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Multifractal denoising techniques capture interest in biomedicine, economy, and signal and image processing. Regarding stroke
data there are subtle details not easily detectable by eye physicians. For the stroke subtypes diagnosis, details are important due
to including hidden information concerning the possible existence of medical history, laboratory results, and treatment details.
Recently, 𝐾-means and fuzzy 𝐶means (FCM) algorithms have been applied in literature with many datasets. We present efficient
clustering algorithms to eliminate irregularities for a given set of stroke dataset using 2Dmultifractal denoising techniques (Bayesian
(mBd), Nonlinear (mNold), and Pumping (mPumpD)). Contrary to previous methods, our method embraces the following assets:
(a) not applying the reduction of the stroke datasets’ attributes, leading to an efficient clustering comparison of stroke subtypes with
the resulting attributes; (b) detecting attributes that eliminate “insignificant” irregularities while keeping “meaningful” singularities;
(c) yielding successful clustering accuracy performance for enhancing stroke data qualities.Therefore, our study is a comprehensive
comparative studywith stroke datasets obtained from2Dmultifractal denoised techniques applied for𝐾-means andFCMclustering
algorithms. Having been done for the first time in literature, 2DmBd technique, as revealed by results, is themost successful feature
descriptor in each stroke subtype dataset regarding the mentioned algorithms’ accuracy rates.

1. Introduction

Multifractal analysis is concerned with the study of the
regularity structure of processes, both from a local and global
point of view. Multifractal Bayesian denoising is a technique
on regularity-based enhancement and it acts by finding data
that is close to the observations along with the multifractal
data prescribed. This method depends on the tuning of
a small set of parameters which are capable of providing
different improvements pertaining to the observed noisy
data. In many applications, this has been successfully utilized
in cases in which irregularity carries important information.
Abundant natural phenomena in fields like physics, finance,
construction, environment, medicine, and biology have been
shown to display a fractal behavior [1–3].

Being the third most frequent cause of death following
heart disease and cancer in developed countries, stroke is
among themost common causes of cognitive impairment and
vascular dementia [4]. Stroke can be described as the quick
loss of brain function owing to the disturbance occurring in
the blood supply to the brain [5]. Being one of the foremost
causes of death worldwide, stroke can be generally classified
into two types. The clinical course types are defined as the
ischemic stroke and hemorrhagic stroke [6].

In this study, we worked on the dataset of individuals who
have been diagnoses with ischemic stroke: no stroke/TIA,
large vessel, small vessel, cardioembolic, cryptogenic, dis-
section, other (moyamoya, FMD, hereditary, coagulopathy,
vasculitis, other rare). No stroke/TIA is transient ischemic
attack; it is a mini stroke or a minor stroke that happens
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when a blood clot blocks an artery for a brief period of time
[7]. Large vessel is infarction happens owing to artery-to-
artery or low flow embolism in the ipsilateral arterial tree
(intracranial or extracranial) segments of carotid or verte-
brobasilar arteries, or proximal middle cerebral artery [8].
Small vessel diseases of the cerebral vasculature contribute
to varied forms of brain dysfunction cell death and injury.
Small vessel disease of the brain corresponds to ≈25% to 30%
of strokes, and it is a primary cause of cognitive decline and
disability due to age-related and hypertension-related reasons
[9]. Cardioembolic stroke is mainly preventable, calling for
efforts at primary prevention for major-risk cardioembolic
sources. When stroke as a result of cardiac embolism has
happened, the chances of recurrence are comparatively high
for most cardioembolic sources. In addition, cryptogenic
stroke is commonly seen in clinical practice. Cryptogenic
stroke is defined as a brain infarction not attributable to a
source of definite cardioembolism, small artery disease, or
large artery atherosclerosis, even with a standard cardiac,
vascular, and serologic evaluation [10]. Dissection stroke is
cervical arterial dissection; it is a main reason for stroke
experienced in young adults. However, the management
thereof remains uncertain despite the standard treatment
administered through anticoagulants or antiplatelet drugs
[11]. Demographic information,medical history, results of the
laboratory tests, treatments, and medications are among the
most important data belonging to the patients, which can be
categorized into the following major groups.

In recent years, the fractal and multifractal analysis in
biomedical data has seen a growing interest. Regarding the
relevant topics, in the following studies, Wang et al. [12],
Yang et al. [13], Karaca and Cattani [14], Tsaneva [15], Doubal
et al. [16], Shanmugavadivu et al. [17], and Ahammer et al.
[18] underlined the significance of fractal and multifractal
techniques for data analysis in medicine. It has also been
acknowledged that the multifractal techniques have success-
ful feature descriptor in stroke applications [19–21]. Numer-
ous studies reveal successful clustering results regarding the
stroke subtypes with applications of 𝐾-means and FCM [22,
23]. However, it has been also seen that there is a shortage
in literature and subject matter as to studies with combined
applications of numeric data [24, 25], 2Dmultifractal denois-
ing techniques, and machine learning approaches.

Our approach aims to be broader and more complete
since this study of ours is large and comprehensive when
comparedwith other studies done with stroke dataset [22, 23]
in literature, taking into consideration the dimension of 2204
(the number of patients with 7 different stroke subtypes) and
23 attributes. The 7 different stroke subtypes are as follows:
no stroke/TIA, large vessel, small vessel, cardioembolic,
cryptogenic, dissection, other (moyamoya, FMD, hereditary,
coagulopathy, vasculitis, other rare). The attributes include
demographic information, medical history, results of labora-
tory tests, treatments, and medications. The clustering of the
subtypes of stroke is a remarkable challenge in its own term.
Besides, all researches have been done on many different
kinds of analysis regarding stroke dataset, but no work has
been reported yet which relates attributes (demographic
information, medical history, results of laboratory tests,

Ischemic stroke

Figure 1: Ischemic stroke image.

treatments, and medications) through the 2D multifractal
denoising techniques to fuzzy 𝐶 means and 𝐾-means algo-
rithms applied for clustering purposes. For this reason, 2D
multifractal denoising techniques (mBd, mNold, mPumpD)
have been administered for the identification of significant
and efficient attributes belonging to the patients (among
23 of them) for the clustering of 7 subtypes of stroke. It is
adapted well to the case in which the data to be recovered
is very irregular and nowhere differentiable, a property
relevant to fractal or self-similar structures. We obtained
regularity-based enhancement from 2D multifractal denois-
ing techniques datasets (mBd, mNold, mPumpD). These
datasets are clustered using the 𝐾-means and FCM algo-
rithms. 2D mBd stroke dataset has yielded better clustering
than stroke dataset, 2D mNold stroke dataset, and 2D
mPumpD stroke dataset of stroke subtypes. When compared
with studies mentioned above, our study is a comprehensive
and comparative one since the stroke datasets as obtained
from 2D multifractal denoised techniques have been applied
for the first time in literature for 𝐾-means and FCM cluster-
ing algorithms.

The paper is organized as follows: Section 2 provides
Materials and Methods. Methods of our approach are basic
facts on Hölder regularity and multifractal analysis, multi-
fractal Bayesian denoising inS(𝑔, 𝜓), numerical experiments
(stroke dataset experiments in multifractal Bayesian denois-
ing technique), 𝐾-means algorithm, and fuzzy 𝐶 means
algorithm. As the last sections, results and discussion and
conclusions are presented in Sections 3 and 4, respectively.

