Skip to main content
Log in

The Multiplicative-Additive Lambek Calculus with Subexponential and Bracket Modalities

  • Published:
Journal of Logic, Language and Information Aims and scope Submit manuscript

A Correction to this article was published on 10 December 2020

This article has been updated

Abstract

We give a proof-theoretic and algorithmic complexity analysis for systems introduced by Morrill to serve as the core of the CatLog categorial grammar parser. We consider two recent versions of Morrill’s calculi, and focus on their fragments including multiplicative (Lambek) connectives, additive conjunction and disjunction, brackets and bracket modalities, and the ! subexponential modality. For both systems, we resolve issues connected with the cut rule and provide necessary modifications, after which we prove admissibility of cut (cut elimination theorem). We also prove algorithmic undecidability for both calculi, and show that categorial grammars based on them can generate arbitrary recursively enumerable languages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

Notes

  1. Methods of Gaifman and Buszkowski work only for context-free languages without the empty word. The empty word case was handled by Kuznetsov (2012a).

  2. Here \(E \mathop {/}F_1 \ldots F_n\) is used as a shortcut for \((E \mathop {/}F_n) \mathop {/}\ldots \mathop {/}F_1\), thus, B is a one-division formula.

  3. This part can be simplified a bit by modifying \({\mathcal {G}}\). Namely, we could introduce a new starting symbol \(s'\) with a rule \(s' \Rightarrow s\). The language generated by \({\mathcal {G}}\) will not change. After this transformation, the starting symbol \(s'\) will never appear in the derivation, except for its start, and therefore there would be always \(y_i \ne s'\), and \(\varDelta _i = y_i\).

References

  • Abrusci, V. M. (1990). A comparison between Lambek syntactic calculus and intuitionistic linear logic. Zeitschr. math. Logik Grundl. Math. (Math. Logic Q.), 36, 11–15.

    Article  Google Scholar 

  • Ajdukiewicz, K. (1935). Die syntaktische Konnexität. Studia Philosophica, 1, 1–27.

    Google Scholar 

  • Andreoli, J.-M. (1992). Logic programming with focusing proofs in linear logic. Journal of Logic and Computation, 2(3), 297–347.

    Article  Google Scholar 

  • Bar-Hillel, Y. (1953). A quasi-arithmetical notation for syntactic description. Language, 29, 47–58.

    Article  Google Scholar 

  • Bar-Hillel, Y., Gaifman, C., & Shamir, E. (1960). On the categorial and phrase-structure grammars. Bulletin of the Research Council of Israel, 9F, 1–16.

    Google Scholar 

  • Braüner, T. & de Paiva, V. (1996). Cut elimination for full intuitionistic linear logic. BRICS Report RS-96-10.

  • Braüner, T. & de Paiva, V. (1998). A formulation of linear logic based on dependency relations. In M. Nielsen & W. Thomas (Ed.), CSL 1997: Computer Science Logic volume 1414 of LNCS (pp. 129–148). Berlin: Springer.

  • Braüner, T. (2000). A cut-free Gentzen formulation of the modal logic S5. Logic Journal of IGPL, 8(5), 629–643.

    Article  Google Scholar 

  • Buszkowski, W. (1982). Some decision problems in the theory of syntactic categories. Zeitschr. Math. Logik Grundl. Math. (Math. Logic Q.), 28, 539–548.

    Article  Google Scholar 

  • Buszkowski, W. (1985). The equivalence of unidirectional lambek categorial grammars and context-free grammars. Zeitschr. Math. Logik Grundl. Math. (Math. Logic Q.), 31, 369–384.

    Article  Google Scholar 

  • Buszkowski, W. (2003). Type logics in grammar. In Trends in Logic: 50 Years of Studia Logica (pp. 337–382). Berlin: Springer.

  • Buszkowski, W. (2005). Lambek calculus with nonlogical axioms. In Language and Grammar, volume 168 of CSLI Lecture Notes (pp. 77–93). CSLI.

  • Buszkowski, W., & Palka, E. (2008). Infinitary action logic: complexity, models and grammars. Studia Logica, 89, 1–18.

    Article  Google Scholar 

  • Carpenter, B. (1997). Type-logical semantics. Cambridge: MIT Press.

    Google Scholar 

  • Chomsky, N. (1956). Three models for the description of language. IEEE Transactions on Information Theory, I T–2(3), 113–124.

