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ANALYTIC AND COANALYTIC FAMILIES OF ALMOST DISJOINT
FUNCTIONS

BART KASTERMANS, JURIS STEPRĀNS, AND YI ZHANG

Abstract. If F ⊆ NN is an analytic family of pairwise eventually different functions

then the following strong maximality condition fails: For any countable H ⊆ NN, no

member of which is covered by finitely many functions from F , there is f ∈ F such that

for all h ∈ H there are infinitely many integers k such that f(k) = h(k). However if V = L

then there exists a coanalytic family of pairwise eventually different functions satisfying

this strong maximality condition.

§1. Introduction. It is a well known phenomenon of descriptive set theory
that subsets of the reals requiring the axiom of choice in order to exist do not
have nice descriptions. For example:

• (Suslin [5]) No well ordering of an uncountable set of reals is analytic.
• (Sierpinski) No ultrafilter is measurable or has the property of Baire.
• (Talagrand [11]) The intersection of countably many nonmeasurable filters

is nonmeasurable.
• (Mathias [7]) There is no analytic maximal almost disjoint family.

Since many variations on the theme of a maximal almost disjoint family have
been explored, the last fact raises a series of questions about the definability
properties of other such maximal families. It is the purpose of this paper to
analyze one instance of this question for the case of almost disjoint families ob-
tained from graphs. The following definition clarifies this. A family of functions
F ⊆ NN will be said to be eventually different if for any two f and g in F there is
some k such that f(n) 6= g(n) for n ≥ k. A maximal eventually different family
is one which is maximal with respect to this property. The following question
remains open:

Question 1.1. Is there an analytic (or even closed) maximal, eventually dif-
ferent family?
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However, it will be shown that the σ-version of the question can be answered
satisfactorily.

Definition 1.2. If F ⊆ NN and h ∈ NN then define h to be finitely covered
by F if there is a finite subset C ⊆ F such that h(k) ∈ {f(k)}f∈C for all but
finitely many integers k.

Definition 1.3. An eventually different family of functions F ⊆ NN is strongly
maximal iff for any countable H ⊆ NN, no member of which is finitely covered
by F , there is f ∈ F such that for all h ∈ H there are infinitely many integers k
such that f(k) = h(k).

Theorem 1.4. There is no analytic, strongly maximal, eventually different
family.

As already mentioned, this result should be viewed as an answer to the σ–
variant of Question 1.1. The σ-variants of various cardinal invariants have been
investigated by Brendle and others, [1] and [4]. For example, Solecki has char-
acterized the analytic P-ideals as those very simply induced from a sequence of
lower semicontinuous submeasures, [10]. As another illustrative example, it is
worth quoting the following result which is similar in spirit to Theorem 1.4.

Theorem 1.5 (Todorčević, [12]). Suppose that A and B are orthogonal fami-
lies of subsets of N (in other words, if A ∈ A and B ∈ B then |A∩B| < ℵ0) and
A is analytic. Then A is covered by a countable family orthogonal to B if and
only if every countable subset of B can be separated from A.

Note that a Hausdorff gap provides a counterexample to Theorem 1.5 if the
hypothesis on analyticity is dropped. The σ-variant hypothesis that every count-
able subset of B can be separated from A is essential here. Whether this is also
the case for Theorem 1.4 remains to be seen.

As with the other variations on the theme of maximal almost disjoint family
Theorem 1.4 has a companion theorem for which we provide a fully detailed
proof in section 3.

Theorem 1.6. The axiom of constructibility implies the existence of a coan-
alytic strongly maximal, eventually different family.

The theorems 1.4 and 1.6 together completely answer the question of possible
complexities of strongly mad families of functions.

§2. Strongly Maximal Almost Disjoint Families can not be Analytic.
The purpose of this section is to prove the following theorem.

Theorem 2.1. There is no analytic, strongly maximal, almost disjoint family
in NN.

We assume towards a contradiction that there exists an analytic, strongly
maximal, almost disjoint family of functions F . Since it is analytic there exists
a closed subset of the irrationals T and a continuous function Φ : T → NN whose
range is F . Using Φ we define a stratification Tα of the family F (Lemma 2.4).
From this stratification we get, using Lemma 2.6, a countable family of functions
that allow us to derive a contradiction using the strong maximality condition.
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Lemma 2.2. If I ⊆ NN is an infinite family of pairwise eventually different
functions then

lim
k→∞

|{t(k) : t ∈ I}| = ∞.

Proof. Suppose that I provides a counterexample. Then there exist an in-
finite set K ⊆ N and an integer m such that |{t(k) : t ∈ I}| = m for each
k ∈ K. For each k ∈ K choose ak

i ∈ N, i < m, such that {t(k) | t ∈
I} = {ak

0 , a
k
1 , . . . , a

k
m−1}. Let F be a free ultrafilter on K and choose dis-

tinct t0, t1, . . . ,tm in I. For each i < m let ni be such that 0 ≤ ni < m and
Si = {k ∈ K : ti(k) = ak

n
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many integers k such that |Bk(T∞,Φ, U ′i)| < j. Moreover the definition of T∞
guarantees that the range of Φ on V ′i is infinite. Therefore, by Lemma 2.2,

lim
k→∞

|{Φ(t)(k) : t ∈ V ′i }| = ∞.

It is therefore possible to choose mi+1 > mi such that

| {Φ(t)(mi+1) : t ∈ V ′i } | > |Bmi+1(T∞,Φ, U
′
i)|.