2. Materials and Methods

2.1. Patient Details. 2204 individuals from Massachusetts
Medical School, University of Worcester, Massachusetts,
USA, were kept under observation in this study. Data were
collected in the period between March 9, 2007, and October
2, 2016. The individuals had ischemic stroke diagnosis (see
Figure 1). The ischemic strokes in the dominant hemisphere
lead to more functional deficits compared to the strokes in
the nondominant hemisphere as they are evaluated on the
National Institutes of Health Stroke Scale (NIHSS).

A total of 2204 patients (414 males [labelled with (1)] and
1790 females [labelled with (0)]) were included in our experi-
ments. Stroke patients are aged between 0 and 104, with seven
subtypes of ischemic stroke being examined in this study.
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Table 1: Breakdown of stroke patients by age.

Stroke subtypes Age
0–29 30–36 37–49 50–70 71–90 91–104

No stroke/TIA 7 2 13 62 72 11
Large vessel 18 2 17 216 208 20
Small vessel 14 1 7 113 85 8
Cardioembolic 18 5 21 195 391 59
Cryptogenic 22 12 53 228 196 17
Dissection 2 2 14 30 8 3
Other 5 5 7 17 17 1

In this study, demographic information, medical history,
results of laboratory tests, treatments, and medications data,
as can be seen in Table 1, pertaining to 2204 stroke subtypes
patients. Table 2 provides themain headings of attributes used
for the stroke subtypes.

Baseline characteristics of the patients involved as strati-
fied by infarct side are outlined in Table 3 regarding the stroke
dataset.

Medications which are given to the patients are clas-
sified into broad categories: statin, antiHTN, antidiabetic,
antiplatelet, anticoagulation. Attributes of CT perfusion and
neurointervention are utilized for the treatment. The modi-
fied Rankin Scale (mRS) score was evaluated at 90 days by
a physician who had training on strokes or a stroke nurse
with knowledge of strokes and certified in mRS via in-person
or via phone interview. We comply with the Strengthening
the Reporting of Observational Studies in Epidemiology
guideline (https://www.strobe-statement.org/). 0.09% of the
individuals’ disorder progressed to the hemorrhagic stroke.

2.2. Methods. In this study, we have provided two potential
contributions. We introduced the 2D mBd, 2D mNold,
and 2D mPumpD which are relatively novel multifractal
techniques calculating the regular data from stroke data. We
proposed the use of stroke dataset and regular and denoised
stroke datasets (2D mBd, 2D mNold, 2D mPumpD) to be
trained with unsupervised𝐾-means and FCM algorithms for
the clustering along with the aim of improving the clustering
performance of the stroke subtypes. Our method is reliant on
the steps specified below:

(a) 2D multifractal denoising techniques (2D mBd, 2D
mNold, 2D mPumpD) were applied to the stroke
dataset (which can be seen in Table 2). In order
to identify the stroke dataset significant regularity,
which is the fundamental concept concerning mul-
tifractal denoising; the best is explained on a simple
example.The aim is to eliminate “insignificant” irreg-
ularities while retaining “meaningful” singularities
and denoised dataset.

(b) The stroke datasets obtained from stroke dataset and
2D multifractal denoising techniques (mBd, mNold,
andmPumpD) were clustered by having been applied
to the𝐾-means and FCM algorithms.

(c) The comparisons of datasets (stroke dataset, mBd
stroke dataset, mNold stroke dataset, and mPumpD
stroke dataset) were performed with the 𝐾-means
and FCM algorithms as to the clustering accuracies.
Computations and figures were obtained by Matlab,
Mosek, and FracLab [26] environment.

2.2.1. Basic Facts on Hölder Regularity and Multifractal Anal-
ysis. We are concerned with the enhancement, or denoising,
of complex data, which is the stroke dataset, relying on the
analysis of the local Hölder regularity.We rather suppose that
data enhancement is comparable to increasing the Hölder
regularity at every point [27]. Such methods are adapted well
to the case in which the data which would be recovered
is highly irregular, for instance, nowhere differentiable with
local regularity that varies rapidly.

In this paper, our focus is on the pointwise Hölder
exponent for simplifying the notations, and we assume that
our data are not differentiable [28, 29].

Let 𝛼 ∈ (0, 1) and 𝑥0 ∈ 𝑄 ⊂ R. A function 𝑓 : 𝑄 → R is
in 𝐿𝛼𝑥0 if, for all 𝑥 in a neighborhood of 𝑥0,󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑥0)󵄨󵄨󵄨󵄨 ≤ 𝑙 󵄨󵄨󵄨󵄨𝑥 − 𝑥0󵄨󵄨󵄨󵄨𝛼 , (1)

where 𝑙 is a constant. Pointwise Hölder exponent of 𝑓 at 𝑥0,
denoted by 𝛼(𝑥0), is the supremum of the 𝛼 for which (1) is
valid.

In this paper, we shall concentrate on the statistical
approach that brings about consideration of a quantity
named the large deviation multifractal spectrum [29, 30].This
spectrum can be defined as follows:

Consider a stochastic process 𝑋(𝑡), 𝑡 ∈ 𝑇 ⊂ 𝑅 on
a probability space (Ω, 𝐹, 𝑃). For convenience in terms of
notation, we will assume without loss of generality that 𝑇 =[0, 1].

Set 𝑁𝜀𝑛(𝛼) = #{𝑞 : 𝛼 − 𝜀 ≤ 𝛼𝑞𝑛 ≤ 𝛼 + 𝜀}, where 𝛼𝑞𝑛
is the coarse-grained Hölder exponent that corresponds to
the dyadic interval 𝐼𝑞𝑛 = [𝑞2−𝑛, (𝑞 + 1)2−𝑛]; that is, 𝛼𝑞𝑛 =
log |𝑌𝑞𝑛 |/ − log 𝑛. At this point, (#)is the number of nonempty
boxes, and its measure is portrayed by exponents from the
interval (𝛼 − 𝜀, 𝛼 + 𝜀) [29]. At this point, 𝑌𝑞𝑛 is some quantity
measuring the variation of 𝑋 in the interval 𝐼𝑞𝑛 . The choice𝑌𝑞𝑛 fl 𝑋((𝑞 + 1)2−𝑛) − 𝑋(𝑞2−𝑛) brings about the simplest
analytical computations. Another possibility, which shall be
the one used in this paper, is to take 𝑌𝑞𝑛 to be the 𝑥𝑛,𝑞 of 𝑋
at scale 𝑛 and location 𝑞 [29]. This definition is convenient in
various aspects, since it ensures the utilization of the wavelet
bases’ versatility. However, it also has a setback: As amatter of
fact, the multifractal spectrum obtained accordingly will rely
predominantly on the wavelet chosen 𝜓. Hence, if one sets𝑌𝑞𝑛 : 𝑥𝑛,𝑞, it would not make sense to speak of the spectrum of𝑋 without reference to the analyzing wavelet chosen. Along
the paper, the wavelet coefficient of data𝑋 is denoted by 𝑥𝑗,𝑞,
with 𝑗 being the scale and 𝑞 being the location [29, 30].