    Article  Google Scholar 

  • Dekhtyar, M. & Dikovsky, A. (2008). Generalized categorial dependency grammars. In A. Avron, N. Dershowitz, & A. Rabinovich (Ed.), Pillars of Computer Science: Trakhtenbrot/Festschrift volume 4800 of LNCS (pp. 230–255). Berlin: Springer.

  • Eades, H, I. I. I., & de Paiva, V. (2020). Multiple conclusion linear logic: cut elimination and more. Journal of Logic and Computation, 30(1), 157–174.

    Article  Google Scholar 

  • Fadda, M., & Morrill, G. (2005). The Lambek calculus with brackets. In C. Casadio, P. J. Scott, & R. A. Seely (Eds.), Language and grammar: Studies in mathematical linguistics and natural language (pp. 113–128). Stanford, CA: CSLI Publications.

  • Fofanova, E. M. (2018). Algorithmic decidability of a fragment of the Lambek calculus with an exponential modality. In Mal’tsev meeting 2018, collection of abstracts. Sobolev Institute of Mathematics and Novosibirsk State University (in Russian).

  • Gentzen, G. (1935). Untersuchungen über das logische Schließen I. Mathematische Zeitschrift, 39, 176–210.

    Article  Google Scholar 

  • Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science, 50(1), 1–102.

    Article  Google Scholar 

  • Girard, J.-Y. (1991). A new constructive logic: Classical logic. Mathematical Structures in Computer Science, 1(3), 255–296.

    Article  Google Scholar 

  • Girard, J.-Y. (1993). On the unity of logic. Annals of Pure and Applied Logic, 59(3), 201–217.

    Article  Google Scholar 

  • Greibach, S. A. (1965). A new normal-form theorem for context-free phrase structure grammars. Journal of the ACM, 12(1), 42–52.

    Article  Google Scholar 

  • Hodas, J., & Miller, D. (1994). Logic programming in a fragment of intuitionistic linear logic. Information and Computation, 110(2), 327–365.

    Article  Google Scholar 

  • Jäger, G. (2003). On the generative capacity of multi-modal categorial grammars. Research on Language and Computation, 1(1–2), 105–125.

    Article  Google Scholar 

  • Kanazawa, M. (1992). The Lambek calculus enriched with additional connectives. Journal of Logic, Language and Information, 1(2), 141–171.

    Article  Google Scholar 

  • Kanazawa, M. (1999). Lambek calculus: Recognizing power and complexity. In JFAK. Essays dedicated to Johan van Benthem to the occasion of his 50th birthday. Vossiuspers, Amsterdam University Press.

  • Kanazawa, M. (2018). On the recognizing power of the Lambek calculus with brackets. Journal of Logic, Language and Information, 27(4), 295–312.

    Article  Google Scholar 

  • Kanovich, M. (1994). Horn fragments of non-commutative logics with additives are PSPACE-complete. Extended abstract, presented at CSL ’94, Kazimierz, Poland.

  • Kanovich, M., Kuznetsov, S., Morrill, G., & Scedrov, A. (2017a). A polynomial-time algorithm for the Lambek calculus with brackets of bounded order. In D. Miller (Ed.), 2nd international conference on formal structures for computation and deduction (FSCD 2017), volume 84 of Leibniz international proceedings in informatics (LIPIcs), (pp. 22:1–22:17). Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

  • Kanovich, M., Kuznetsov, S., Nigam, V., & Scedrov, A. (2018). A logical framework with commutative and non-commutative subexponentials. In IJCAR 2018: Automated Reasoning, volume 10900 of LNAI (pp. 228–245). Berlin: Springer.

  • Kanovich, M., Kuznetsov, S., Nigam, V., & Scedrov, A. (2019a). Subexponentials in non-commutative linear logic. Math. Struct. Comput. Sci., 29(8), 1217–1249.

  • Kanovich, M., Kuznetsov, S., & Scedrov, A. (2016a). On Lambek’s restriction in the presence of exponential modalities. In S. Artemov & A. Nerode, (Ed.), Proceedings of LFCS 2016 volume 9537 of LNCS, (pp. 146–158). Berlin: Springer.

  • Kanovich, M., Kuznetsov, S., & Scedrov, A. (2016b). Undecidability of the Lambek calculus with a relevant modality. In A. Foret, G. Morrill, R. Muskens, R. Osswald, & S. Pogodalla (Ed.), FG 2015, FG 2016: Formal Grammar volume 9804 of LNCS (pp. 240–256). Berlin: Springer.

