
NOTES AND REMARKS ON INFORMATION-SEEKING

1.

Soon after baby becomes wise enough to speak its mother tongue, it start asking questions. No matter

in what amplitude, its questions are requests of information. At arms length or farther than that, the

information the baby requests is never further from the truth of the matter. It is likely that its first

requests are not only of information, but also of some practical needs. Regarding the fulfillment of the

needs, a conscious being is constantly aware of the link between information and action in requests of

information. 

Primary sources of information are the people around and their language. Later on one gets

familiar with sources of sources and sources with (publicly) hidden identities. How is that possible, is a

good question, but it is simply actual. Everyone grows like that. Things get really interesting as soon as

one is able to formulate questions like: Is it really the case that some people work harder than others

and earn nothing? Or, questions like: is there a creator who can create a four sided triangle? It may be

shocking when someone's oracle says only “yes” as a response.

Possibilities and impossibilities, implied by the information content one is interested in, are

not  too  far  away,  as  soon  as  one  starts  thought-experimenting,  and  looking  for  answers  to  one's

questions.

 I once saw a child amazed by seeing a truck carrying another truck on its back side. He was

arguing that it was impossible that such a thing was happening. As a matter of fact, it was already

happening. His mother sat laid back, letting the kid's questioning delve into the depths of the intuitable.

What was so unacceptable in the mind of the child? Obviously, some presuppositions about properties

like size, weight and power of trucks were (visually) blocking the limits of his thoughts.
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2.

Generally,  presuppositions  impose  limitations  on  requests  of  information.  That  is  partly  why,  for

instance, a baby's learning that it is snowing is one thing, but its mistaking snow flakes for butterflies is

another.

Partly due to the limitations of presuppositions, making logical moves and asking timely

questions  are  the  backbone  of  building  models  for  information.  In  logical  theorizing,  logicians

generalize  those  moves  and  questionings.  For  the  generalizations,  what  logic  needs  is  a  suitable

language  and  its  ways  of  codifying  information,  be  it  in  words,  or  in  symbols.   (Codification  of

information is not for the purpose of disfiguring verbal content. Verbal information content can keep

growing,  in  a  variety  of  ways  through  coding.  That  is  especially  clear  in  the  development  of

mathematical thought. Ordinary language and mathematical language are integrated.)

3.

One  learns  about  mathematics  just  like  one  learns  any other  subject  matter,  by  asking  questions,

reaching their answers and by figuring out the logical implications of the information that is acquired

through questionings. Naturally, some of the answers one reaches might be uncertain and bracketed,

after all, information-seeking is partly an elimination of  uncertainties. People also seek for feedback

information about answers, by asking further questions and figuring out further implications, so as to

be able to make corrections by backtracking. All one needs for that purpose is answers of the questions

and the logical consequences of the parts and pieces of the information that is acquired. 
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4.

Either spoken, written, or implemented in some other way, information is codified in a language bit by

bit. Therefore, the primary object of interest is the objective interpretations of mathematical language in

mathematical information-seeking. That is not to suggest that there are no subjective elements involved

in the process of such information-seeking. Only that, as soon as some information about mathematics

is obtained, one can inquire into it, or into its relations to other subject matters, objectively. 

One can inquire into a subject matter by reference to models that are specified by suitable

codifications.  In that sense, information-seeking in mathematics for example must be perceptive to

variations between different specifications of models, including non-mathematical ones.

Some of the variations  between different  specifications  of mathematical  models  can be

envisaged even from an outsider's  point  of  view.  It  is  natural  to  find  traces  of  different  kinds  of

mathematical  concepts  in  mathematical  language.  Although  these  concepts  are  studied  in  separate

branches of mathematics, the overall view of mathematics suggest that all the separate branches are

interrelated.  The  interrelatedness  in  question  is  by  itself  subject  to  mathematical  investigation.

Therefore, at least in principle, the so-called interrelations between separate branches of mathematics

can be expressed in mathematical language. 

Such  expressibility  calls  for  a  structural  approach  to  the  multiplicity  of  mathematical

concepts,  which requires  in  turn a  language to  express  different  possible  models  and comparisons

between models. As a result, the requirement concerning the study of the multiplicity of mathematical

concepts in separate branches of mathematics amounts to the study of some abstract languages and the

mathematical models they aim to specify. 

Whatever abstract language it may be codified in, if no new information is added to the

degree of information about a branch of mathematics, one will remain in the field that is intended to

have been determined by the limitations of the basic assumptions that one inquires into about certain
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mathematical models. That will be information-seeking inside the boundaries of some already specified

models or classes of models. 

If  one  is  interested  in  further  information  and  its  implications,  by  additional  new

information in the search, then one's logical conclusions and the answers of one's questions will be

further from what has already been specified in the boundaries. One needs then new information in the

premises. 

If the boundaries themselves are in question, then the logical inquiry will also be carried out

by delving into the specification of boundary conditions as well as their generalizations.

5.

By asking questions and seeking information with an eye on the logical implications of the answers of

one's questions, one can become a lifelong seeker. However, one cannot become so, if one does not pay

enough attention to the boundaries of logical inquiry. 

It holds true in all types of information-seeking that some lines of thought may turn out to

be pointless, unnecessary, or at most a waste of time. Some lines of thought, on the other hand, may

turn out to be to the point, perhaps time consuming but necessary, or even possibly time saver. That is

not to suggest, of course, that varying degrees of time consumption determine the boundaries of logical

inquiry.  The boundaries in question are determined rather by conclusiveness conditions  of finding,

evaluating and putting information in use. In that sense the ultimate boundaries, if there are any, should

be determined rather by model building for information in real-time. 

Mathematical models are an essential ingredient of scientific inquiry. The way people build

them  is  by  way  of  solving  mathematical  problems.  Being  questions  about  mathematical  entities,

mathematical problems are requests of information about those entities. Their general presupposition is
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that every well-defined mathematical problem has a conclusive solution, either in the form of a direct

answer explaining how to solve it,  or else, in the form of an indirect explanation why there is no

possible solution as a direct answer to the question. In so far as such answers and explanations call for

further implications and further questions, in principle, there is no end to the process. Nevertheless,

besides the  general  unboundedness of mathematical  inquiry,  mathematicians  are still  interested  in

asking the following question: What are the conclusiveness conditions of a mathematical problem? 

The  conclusiveness  conditions  of  a  mathematical  problem  are  usually  assumed  to  be

determined  by  the  general  characteristics  of  a  mathematical  proof.  Such  assumption  brings  about

further  questions  concerning  the  mathematical  proofs  themselves,  viz.  What  is  it  that  makes  a

mathematical proof so conclusive about solutions to mathematical problems? But why does one have to

be so strict about proving things; and hence about the conclusiveness of our answers and arguments?