Then coarse-grained multifractal large deviation
spectrum is provided by the equation 𝑓𝑔(𝛼) =
lim𝜀→0lim𝑛→∞ sup(log𝑁𝜀𝑛/ log 𝑛). The definition of 𝑓𝑔(𝛼) is
connected with the large deviation theorem that provided
the probabilistic interpretation for the multifractal spectrum.

https://www.strobe-statement.org/
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Table 2: Stroke dataset.

Number of stroke
subtypes/TOAST Main heading of attributes Data size

No stroke/TIA (167)
Large vessel (481)
Small vessel (228)
Cardioembolic (689)
Cryptogenic (528)
Dissection (59)
Other (52)

Demographic information
(Age, gender)
Medical history

(HTN, hyperlip, DM,
H/O stroke/TIA, AtrialFib, CAD, CHF, PAD/carotid

disease, tobacco, ETOH)
Results of laboratory test

(mRS 90 days, hemorrhagic conversion,
NIHSS admission, TPA)

Treatment and medication data
(Statin, antiHTN, antidiabetic,

antiplatelet, anticoagulation, CT perfusion,
neurointervention)

2204 × 23

TOAST: type/etiology of stroke; TIA: ischemic attack; HTN: hypertension; DM: diabetes mellitus; CAD: coronary artery disease; AtrialFib: atrial fibrillation
stroke; CAD: coronary artery disease; CHF: congestive heart failure; PAD/carotid disease: peripheral artery disease; NIHSS 90 days: National Institutes of
Health Stroke Scale 90-day mortality; CT perfusion: computer tomography perfusion, ETOH: alcohol; antiHTN: antihypertensive drugs after acute ischemic
stroke; NIHSS discharge: National Institutes of Health Stroke Scale; H/O stroke/TIA: history of transient ischemic attack.

Table 3: Stroke dataset description.

Attributes Status Number of
patients/values (%) Descriptions

HTN Yes 1593 (72%) Hypertension
Hyperlip Yes 1197 (54%) High levels of lipid (fat) in blood
DM Yes 602 (27%) Diabetes
H/O stroke/TIA Yes 546 (25%) History of stroke/TIA
AttrialFib Yes 541 (25%) Abnormal heart rhythm
CAD Yes 513 (23%) Coronary artery disease
CHF Yes 229 (10%) Congestive heart failure
PAD/carotid Disease Yes 318 (14%) Peripheral artery disease
Tobacco Yes 520 (23%) Cigarette addict
ETOH Yes 308 (1.7%) Alcohol addict
Statin Yes 1000 (45%)

Medications given to the patient are grouped into five
broad categories

AntiHTN Yes 1332 (60%)
Antidiabetic Yes 454 (20%)
Antiplatelet Yes 1031 (47%)
Anticoagulation Yes 242 (10%)
CT perfusion Yes 137 (0.06%) Procedures used for treatment
Neurointervention Yes 271 (12%)

mRS 90 days Low 2007 Dichotomized into low (0–2), high (3–6)
High 197

Hemorrhagic con. Yes 204 (0.09%) Whether the ischemic stroke turned to hemorrhagic
NIHSS admission 9.3 +/− 8.3 Measures the severity of stroke

TPA Yes 413 (19%) TPA (tissue plasminogen activator) is used to break
down blood clots

It should be noted that irrespective of the choice of 𝑌𝑞𝑛 , 𝑓𝑔 all
the time ranges in R+ ∪ {−∞}. The value −∞ corresponds
to values of the coarse-grained exponent which are not
observed at all sufficiently on small scaler [29].

The intuitive meaning of 𝑓𝑔 can be found as follows:
For 𝑛 large enough, one has approximately 𝑃𝑛(𝛼𝑞𝑛 ≃ 𝛼) ≃2−𝑛(1−𝑓𝑔(𝛼)), in which 𝑃𝑛 denote the uniform distribution over{0, 1, . . . , 2𝑛 − 1}. Hence, for all 𝛼 such that 𝑓𝑔 < 1, 1 − 𝑓𝑔(𝛼)



Complexity 5

measures the exponential rate of decay of the probability of
finding an interval 𝐼𝑞𝑛 with coarse-grained exponent equal
to 𝛼, when 𝑛 tends to infinity. As a whole, 𝑓𝑔 is a random
function. In the applications, it is convenient to regard the
following deterministic version of 𝑓𝑔:
𝐹𝑔 (𝛼) = 1 + lim

𝜀→0
lim sup
𝑛→∞

log𝜋𝜀𝑛 (𝛼)
log (𝑛)

where 𝜋𝜀𝑛 (𝛼) fl 𝑃 × 𝑃𝑛 [𝛼𝑞𝑛 ∈ (𝛼 − 𝜀, 𝛼 + 𝜀)] . (2)

See [29].
Here, we present technique based on themultifractal data

instead of applying it to the use of the Hölder exponent
merely. This approach can generally ensure more robust
estimates because a higher level description is used for
subsuming information on the entire data. Besides this, we
also assume a semiparametric approach. To put it more
specifically, it can be said that we put forth the assumption
that the considered data belong to a given set of parameter-
ized classes and are explained currently [31].

Let us state that 𝐹 is the set of lower semicontinuous
functions from R+ to R+ ∪ {−∞} [29]. We regard classes of
random functions as 𝑋(𝑡), 𝑡 ∈ [0, 1], which can be defined
as (Ω, 𝐹, 𝑃) and described according to Definition 1 which
can be seen below. Each cluster S(𝑔, 𝜓) is considered by the
functional parameter 𝑔 ∈ 𝐹 and a wavelet 𝜓. And the set{𝜓𝑗,𝑞}𝑗,𝑞 constitutes a basis of 𝐿2. Let𝑄 be a positive constant,
as defined based on

𝑃𝜀𝑗 (𝛼, 𝑄) = 𝑃 × 𝑃𝑗(𝛼 − 𝜀 < log2 (𝑄 󵄨󵄨󵄨󵄨󵄨𝑥𝑗,𝑞󵄨󵄨󵄨󵄨󵄨)−𝑗 < 𝛼 + 𝜀) . (3)

Definition 1. S(𝑔, 𝜓) = {𝑋 : ∃𝑄 > 0, 𝑗0 ∈ Ζ : ∀𝑗 > 𝑗0,𝑥𝑗,𝑞, 𝑥𝑗,𝑞󸀠 are distributed identically for (q, q󸀠) ∈ {0, 1, . . . , 2𝑗 −1} and log2𝑃𝜀𝑗 (𝛼, 𝑄)/𝑗 = 𝑔(𝛼) + R𝑛,𝜀(𝛼)} in which R𝑛,𝜀(𝛼) is
lim𝜀→0lim𝑛→∞R𝑛,𝜀(𝛼) = 0 in a uniform way in 𝛼.