  • Kanovich, M., Kuznetsov, S., & Scedrov, A. (2017b). Undecidability of the Lambek calculus with subexponential and bracket modalities. In R. Klasing & M. Zeitoun (Ed.), FCT 2017: Fundamentals of computation theory volume 10472 of LNCS (pp. 326–340). Berlin: Springer.

  • Kanovich, M., Kuznetsov, S., & Scedrov, A. (2019b). Undecidability of a newly proposed calculus for CatLog3. In R. Bernardi, G. Kobele, & S. Pogodalla (Ed.), FG 2019: Formal grammar, volume 11668 of LNCS (pp. 67–83). Berlin: Springer.

  • Kanovich, M., Kuznetsov, S., & Scedrov, A. (2020). Reconciling Lambek’s restriction, cut-elimination, and substitution in the presence of exponential modalities. Journal of Logic and Computation, 30(1), 239–256.

    Article  Google Scholar 

  • Kozen, D. (2002). On the complexity of reasoning in Kleene algebra. Information and Computation, 179, 152–162.

    Article  Google Scholar 

  • Kuznetsov, S. (2012a). Lambek grammars with one division and one primitive type. Log. J. IGPL, 20(1), 207–221.

  • Kuznetsov, S. (2012b). Lambek grammars with the unit. In P. de Groote & M.-J. Nederhof (Ed.), FG 2010, FG 2011: Formal Grammar volume 7395 of LNCS (pp. 262–266). Berlin: Springer.

  • Kuznetsov, S. (2013). Conjunctive grammars in Greibach normal form and the Lambek calculus with additive connectives. In G. Morrill & M.-J. Nederhof, (Ed.), FG 2013, FG 2012: Formal Grammar volume 8036 of LNCS (pp. 242–249). Berlin: Springer.

  • Kuznetsov, S. L. (2016). On translating Lambek grammars with one division into context-free grammars. Proceedings of the Steklov Institute of Mathematics, 294, 129–138.

    Article  Google Scholar 

  • Kuznetsov, S. (2017). The Lambek calculus with iteration: two variants. In J. Kennedy & R. J. G. B. de Queiroz (Ed.), WoLLIC 2017: Logic, language, information, and computation volume 10388 of LNCS (pp. 182–198). Berlin: Springer.

  • Kuznetsov, S. (2019). The logic of action lattices is undecidable. In Proceedings of 34th annual ACM/IEEE symposium on logic in computer science (LICS 2019). IEEE.

  • Kuznetsov, S. & Okhotin, A. (2017). Conjunctive categorial grammars. In Proceedings of MoL ’17, volume W17-3414 of ACL Anthology (pp. 140–151).

  • Lambek, J. (1958). The mathematics of sentence structure. American Mathematical Monthly, 65, 154–170.

    Article  Google Scholar 

  • Lincoln, P., Mitchell, J., Scedrov, A., & Shankar, N. (1992). Decision problems for propositional linear logic. Annals of Pure and Applied Logic, 56(1), 239–311.

    Article  Google Scholar 

  • Markov, A. (1947). On the impossibility of certain algorithms in the theory of associative systems. Doklady Academy Science USSR (N. S.), 55, 583–586.

    Google Scholar 

  • Moortgat, M. (1996). Multimodal linguistic inference. Journal of Logic, Language and Information, 5(3–4), 349–385.

    Article  Google Scholar 

  • Moot, R. & Retoré, C. (2012). The logic of categorial grammars: A deductive account of natural language syntax and semantics, volume 6850 of LNCS. Berlin: Springer.

  • Morrill, G. & Valentín, O. (2015a). Computation coverage of TLG: Nonlinearity. In Proceeding of NLCS ’15, volume 32 of EPiC Series (pp. 51–63).

  • Morrill, G. & Valentín, O. (2015b). Multiplicative-additive focusing for parsing as deduction. In First International Workshop on Focusing (affiliated with LPAR), Suva, Fiji, volume 197 of EPTCS (pp. 29–54).

  • Morrill, G. (1992). Categorial formalisation of relativisation: Pied piping, islands, and extraction sites. Technical Report LSI-92-23-R, Universitat Politècnica de Catalunya.

  • Morrill, G. (2014). A categorial type logic. In C. Casadio, B. Coecke, M. Moortgat, & P. Scott (Ed.), Categories and types in logic, language, and physics: Essays dedicated to J. Lambek on the occasion of his 90th birthday, LNCS (pp. 331–352). Berlin: Springer.