Choose

n ∈ {Φ(t)(mi+1) : t ∈ V ′i } \Bmi+1(T∞,Φ, U
′
i)

and let Ui+1 = {u ∈ U ′i : Φ(u)(mi+1) = n} and Vi+1 = {v ∈ V ′i : Φ(v)(mi+1) =
n}. These are both non-empty by the choice of n and it is immediate that the
induction hypotheses are satisfied.

The second claim is immediate as there are only countably many basic open
sets in R. a

Lemma 2.5. For any integer k and for any family F of pairwise disjoint func-
tions from k + 1 to N and any mapping

Ψ :
k∏

n=0

n+ 1 → [F ]k

there is some g ∈
∏k

n=0 n+ 1 such that g 6⊆ ∪Ψ(g).

Proof. Suppose that Ψ is a counterexample. Since g(0) = 0 for each g ∈∏k
n=0 n+ 1 it follows that there is a unique member f in F such that f(0) = 0

and, furthermore, f ∈ Ψ(g) for each g ∈
∏k

n=0 n + 1. Let f0 = f and define
ḡ0(0) = 0. Suppose now that fi ∈ F have been defined for i ≤ m < k and that
ḡm : m+ 1 → N is also defined so that:
• fi 6= fj unless i = j
• ḡm(i) ≤ i for each i ≤ m
• ḡm ⊇ ḡi for i < m

• if g ∈
∏k

n=0 n+ 1 and ḡm ⊆ g then {fi}i≤m ⊆ Ψ(g).
Let ḡm+1(m + 1) ≤ m + 1 be such that ḡm+1(m + 1) /∈ {fi(m + 1)}i≤m and
ḡm+1 ⊇ ḡm. Let fm+1 ∈ F be the unique member f of F such that ḡm+1(m+1) =
f(m+1) and note that if g ∈

∏k
n=0 n+1 and ḡm+1 ⊆ g then {fi}i≤m+1 ⊆ Ψ(g).

Then ḡk ∈
∏k

n=0 n + 1 and {fi}i≤k ⊆ Ψ(ḡk) contradicting the assumption that
|Ψ(ḡk)| = k. a

Lemma 2.6. If F ⊆ NN is an analytic family of pairwise eventually different
functions and {Bn}∞n=0 is a sequence of non-empty finite subsets of N such that
limn→∞ |Bn| = ∞ then{

b ∈
∞∏

n=0

Bn : b is not finitely covered by F

}
is comeagre, where

∏∞
n=0Bn has the product topology with each Bn being discrete.
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Proof. To begin, let

Ck =

{
b ∈

∞∏
n=0

Bn : (∃H ∈ [F ]k)b ⊆∗ ∪H

}
and note that Ck is Σ1

1. If each Ck is meagre then so is
⋃∞

k=1 Ck. Hence toward a
contradiction it may be assumed that there is some k such that Ck is not meagre.
Since Ck is invariant under finite modifications and it has the Property of Baire,
it follows that Ck is co-meagre.

Let R be the relation on
∏∞

n=0Bn×Fk defined by R(b, (f1, f2, . . . , fk)) holds
if and only if b ⊆∗ f1 ∪ f2 ∪ . . . ∪ fk. Then R is analytic and by the Jankov
– von Neumann Uniformization Theorem there is a Baire measurable function
Φ : Ck → Fk such that R(b,Φ(b)) holds for all b ∈ Ck. Let C ⊆ Ck be a dense Gδ

such that Φ � C is continuous. Let Φ(b) = (Φ1(b),Φ2(b), . . . ,Φk(b)).

Notation 2.7. Let
∏<∞

n=0Bn denote
⋃∞

u=1

∏u
n=0Bn and for s ∈

∏<∞
n=0Bn let

[s] = {b ∈
∏∞

n=0Bn : s ⊆ b}.

Let

D′m =

{
b ∈

∞∏
n=0

Bn : (∀1 ≤ i < j ≤ k)(∀n > m) Φi(b)(n) 6= Φj(b)(n)

}
and letDm = {b ∈ D′m : (∀n > m)(∃j ≤ k) b(n) = Φj(b)(n)}. Since C is a subset
of
⋃∞

m=1Dm there is some m such that C ∩ Dm is not meagre. Since this set is
Borel, there is some s ∈

∏<∞
n=0Bn such that Dm ∩C is co-meagre in the open set

[s]. Before continuing, the following claim will be established:

Claim 2.8. Given s1 ∈
∏<∞

n=0Bn and s2 ∈
∏<∞

n=0Bn and 1 ≤ a ≤ b ≤ k there
are t1 ⊇ s1 and t2 ⊇ s2 and there is a comeagre set E ⊆ [t1]× [t2] such that one
of the following two alternatives holds:

(∃v)(∀(e1, e2) ∈ E)(∀n > v) Φa(e1)(n) 6= Φb(e2)(n)(2.2.1)

(∀(e1, e2) ∈ [s1]× [s2]) Φa(e1) = Φb(e2)(2.2.2)

Proof. Suppose that alternative 2.2.2 fails. Choose σ1 ∈ [s1] and σ2 ∈ [s2]
such that Φa(σ1) 6= Φb(σ2) and, using the continuity of Φ, choose j such that
Φa([σ1 � j]) ∩ Φb([σ2 � j]) = ∅. It follows that if

E` = {(e1, e2) ∈ [σ1 � j]× [σ2 � j] : (∀n > `) Φa(e1)(n) 6= Φb(e2)(n)}
then ([σ1 � j] × [σ2 � j]) ∩ (C × C) =