For 𝑗 large sufficiently, the assumption that the wavelet
coefficients (𝑥𝑗,𝑞)𝑞 at scale 𝑗 are distributed identically
requires the following:

𝜋𝜀𝑛 (𝛼) fl 𝑃 × 𝑃𝑛 [𝛼𝑞𝑛 ∈ (𝑎 − 𝜀, 𝑎 + 𝜀)] ,
𝜋𝜀𝑗 (𝛼, 𝑄) fl 𝑃 × 𝑃𝑗(𝛼 − 𝜀 < log2 (𝑄 󵄨󵄨󵄨󵄨󵄨𝑥𝑗,𝑞󵄨󵄨󵄨󵄨󵄨)−𝑗 ) < 𝛼 + 𝜀

= 𝑃(𝛼 − 𝜀 < log2 (𝑄 󵄨󵄨󵄨󵄨󵄨𝑥𝑗,𝑞󵄨󵄨󵄨󵄨󵄨)−𝑗 < 𝛼 + 𝜀) .
(4)

Consequently, Definition 1 yields a plain interpretation
regarding multifractal analysis. We consider the set of ran-
dom data 𝑋 for a given wavelet 𝜓. Accordingly, the normal-
ized data 𝑄𝑋 has deterministic multifractal data 𝐹𝑔(𝛼) that
equals 1 + 𝑔 along with the following further condition: 𝐹𝑔 is
gained as a limit in 𝑗 lim sup and this limit has been attained
in a uniformmanner into 𝛼. This condition confirms that the
rescaled statistics of the 𝛼𝑗,𝑞 are sufficiently close to their limit
for large enough 𝑗, which allows a meaningful inference. The
cluster S(𝑔, 𝜓) includes a wide variety of data.

2.2.2. Multifractal Bayesian Denoising in S(𝑔, 𝜓). At this
point, the key steps in the classical Maximum A Posteriori
(MAP) approach in a Bayesian frame can be recalled, as
adjusted to our setting. It is observed that the noisy data is 𝑌,
and it is assumed that 𝑌 = 𝑋 + 𝐵, where 𝐵 is a noise inde-
pendent from original data 𝑋, with known law as 𝐵 (it
should be noted that we use orthonormal wavelets; 𝐵 is
denoted in equation as 𝑏). Hence, we have 𝑦𝑗,𝑞 = 𝑥𝑗,𝑞+𝑏𝑗,𝑞. The map estimate 𝑥𝑗,𝑞 of 𝑥𝑗,𝑞 from the observation 𝑦𝑗,𝑞
is defined to be an argument maximizing 𝑃(𝑥𝑗,𝑞/𝑦𝑗,𝑞). Since𝑃(𝑦𝑗,𝑞) does not depend on 𝑥𝑗,𝑞, using Bayes rules and maxi-
mizing 𝑃(𝑥𝑗,𝑞/𝑦𝑗,𝑞) correspond to maximizing the prod-
uct 𝑃(𝑦𝑗,𝑞/𝑥𝑗,𝑞)𝑃(𝑥𝑗,𝑞) [29, 30].

The MAP estimate [30] is stated as 𝑥𝑗,𝑞 =
arg max𝑥[𝑃(𝑦𝑗,𝑞/𝑥)𝑃(𝑥)]. The term 𝑃(𝑦𝑗,𝑞/𝑥) can be cal-
culated from the law of 𝐵 easily if 𝐵 is assumed to be (0),
since 𝑏𝑗,𝑞 share the same law as 𝐵. It can also be recalled that
orthonormal wavelets are used by us. The preceding 𝑃(𝑥𝑗,𝑞)
is inferred from our assumption that𝑋 belongs toS(𝑔, 𝜓) as
follows: for 𝑥 > 0, set 𝛼𝑗(𝑥) = log2(𝑄𝑥)/ − 𝑗,

𝑃 (󵄨󵄨󵄨󵄨󵄨𝑥𝑗,𝑞󵄨󵄨󵄨󵄨󵄨 = 𝑥) = 𝑃( log2 (𝑄 󵄨󵄨󵄨󵄨󵄨𝑥𝑗,𝑞󵄨󵄨󵄨󵄨󵄨)−𝑗 = 𝛼𝑗 (𝑥))
≃ 2𝑗(𝑔(𝛼𝑗(𝑥))−1).

(5)

This leads to the definition of an approximate Bayesian MAP
estimate as

𝑥𝑗,𝑞 = arg max
𝑥>0

[𝑗𝑔( log2 (𝑄𝑥)−𝑗 + log2 (𝑃(𝑦𝑗,𝑞𝑥 )))]
⋅ sgn (𝑦𝑗,𝑞) ,

(6)

where sgn(𝑦) is the sign of 𝑦 and 𝑄 = (sup𝑗>𝑗0sup𝑞(𝑥𝑗,𝑞))−1.
The estimate for 𝑄 can be justified in a heuristic way as
follows: log2(𝑄|𝑥𝑗,𝑞|)/ − 𝑗 ≃ 𝛼 with 𝛼 > 0 suggesting that𝑄|𝑥𝑗,𝑞| < 1 for all the couples (𝑗, 𝑞). 𝑄 is chosen as the small-
est normalizing factor requiring the latter inequality. In our
experiments, we address the incident in which the noise is
centered, Gaussian, with variance 𝜎2. The MAP estimate can
be seen in accordance with

𝑥𝑗,𝑞 = arg max
𝑥>0

[[𝑗𝑔(
log2 (𝑄𝑥)−𝑗 − (𝑦𝑗,𝑞 − 𝑥)22𝜎2 )]]

⋅ sgn (𝑦𝑗,𝑞) .
(7)

Equation (6) provides an explicit formula for𝑌 denoising, but
it often offers limited practical use. In fact, one is not aware
of the multifractal data of 𝑋 in most of the applications. If
there is no evaluation of 𝑔, it would not be probable to use
(6) for the purpose of obtaining 𝑥𝑗,𝑞. Moreover, one should
bear in mind that in general 𝐹𝑔 depends on the analyzing
wavelet. Hence, it is necessary to understand the shape of
the data for a given wavelet. Moreover, the main goal of
our approach is to remove the multifractal characteristics
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of 𝑋 from the denoised data 𝑋: regarding the Multifractal
Bayesian approach use in our study, a strong justification is to
be able to estimate 𝐹𝑋𝑔 in the following manner: (a) denoise𝑌, (b) evaluate the data 𝐹𝑋̂𝑔 numerically, (c) set 𝐹𝑋𝑔 = 𝐹𝑋̂𝑔 .
It will be obvious from this approach that it does not seem
right to have the necessity of previous knowledge of 𝐹𝑋𝑔 in
the Bayesian approach. Hence, we present a “degenerated”
version of (6), and here the input is used as a single real
parameter rather than the whole data. The heuristic reads
as follows: from regularity perspective a significant piece of
information in the data is concerned with its support, for
example, the set of all the occurring Hölder exponents. 𝛼0
denotes the smallest regularity observed actually in the data
[32, 33].The shapes of the𝐹𝑔 spectra gained through different
analyzing wavelets is reliant on the wavelet but their support
is included in [𝛼0,∞).The “flat data,” therefore, encompasses
inherent information. It only relies on the positive real𝛼0. Rewriting (6) with a flat data gives the explicit simple
expression as in

𝑥𝑗,𝑞 = {{{
𝑦𝑗,𝑞 if 𝑄 󵄨󵄨󵄨󵄨󵄨𝑦𝑗,𝑞󵄨󵄨󵄨󵄨󵄨 < 2−𝑗𝛼0
2−𝑗𝛼0 otherwise.