The answers are mainly related to human intentions to construct consistent sets of propositions and

their consistent extensions and generalizations. Further from that, one's answers must be true of the

entities that one seeks information about. In order for that to happen, the entities in question must exist

as parts and pieces of mathematical models. 

Nothing is further from mathematical truth in mathematics, and for that matter, we want

nothing but mathematical models.

6.

One's presuppositions about the reachability of answers to mathematical questions bring about a further

question:  Are there elementary search procedures  to  build mathematical  models  such that one can

produce conclusive answers to mathematical questions? 

Notice that the conclusiveness conditions of elementary questions are generally determined
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by the initial presuppositions of a subject matter concerning some further non-elementary questions

about boundary conditions. Thereof the requested information might already have gone beyond the

reaches of the admitted search procedures as soon as the request is made. Such observation calls for a

question  concerning  the  existence  of  ultimate  presuppositions  that  might  put  limitations  to

mathematical investigations. 

Are there any such presuppositions, or is mathematics a science without presuppositions?

To recall a related question: Is every possible mathematical problem solvable? 

Mathematical models are presented as solutions to mathematical problems in some form of

stylistic systematization of a proof. Their general outline is in the form of a series of implications. 

There  are  two  basic  ingredients  of  a  mathematical  proof:  1.  Questions  about  possible

implications; 2. Implications of possible answers to questions, including uncertain answers. Both of

them are subject to  thought processes and further model building. In that sense, a study of the varieties

of model building in mathematics is a study of the amplitudes of implication. Such study includes the

amplitudes of intermediary thoughts between the two sides of an implication as a counterpart to their

stylistic systematizations.

7.

Intermediary thoughts between two sides of an implication might involve subjective elements as much

as objective ones. After all one's knowledge of mathematical models partly originates from several

mediator  activities  such as  imagining,  picturing,  comparing,  analogizing,  remembering,  stipulating,

restricting, selecting etc. 

With  their  cognitive  content  all  the  activities  in  point  are  parts  and  pieces  of  non-

mathematical activities. Their mathematical significance thereof is due to conceptualizations of their
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information content by building models for the entities they involve. The conceptualization in question

takes place in mathematical language, written, spoken, or implemented in some other way. The novelty

of using mathematical language after making observations on the non-mathematical activities is the

intended information content objectively detached from empirical concerns. Hence the boundaries of

mathematical activity are partly freed from presuppositions about the extent of reducibility to cognitive

information content in mathematical language. 

When one inquiresd into some information content in codified form, one realizes that the

foremost need for inquiry is some criteria of consistency. When one realizes that need, both for the uses

and against the abuses of information, one can generalize the particular need in order to reach correct

information,  so as to provide maps and guidelines  in all  the relevant  practicable searches of one's

theoretical  contentment.  One  does  that  by  embedding  the  consistency  criteria  into  practicable

possibilities of building models for the information in question. All that is for the purpose of seeking

and finding varying degrees of information content about  reality. 

One's  attention in seeking and finding information is  usually directed  against  relatively

small parts of reality, whose information content can be formulated as a separate objective question by

itself. In that sense, the models that are built are not necessarily based on parts and pieces of an actual

world of information that is flowing around. Most of the time they are rather parts of some alternative

models that are compatible  on the basis of one's consistency criteria with the information that one

already has found out. Therefore, the particular objects of models are not limited by any domain of

actually  existing objects  and their  kinds.  The objects  in  question can also be possible  objects  and

possible kinds of objects, as is the case in mathematical and physical thought experiments. 

8.

Naturally, information content is what guides people in their actions. The guidance in question includes
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people's  acts  of  thinking  as  well.  That  is  to  say,  one's  actual  thought  processes  and  thought

experimentations are special cases of being guided by information. 

One  chooses  how  to  think  in  similar  manner  to  choosing  how  to  perform  an  action.

Obviously,  there  are  links  between  thoughts  and actions,  and the  links  in  question  are  somewhat

flexible.  People are free, in principle,  to evaluate their  thoughts and actions,  by disregarding some

possible ways of thinking, or some possible ways of acting, which may or may not be compatible with

the information content they acquire from their environment. 

As a natural consequence of one's evaluations about the information content of thoughts

and actions, often one wants to know how to move from thinking on something to acting on something.

Whenever one does so, whether some new information is added to one's thinking makes a difference. 

If new information enters one's thinking, it may either lead one to a consistent extension of

one's thoughts, or else, it may lead to some inconsistent results. It may as well give a chance to correct

some of the previous answers, or to make some uncertain answers certain or vice versa. In any case,

deeper analyses and syntheses of the information content in question are needed. 

In the initial case, where there is no new information added to one's thinking, there can be

distinguished at  least  two kinds  of  consistency criteria  for  the  logical  analyses  of  the information

content of thoughts. These are consequential and combinatorial criteria of consistency. Consequential

criteria of consistency are needed for excluding inconsistent consequences from the implication content

of logical moves completely.  Combinatorial criteria are needed for testing the soundness of thought

processes in combination with their consequential consistency. After all, the search must guarantee the

existence of the models that are built through thought processes and thought experimentations. If both

the complete exclusion of inconsistencies and the soundness of thought processes are satisfied, then

deeper analyses of further consistent extensions will be a matter of syntheses of additional information
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content relative to the initial content. There is a variety of different ways to study such syntheses, for

the purpose of which, axiomatization provides a general preliminary framework. 

9.

In the axiomatization of a scientific theory, a class of models is studied by characterizing, in the first

place, the system of things under mathematical investigation. Once a characterization is made, all one

has to do is to find out what follows from the axioms as logical consequences. 

A logical consequence is a proposition which cannot be false in the models of the premises

of  an  argument.  In  that  sense,  mathematical  arguments  for  instance,  are  not  restricted  to  mere

applications of a finite list of logical inference rules. That is so because logical inference rules are not

explanatory of the reasons why an inference made leads to a logical consequence. 

Axiomatic reasoning presupposes that the logical consequences of a group of axioms A,

and possibly some additional assumptions B, are drawn without the input of any new information into

the argument. That is to say, logical consequences from A and B, must follow tautologically. What is

essential to logical consequences of A and B is, therefore, the source of information codified by the

models of A and B is the only available source for the study of their boundaries. In that respect, there is

no increase in the information content of A, B and their logical consequences, in the sense of producing

new truths from the axioms. The only increase of information is inside the boundaries determined by

the models themselves. 

10.