⋃∞
n=1 En and so there are some integer

v, t1 ⊇ σ1 � j, and t2 ⊇ σ2 � j such that Ev is co-meagre in [t1] × [t2]. Let
E = Ev. a

Now let {(in, jn, an, bn)}n∈L enumerate all quadruples (i, j, a, b) such that
{i, j} ∈ [(k + 1)!]2 and 1 ≤ a < b ≤ k. Choose {si}(k+1)!

i=1 ⊆
∏<∞

i=0 Bn such
that the sets {[si]}(k+1)!

i=1 are pairwise disjoint and s ⊆
⋂(k+1)!

i=1 si. Let A =∏(k+1)!
i=1 [si]∩

∏(k+1)!
i=1 C∩

∏(k+1)!
i=1 Dm. Then construct by induction sets {An}n≤L,

integers Mn and {{sn
i }

(k+1)!
i=1 }n≤L satisfying the following:

• A0 = A,
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• s0i = si for each i with 1 ≤ i ≤ (k + 1)!,
• An is comeagre in

∏(k+1)!
i=1 [sn

i ],
• sn

i ⊆ sn+1
i for each i ∈ (k + 1)!,

• if there is a pair (ē1, ē2) ∈ [sn−1
in−1

]× [sn−1
jn−1

] such that Φan−1(ē1) 6= Φbn−1(ē2)
then for each (e1, e2, . . . , e(k+1)!) ∈ An and for all z > Mn the inequality
Φan−1(ein−1)(z) 6= Φbn−1(ejn−1)(z) holds.

The construction is easily carried out using the Claim at each stage. To be
precise, given An and {sn

i }k!
i=1 if there is no pair (e1, e2) ∈ [sn

in
]× [sn

jn
] such that

Φan
(e1) 6= Φbn

(e2) then let {sn+1
i }k!

i=1 = {sn
i }k!

i=1 and An+1 = An and Mn+1 is
irrelevant in this case. Otherwise, use the Claim to find t1 ⊇ sn

in
and t2 ⊇ sn

jn

and a comeagre set E ⊆ [t1] × [t2] such that alternative 2.2.1 holds and this is
witnessed by v. Then let {sn+1

i }k!
i=1 = {sn

i }k!
i=1 for i /∈ {in, jn} and let sn+1

in
= t1

and sn+1
jn

= t2, let

An+1 =

(
An ∩

k!∏
i=1

[sn+1
i ]

)
∩ π−1E

where π is the projection of (NN)k! onto (NN){in,jn}. Let Mn+1 = v.
Now let J ∈ N be such that J > m, J ≥ max{Mi}i≤L, J ≥ max{|sL

i |}
(k+1)!
i=0 ,

and |Bu| > k for each u ≥ J . From the last clause it is possible to find {xi
q}q∈i ∈

[BJ+i]i, for 1 ≤ i ≤ k + 1. Choose a bijection β : Nk+1 → Nk+1 such that for
b ∈ Nk+1 if b(i) ∈ i + 1 we have β(b)(i) = xi+1

b(i) . The use of β in the below is

essentially to conjugate
∏k

n=0{xn+1
q | 0 ≤ q ≤ n} onto

∏k
n=0 n+1. Let {θu}(k+1)!

u=1

enumerate
∏k

n=0 n + 1. Choose wi ⊇ sL
i so that |wi| = J for each i ≤ (k + 1)!

and, then, let w∗u = wu
∧β(θu). Since AL is co-meagre in

∏(k+1)!
i=1 [sL

i ] it follows
that it is possible to choose (ζ1, ζ2, . . . , ζ(k+1)!) ∈ AL ∩

∏(k+1)!
i=1 [w∗i ]. Now let

hi,a ∈ Nk+1 be defined by setting hi,a(n) = Φa(ζi)(J+n) and let H be the set of
all β−1(hi,a) and note that this forms a family of disjoint functions. Then define
Ψ :

∏k
n=0 n+ 1 → Hk by setting Ψ(θi) = {β−1(hi,a)}k

a=1. The definition of Dm

and the fact that J > m guarantees that Ψ(b) ⊇ b for every b ∈
∏k

n=0 n + 1.
This contradicts Lemma 2.5. a

Fix a countable base B for T . Let α ∈ ω1 be such that ∅ = Tα. For each U ∈ B
and each β ∈ α such that U ∩ Tβ 6= ∅ and limk→∞ |Bk(Tβ ,Φ, U ∩ Tβ)| = ∞ use
Lemma 2.6 to find a function h(β, U) which is not finitely covered by F such that
if Bk(Tβ ,Φ, U∩Tβ) 6= ∅ then h(β, U)(k) ∈ Bk(Tβ ,Φ, U∩Tβ). Now use the strong
maximality of F to find t ∈ T such that Φ(t)(n) = h(β, U)(n) for infinitely many
n for every relevant β and U . Let γ be the greatest ordinal such that t ∈ Tγ and
let U ∈ B be such that t ∈ U and limk→∞ |Bk(Tγ ,Φ, U ∩ Tγ)| = ∞. Choose an
integer k such that Φ(t)(k) = h(γ, U)(k) ∈ Bk(Tγ ,Φ, U ∩ Tγ). Since t ∈ Tγ ∩ U
it follows that Φ(t)(k) /∈ Bk(Tγ ,Φ, U ∩ Tγ). This contradiction establishes the
main theorem.