(8)

𝛼0 is really a priori information but it is possible to be
predicted from the noisy observations. In view of that, it can
be analogous to the threshold that is used in the classical soft
or hardwavelet thresholding scheme. It would be beneficial to
regard 𝛼0 as a tuning parameter in the applications. Increas-
ing 𝛼0 offers a more smooth estimate (as it is assumed that
the original data have a largerminimal exponent). It would be
remarkable tomake a comparisonwith the hard-thresholding
policy on the wavelet coefficients (see more details in
[29]).

2.2.3. Numerical Experiments. We present some results
regarding the stroke dataset. In each case, the result of the
Bayesian multifractal denoising and the classical hard-thre-
sholding technique is shown. For all procedures and stroke
dataset, the parameters (see Tables 2 and 3) are set in order to
obtain the best fit to the known original data. On the whole,
the following conclusions can be inferred from these experi-
ments. It is observed that for the irregular data, like the ones
handled here, which belong toS(𝑔, 𝜓), the Bayesian method
yields more satisfactory results compared to those of classical
wavelet thresholding. This method particularly preserves a
roughly correct regularity along the path, whereas thewavelet
shrinkage yields data that have both too smooth and too
irregular regions. In this study, numerical experiments were
obtained with 2D mBd, 2D mNold, and 2D mPumpD tech-
niques being applied to numerical experiments pertaining to
the stroke dataset (see Table 2).

(a) Stroke Dataset Experiments in Multifractal Bayesian De-
noising Technique. Stroke dataset (𝑋) (see Table 2)was applied
on FracLab [26] program to regularity-based enhancement(𝑋) from 2D multifractal denoising techniques.

The steps of multifractal Bayesian denoising technique
applied on the stroke dataset to be able to get the regular and
denoised stroke dataset are provided below.

Step 1. We consider

S = {𝑋 : 󵄨󵄨󵄨󵄨󵄨𝑥𝑗,𝑞󵄨󵄨󵄨󵄨󵄨 = 𝑄∈𝑗,𝑞2−𝑗𝛾} . (9)

Step 2. For each attribute in the stroke dataset (𝑋 =𝑥𝑗=1,...,2204×23) MAP (𝑥𝑗,𝑞 of 𝑥𝑗,𝑞) values are calculated. Here,𝑄 and 𝛾 are the positive constants and 𝜀𝑗,𝑞 is a randomvariable
supported in [0, 1]. All 𝜀𝑗,𝑞 are independent, having the
same law levelwise. For instance, 𝜀𝑗,𝑞 and 𝜀𝑗,𝑞󸀠 are distributed
identically with probability distribution 𝑝𝑗 for all 𝑗, 𝑞, 𝑞󸀠. In
addition, we assume that 𝑝𝑗(0) < 1 for infinitely many 𝑗.

In line with the law 𝑝𝑗 of the local regularity behavior of
the functions inS, we will consider the particular case of data
with uniformly distributed wavelet coefficients. 𝐹𝑔(𝛼) = 1 for𝛼 = 𝛾 − 1/2

if (𝛼 = 𝛾 − 12)𝐹𝑔 (𝛼) = 1
else 𝐹𝑔 (𝛼) = −∞. (10)

Step 3. Our second type of stroke data has one of the simplest
fractal stochastic processes, which is the fractional Brownian
motion (fBm) (for more information see [29]). As is well
known, fBm is the zero mean Gaussian process 𝑋(𝑡) with
covariance function;

𝑅 (𝑡, 𝑠) = 𝜎22 (|𝑡|2𝐻 + |𝑠|2𝐻 − |𝑡 − 𝑠|2𝐻) , (11)

where 𝐻 is a real number in (0, 1) and 𝜎 is a real number as
well.

Step 4. Hence, the result of our denoising procedure will be
wavelet-dependent in principle. The impact of the wavelet
is controlled through the choice of the prior, that is, the
multifractal, spectrumamong all admissible ones. In practice,
we have found out that few variations are observed if one uses
a Daubechies wavelet [29] with length as 10 and a nonincreas-
ing spectrum supported on [𝐻,∞) with 𝐹𝑔(𝐻) = 1.

The result of the denoised stroke dataset obtained by
having applied the steps between Steps 1 and 4 on the stroke
dataset is presented in Figure 2(a), mesh plot display for 2D
mBd stroke dataset.

In this study, 2D mBd technique is applied to main cap-
tions of attributes (as can be seen in Table 2) pertaining to the
stroke subtypes. 2D mBd by multifractal technique is reliant
on the fact that stroke data enhancement is comparable to
increasing the Hölder regularity at each point. Stroke dataset(𝑋) was applied on FracLab [26] program to regularity-
based enhancement (𝑋) from2Dmultifractal denoising tech-
niques. Regularity-based enhancement of 2D mBd stroke
dataset 𝑋 was clustered with 𝐾-means and FCM algorithms.
Consequently, the most accurate clustering was attained for
the subtypes of stroke.
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Figure 2: Display of stroke dataset and 2D mBd stroke dataset with mesh plot.

stroke dataset

(a) Stroke dataset (b) Application of K-means and 
FCM algorithms

(c) The clustering of stroke
subtypes application

Clustering of stroke subtypes
with K-means algorithm

Clustering of stroke subtypes
with FCM algorithmFCM algorithm

K-means algorithm

Figure 3: The application of the𝐾-means and FCM algorithms to the stroke dataset.

2.2.4. 𝐾-Means Algorithm. 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) 𝑛 d-dimen-
sional data is to be grouped into a set of 𝐾 clusters, 𝐶 ={𝑐𝑘, 𝑘 = 1, . . . , 𝐾}. 𝐾-means algorithm discovers a partition
in which the squared error between the empirical mean of a
cluster and the points in the cluster is reduced to minimum.
With 𝜇𝑘 being the mean of cluster 𝑐𝑘, the squared error
between 𝜇𝑘 and the points in cluster 𝑐𝑘 can be defined based
on the following equation [34–36]:

𝐽 (𝑐𝑘) = ∑
𝑥𝑖∈𝑐𝑘

󵄩󵄩󵄩󵄩𝑥𝑖 − 𝜇𝑘󵄩󵄩󵄩󵄩2 . (12)

The aim of 𝐾-means is to minimize the sum of the
squared error over all 𝐾 clusters in line with

𝐽 (𝐶) = 𝐾∑
𝑘=1

∑
𝑥𝑖∈𝑐𝑘

󵄩󵄩󵄩󵄩𝑥𝑖 − 𝜇𝑘󵄩󵄩󵄩󵄩2 . (13)

𝐾-means is initiated with a primary partition with 𝐾
clusters and assigns patterns to clusters so that the squared
error can be reduced. The squared error all the time goes
down with an increase in the number of clusters 𝐾 (with𝐽(𝐶) = 0); when 𝐾 = 𝑛, it can be minimized only at a fixed
number of clusters [37].

The clustering of the training set with the 𝐾-means
clustering algorithm can be seen in Algorithm 1.

The key steps of𝐾-means algorithm are as follows:

Step 1. Choose an initial partitionwith𝐾 clusters; repeat Steps
2 and 3 till the cluster membership stabilizes.

Steps 2-3. Form a new partition by assigning each pattern to
its closest cluster center.

Step 4. Calculate the new cluster centers.

