). But we have already
obtained (28) above. So ⇐= holds.

The direction =⇒ is more problematic. On the assumption of (28),
can we obtain (21)? By reference to (22)∼(24), firstly, we obtain the
following statement from (28), based on the customary definition of
truth (cf. note 30):

(29) ( ιe[. . . 22 . . . ] occurs on C street) → ∃!e2{(e2 is a traffic jam
of C street)∧ (T( ιe[. . . 22 . . . ]) < T(e2))∧ (T( ιe[. . . 22 . . . ]) ⊆
D-Term(γ)) ∧ (T(e2) ⊆ D-Term(γ)) ∧ (T( ιe[. . . 22 . . . ]) <
〈now〉(γ))∧(T(e2) < 〈now〉(γ))∧( ιe[. . . 22 . . . ] causes e2))}31

Here we focus on the following theorem:

(30) ∃!eA(e)←→A( ιeA(e))32

We apply this theorem to (20) above; and from Conjunction Elimina-
tion, we obtain the following:

(31) ( ιe[. . . 22 . . . ] occurs on C Street)

From Modus Ponens pertaining to (31) and (29), we obtain the fol-
lowing:

(32) ∃!e2{(e2 is a traffic jam of C street) ∧ (T( ιe[. . . 22 . . . ]) <
T(e2)) ∧ (T( ιe[. . . 22 . . . ]) ⊆ D-Term(γ)) ∧ (T(e2) ⊆
D-Term(γ)) ∧ (T( ιe[. . . 22 . . . ]) < 〈now〉(γ)) ∧ (T(e2) <
〈now〉(γ)) ∧ ( ιe[. . . 22 . . . ] causes e2))}

Here, further, we focus on the following theorem:

(33) (∃!eA(e) ∧ ∃!e[A(e) ∧B(e)])→ ιeA(e) = ιe[A(e) ∧B(e)]33

We apply this theorem to (19) and (32); thereby, we obtain the fol-
lowing identity:

(34) ιe[. . . 19 . . . ] = ιe[. . . 32 . . . ]

31“ [. . . 22 . . . ]” expresses the counterpart of (22). The same is true of the similar
expressions below.

32The proof was made in (Kaneko, 2009, p. 50).
33The proof was made in (Kaneko, 2009, p. 51).
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Again, we apply (30) to (32); and from Conjunction Elimination, we
obtain this:

(35) ( ιe[. . . 22 . . . ] causes ιe[. . . 32 . . . ])

Finally, by the rule of substitution of identical things34 with (35) and
(34), we obtain (21) above. This is how =⇒ holds.

In this way, we could prove (18) in the intended model and in the
proper context. Based on this, we may say, our awkward formulation
(17) surely expresses the causal relationship between the X’s parking
and the traffic jam, which is nothing but the legal causation questioned
at the beginning of this paper.
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