§3. Very Mad Families Can be Coanalytic. In this section we prove the
following theorem.
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Theorem 3.1. The Axiom of Constructibility implies the existence of a Π1
1

strongly maximal, eventually different family.

The proof is based on the proof of the analogous result for maximal almost
disjoint families of subsets of N by Arnold Miller, see [9]. For background on
constructibility see [6, Chap. VI], and [2] in combination with [8] (the theory
Basic Set Theory is not strong enough for the use Devlin makes of it, this is
analyzed in Mathias paper, and a replacement is offered there that is sufficient
for the results we use).

The idea of this proof is that we identify a set of good levels of L (those for
which Lα = Sk(Lα), as defined below). We prove a coding lemma (Lemma 3.2)
allowing us to encode these levels into our construction. Then we show that from
an encoding of a good level we have access to the limit level after it (Lemma 3.6),
which allows us to decide membership (Lemma 3.7).

In this section we choose the sequence coding 〈. . . 〉 and projections πi to be
recursive.

Lemma 3.2. Let A = {gn | n ∈ N} ⊆ NN be an almost disjoint family, E ⊆
N × N and F = {fn | n ∈ N} ⊆ NN not finitely covered by A. Then there exists
a function g : N → N almost disjoint from all functions in A, such that E is
recursive in g and g agrees on infinitely many inputs with each member of F
(∀n ∈ N |fn ∩ g| = ℵ0).

Proof. Instead of encoding E directly we encode χ the characteristic function
of {〈n,m〉 | (n,m) ∈ E}.

We define g recursively. At step s we extend the initial segment of N on which
g is defined by doing the following:

1. Find ns,i, i ∈ [0, s], such that ns < ns,0 < ns,1 < · · · < ns,s, where ns is
the least number where g is not defined yet, and fi(ns,i) is different from
all g0(ns,i), . . . , gs(ns,i). Then define g(ns,i) = fi(ns,i). Also define ns+1

to be ns,s + 1.
2. Define g(l) for ns < l < ns+1 where g is not yet defined to be the least

number different from all g0(l), . . . , gs(l).
3. Define g(ns) to be 〈k, 〈ns+1, χ(s)〉〉 where k is the least number such that
〈k, 〈ns+1, χ(s)〉〉 is different from all g0(ns), . . . , gs(ns). Here the value ns+1

is the “pointer” to the next location where a value of χ can be found.
It can now be easily checked that the g constructed satisfies the lemma. a
We note that if A, F , E are members of Lα, then g is a member of Lα+1; the

proof shows how to define g from A, F and χ; also E and χ appear at the same
level of the constructible hierarchy. Also note that the encoding is uniform: it
does not depend on which functions and families we work with. This also means
that we can talk about the relation encoded in g (later this relation will be the
membership relation of a model on (N, E)).

Definition 3.3. For α > ω we say Lα = Sk(Lα) iff there exists 〈h, ϕ, p̄〉 (the
witness) such that:

1. h is a Skolem function for all Σk formulas for Lα, for some k ≥ 1,
2. p̄ ∈ Lα,



8 BART KASTERMANS, JURIS STEPRĀNS, AND YI ZHANG

3. h[N× (N ∪ p̄)] = Lα, and
4. h(n, x) = y ⇔ Lα |= ϕ(p̄, n, x, y).

Lemma 3.4. The set {α | Lα = Sk(Lα)} is unbounded in ω1.

Proof. First recall from Gödel’s proof of CH in L that every constructible
real is in Lω1 . From this using the fact all Lβ , β < ω1, are countable it follows
that the set {β < ω1 | ∃r [ r ∈ Lβ+1 \ Lβ ∧ r ∈ NN ] } is unbounded in ω1. So it
is sufficient to prove for each β in this set that Lβ+ω = Sk(Lβ+ω).

Therefore let r be definable over Lβ from a finite sequence of parameters q̄,
r = {〈m,n〉 | Lβ |= ψ(m,n, q̄)}, and such that r 6∈ Lβ . Then r ∈ Lβ+ω so that
Lβ+ω |= ∃r ∀m,n ∈ ω

(
(m,n) ∈ r ↔ ψLβ (m,n, q̄)

)
. We can assume that (ψ, q̄)

is minimal among pairs of formulas and parameters that define a new real over
Lβ . This means that (ψ, q̄) is definable from Lβ , say by formula ϕ.

Let h : N × Lβ+ω → Lβ+ω be a definable Skolem function for Σk+2 formulas
with k ∈ N such that ψ,ϕ ∈ Σk.

Let X = h[N × (N ∪ {Lβ})] and note that q̄ ∈ X. Then since X ≺k+2 Lβ+ω

we have that (X,∈) |= ψLβ (n,m, q̄) iff (Lβ+ω,∈) |= ψLβ (n,m, q̄) and (X,∈) |=
∃r ∀m,n ∈ ω

(
(m,n) ∈ r ↔ ψLβ (m,n, q̄)

)
, which shows r is in (X,∈). Also

since for every Σk+2 formula there is an equivalent formula such that if there is a
witness for the existential quantifier there is a unique witness for the existential
quantifier, every element of X is definable from Lβ .