The clustering of the stroke dataset with the 𝐾-means
clustering algorithm can be seen as follows:

Stroke dataset 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥2204×23)was applied to𝐾-
means algorithm. The main steps of 𝐾-means algorithm are
as follows:

Step 1. 𝐾 cluster is selected as an initial partition with 7 for𝑋 = (𝑥1, 𝑥2, . . . , 𝑥2204×23); Steps 2 and 3 are repeated up until
the stroke subtypes cluster membership stabilizes.

Steps 2-3. For 1000 iterations, the data of each patient in the
stroke dataset is assigned to the closest cluster centroid.

Step 4. The new cluster centroids of stroke subtypes are
calculated.The results of the clustering procedure as obtained
from the application of𝐾-means algorithm (see Algorithm 1)
on the stroke dataset are presented in Figure 4(a).
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(a) Stroke dataset (b) Multifractal
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dataset obtained from multifractal
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obtained from multifractal
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K-means and FCM algorithms

mBd stroke dataset
FCM application for 2D
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Figure 4: Clustering of the stroke dataset with the application of multifractal denoising techniques through𝐾-means and FCM algorithms.

The clustering of the 2D mBd stroke dataset with the 𝐾-
means clustering algorithm can be described as follows:

The stroke datasets (mBd, mNold, mPumpD) obtained
from the 2D multifractal denoising techniques 𝑋 = (𝑥1, 𝑥2,. . . , 𝑥2204×23) were applied to 𝐾-means algorithm. The main
steps of𝐾-means algorithm are as follows:

Step 1. 𝐾 cluster is selected as an initial partition with 7 for𝑋 = (𝑥1, 𝑥2, . . . , 𝑥2204×23); Steps 2 and 3 are repeated up until
the stroke subtypes cluster membership stabilizes.

Steps 2-3. For 1000 iterations, the data of each patient in the
stroke dataset is assigned to the closest cluster centroid.

Step 4. The new cluster centroids of stroke subtypes are cal-
culated accordingly. The results of the clustering procedure
as obtained from the application of 𝐾-means algorithm (see
Algorithm 1) on the 2D mBd stroke dataset are presented in
Figure 4(b).

2.2.5. Fuzzy𝐶Means Algorithm. The FCM algorithm assigns
data to each category through the use of fuzzy memberships
[38–41]. Let𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), 𝑛-dimensional data signify-
ing with𝑁 data to be split into 𝑐 clusters, in which it denotes
the features data. The iterative optimization algorithm steps
are provided below:

𝐽𝑚 = 𝑁∑
𝑗=1

𝐶∑
𝑖=1

𝑢𝑚𝑗𝑖 󵄩󵄩󵄩󵄩󵄩𝑥𝑗 − 𝑐𝑖󵄩󵄩󵄩󵄩󵄩2 , 1 ≤ 𝑚 < ∞, (14)

where 𝑢𝑗𝑖 denotes themembership of data𝑥𝑗 in the 𝑖th cluster,𝑥𝑗 is the 𝑗th cluster center, ‖ ⋅ ‖ is norm metric, and 𝑚 is the
denotation of a constant greater than 1.

The cost function is brought to the minimum when
high membership values are assigned to the data that are
close to the centroid of their clusters. In addition, the low
membership values are assigned to the data which encompass
data distant from the centroid. The membership function
shows the probability that data belongs to a specific cluster.

As for FCM algorithm, the probability is dependent merely
on the distance between the data and the cluster center of each
stroke patient in the feature domain. The cluster centers and
membership functions can be updated by using

𝑢𝑗𝑖 = 1
∑𝐶𝑙=1 (󵄩󵄩󵄩󵄩󵄩𝑥𝑗 − 𝑐𝑖󵄩󵄩󵄩󵄩󵄩 / 󵄩󵄩󵄩󵄩󵄩𝑥𝑗 − 𝑐𝑙󵄩󵄩󵄩󵄩󵄩)2/(𝑚−1) ;1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝐶,

𝑐𝑖 = ∑𝑁𝑗=1 𝑢𝑚𝑗𝑖𝑥𝑗∑𝑁𝑗=1 𝑢𝑚𝑗𝑖 .
(15)

The clustering of the training set with the FCM clustering
algorithm is stated as in Algorithm 2.

Beginning with a preliminary guess for each cluster
center, the FCM converges a solution for 𝑐𝑖, demonstrating
the localminimumof the cost function. It is possible to detect
such convergence through the comparison of the changes
in the membership function or the cluster center at two
consecutive iteration steps (𝑙).

The clustering of the stroke dataset with the FCM cluster-
ing algorithm can be depicted as follows:

Stroke dataset 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥2204×23) was applied to
the FCM algorithm. The main steps of FCM algorithm can
be seen in the following steps regarding the stroke dataset:

Steps 1–3. 𝐽 = ∑2204×23𝑗=1 ∑7𝑖=1 𝑢2𝑗𝑖‖𝑥𝑗−𝑐𝑖‖2 (based on (14)). Here,𝑢𝑖𝑗 represents the membership of data 𝑥𝑗 in the 𝑖th cluster, 𝑐𝑖
is the 𝑖th cluster center, ‖ ⋅ ‖ is norm metric, and 𝑚 is chosen
as 2.

Step 4. The cost function is brought to the minimum when
high membership values are assigned to the stroke dataset
close to the cluster centroid for 1000 iterations. The results
of the clustering procedure as obtained from the application
of FCM algorithm (see Algorithm 2) on the stroke dataset are
presented in Figure 5(a).
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Figure 5: The clustering analyses of𝐾-means algorithm based on the epochs.
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Data: Training Set𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
Result: 𝐽(𝐶) = 0
(1) Set 𝐶 < 𝑋;
(2) while 𝐽(𝐶) = 0 do

(3) 𝐽(𝐶) ←󳨀 𝐾∑
𝑘=1

∑
𝑥𝑖∈𝑐𝑘

‖𝑥𝑖 − 𝜇𝑘‖2
(4) find 𝐽(𝑐𝑘) ← ∑𝑥𝑖∈𝑐𝑘 ‖𝑥𝑖 − 𝜇𝑘‖2

Algorithm 1:𝐾-means algorithm in the stroke dataset and 2DmBd
stroke datasets.

Data: Training Set𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
Result: 𝑢𝑗𝑖
(1) Set𝑚, 𝑐;
(2) while 𝑐𝑖 local minimum do

(3) 𝑐𝑖 ←󳨀 ∑𝑁𝑗=1 𝑢𝑚𝑗𝑖𝑥𝑗∑𝑁𝑗=1 𝑢𝑚𝑗𝑖
(4) find 𝑢𝑗𝑖 ← 1/∑𝐶𝑙=1(‖𝑥𝑗 − 𝑐𝑖‖/‖𝑥𝑗 − 𝑐𝑙‖)2/(𝑚−1)

Algorithm 2: FCM algorithm in the stroke dataset and 2D mBd
stroke datasets.