In the axiomatization of a theory, the choice of the axioms is naturally a process of asking questions

and answering them. Once some axioms are chosen, the rest of the work is carried out on a tautological

basis, provided that a group of axioms A and possible additional assumptions B are consistent relative
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to each other. The additional  assumptions B can be boundary conditions of particular  applications.

They can be captured within experience. Also different kinds of models of A can capture them. 

Newton's  proofs  by  experiment  in  his  work  on optics  can  be  seen  as  a  case  in  point.

Likewise,  non-Euclidean assumptions  in geometry can be considered as other examples.  Empirical

conditions including experimental setups for building electronic components, amplifying their signals

as well as transmitting the signals on the basis of Maxwell's equations, can be seen as some other cases

in point. All such examples can be considered as parts and pieces of the models of axiomatizations and

their boundaries. In general, all types of reasoning on how something is possible can be included in

axiomatic inquiry and its boundaries. In that sense, the logic of axiomatization concerns how-possible

explanations in addition to why-necessary explanations. That is not so much different from Hilbert's

understanding of axiomatization as the study of necessary and sufficient conditions of the theorems of a

theory. 

This  shows  that  the  logic  of  axiomatization  must  be  able  to  answer  “how-possible”

questions and not only “why-necessary” questions in order to seek information both inside and outside

the boundaries of one's models. In fact, how-possible questions are often the most critical questions in

thought experiments. 

In  attempts  to  exclude  whatever  is  not  practicable  inside  the  boundaries  of  a  thought

experiment, let us say on whether A implies B, one tries to answer how it is possible that B is false,

given A? (A moment's thought on such questioning shows that thought experimentation by means of

how-possible questions can produce a logic of inventing new ideas.) The general presupposition of a

how-possible question on whether B is false, given A is the existence of models in which B is false,

given A. Therefore, building models for logical consequences in a thought experiment presuppose the

explanation  that  an  underlying  how-possible  metric  exists  as  a  measure  of  possible  implication

amplitudes. 
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11.

Partly --as a historical accident-- caused by Hilbert’s formulation of inference rules for axiomatizations

of logic, what is called here the  implication amplitudes are identified with deepening structures of

inference rules or function schemata. This, however, is superficial. It does not explain when a rule of

inference or a function schema is able to give information on the models of implications. 

When  one  considers  a  series  of  inferences  so  as  to  grant  the  provability  of  some

proposition, one might take the applications of the inference rules as the final word. One might be

tempted to take them as axioms in the sense of basic truths. No matter how complex parts an inferential

structure may have, it can be shown, one might think, reducible to an axiom like “from A, infer A”. On

such basis, one can study infinitely many possible systems of logic. However the following questions

remain open: What is it exactly that one thinks that can be done in such a way? Is it the possibilities of

various algebraic manipulations and reductions of some inference patterns only? Or is there a deeper

truth underlying such possibilities? 

If an inference rule is supposed to take one from A to B, one must show, in order to explain

its validity, that a model for A which is not a model of B cannot be built. How is that being done? 

First,  one  needs  a  domain  of  particulars  as  building  material.  What  they  are  is  not

important. They can be any objects. One uses the objects for imagining some models where A holds

but B does not. In other words, one tries to build a counter model. Conditions of impossibility of such

building validates the inference rules that are supposed to take one from A to B. 

12.

When one is interested in the inner complexities of the models of A and B, one can start by analyzing

the models  for A and B from outside to inside,  in terms of their  consequential  and combinatorial
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features. That is to say, one would admit their complexity initially unbounded, and move towards their

components  by  building  their  bounded  models.  However,  if  one  is  not  interested  in  the  inner

complexities  of  the models,  one does  not  need such analysis,  albeit  by way of  implicit  synthesis.

Therefore, the amount of information that one can extract from a given implication depends on how far

one would like to go into the analyses of implicit syntheses. 

One may consider  the  implicit  synthesis  in  point  as  enveloped how-possible  and why-

necessary questionings. For example, is it possible at all, if A then B? If it is, how is it possible? If not,

why not? Why is it necessary that it is not possible somehow? On the other hand, is it necessary that, if

A then B? If it is, why is it necessary? If not, how is it not; how is it possible that it is not necessary? 

Such questions need not turn our initial question into a question about the role of modal

notions in logical reasoning. Nevertheless, their role in a deeper metric for propositional structures is

clear enough from the twofold partition of the question concerning propositional implication. 

If some transformation on the inner structural meanings of A and B, were possible and if A

É B was transformed from something necessarily true to something possibly false, then models of A

and B would also have to be transformed to some degree into each other, for the purposes of a truthful

search  on  the  intended  models.  Same  holds  for  their  negations  and  combinations  with  other

propositions. Why is that so? The reason can be summarized as that the ways we interpret A É B as

true or false have a dual nature with respect to the interpretations of A and B independently. 

In the implication sense one can assume the models of A and B have things to do with each

other.  However,  for  the  purpose  of  interpreting  them  one  has  to  consider  their  models  as  dual

separations of possible valuations. The transformations of the models in point can be called amplitude

evaluations, or simply, evaluations. 

The dual nature of evaluations gives a model-theoretical meaning, for example, to rules like
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modus ponens, viz.  ((A É B) &  A)  É B. For instance, the varieties of assigning valuations, and the

varieties of building models for a transformation from necessary truth to possible falsity of B on the

basis of A É B and A (interpreted non-monotonously), would admit some invariant particulars which

do not change their hidden identity throughout the process of model building for different possible

logical structures in the context of propositional implications. One can observe the same duality,  in

principle, with the meanings of connectives like 'and' and 'or'. 

Suppose one wants to prove A É B on the basis of a theory T. One's question then would

be: how to prove A É B, or else, how to disprove it, from some premises included in T. 

If A É B had a disproof in T, then it would be possible that A is true and B is false in the

models of T. That is, one could consider, as well, how to solve whether T & A has B as a logical

consequence. For that purpose, one could first try to prove A É B from T. If that was possible at all,

then one would argue, on the basis of T & A, that, by modus ponens, A É B and A proves B. In that

case, no counter model would be possible to disprove A É B. On the other hand, if B had a disproof, on

the basis of T and A, that would amount to the same thing as disproving A É B, on the basis of T.

Hence proving A É B from T, and proving B from T and A would be the same problem. That is so only

on the basis of the dual character of possible evaluations of T, A and B.

How is it possible to codify the duality of possible evaluations of proofs and disproofs?

Suppose  A É B is assumed to be true. Then either ~A would be true, or B would be true as implied by

the assumption. On the other hand, suppose  A É B is assumed to be false. Then both ~A and B would

be false as implied by the assumption. 

