
A hierarchy of languages, logics, and mathematical 
theories 
 
by Charles William Kastner, Houston, Texas, U.S.A. 
 
We present mathematics from a foundational perspective as a hierarchy in which 
each tier consists of a language, a logic, and a mathematical theory.  Each tier in the 
hierarchy subsumes all preceding tiers in the sense that its language, logic, and 
mathematical theory generalize all preceding languages, logics, and mathematical 
theories.  Starting from the root tier, the mathematical theories in this hierarchy 
are: combinatory logic restricted to the identity I, combinatory logic, ZFC set 
theory, constructive type theory, and category theory.  The languages of the first 
four tiers correspond to the languages of the Chomsky hierarchy: in combinatory 
logic Ix = x gives rise to a regular language; the language generated by S, K in 
combinatory logic is context-free; first-order logic is context-sensitive; and the typed 
lambda calculus of type theory is recursive enumerable.  The logic of each tier can 
be characterized in terms of the cardinality of the set of its truth values: 
combinatory logic restricted to I has 0 truth values, while combinatory logic has 1, 
first-order logic 2, constructive type theory 3, and categeory theory ω0.   We 
conjecture that the cardinality of objects whose existence can be established in each 
tier is bounded; for example, combinatory logic is bounded in this sense by ω0 and 
ZFC set theory by the least inaccessible cardinal.  
 
We also show that classical recursion theory presents a framework for generating 
the above hierarchy in terms of the initial functions zero, projection, successor, as 
well as composition and µ-recursion, starting with the zero function I in 
combinatory logic  
 
This paper begins with a theory of glossogenesis, that is, a theory of the origin of 
language, since this theory shows that natural language has deep connections to 
category theory and it was through these connections that the last tier of the 
hierarchy was discovered.  The discussion covers implications of the hierarchy for 
mathematics, physics, cosmology, theology, linguistics, extraterrestrial 
communication, and artificial intelligence. 
 

Glossogenesis 
 
Studies of great apes in the wild over the last 40 years have given us a riveting portrait of 
what early human life may have been like.1,2,3,4  One aspect of our history in particular 
has remained obscure, however, and that is how we made the transition to human 
language.5,6  We present here a glossogenesis theory based on natural selection that uses 
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the overall setting provided by wild ape studies as a social and environmental backdrop, 
adding one essential new ingredient: the ability to ground symbols denoting physical 
objects, by which we mean the ability to name things with spoken language.  This new 
ingredient is not far-fetched, given the variety of chimpanzee and other primate 
vocalizations and their semantics, and particularly in light of the ability of vervet 
monkeys to emit different alarms for leopard, snake and eagle.7,8,9,10,11 

 

The theory is based on the following ideas:  1) on the road to present-day human 
language, man developed a series of protolanguages of gradually increasing complexity,12 
2) there exists within human language a well-defined hierarchy of syntactic structures, 
with higher level structures dependent on all lower level structures, 3) the above-
mentioned hierarchy is linear, so that one can define the nth protolanguage to be the 
language containing the nth syntactic structure in addition to all n-1 syntactic structures 
above it in the hierarchy, 4) the hierarchy of syntactic structures can be deduced from the 
physical world, 5) the selection process at work involved competing, hostile groups 
speaking different protolanguages or the same protolanguage with different levels of 
proficiency, 6) a group speaking one protolanguage had better survival chances than a 
rival group speaking the same protolanguage with less proficiency or a less complex 
protolanguage within the same environment, everything else being equal, 7) as one 
approached modern human language in the hierarchy, the selection advantage for the 
individual with greater linguistic proficiency became increasingly important.   
 
One key assumption of the theory is that natural selection can operate on a group level, 
an hypothesis that has proponents among evolutionary biologists.13,14  It also makes two 
major assumptions about early human society:  that humans socialized in well-defined 
groups and that rival groups competed with one another violently.  In fact, the second 
assumption is really only used in the theory in the development of two syntax structures 
corresponding to the numerical concepts one and two, and it may be that other scenarios 
that selected for these concepts can be found that do not require the existence of hostile 
groups.  In any event, there is precedent among primates for such groups.  Chimpanzees 
in particular live in small groups inhabiting established territories with habits and 
technologies so distinguished from those of neighboring groups that to speak of 
chimpanzee culture is appropriate.15   Chimpanzees are also known to raid other groups 
and attack their members.16  A likely group size for early humans may have been from 50 
to 150 individuals, although this size of course grew with time.17   
 
For each syntax structure presented below we will do the following:  1) define what it 
means, 2) discuss why it requires the structures above it, 3) discuss the horizontal 
extension of the syntactic structure, that is, the evolution of meaning within the 
protolanguage, 4) apply a statement in the protolanguage to a scenario in which the 
survival rate of the population or individual that can utter it is enhanced, and 5) discuss 
the selection advantages of the new structure.   
 
We have strictly applied the following criterion in distinguishing between the horizontal 
extension of a structure and vertical extension to a new structure: no protolanguage is 
allowed to depend on the horizontal extension of a less complex protolanguage.  For 
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example, nowhere in the theory do we presume the ability to count to three, since two is 
the highest structure related to number.  Further counting is a horizontal extension of two.   
 
An informal notation is adopted using the idea of an operator.   Within each syntax 
structure after symbol an operator is introduced whose meaning defines that syntax 
structure.  The term operator is used to emphasize that the new syntax acts on something 
to bring out something new.  The operands, i.e. the things operators act on, in all cases 
represent symbols, which we will define presently; they are written α, β.  We call an 
operator that operates on one symbol a unary operator, and an operator that operates on 
two symbols a binary operator. 
 
 

Symbol 
 
symbol is a language comprised only of symbols.  A symbol is a spoken word which 
refers to a thing in the real world and which has meaning even when that thing is absent 
from the context of usage.   
 