The clustering of the 2DmBd stroke dataset with the FCM
clustering algorithm is as follows:𝑋 = (𝑥1, 𝑥2, . . . , 𝑥2204×23) obtained from the 2Dmultifrac-
tal denoising techniques were applied to the FCM algorithm.
The main steps of FCM algorithm are stated below:

Step (1–3). 𝐽 = ∑2204×23𝑗=1 ∑7𝑖=1 𝑢2𝑗𝑖‖𝑥𝑗 − 𝑐𝑖‖2 (based on (14)),
where 𝑢𝑗𝑖 shows the membership of data 𝑥𝑗 in the 𝑖th cluster,𝑐𝑖 is the 𝑖th cluster centroid, ‖ ⋅ ‖ is norm metric, and 𝑚 is
chosen as 2.

Step (4). The cost function is minimized when high mem-
bership values are assigned to the stroke dataset close to
the cluster centroids for 1000 iterations. The results of the
clustering procedure as obtained from the application of
FCM algorithm (see Algorithm 2) on the stroke dataset are
presented in Figure 5(b).

3. Results and Discussion

In order to have a detailed vision of the relationship between
the variables concerning the stroke dataset and 2D mBd
stroke dataset in 𝐴 of this study, the demonstration is done
as plot based on mesh function. 𝐵 includes the application of
stroke dataset and regular and denoising 2D stroke dataset to
the 𝐾-means algorithm, and 𝐶 includes the calculations and
results pertaining to the application of stroke dataset and reg-
ular and denoising 2D stroke dataset to the FCM algorithm.

3.1. Mesh Plot Display for Stroke Dataset and 2D mBd Stroke
Dataset. The stroke dataset in our study is a matrix with a
dimension of 2204 × 23. Figure 2(a) displays the meaning
attribute headings for the stroke dataset attributes (demo-
graphic information, medical history, results of laboratory

Table 4: 𝐾-means algorithm parameters.

Parameters Parameters value𝐾 clusters 7
Maximum number of iterations 1000

tests, treatments, and medications) as well as the relationship
between the stroke patients based on mesh function in plot.

Figure 2(a) presents the stroke dataset (𝑋, 𝑌, 𝑍) drawing
a wireframe mesh and a contour plot under it with color
determined by 𝑍. Thus, the color is proportional to the
surface height.𝑋 and 𝑌 are vectors length (𝑋: main headings
of attributes) = 23 and length (𝑌=number of stroke subtypes)
= 2204, where [23, 2204] = size (𝑍 = main headings of
attributes, number of stroke subtypes). Here, (𝑋(𝑗), 𝑌(𝑖),𝑍(𝑖, 𝑗)) are the wireframe grid lines’ intersections; 𝑋 and 𝑌
stand for the columns and row of 𝑍.

Figure 2(a) displays the main headings of attributes
concernedwith the stroke dataset (demographic information,
medical history, results of laboratory tests, treatments, and
medications) and 2D mBd technique was applied to the data
of stroke patients. Figure 2(b) shows the Bayesian regularity
thatmatches each attribute in the stroke dataset (2204×23) as
plot based on the mesh function result. Figure 2(b) presents
the 2D mBd stroke dataset (𝑋, 𝑌, 𝑍) drawing a wireframe
mesh and a contour plot under it, with color determined by𝑍.
Thus, the color is proportional to the surface height.𝑋 and 𝑌
are vectors length (𝑋: 2DmBd attributes) = 23 and length (𝑌:
2DmBd number of stroke subtypes) = 2204, where [23, 2204]
= size (𝑍: 2D mBd attributes, 2D mBd number of stroke
subtypes). Here, (𝑋 (𝑗), 𝑌 (𝑖), 𝑍 (𝑖, 𝑗)) are the wireframe grid
lines’ intersections; 𝑋 and 𝑌 stand for the columns and row
of 𝑍. In the stroke dataset of our study, Daubechies wavelet
with a length ranging between 2 and 20 was applied. fBm
with𝐻 = 0.6 and denoised version with Gaussian noise was
applied on the dataset. As Figure 2(b) shows, taking 𝑓𝑔 to
be the theoretical spectrum is obtained with increments, or
taking 𝑓𝑔(𝛼) = 1 for 𝛼 ≥ 𝐻.

In this study, for the clustering procedure of stroke
subtypes, 𝐾-means and FCM algorithms were applied to the
stroke dataset (Figure 3(a)) as an initial step. The clustering
procedure was obtained for the stroke subtypes (the details
can be seen in Figure 3). In the second stage, multifractal
denoising techniques (see Figure 4(b)) were applied to the
same dataset (Figure 4(a)), stroke dataset.𝐾-means and FCM
algorithms were applied to the regular and denoised stroke
dataset obtained (Figure 4(d)). As a result, the clustering
procedure was obtained for the stroke subtypes (the details
of which can be seen in Figure 4).

3.2. Application of 𝐾-Means Clustering Algorithm. Different
iterations (200, 300, 400, 500, and 1000) have been used for
the clustering procedure of stroke dataset, 2D mBd stroke
datasets through the 𝐾-means algorithm. The most accurate
results in the 𝐾-means algorithm have been obtained for the
1000 iterations. As shown in Figure 5, each epoch corresponds
to 200 for more vivid display of classification.

The parameters pertaining to the 1000 iterations are
presented in Table 4.
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Table 5: Result of 𝐾-means algorithm clustering for 1000 iterations (as obtained from Figure 5).

Steps concerning epochs 𝐽(𝐶) for stroke dataset (Figure 5(a)) 𝐽(𝐶) for 2D mBd stroke dataset (Figure 5(b))
Epoch 1 with 200 iterations 317.372 192.979
Epoch 2 with 200 iterations 319.855 19.2988
Epoch 3 with 200 iterations 320.911 192.984
Epoch 4 with 200 iterations 318.939 19.2983
Epoch 5 with 200 iterations 317.292 19.2979

In Figure 5(a) shows the best total sum of distance (𝐽(𝐶))
for the centroid values. The value (𝐽(𝐶)) did not change fol-
lowing this value. The clustering calculation was stopped in
the 1000th iteration since no change was recorded in the
results of the centroid values compared to the previous itera-
tion.

In Figure 5(b), the result of best total sum of distance
(𝐽(𝐶)) of the stroke 2DmBd dataset with𝐾-means algorithm
was obtained as 19.2979. The value (𝐽(𝐶)) did not change
after this value. After the 900th iteration the iteration was
stopped since no change in the iteration calculation happened
in the clustering calculation compared to that of the previous
iteration. Both of the datasets 𝐽(𝐶) have a 7-by-23 matrix
that contains the final centroid locations.𝐾-means is used to
calculate the distance from each centroid to points on a grid.
To be able to do this, the centroids 𝐽(𝐶) and points on a grid
to 𝐾-means are passed, and 1000 iterations of the algorithm
are implemented (Table 5).

The result of the best total sum of distance calculated (see
Figure 5) reveals that 2D mBd stroke dataset has a better
clustering accuracy than the stroke dataset.

The reason for mentioning such parameters is that these
parameters were of help for the best cluster analysis to be
performed in this study.

For the 1000 iterations in 𝐾-means clustering algorithm
by splitting to 200 iterations with corresponding epoch, the
calculation result pertaining to the stroke dataset is presented
in Figure 5(a) for stroke dataset (see Figure 2(a)) and in
Figure 5(b) for 2D mBd stroke dataset (see Figure 2(b)).