Notice that, for the purpose of formulating such evaluation assumptions, one does not have

to assume the law of excluded middle. One can further extend the evaluations in point, and hence the

possible  varieties  of  model  building  on the  basis  of  those  evaluations,  by  adding  a  contradictory
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negation ¬, such that one's rules will include assumptions that are not false in addition to assumptions

that are true or false. For instance, suppose A É B is assumed to be not false. Then either ~A or B

would not be false. One can express such implication as ¬~(A É B)  É (A É ¬~B). Such extension is

now an admittance of the law of excluded middle for evaluations of the extended formulas, since the

added negation sign ¬ creates a complementary image for all applications of the dual negation ~, and

hence is a contradictory negation. 

What one reaches by the additional contradictory negation, therefore, is the possibility of

building models which are non-falsity models, and not truth models. 

A formula which is not false can be expressed now as ¬~A. 

In other words, ¬ has no role in the duality of evaluations. It is merely a tool for tracing

sub-structural  interpretations  of  evaluations.  Being  so,  it  blocks  all  possible  evaluations  of  inner

structural meanings of models. For example, if we are interested in the inner structural evaluation of

proof figures, where A stands for a complex thought stating the provability of A, then ~A will mean

that A is disprovable, whereas ¬~A will mean that A is not disprovable. It is clear then, in what way,

the so-called neither provable nor disprovable propositions of mathematics presuppose a logical basis,

where the one and only negation obeys the law of excluded middle, and is not a dual negation that

operates in pursuit of model building, by way of  evaluations, albeit possibly implicitly. 

13.

The notion of evaluation can be envisaged game theoretically: 

Given a proposition A, the truth of A amounts to the existence of a winning strategy for the

verification of A in a game played on possible evaluations of A. That would be a strategy that results
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for a win no matter which strategy for the purpose of falsification is used as attempts to show that A is

false. Likewise, the falsity of A would be the existence of a winning strategy for the falsification of A. 

Since  language-games  are  not  discriminate  on  the  dualities  of  possible  evaluations,

verification  and  falsification  attempts  can  be  pursued  in  tandem  and  hence  there  can  also  be

propositions that are neither true nor false as a result of some evaluations. That is to say, in a language-

game, evaluations can take place independently of either procedure's information content, and leaving

both of the attempts without a winning strategy with respect to the hidden dualities of the evaluation

game. One implication of that, is the following: the information codified by game-theoretical means

can be increased by way of logical consequence relations. All one has to do for that is to find out

information on the models of independent evaluations, whose ingredients will be the particulars of non-

falsity models.

A proposition B is not false, if and only if, for each strategy  F, possibly chosen for the

purpose of falsification, there exists a strategy V, possibly chosen for the purpose of verification, that

leads to a possible win for non-falsification. In other words, any interpreted counterexample F can be

defeated by a suitable strategy V. It means interpreting B as saying “I am not false” instead of “I am

true”. The consistency of a proposition B, given some background information A, is expressed then, by

using the two different negations, viz. ¬~B. 

Being expressed as not false, B is supposed to give information about the models of A. The

information is given on the basis of the tautological character of the underlying logic. Therefore, the

information in question is given, provided that B is proved consistent relative to A. That is, it must

really not be false in the models of A. In other words, in addition to the exclusion of possible falsities,

and hence the application of consequential criteria of consistency, it must also apply and satisfy the

combinatorial criteria of consistency by the existence of a model assuring its soundness. 
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Now, ¬~B can be proved in A by proving A É ¬~B. If the logic used has a complete proof

procedure for this purpose, this means that the logic in question is a complete “how-possible” logic. A

proof of ¬~B is a proof of the existence of models in which B is not false. It is not necessarily a proof

in which B is true. Therefore, especially in the sense of how-possibility of non-falsity, logic can be

defined as a science of thought experiments through such model buildings. 

Similar observations explain the applicability of the same basic rules to why-necessary and

to how-possible reasoning. In other words, the so-called amplitudes of implication can be interpreted so

as to have varying probability densities to capture both types of questions and their answers in point.

What one must be aware of is the conditions for the conclusiveness of how-possible arguments. The

conditions  in  point  define  the  conceptual  completeness  of  the  arguments  aiming  to  reach  a  final

solution.  They determine  whether  a  taken path  is  off  the  point  or  not  in  the  practicable  searches

determined  by the  models  built  with  respect  to  possible  evaluations.  Precisely in  that  sense  how-

possible reasoning can be seen as inventing or discovering new ideas. The same idea can be used in

analyses and syntheses of logical proofs as well. 

Let us take a simple example. Does 

(1) Something identifies everything else, 

logically imply

(2) Everything is identified by something? 

As has been outlined, the steps to be taken starts with trying to build a model for (1), together with the

negation  of  (2).  It  can  assume the  following as  a  negation  of  (2):  Something  is  not  identified  by

anything. Then, on the basis of the assumptions,

(3) Let a be an individual which identifies everything else. 

In the counter-model,
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(4) Let b be an individual which is not identified by anything. 

From (3) and (4) one can say that

(5) a identifies b, if b is different from a  

(6) b is not identified by a  

At this  point  the model  building splits  into two branches.  The first  one includes  the identification

following from (5)

(7) b=a  

The second branch involves

(8) a identifies b  

Here (6) and (8) contradict each other, showing that, this construction branch is false. From these one

can tell things about what the possibility is like that has been proved to exist. It turns out among other

things, that the universal identifier a is not identified by anything. Likewise, it is seen that, a does not

identify itself.  

14.

On the basis of observations of logical thought processes, one can study the varieties of model building

for different kinds of possibilities determining various kinds of inner complexity of thought processes

or experiments. Assuming, for example, that one such level of complexity is propositional, one can

formulate truth tables for combinations of propositions. However, the study of possible evaluations of

propositional  complexity  would  be  a  waste  of  time  and  space,  in  the  case  of  a  large  number  of

propositional particulars that are combined, by means of connectives and operators. Instead, one can

build  partial  models  of  search  spaces  connected  with  further  complications,  as  is  the  case  in

mathematics or in physics. 

One method for the study of variations in partial model building is the method of tableaux.
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Tableaux can both be used as a basis for formal proof procedures, as well as a basis for developing

various disproof procedures by model building. The main idea in those procedures is to first build

spaces and subspaces for various kinds of searches in a given complexity domain,  by generalizing

disjunctive normal forms in the form of a tree. Every branch then will be a partial description of a

model  in   searches  for  disproving some  actual  thought  processes,  by  building  counter  models.  A

tableau then can be thought as a set of branches and a branch as a set of symbols or formulas that occur

in it.  In complete  analysis,  from outside to  inside of formulas  representing the potential  structural

complexity  of  a  thought  process  or  experiment,  the  set  of  all  branches,  with  their  inner  sets  of

particulars, determine a disjunction of conjunctions, and hence possible generalizations for that matter.