By the condensation lemma [2, Theorem II.5.2] we have a π such that π :
(X,∈) ∼= (Lα,∈), α ≤ β + ω and α is a limit ordinal; this π is the identity on
transitive sets, in particular on the natural numbers. From this we get (X,∈) |=
ψLβ (n,m, q̄) iff (Lα,∈) |= ψπLβ (n,m, πq̄) and (Lα,∈) |= ∃r ∀m,n ∈ ω

(
(m,n) ∈

r ↔ ψπLβ (m,n, πq̄)
)
, which shows that r is in Lα. So since α ≤ β + ω, r 6∈ Lβ ,

r ∈ Lα, and α is a limit ordinal, we get α = β + ω. This means X ∼= Lβ+ω.
Now since Lβ is the level after which r appears, also in X, π(Lβ) maps to Lβ

under this isomorphism. But everything in X is Σk+2 definable from Lβ . This
implies that everything in Lβ+ω is Σk+2 definable from Lβ . Now note that X
is the image of N× (N ∪ {Lβ}) by a Σk+2 Skolem function, which with the fact
that everything in Lβ+ω is Σk+2 definable from Lβ implies that X = Lβ+ω, as
was to be shown. a

Enumerate the set {α < ω1 | Lα = Sk(Lα) in increasing order by 〈βγ | γ < ω1〉.
Note that by absoluteness of the notion Lα = Sk(Lα) and the fact that limit
levels of the constructible hierarchy are closed under certain simple recursions,
we have that Lβγ+ω |=“〈βγ′ | γ′ ≤ γ〉 is an initial segment of the increasing
enumeration of ordinals α such that Lα = Sk(Lα)”.

Lemma 3.5. If Lα = Sk(Lα), then there is an E ⊆ N×N such that E ∈ Lα+ω

and (Lα,∈) ∼= (N, E).

Proof. Let Lα = Sk(Lα) be witnessed by 〈h, ϕ, p̄〉. We will show in two steps
that then there is an E as in the statement of the lemma. We show first that
h ∈ Lβ+ω, and then we show how to construct E from h.

Note that Th(〈Lα,∈, p̄〉) ∈ Lα+ω: we follow the ideas from pages 40 and 41 of
[2]. The lemma Devlin proves there is not correct, see [8], but the method can be
used here. We have a function f such that f(0) is the set of all primitive formulas
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of set theory, and f(i + 1) is the set of all formulas formed from the formulas
in f(i) by conjunction, disjunction, implication, and quantification. Then we
construct a function g such that g(i) is a set of pairs, first coordinate a formula
ϕ from f(i), second coordinate a sequence x̄ of elements of Lα such that ϕ(x̄) is
true in (Lα,∈, p̄). All these elements are in Lα+n for some n. Then in Lα+n+1

we can construct all g � k for k ∈ N. So in Lα+n+2 we can use the recursive
definition of g to construct it. From g we get Th(〈Lα,∈, p̄〉) as the subset of
the image consisting of all formulas with no free variables. (Note that this, and
the following, are all uniform with respect to the sequence p̄, but, for notational
convenience, we’ll leave it implicit as a parameter.)

Let e : N → N× (N ∪ p̄) be the definable bijection

e(n) =

{
(π0(n), p̄π1(n)), if π1(n) < lh(p̄);
(π0(n), π1(n)− lh(p̄)), otherwise,

and ϕe the formula defining e, i.e. ϕe(n, x, y) ⇔ e(n) = (x, y) (this formula
defines e in any Lα+4 with α > ω and p̄ ∈ Lα and is absolute for these levels).

Define ẽ : N → N from this by setting ẽ(0) = 0 and ẽ(n+1) = k where k is the
least number bigger than ẽ(n) such that pψ(k, ẽ(n))q ∈ Th(〈Lα,∈, p̄〉), where
ψ(k, ẽ(n)) is the formula

∀l ≤ ẽ(n) ∀y0, y1
[
ϕ(p̄, π0(e(l)), π1(e(l)), y0) ∧ ϕ(p̄, π0(e(k)), π1(e(k)), y1) →(

∃z (z ∈ y0 ∧ z 6∈ y1) ∨ (z 6∈ y0 ∧ z ∈ y1)
) ]
,

in which ϕ is the formula defining h, and which after elimination of e in favor of
its definition becomes

∀l ≤ ẽ(n) ∀l0, l1, k0, k1

{
ϕe(l, l0, l1) ∧ ϕe(k, k0, k1) →

∀y0, y1
[
ϕ(p̄, l0, l1, y0) ∧ ϕ(p̄, k0, k1, y1) →(

∃z (z ∈ y0 ∧ z 6∈ y1) ∨ (z 6∈ y0 ∧ z ∈ y1)
) ] }

.

Note ψ(k, ẽ(n)) is the formula expressing ∀l ≤ ẽ(n) h(e(k)) 6= h(e(l)), and
a Gödel number for ψ(k, ẽ(n)) can be recursively obtained from k and n (the
function (k,m) 7→ p∀xθm(x) → ψ(k, x)q (where θm(x) is the formula defining
the natural number m) is in Lω+ω, but ẽ which is recursively defined from it
and Th(〈Lα,∈, p̄〉) can be constructed at the level of L after Th(〈Lα,∈, p̄〉) is
constructed).

Let ϕẽ(n,m) be such that ϕẽ(n,m) ⇔ ẽ(n) = m.
These definitions have been made so that h ◦ e ◦ ẽ : N → Lα is an enumeration

of h[N× (N∪ p̄)] without repetitions. We will set up the model (N, E) such that
the number m ∈ N will represent the set h(e(ẽ(m))). It is then clear that we
want n E m iff h(e(ẽ(n))) ∈ h(e(ẽ(m))).