3.3. The Application of FCM Clustering Algorithm. Different
iterations (200, 300, 400, 500, and 1000) have been used for
the clustering procedure of stroke dataset, 2D mBd stroke
datasets through the fuzzy 𝐶 means algorithm. The most
accurate results in the fuzzy 𝐶 means algorithm have been
obtained for the 1000 iterations. As shown in Figure 6, each
epoch corresponds to 200 for more vivid display of classifica-
tion.

For the 1000 iterations in FCM clustering algorithm, by
splitting to 200 iterations with corresponding epoch, the
calculation result pertaining to the stroke dataset is presented
in Figure 6(a) for stroke dataset (see Figure 2(a)) and in
Figure 6(b) for 2D mBd stroke dataset (see Figure 2(b)).

The parameters for the 1000 iterations are displayed in
Table 6.

The reason for mentioning such parameters is that these
parameters were of help for the best cluster analysis to be
conducted in this study.

Table 6: FCM clustering algorithm parameters.

Parameters Parameters value
Exponent for the partition matrix 𝑈 2.0
Maximum number of iterations 200
Minimum amount of improvement 1𝑒 − 3

The data in stroke dataset (2204 × 23) and 2D mBd
stroke dataset (2204 × 23) as well as the distance between
the cluster centroids and the data are computed (the distance
between the data and the cluster center of each stroke patient
in the feature domain). In addition, the results computed are
stored in the 𝑢𝑗𝑖 matrix. The optimization stopped on the
1000th iteration for the stroke dataset (in Figure 6(a)) and 2D
mBd stroke dataset (in Figure 6(b)), as the objective function
improved by less than 1𝑒 − 3 between the final two iterations.
The clustering process comes to an end when the maximum
number of iterations is reached, or when the objective
function improvement between two consecutive iterations is
less than the specified minimum. In the calculations of 𝑢𝑗𝑖
matrix for 1000 iterations (see Figure 6), it has been revealed
that the clustering accuracy of 2DmBd stroke dataset is better
than that of the stroke dataset (Table 7).

Calculations given in Table 7 were performed using Mat-
lab, Mosek, and FracLab [26] environment. The clustering
accuracy rates obtained from 𝐾-means and FCM algorithms
applied to the stroke dataset and 2D mBd, 2D mNold, 2D
mPumpD stroke datasets in the study are provided in Table 8.

Accurate clustering results have been obtained with 𝐾-
means and FCM algorithms by applying 2D multifractal
denoising techniques for the stroke dataset based on the
clustering results of the stroke subtypes obtained in this study
(Table 8). The clustering accuracy of the stroke subtypes
with 𝐾-means and FCM algorithms through the 2D mBd
stroke dataset proved to be better compared to the 2DmNold
stroke dataset and 2D mPumpD stroke dataset. In the 2D
mBd stroke dataset, the clustering accuracy of the 𝐾-means
algorithm proves to be better for the no stroke/TIA and car-
dioembolic stroke subtypes. In the 2DmBd stroke dataset, the
clustering results regarding the FCM algorithm application
proved to be more accurate for the large vessel, small vessel,
cryptogenic, dissection, and other stroke subtypes.

In literature, very limited number of papers exist on
mathematical modeling and clustering of stroke subtypes.
In this study, seven subtypes among no stroke/TIA, large
vessel, small vessel, cardioembolic, cryptogenic, dissection,
and other subtypes have been analyzed. Four datasets (stroke
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(a) Stroke dataset
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Figure 6: The clustering analyses of FCM algorithm based on the epochs.
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Table 7: Result of FCM algorithm clustering with for 1000 Iterations (as obtained from Figure 6).

Steps concerning epochs Objective function vector for stroke dataset
(Figure 6(a))

Objective function vector for 2D mBd stroke dataset
(Figure 6(b))

Epoch 1 with 200 iterations [3.2285, 2.4407, 2.4406] [0.0318, 0.239, 0.237]
Epoch 2 with 200 iterations [3.1957, 2.4407, 2.4406] [0.0319, 0.239, 0.237]
Epoch 3 with 200 iterations [3.2490, 2.4407, 2.4406] [0.0317, 0.238, 0.235]
Epoch 4 with 200 iterations [3.2824, 2.4407, 2.4406] [0.0316, 0.238, 0.234]
Epoch 5 with 200 iterations [3.2255, 2.4407, 2.4406] [0.0316, 0.239, 0.238]

Table 8: Clustering results.

Stroke Subtypes
𝐾-means
stroke data

(%)

𝐾-means 2D
mBd stroke
data (%)

𝐾-means 2D
mNold stroke

data (%)

𝐾-means 2D
mPumpD

stroke data (%)

FCM stroke
data (%)

FCM 2D
mBd stroke
data (%)

FCM 2D
mNold stroke

data (%)

FCM 2D
mPumpD

stroke data (%)
No stroke/TIA 34.7 83 52.1 46.4 30 64 39 49
Large vessel 58.2 70.7 60.2 68.6 8.3 83.1 62 83
Small vessel 63.3 76 71.3 71.2 17 96.5 87 76
Cardioembolic 17.4 69.6 34.5 43.5 38 63 43 60
Cryptogenic 2.4 62.5 49.2 56.8 15 98 76.6 41
Dissection 19.6 47.1 17.3 17.3 10 67.7 26.8 14
Others 14.8 20.1 16.4 12.4 12 62.4 26 15.6

dataset, 2DmBd stroke dataset, 2DmNold stroke dataset, 2D
mPumpD stroke dataset) are totally performed on our new
approach with𝐾-means and FCM algorithms.

4. Conclusions

The main contribution of this paper is that it has proposed a
novel approach in stroke main headings regarding attributes
with the use of 2D techniques of multifractal denoising.
The clustering performances of 2D multifractal denoised
techniques (mBd, mNold, mPumpD) for the stroke subtypes
regarding a total of 2204 stroke patients’ dataset have been
provided in a comparative manner. When our study is
compared with the other works [22, 23], it is seen that first
of all there is no attribute constraint for the clustering of 7
subtypes of stroke. Secondly, it is possible to select the efficient
and significant attributes through the denoising techniques.
Finally, popular FCM and𝐾-means algorithms are applied to
the datasets comprised of efficient and significant attributes.
The output datasets are provided in supervised learning and
they are used to train themachine and get the desired outputs,
whereas in unsupervised learning, no datasets are provided.
Instead, the data is clustered into different classes. 𝐾-means
is one of the simplest unsupervised learning algorithms that
solve the well-known clustering problem. The procedure
follows a simple way to classify a given dataset through a
certain number of clusters (assuming 𝐾 clusters) fixed a
priori. 𝐾-means is a simple algorithm that has been adapted
to many problem domains. As we have seen, it is a good
candidate for extension to work with fuzzy feature vectors
[42]. Fuzzy 𝐶means algorithm [43, 44] yields the best result
for overlapped dataset and is comparatively better than 𝐾-
means algorithm. Unlike 𝐾-means, where data point must
exclusively belong to one cluster center, here the data point

is assigned membership to each cluster center as a result of
which data point may belong to more than one cluster center.
For the first time in literature, 2D multifractal denoising
techniques and 𝐾-means and FCM algorithms have been
applied to the numeric data obtained from the attributes that
belong to the patients with seven different stroke subtypes.
The results reveal that the 2D Bayesian denoising technique
application used in our study has proven to be much better
compared to the other techniques and methods.
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