  • Morrill, G. (2017b). Parsing logical grammar: CatLog3. In Proceedings of LACompLing2017 (pp. 107–131).

  • Morrill, G. (2018a). The CatLog3 technical manual. Technical report, Universitat Politècnica de Catalunya. http://www.lsi.upc.edu/~morrill/CatLog3/CatLog3.pdf. Accessed 7 Oct 2020.

  • Morrill, G., Kuznetsov, S., Kanovich, M., & Scedrov, A. (2018). Bracket induction for Lambek calculus with bracket modalities. In A. Foret, G. Kobele, & S. Pogodalla (Ed.), FG 2018: Formal Grammar, volume 10950 of LNCS, (pp. 84–101). Berlin: Springer.

  • Morrill, G. V. (2011). Categorial grammar: Logical syntax, semantics, and processing. Oxford: Oxford University Press.

    Google Scholar 

  • Morrill, G. (2017a). Grammar logicised: Relativisation. Linguistics and Philosophy, 40(2), 119–163.

  • Morrill, G. (2018b). A note on movement in logical grammar. Journal of Language Modelling, 6(2), 353–363.

  • Morrill, G. (2019). Parsing/theorem-proving for logical grammar CatLog3. Journal of Logic, Language and Information, 28, 183–216.

    Article  Google Scholar 

  • Morrill, G., & Valentín, O. (2010). Displacement calculus. Linguistic Analysis, 36(1–4), 167–192.

    Google Scholar 

  • Okhotin, A. (2013). Conjunctive and boolean grammars: The true general case of the context-free grammars. Computer Science Review, 9, 27–59.

    Article  Google Scholar 

  • Pentus, M. (1993). Lambek grammars are context-free. In Proceedings LICS ’93 (pp. 429–433). IEEE.

  • Pentus, M. (2006). Lambek calculus is NP-complete. Theoretical Computer Science, 357(1), 186–201.

    Article  Google Scholar 

  • Post, E. L. (1947). Recursive unsolvability of a problem of Thue. Journal of Symbolic Logic, 12, 1–11.

    Article  Google Scholar 

  • Pullum, G. K., & Gazdar, G. (1982). Natural languages and context-free languages. Linguistics and Philosophy, 4(4), 471–504.

    Article  Google Scholar 

  • Safiullin, A. N. (2007). Derivability of admissible rules with simple premises in the Lambek calculus. Moscow University Mathematics Bulletin, 62(4), 168–171.

    Article  Google Scholar 

  • Savateev, Y. (2010). Unidirectional Lambek grammars in polynomial time. Theory Computing Systems, 46(4), 662–672.

    Article  Google Scholar 

  • Shieber, S. M. (1985). Evidence against the context-freeness of natural languages. Linguistics and Philosophy, 8, 333–343.

    Article  Google Scholar 

  • Steedman, M. (2000). The syntactic process. Cambridge: MIT Press.

    Google Scholar 

  • Thue, A. (1914). Probleme über Veränderungen von Zeichenreihen nach gegebener Regeln (p. 10). Vidensk. Selsk. Skrifter.: Kra.

  • Versmissen, K. (1996). Grammatical composition: Modes, models, modalities. Ph.D. thesis, OTS Utrecht.

Download references

Acknowledgements

We are grateful to Glyn Morrill for a number of very helpful interactions we benefited from at various stages of this work. The work of Max Kanovich was partially supported by EPSRC Programme Grant EP/R006865/1: “Interface Reasoning for Interacting Systems (IRIS).” The work of Andre Scedrov and Stepan Kuznetsov was prepared within the framework of the HSE University Basic Research Program and partially funded by the Russian Academic Excellence Project ‘5–100.’ The work of Stepan Kuznetsov was also partially supported by the Council of the President of Russia for Support of Young Russian Researchers and Leading Research Schools of the Russian Federation, by the Young Russian Mathematics Award, and by the Russian Foundation for Basic Research Grant 20-01-00435.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stepan Kuznetsov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: the affiliation of author Max Kanovich was updated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanovich, M., Kuznetsov, S. & Scedrov, A. The Multiplicative-Additive Lambek Calculus with Subexponential and Bracket Modalities. J of Log Lang and Inf 30, 31–88 (2021). https://doi.org/10.1007/s10849-020-09320-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10849-020-09320-9

Keywords

Mathematics Subject Classification

Navigation