We show E ∈ Lα+k for some k ∈ N by eliminating all functions in favor of
their definitions in the statement h(e(ẽ(n))) ∈ h(e(ẽ(m))), and then noting this
statement is true of (n,m) iff the Gödel number of the formula resulting from
substituting terms defining n and m in this formula is in Th(〈Lα, E, p̄〉).
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First eliminating h, we get

∀zn, zm

[ {
ϕ(p̄, π0(e(ẽ(n))), π1(e(ẽ(n))), zn) ∧
ϕ(p̄, π0(e(ẽ(m))), π1(e(ẽ(m))), zm)

}
→ zn ∈ zm

]
.

Then eliminating e we get

∀xn, yn, xm, ym

{
ϕe(ẽ(n), xn, yn) ∧ ϕe(ẽ(m), xm, ym) →

∀zn, zm

[
ϕ(p̄, xn, yn, zn) ∧ ϕ(p̄, xm, ym, zm) → zn ∈ zm

] }
.

After eliminating ẽ this gives

∀ln, lm
(
ϕẽ(n, ln) ∧ ϕẽ(m, lm) →

∀xn, yn, xm, ym

{
ϕe(ln, xn, yn) ∧ ϕe(lm, xm, ym) →

∀zn, zm

[
ϕ(p̄, xn, yn, zn) ∧ ϕ(p̄, xm, ym, zm) → zn ∈ zm

] } )
.

This is a formula in the language {∈, p̄} with free variables n and m. The
recursive function G that to (n,m) assigns the Gödel number of the formula

∀u, v θn(u) ∧ θm(v) →
∀ln, lm

(
ϕẽ(u, ln) ∧ ϕẽ(v, lm) →

∀xn, yn, xm, ym

{
ϕe(ln, xn, yn) ∧ ϕe(lm, xm, ym) →

∀zn, zm

[
ϕ(p̄, xn, yn, zn) ∧ ϕ(p̄, xm, ym, zm) → zn ∈ zm

] } )
is in Lα+l for some l ∈ N (note: ϕẽ uses Th(〈Lα,∈, p̄〉) as a parameter).

This shows that we can define E over Lα+l by (n,m) ∈ E iff G(n,m) ∈
Th(〈Lα,∈, p̄〉). a

We now define functions (as in [3, page 217]) relating the natural numbers and
the real numbers to their representatives in (N, E).

Define for any (N, E) ∼= Lα, ω < α < ω1, a recursive function NatE : N → N
by

NatE(0) = the unique u ∈ N such that ∀l ∈ N (¬ l E u)

NatE(n+ 1) = the unique u ∈ N such that ∀l ∈ N[(l E u) ↔(
(l E NatE(n)) ∨ (l = NatE(n))

)
].

Using this we can define RealE : NN → N a partial function by

RealE(r) = the unique (if exists) u ∈ N such that

∀n,m[r(n) = m↔ (N, E) |= u(NatE(n)) = NatE(m)].

Note that π(r) = RealE(r) for reals r and π(n) = NatE(n) for natural numbers.
If Lα = Sk(Lα), then there exists π : (Lα,∈) ∼= (N, E). So the sets Rα =

NN ∩ Lα and RE := {n ∈ N | (N, E) |= n is a real} are mapped to each other by
the isomorphism. We have in fact that if r ∈ Rα then r(k) = l iff π(r)(NatE(k)) =
NatE(l) is true in (N, E). So we can define in Lα+ω an enumeration eα : N → Rα

of all reals in Lα as follows:
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First let e : N → RE be the bijection e(0) = min{RE} and e(n+1) = min{m ∈
RE | m > e(n)}. Then eα is e composed with the map defined by

{(n, r) ∈ RE × Rα | ∀k, l ∈ N (N, E) |= n(NatE(k)) = NatE(l) ↔ r(k) = l} =

{(n, r) ∈ RE × Rα | π(r) = n}.

Now we are ready for the construction of the very mad family A which we will
show is coanalytic. It will be recursively enumerated as 〈gα | α < ω1〉.

To define gγ from 〈gα | α < γ〉 we use Lemma 3.2 with A = Aγ = 〈g′n | n ∈ N〉,
F = Fγ = 〈fn | n ∈ N〉 and E as described below.

By Lemma 3.5 we have an E such that (N, E) ∼= (Lβγ ,∈) in Lβγ+ω.
By induction we will have the set {gα | α < γ} in Lβγ+ω (βγ as defined on page

8), and by a recursion in Lβγ+ω we get the enumeration 〈gγ′ | γ′ < γ〉 in Lβγ+ω.
We can recursively find an enumeration 〈g′n | n ∈ N〉 of it in Lβγ+ω by letting g′n
be the nth member in the enumeration eβγ of Rβγ which is in {gα | α < γ}.

We then recursively define fn to be the nth member in the enumeration of Rβγ

which is not finitely covered by {gα | α < γ}. This enumeration will also be in
Lβγ+ω.

After application of Lemma 3.2 (and the observation following it) we get gγ ∈
Lβγ+ω. This finishes the construction. Note that this construction is absolute
for Lβγ+ω.

Clearly A is an a.d. family, and if F ⊆ NN with |F | < |A| = ℵ1, then there is
a β < ω1 such that F ⊆ Lβ . Now if F is not finitely covered by A then for every
f ∈ F and every γ with βγ ≥ β the set f ∩ gγ is infinite, which shows that A is
a very mad family.

Now what remains to be seen is that this A is Π1
1 definable.