To consider a simple case (A & B) v (~A & B) v (A & ~B) v (~A & ~B) is a result of an evaluation

analysis, where there are only two elementary propositions, A, and B, and their possible negations and

connections. Assuming that A and B has no further inner structural complexity that may lead to further

evaluations, the case in point exhausts all possibilities, and, as a matter of fact, do not give any new

information, i.e. it is tautologous. 

If such exhaustiveness is  generalized to all  possible finite  complexities  of propositional

connectives,   the  limit  of  a  totality  of  tautologies  is  reached  at  the  depth  of  the  interpretation  of

quantifiers as infinite extensions of propositional connectives, where ("x) A(x) means A(x1) & A(x2) &

…, and  ($x) A(x) means A(x1) v A(x2) v … .  One is able to exhaust thereof all possible models of the

inner complexity of a thought experiment in terms of potentially infinite mechanical computations.

Nevertheless, how to do that is a separate question concerning the games played on evaluation models

in a tableau. 

At this point one may think of a variety of logics serving different computational purposes,

each as an answer to a class of how possible questions. However, the real-time question turns around
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the varieties of model building in logic, and hence each alternative logical system is an instance of

those varieties. 

Tautologies requiring further and further analysis of depth of inner complexity of thought

experiments requires therefore the introduction of new particulars, or new structures of particulars into

models, for each new exhaustive description of possibilities. Introduction of new particulars in question

determines new structural information, for each depth of exhaustiveness, in the sense of a totality of

tautologies over a variety of 2n particulars, n being the number of elementary propositions involved. If

the exhaustiveness conditions are extended, so as to capture the potential varieties of model building

for all possible evaluations, the number of particulars that one has to deal with will be 2ω, i.e. all the

countable well-orderings.

15.

Quantifiers  ranging  over  infinite  totalities  is  not  an  elementary  basis  for  evaluations.  Without  an

elementary basis, building more complicated logical systems and deductive axiomatizations for truth

and proof hierarchies as answers to various how-possible questions would be a futile attempt to explain

the role of models in logic. For one reason, a conclusive conceptual development of model building,

beyond the reaches of a certain a priori defined limit, requires an explanation how it is possible in real

time to introduce new particulars, in addition to the already defined ones, and how they lead to new

multiplicities, without (a priori) necessitating the definition of a higher complexity domain. 

In real-time questioning, such higher complexities exist only hypothetically. In addition to

hypothetical  complexities  therefore,  one  needs  structural  complexities  involving  both  known  and

unknown particulars in evaluations. The information content of such knowns and unknowns in point

does not concern the existence of fixed domains of particulars, but rather the existence of possibly

identifiable particulars. The only practicable way of approaching these particulars is model building by
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thought experimentations. Such approach should not only justify the hypothetical existence of higher

complexities. It must also explain how to build models for discovering them in real-time possibilities of

thought processes. Therefore, it should not be restricted to systems of inferences. It should be flexible

enough to capture all possibilities of actual thought processes, including the various assessments of

uncertain answers to one's questions, as well as the certain ones in the process of asking questions and

answering them. Uncertain answers, together with all the other answers depending on them, as well as

with all their logical consequences, can be corrected if wrong. Or else, they can be turned into certain

ones,  on  the  basis  of  some  feedback  information  coming  from a  lengthened  branch of  a  tableau.

Lengthening of branches is by way of introducing new particulars anytime in the thought processes.

Such corrections  and certifications are made thereof on the basis of asking timely questions about

timely chosen particulars and structures. Asking timely questions is therefore,  a strategic objective.

Hence even omitting some data can be included in them, by making use of strategic optimizations and

approximations and by restricting the real-time model  building to certain branches excluding some

others. The pinpoint of such treatment lies only in its epistemic character of questioning, in the

form of  requesting  information  from a  variety  of  sources,  in  order  to  be  displaced  in  appropriate

epistemic spaces. The displacement of information in point presupposes topological ingredients in the

actual  thought  processes.  They have been called  here evaluations.  Whether  their  role  can be fully

explicated by the means of elementary notions is a puzzling question. For simplicity, evaluations can

be  envisaged  as  varieties  of  questions  on  the  models  to  be  inquired,  since  presuppositions  and

conclusiveness conditions of elementary questions are dealt with by describing states of knowing the

identity of a particular. 

What  evaluations  ultimately  presuppose  is  the  existence  of  invariant  particulars  of  the

models. For more complicated tasks one needs to introduce independent states of knowing identities.

In that sense,  what one needs for an explication of the role of evaluations  in thought  processes is
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uniform strategies for approximation models. 

Nevertheless, one can safely say that evaluations appear as evaluations of the results of an

ongoing inquiry,  distributed over varying degrees of information on the models one builds for our

thought processes. As was pointed out earlier, such variations are due to introducing new information

into one's arguments in the process of moving from one thought to another. The evaluations in point are

therefore not possible without distinguishing between different degrees of information. 

One has to provide logical explanations according to the appropriate degree. The logical

explanations in question can be seen as part of thought experimentations in the form of analyses and

syntheses, viz. varieties of model building in the form of how-possible and why-necessary arguments. 

In a general setting, therefore, the method of tableaux must be able to promote a measure of

information in the sense of eliminating possible uncertainties and inconsistencies, at varying intensities

of implication amplitudes. It might seem that one way of approaching such measure of information-

seeking is to study the varieties of model building relative to different systems of inference. Such an

approach makes it a handy tool for computational purposes varying from one system to another. The

idea of a logical system however, presuppose an inference oriented conception of axiomatization. No

matter how the so-called logical systems highlight their own semantic features in well-defined ways,

their  boundaries  separating  each  from  other  possible  alternatives,  as  well  as  their  possible

interconnections and overlapping aspects are sharpened on the sentential criteria of consistency. Such

criteria,  although they point  to  an open-ended investigation  of  an apparent  plurality  of  logics,  are

always structured under the limitations of the incompleteness of arithmetical coding. That is to say, it is

ignored in the study of logical systems that characterization of a logical system is itself a special case of

model building. The result of such ignorance is, in a sense, the infinite possibilities of developing new

logical systems for different computational purposes, without specifying a unified model-based view of

all those varieties from an elementary logical perspective. An inescapable consequence of such lack of
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unification is that, questions of discovering new possibilities of building logical system models for

novel purposes are left out as if they are subject to a non-logical assessment of intuitions. 

It is as if one wants to make sense of a discovery in logic (or in mathematics) by means of

some inspirational  extensions of our justificatory possibilities.  Such an extension of possibilities is

nothing but confessing that one cannot do better than appealing to set expansions for the purpose of

measuring information on the basis of a mysterious realm of higher-order entities. What is wrong with

such confession? Nothing, under the limitations of sentential criteria of consistency, for computational

purposes. However, in reality it is not a genuine confession at all. It is only a paradox delay through

invented set sizes, either by limitation or by forcing at a long distance call. The logical basis of such

invention  must  be  studied  truthfully,  without  any  appeal  to  mysterious  notions  like  non-logical

intuitions. Otherwise, the whole apparent variations from system to system of model building will be a

variation from one phenomenological mystery to another. [Of course, that does not mean that there is

no phenomenological metric for implicit information-seeking.]

The key to understanding the source of the problem at hand with the mysterious origin of

different logical systems is to generalize the notion of tautological implication. For that purpose one

needs  to  characterize  varying  degrees  of  tautological  implication  on  the  basis  of  exhaustiveness

conditions. Such conditions are determined by way of generalizing disjunctive normal forms on a non-

compositional framework of evaluations, in order to study their outside-in complexity. Therefore, one

need  to  know  the  conclusiveness  conditions  of  each  possible  evaluation.  Those  are  impossibility

conditions localized by the existence of inconsistencies at each depth of thought experimentation. Even

though it may seem that conditions for the conclusiveness of the obtained results are logical system

dependent, at bottom they depend only on the existence of invariant particulars and their dualities with

respect to possible evaluations. Such observation is of course possible by way of certain compatibility

and completability conditions over the temporal stages of a thought experiment, with additional new

22



elements to its logical structure. In any case, one is free to choose new elements at any depth and keep

building  one's  models  for  new exhaustiveness  conditions.  Thus the  conclusiveness  of  information-

seeking  depends  only  on  the  varieties  of  model  building,  and  not  on  the  different  meanings  of

tautological implication in different logical systems, for the same formula.

16.

Generalization of disjunctive normal forms as exhaustiveness conditions can also be studied by blind

expansion of consistency sets for model building, as is the case in classical sequent calculus. There a

sequent is of the form X1,X2,...,Xn É Y1,Y2,...,Yn where X1,X2,...,Xn, Y1,Y2,...,Yn are formulas. They are

connected  by  É  in  the  sense  that  conjunction  of   X1,X2,...,Xn  implies  disjunction  of  Y1,Y2,...,Yn.

Consistency sets expand with some operational rules, applied to each sub-formula up to a point where

logical identities in the A  É  A form are reached. Complexity analysis in that kind of expansion of

consistency sets has predetermined ending points thereof. 

Dualities  of  evaluations  are  assumed  to  have  been  distributed  as  widely  as  possible.

Therefore not always  a  formula  appearing before the application  of a set  expansion rule is  a  sub-

formula  of  the  one  appearing  after  a  rule  application.  In  that  sense  there  are  non-elementary

assumptions violating the constructive ways of expanding model sets from the very beginning. It is

known that such assumptions can be eliminated. However, the elimination after assuming the existence

of expanded sets is parasitic on the model theoretical meaning of rules like modus ponens. 

In  one's  actual  thought  processes,  using  non-elementary  assumptions  to  give  a  model

theoretical  meaning  to  inference  rules  is  like  using  short  cut  explanations  for  our  exhaustiveness

conditions.  Those shortcuts  are  like lemmas  in  a mathematical  proof,  and they can be eliminated.

However, the streamline of actual thought experimentations does not have to include such (roundabout)
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use of shortcuts. In the actual mathematical thought experimentations, the possibility of model building

must be prior to using lemmas. Otherwise, one has to admit proofs by chance. Lemmas are used to

shorten the unbearably rich flow of thoughts in mathematical evaluations. After all, they are not the

only  shortcuts  possible.  Expectedly,  there  are  various  hidden  strategic  aspects  in  actual  thought

experimentations.  [Varying  degrees  of  probability  densities  in  the  amplitudes  of  mathematical

implications can be seen as evidence for the existence of such aspects.]

Similar to the study of sequent calculus, intuitionists suggested studying the components of

complex formulas  as separately provable ones. For example,  proving A or B means,  proving A or

proving B, according to intuitionists. Such separation comes to the same point as eliminating shortcuts.

The idea is correct but the direction of implementation is not. What they suggest amounts to admitting

mathematical  thought  processes  mainly  as  recursive  enumerations  of  some topologically  complete

descriptions. It does not capture thought experiments with topologically complete but recursively not

enumerable descriptions. It seems to restrict the domain of epistemically possible thought processes, by

means of some causal accessibility assumptions. Hence it is a limitation on the variations of topological

ingredients of model building. However, the elementary basis of thought experiments admits causally

inaccessible but dually identifiable variations of model building, without any restrictions prescribed for

epistemic possibilities, other than the ones determined by consequential and combinatorial criteria of

consistency. 

In general  terms,  moving from one thought  to  another  presupposes  a  space of models.

Someone who knows how to move from A to B has the needed information to restrict  his or her

attention to a subspace so as to eliminate uncertainties. Propositionally, such attention restriction, in

order  to  move  from models  of  A to  models  of  B,  with  a  view of  possible  evaluations  and  their

invariants  determined  by certain  exhaustiveness  conditions,  is  the  implementation  of  a  topological

closure operation. Therefore, it is somewhat very close to what intuitionists had in mind. However,
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since the intended applications of information-seeking are to relatively small parts of reality, it can also

take place in language, by generalizing the information content of mathematical and logical thought

processes.  Particularly  in  that  general  sense,  causal  accessibility  is  not  sufficient  for  filling  in  the

received  gap  between  form  and  content  in  mathematical  language.  It  does  not  disfigure  content

however at the expense of its discontentment with the form... 

Dually identifiable particulars of mathematical language is a further step towards erasing

the gap between form and content. The underlying theoretical contentment of such erasure is in line

with Hilbert's 1900 claim that “arithmetical symbols are written diagrams, and geometrical figures are

graphic formulas”. Since both signs and figures have dual roles with respect to possible evaluations in

the actual codification of mathematical information, the easiest way to envisage their hidden identities

is  by  way  of  building  models  for  the  information  contents  capturing  their  dualities.  One  general

example can be the dual role of continuity assumptions in geometry. They can be assumed either from

the very beginning as is the case in the construction of invariant properties of a space under group

theoretical transformations, or at the very end in order to render the invariant properties of axioms for

the complete characterization of a space. 

17.