Lemma 3.6. If (N, E) ∼= (Lα,∈) and g ∈ Lα+ω encodes E as in Lemma 3.2,
then there is a formula ϕ only containing quantifiers over the natural numbers
such that

ϕ(〈Eω, r, u〉, g) ⇔ (N, Eω) ∼= (Lα+ω,∈) ∧
r is the satisfaction relation for (N, Eω) ∧
u = RealEω (g).

Proof. In the definition below we refer directly to E; that this can be replaced
by g is easy.

We define

ϕ(〈Eω, r, u〉, g) ≡ Sat(Eω, r) ∧ EonEvens(Eω, E) ∧
Levels(Eω, E, r) ∧ RealEω (g) = u,

where:
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Sat: The formula Sat(Eω, r) states that r is the satisfaction relation for Eω:
(sketch)

r(〈pϕq, m̄〉) = 1 ⇔(pϕq = px = yq ∧m0 = m1) ∨
(pϕq = px ∈ yq ∧ Eω(m0,m1)) ∨
(pϕq = p∀xψ(x)q ∧ ∀n r(〈pψq, 〈n, m̄〉〉) = 1) ∨
(pϕq = p¬ψq ∧ r(〈pψq, m̄〉) = 0) ∨
(pϕq = pψ1 ∨ ψ2q ∧ (r(〈pψ1q, m̄〉) = 1 ∨ r(〈pψ2q, m̄〉) = 1))

EonEvens: EonEvens(Eω, E) states that E is isomorphic to an initial segment
of Eω and lives on the even natural numbers.

EonEvens(Eω, E) ≡ ∀i, j
(
¬(2i+ 1 Eω 2j) ∧ (2i Eω 2j ↔ i E j)

)
Levels: Here we need a bijection π : N × N → N such that π(0, 0) = 1 and

π(0, k + 1) enumerates the evens; we can easily find such a bijection which is
recursive.

Then Levels(Eω, E, r) is the conjunction of SLevels(Eω, E) and ELevels(Eω, E, r)
where SLevels states π(l, 0) is the l-th level after (N, E):

∀l, i, j
( [
i < l→ π(i, j) Eω π(l, 0)

]
∧ π(l, j + 1) Eω π(l, 0)

)
∧

∀l, i, j
(
π(i, j) Eω π(l, 0) → (i < l ∨ (i = l ∧ j ≥ 1))

)
,

and ELevels(Eω, E, r) that k 7→ π(l, k + 1) is an enumeration of the new sets
at the l-th level after (N, E). First we find an enumeration, k 7→ ge(l, k), of
formulas and parameters that can be used to define sets at the lth level:

Let S be the set {(n, x̄) | n is the Gödel number of a formula with lh(x̄) + 1
free variables ∧ x̄ ∈ <NN}. Then define ge : N×N → S such that ge[{(l, k) | k ∈
N}] = {(n, x̄) ∈ S | x̄ ∈ <N({π(l, k + 1) | k ∈ N} ∪ {π(j, k) | j < l ∧ k ∈ N})}.
Such a function ge can clearly be chosen to be recursive.

We want to define g̃e : N×N → S such that k 7→ g̃e(l, k) enumerates only the
data needed to define new sets at level l+1, and does so without repetition. For
this we do some preliminary work.

First note that (π(l, 0), Eω) |= ϕ(x) is equivalent to (N, Eω) |= (ϕ(x))π(l,0)

which in turn is equivalent to r(〈p(ϕ)π(l,0)q, x〉 = 1. The map rel : N × N → N
defined by (pϕq, l) 7→ p(ϕ)π(l,0)q and 0 if the first component of the input is not
the Gödel number of a formula is recursive.

Then we define a formula new(n, x̄, l) such that it is true of (n, x̄, l) iff n = pϕq
and {y Eω π(l, 0) | (π(l, 0), Eω) |= ϕ(x̄, y)} is different from all π(j, k) for j < l
and k ∈ N, or j = l and k > 0. This means that the set determined by (n, x̄)
didn’t exist at level l (and is not the collection of all sets before level l, which is
π(l, 0)). The formula expressing this is:

new(n, x̄, l) ≡ ∀j, k j ≤ l→ ∃j′, k′
{
j′ ≤ l ∧[ (

π(j′, k′) Eω π(j, k) ∧ r(〈rel(n, l), 〈x̄, π(j′, k′)〉〉) = 0
)
∨(

¬π(j′, k′) Eω π(j, k) ∧ r(〈rel(n, l), 〈x̄, π(j′, k′)〉〉) = 1
) ] }
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We also need a formula nb(l,m) that is true of (l,m) iff the set defined by
ge(l,m) from π(l, 0) is not also defined by ge(l,m′) with m′ < m.

nb(l,m) ≡ ∀m′ < m∃j, k(j < l ∨ (j = l ∧ k > 0)) ∧[ (
r(〈rel(π0(ge(l,m)), l), 〈π1(ge(l,m)), π(j, k)〉〉) = 1 ∧
r(〈rel(π0(ge(l,m′)), l), 〈π1(ge(l,m′)), π(j, k)〉〉) = 0

)
∨(

r(〈rel(π0(ge(l,m)), l), 〈π1(ge(l,m)), π(j, k)〉〉) = 0 ∧
r(〈rel(π0(ge(l,m′)), l), 〈π1(ge(l,m′)), π(j, k)〉〉) = 1

) ]
Now we can define g̃e:

g̃e(l, 0) = ge(l, k) for k the least number such that

(n, x̄) = ge(l, k) defines a new set

= ge(l, k) for k the least number such that for

(n, x̄) = ge(l, k) we have new(n, x̄, l)

and

g̃e(l,m+ 1) = ge(l, k) for k the least number such that (n, x̄) = ge(l, k)

defines a new set that is not already defined by ge(l, k̃)

with k̃ less than or equal to the k used in g̃e(l,m)