A full scale implementations of similar ideas pointed out above has been thought to have taken place

by way of generalized algorithms. In that case formulas involving large number of variables are the

source of the challenge for computer scientists, whose tasks have to be accomplished in limited time

and space. Not surprisingly, lengths of proofs are seen as Turing's road maps when he claims in his

“Computing machinery” paper that “we can see only a short distance ahead, but we can see plenty there

that needs to be done”. The real-time challenge in such seeing however, is not so much different from a

problem with some lengthier bits of history, viz. why is it that the road seems longer to us when we
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don't know how long it is? Even propositional complexity is hence a real challenge for the thought

experimenter. As soon as one conceptualizes about a theory for such complexity tasks, one realizes that

the punchline of the general attitude towards accomplishment lies somewhere further from mechanical

inference. 

One has to study evaluations of propositional variables by quantifying over them in clever

ways, in order to save space and time. Whatever logical approach one is trying to develop as a solution

to a decision problem, the truth of the matter lies neither in propositional variable evaluations (where

large number  of  variables  makes  the longest  routes),  nor  in  the undecidable  validity  of first-order

quantifications  (where  the  study  of  algorithms  and  decision  procedures  are  open-ended,  being  a

challenge for shortening the longest routes). 

Partial  interpretations  have  been  thought  as  escape  tunnels  from  the  false  prison  of

undecidability. But still partial functions are needed in order to deal with partial interpretations. In that

sense, one has to deal with how partial functions act on formulas and on possible evaluations, hence

presupposing a quantificational framework from the very beginning. 

The  real-time  question  then  is  how  to  update  information  about  partially  interpreted

quantifiers themselves, at the same rate as the information about their dependencies on each other is

received.

18.

From a  meta-logical  point  of  view,  a  full  account  of  all  complications  about  the  actual  thought

processes should consider the theory of quantification in relation to the interplay of quantifiers with

epistemic concepts. Therefore, it is a natural inclination to think that searches for an embedding of  a

logical space into spaces of modalities is an inevitable goal for a formal theory of logic. Although there

is  some truth in  such inclination,  a closer examination  of epistemic  concepts  shows that  whatever
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means of reasoning are embedded in whatever framework of modalities, logic at bottom deals with

particulars  and  structures  of  particulars,  such  as  information  about  what,  where,  who,  when  etc.

something or someone is. As such, particulars are positioned in different kinds of spaces with other

particulars. The actual complexity of possible ways of positioning particulars in various structures is

the source of our different ways of coding and tracing the spaces they belong. Logical reasoning ideally

forgets no detail unexamined in those ways of codings and tracings, and hence no object unidentified.

However, it may disregard futile lines of thought in information-seeking. 

The information that one is looking for may include information about non-falsity models

as  much  as  about  truth  models.  That  is  why  asking  timely  questions  in  a  variety  of  ways  gives

somewhat a pragmatic shift to information-seeking. One can inquire into that shift in game-theoretical

terms, assuming that building models for relatively small  parts of reality presupposes some hidden

assumptions concerning the applicability of mathematical models. 

As Einstein put sharply, in his “Geometry and experience” lecture, “in so far as the laws of

mathematics refer to reality they are not certain, and in so far as they are certain they do not refer to

reality”. Models are built for various kinds of applications, including applications to mathematics itself

and applications  to  physical  systems.  The question  concerning the  applicability  of  mathematics  to

reality is thus a very puzzling one, for the application of models presuppose a compatibility of thought

and reality. The main purpose of building models is to apply them primarily on the models that are

studied in mathematics and physics. Nobody knows, what it means to apply them directly to reality. On

the other hand, it is often (mistakenly) assumed that the idea of such direct application to reality makes

sense. 

19.

The actual situation with thought experimentations however is not as puzzling as it appears in their
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applications.  In  actual  thought  processes,  one  can  build  non-falsity  models,  on  the  basis  of  one's

consistency criteria, by assuming, explicitly or implicitly, the relevant boundary conditions not to be

false, as well as assuming them to be true about mathematical entities. In that sense, mathematical

models have no ultimate presupposition concerning correspondence with an actual reality. If there is a

question about correspondence, it should be posed rather in the context of a presupposed compatibility

of thought and reality. As soon as some inner organization for the theorizing process is completed, one

is in the possible domains of intended models for possible inquiries. Hence non-falsity models become,

in a sense, truth models for the inner complexities of some possible evaluations that are compatible

with the totality of one's information. That is what is actually presupposed about the compatibility of

thought and reality, viz. deciding whether something is not false, rather than deciding whether true or

false. Otherwise, imposing truth definitions on the models that one inquires into, by reference to a truth

hierarchy obeying some supposed correspondence relation with an actual realm, without building non-

falsity models for the purpose of assuring consistency strength of one's theories, is only a hypothetical

wandering, which ignores the possibilities of background evaluations. In that respect, intuitions about

new possible axioms of a theory have no genuine logical backup. They are not self-reflective thought

processes,  unless  the  self-reflection  demand is  tacitly  made through hypotheses  underlying  the so-

called  compatibility  of  thought  and  reality  assumption.  Therefore,  for  conclusive  solutions  to

mathematical problems, there is no way out from non-falsity models, albeit implicitly. That is simply

due to the same sense of truth and existence underlying the realm of mathematical models. 

One might feel tempted to ask: Where do all those mathematical models come from? The

answer is that they are built by finding out the  hidden assumptions of the presuppositions concerning

the compatibility of thought and reality. The conclusiveness of a mathematical solution then lies in the

ultimate  dualities  between completed  evaluations  for  the  compatibility  of  thought  and reality.  The

hidden assumptions in question are the invariants of those evaluations. As soon as a complete set of
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such hidden invariants are built into the solution of a mathematical problem, they can generate further

evaluations in order to define new problems, hence new amplitudes of implications. That is why some

theorems always play a central role in figuring out the general structure of an axiomatic theory, as well

as in figuring out the relations between different axiomatic theories. 

The  Pythagorean  theorem plays  a  central  role  in  the  development  of  geometrical  and

algebraic methods, in order to have a glimpse of how hidden invariants and dualities, as well as the

varieties of model building can play a role in actual thought experimentations. The role in question acts

also  on  the  actual  presuppositions  about  the  compatibility  of  thought  and  reality,  hence  in  the

applications of mathematical thought. 

Suppose A means that the angle ACB of a triangle is a right angle, and B means that a2 + b2

= c2, where  a, b, c are the lengths of the sides BC, AC and AB of the triangle, respectively. One of the

oldest proof of A É B goes simply as follows: Look and see below!