= ge(l, k) for k the least number such larger than g̃e(l,m)

such that for (n, x̄) = ge(l, k) we have new(n, x̄, l) ∧ nb(l, k)

Now the formula ELevels can be defined:

∀l, k[π(l + 1, k + 1) is defined from π(l, 0)

by the formula and parameters in g̃e(l, k)]

⇔ ∀l, k, n, x̄((n, x̄) = g̃e(l, k) →
[∀yr(〈rel(n, l), 〈x̄, y〉〉) = 1 ↔ y Eω π(l + 1, k + 1)]

a

Note that with these formulas, if (N, E) is wellfounded, then so is (N, Eω)
(which is the main reason for the lemma to be done the way it is).

Let ξs ∈ Σ1 and ξp ∈ Π1 be the formulas witnessing that the class H =
{(x, γ) | x = Lγ} is uniformly ∆Lα

1 for α > ω a limit ordinal (see [2, Lemma
II.2.7]: the proof of this lemma uses some results from earlier in the book which
are not correct, but in [8] (Proposition 10.37 on page 213 and its proof) it is
shown that there is a theory which is strong enough to prove these results and
which is true at Lα for α a limit ordinal).
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Let E ⊆ N×N be such that (N, E) is wellfounded, and let r be its satisfaction
relation. Then let χ(E, r) be the formula (we write (N, E) |= θ for r(pθq))

∀n,m ∈ N
[
(N, E) |= “n is an ordinal” →

(N, E) |= ξp(m,n) ↔ (N, E) |= ξs(m,n)
]
∧

(N, E) |= “there is no largest ordinal” ∧
∃n ∈ N (N, E) |= “n = ω” ∧

(N, E) |= ∀x∃y
(
y is an ordinal ∧ ∀z (ξp(z, y) → x ∈ z)

)
.

Then the image X of the Mostowski collapse of (N, E) satisfies that H is ∆X
1 ,

there is no largest ordinal, ω ∈ X, and V = L. This gives us that X = (V )X =
(L)X = Lα for α = X ∩ Ord a limit ordinal > ω.

Lemma 3.7.

g ∈ A ⇔ the model encoded in g is wellfounded ∧
∀〈Eω, r, u〉 ϕ(〈Eω, r, u〉, g) ∧ χ(Eω, r) → r(pu ∈ Aq, ∅̄) = 1.

Proof. By induction on γ < ω1 we show that for all reals in Lβγ the equiva-
lence holds. So assume that g ∈ Lβγ and for all γ′ < γ we have the equivalence
for all reals in Lβγ′ .

If g ∈ A, then g uniformly encodes (N, E) such that (N, E) ∼= (Lβγ′ ,∈) with
γ′ < γ. The unique model (N, Eω) satisfying ϕ(〈Eω, r, u〉, g) has (N, Eω) ∼=
(Lβγ′+ω,∈), so also satisfies χ. And in the description of the construction we
have shown that (Lβγ′+ω,∈) |= g ∈ A, i.e. (N, Eω) |= pu ∈ Aq where u represents
g in the model.

If the model encoded by g is wellfounded and we have

∀〈Eω, r, u〉 ϕ(〈Eω, r, u〉, g) ∧ χ(Eω, r) → r(pu ∈ Aq, ∅̄) = 1,

then the unique 〈Eω, r, u〉 for which ϕ(〈Eω, r, u〉, g) has that (N, Eω) is well-
founded and satisfies χ(Eω, r). So there is a countable limit β > ω such that
(N, Eω) ∼= (Lβ ,∈). Since (N, Eω) |= u ∈ A, we have (Lβ ,∈) |= g ∈ A, which by
absoluteness gives g ∈ A. a

Since the formula on the right hand side of the equivalence is clearly Π1
1, this

completes the proof of the theorem.

§4. Questions. In this paper we were concerned with strongly mad families.
The results in this paper also answer the corresponding question for very mad
families.

Definition 4.1. An eventually different family of functions F ⊆ NN is a very
maximal almost disjoint (very mad) family iff for every F ⊆ NN such that |F | <
|F| and no member of F is finitely covered by F , there is a g ∈ F such that for
all f ∈ F the set f ∩ g is infinite.

In the second section the result is stronger than the corresponding result for
very mad families, and in the third section since we were in the context of the
continuum hypothesis the notions of very mad and strongly mad agree.
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For most types of almost disjoint families a standard axiom of choice construc-
tion suffices to construct them in the context of ZFC. This is not true for either
strongly or very mad families, which leads to the following question.

Question 4.2. Do strongly and very mad families exist on the basis of ZFC?

§5. Acknowledgements. We thank the anonymous referee for a careful
reading and many suggestions which improved the paper.
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[12] S. Todorčević, Analytic gaps, Fundamenta Mathematicae, vol. 150 (1996), pp. 55–

66.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF WISCONSIN

480 LINCOLN DR

MADISON, WI 53706-1388

USA

E-mail : kasterma@math.wisc.edu

DEPARTMENT OF MATHEMATICS

YORK UNIVERSITY

4700 KEELE STREET

TORONTO, ONTARIO

CANADA M3J 1P3

E-mail : steprans@yorku.ca



16 BART KASTERMANS, JURIS STEPRĀNS, AND YI ZHANG
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