                                                           

Suppose here that we have already imagined a triangle, created its 3 clones, rotated and translated them

so as to be displaced from their original positions, and completed the figure as is shown above. There

would have been a lot of things going on in drawing figures as such by following one's attention here

and there in order to have a focus on the relevant part  of reality.  One can summarize that kind of
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transformation  process  by  reference  to  Euclid's  awareness  of  the  problem  with  how  to  draw

geometrical  figures,  in  the  Elements. Such  awareness  is  both  about  the  boundary  conditions  of

geometry problems, as well as it is an awareness of certain epistemic boundaries concerning the links

between thought and action. In a sense, continuous transformations and evaluations provide enough

information for how to introduce new particulars and structures of particulars into thought experiments

and processes, at varying distances from the original displacement. Nevertheless, one can rather follow

partial transformations in the streamlines of one's thought processes in order to produce such figures.

Therefore, one's attention is not necessarily directed towards the topological ingredients of the thinking

process  immediately.  It  is  rather  directed  to  ingredients  of  partial  transformations  of  possible

evaluations  as  topological  ingredients.  However,  how  to  bridge  the  gaps  in  between  partial

transformations can be considered a principal question. 

Based on such observations one can follow an algebraic formulation of the figure above.

One  can  do  that  without  any  observational  basis  as  well,  i.e.  algebraic  transformations  can  be

completely independent from any preconceived design for possible evaluations. Not because they are

telling a completely different story, but because the choice of particulars and structures of particulars

for each questioning step can be either dependent on previous moves, or else it can be independent

from them. What is possibly the case is an informational dependence or independence of the choice of

particulars in point. Assuming that a ³ b, c2 = 4ab/2 + (a – b)2 =  a2 + b2. That is the situation with the

needed invariants, since it is what the figure tells in part. That is to say, in a game played on  A É B,

someone who brings in that  algebraic  information on the problem description somehow, will  have

proved the existence of a winning strategy against possible falsifications in any case, with respect to

possible evaluations determining the underlying geometry or more generally the underlying topological

ingredients. In other words, there possibly goes on a real-time evaluation process updating information
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content at the same rate as what the language game in point provides as conclusiveness conditions of

the problem. 

If it were the case that a = b then the figure would have only crossing diagonals and no little

square inside. Envisaging the figure inside a circle with varying sizes of inner squares and triangles as

well as envisaging it in a three dimensional cone relates the figure to different varieties of possible

generalizations.  Not  surprisingly,  as  extremity  conditions  of  the  possible  underlying  topological

ingredients, which suggest that in such cases of thought experimentation identities and identifications

play  a  role  in  understanding  the  boundaries  of  the  topology as  well  as  of  the  underlying  thought

processes. 

Henceforth one can ask the following question: Where is the non-falsity assumptions here

in this implication A É B? It turns out that on an axiomatic basis, as was the case in the Elements, the

theorem in question had no proof without the parallel postulate. The postulate says that if the interior

angles of two parallel lines intersected by a third line add up to less than two right angles, then the two

parallel lines meet at some distant point. For sure, when Euclidean definitions, axioms and postulates

are considered as true propositions about the specification of the models for space, a different picture in

mind from certain non-falsity models in compatibility with the reality of the space around us appears.

However, such a picture rests on an inference-oriented misconception of the axiomatic method. 

20.

Suppose the axiomatization is described by using first-order quantification, as is the case, for example,

in Tarski's “What is elementary geometry?” paper. The truth of a geometrical proposition then is not

definable in the same system of deductive axiomatization, due to Tarski's undefinability theorem. Even

though the truth in question can be defined on a higher-order level, such definition will only push away

the paradoxes of higher-order reasoning towards higher and higher-order languages aiming to describe

31



more  complex  geometrical  structures  than  the  so-called  elementary  models,  at  the  limit  to  higher

cardinalities of sets of geometrical objects, and ultimately to an indescribable absolute infinity as had

been indicated by Cantor.  On the other hand, in the ancient  mathematical  works, there is  no such

assumptions concerning infinity. Their model building was rather based on epistemic evaluations. In

that sense, the ancients must have been aware of other possibilities than what the parallel postulate

specifies as models of geometry. The invariants that they could build into the solutions of mathematical

problems at the time however, included only the elements of epistemic constructions up to a horizon

determined by what we know today as the intended Euclidean geometry.  In that regard, Euclid and

other mathematicians of the time were most  likely aware of what Einstein among others observed

concerning the characteristics of mathematical certainty and its reference in reality. So that when A É

B  is  a propositional  codification of the so-called  Pythagorean theorem,  the inner  complexities  and

possible evaluations of A, B and A É B are determined by permissive principles concerning how to

draw a triangle, how to find the area of a triangle, a square etc. All such possible evaluations admitted

boundary  conditions  mainly  bordered  by  the  parallel  postulate,  in  addition  to  other  elements  of

geometry, independently of the rest of the framework. Hence it should be no surprise in that sense that

the Pythagorean identity is provable only on the assumption that the parallel postulate holds, either as a

truth of the Elements, or else as a proposition which is not false in its compatibility with reality.      

The assumption in point is an actual presupposition concerning the possible links between

thought  and action as  well  as thought  and reality.  The compatibility  of thought  and reality  in  the

context  of  Euclidean  geometry thereof  does  not  point  to  any correspondence  between geometrical

propositions and space. Rather the propositions are actual non-falsity assumptions in the same context

concerning the possibility of building models for the presupposed compatibility of thought and reality.

In terms of the inner complexity of possible codifications of Euclidean propositions and
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implications, and hence their possible evaluations, Euclidean proofs and truths can be studied and has

been studied as some truths of geometry and mathematical space. In that regard, their truth is internal to

axiomatization,  and hence epistemic  due to being a production of asking questions about  bounded

models in an unbounded realm and finding their answers in the bounded models. Likewise, when the

Euclidean model was treated meta-theoretically, the long-run problematic attitude towards the parallel

postulate was replaced by further non-falsity assumptions, as is the case in Riemanian and other non-

Euclidean model building. 

When Hilbert systematized the interrelated aspects of all such assumptions in his study of

the  foundations  of  geometry,  all  the  previous  non-falsity  models  and  model  buildings  and  their

interrelated aspects added up to the problem of proving the consistency of geometry axioms, including

the varieties of different possible boundary conditions. 

The case  is  very similar  in  the use of  certain  ideal  elements,  for  example,  in  building

models for projective planes and spaces with points at infinity,  as well  as building models  for the

complex planes and spaces. 

In  general,  the  developments  in  abstract  mathematics  as  a  whole  can  be  studied  as

exemplars of further studies in non-falsity models as extensions of the previously internal truth models.
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