 
Horizontal Extension:  We assume that over time speakers were able to agree on a 
symbol for any physical object, and ignore the issue of how such symbols were grounded.   
However, at the time when symbol was the only protolanguage, it is likely that new 
symbols would only arise if they had immediate natural selection implications for the 
group.  The first symbols may have been alarm cries analogous to those of vervet 
monkeys.18 
 
The horizontal extension of symbol happens in all subsequent protolanguages.  Indeed, as 
the hierarchy of protolanguages is traversed, most dependent sub-protolanguages 
continue to expand horizontally.  The process of adding symbols to the language must 
have been continually refined, so that beyond the classification protolanguage, one can 
imagine symbols being added quite readily. 
 
Usage Scenario:   “Tiger,” in the presence of a tiger.   
 
Although we don’t mention them further here, all utterances given in all usage scenarios 
are assumed to be accompanied by gesturing and other cues such as tone and volume of 
voice, and so on.  The complex non-verbal communications systems in primates and the 
copious amount of information they convey stand in stark contrast to the meager 
information content of early language. 
 
Selection Advantage:  Obvious. 
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Negation Epoch 

Negation 
Operator:   ! is a unary operator indicating the absence of the physical object referred to 
by the symbol upon which it acts.    
 
Valid statements in the negation language consist of all valid statements from symbol, 
which are just symbols α, β, and so on, plus statements using the operator !, such as 
!α, !β and so on.  In general, each protolanguage includes all valid statements from the 
preceding protolanguage and adds the new statements made possible by its operator, 
including compositions of the new operator with previous operators.  These compositions 
are not part of the horizontal extension of the protolanguage since the meanings of the 
component operators are known and so the composite operator is immediately 
meaningful. 
 
Other Required Structures:  negation is obviously meaningless without symbol. 
 
Horizontal Extension:  In the negation and all subsequent protolanguages, the ! operator 
means no or not.    
 
Usage Scenario:   “Not tiger,” when a tiger warning has already been issued, but turns 
out to be false.   
 
Selection Advantage:  The original warning will cause a panic, which can be exploited 
by other predators.  Calling off the warning allows for a return to normal vigilance.  
 
 

Singularity 
 
Operator:  singular α is a unary operator that indicates there is exactly one instance of 
the physical object referred to by the element of symbol it acts on. 
 
Other Required Structures:  singular  is obviously meaningless without symbol, but it 
also requires negation, since it is predicative, meaning that it says something about a 
subject, and a predicate only has meaning if the concept of the truth or falsity of a 
predicate is available, i.e. only in negation and subsequent protolanguages.   Without the 
concept of the truth or falsity of a predicate, any predicate would have to be universally 
applicable and therefore could not be used to characterize a subject in a meaningful way.     
 
Given a symbol β, suppose we have a singularity operator without negation.   In order for 
this operator to be well defined, that is, in order for a speaker to know when to use this 
operator, it must have meaning in all situations in which a speaker encounters the object 
referred to by β, and those situations include more than one object referred to by β.  
Otherwise, if we assumed that singular only had meaning when a single object were 
present, then in order for the speaker to have a criterion for when to use the operator, 
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symbol would need to contain at least two kinds of β, one for a single instance of the 
object referred to by β and one for multiple instances of the object referred to by β.  
Clearly that could not happen: two such betas could not arise before singular, since their 
meaning requires the functionality of singular.  In other words, it is the job of the 
singular operator to expand the symbolic world; it is not up to symbol to spontaneously 
evolve.  So what happens when there is more than one object referred to by β?  The 
putative singular operator without negation in that case is not defined and the speaker has 
no criterion for deciding whether or not to use the operator, which makes the operator 
meaningless. 
 
In order for singular to be always properly defined, we need negation.  Now when a 
speaker encounters an object or objects referred to by β, he or she can use the singular 
operator when there is one object, or the negation of the singular operator when there is 
more than one.  To indicate that there are no objects referred to by β, the speaker of 
course can use !β.  
 
The requirement that negation precede singularity is analogous to the requirement in 
classical recursion theory that the primitive recursive function α be defined before any 
primitive recursion predicate function can be defined.  The function α(x), defined as 1 if 
x is 0 and otherwise as 0, fills the role of negation (see Appendix I, Table x+1). 
   
 
Horizontal Extension:  None. 
 
Usage Scenario:  “Single enemy,” when a single enemy is present.   
 
Selection Advantage:  A single enemy can be overcome by a group of speakers.  The 
advantage is that this weakens the rival population and lessons competition for food 
resources.   
 
 

Duality 
 
Operator:  dual α is a unary [sic] operator that indicates there are exactly two instances 
of the physical object referred to by the element of symbol it acts on. 
 
Other Required Structures:  dual  is obviously meaningless without symbol and it 
clearly also requires singular.  The reason that duality is required as a separate syntax 
structure is that it is required by the following structure, similarity. 
 
Horizontal Extension: duality extends horizontally as counting: first there is a symbol 
for three instances of an object, then four instances, and so on.  
 
Usage Scenario:  “Two enemies,” when two enemies are present.   
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Selection Advantage:    Two enemies can be overcome by a group of several speakers.  
The advantages of this are the same as given above for a single enemy.  One can imagine 
that a member of the population who hears this may react differently depending on sex, 
age, size, and so on. 
 

Similarity 
 
Operator:  similar α,β  is a binary operator that indicates there is some perceived 
similarity between the two instances of the physical objects referred to by the elements of 
symbol it acts on.  One or both of the objects referred to may be understood by pointing 
or by gazing; these forms of non-verbal communication are observed in other 
primates.19,20,21 
 
Other Required Structures:  similar is obviously meaningless without symbol, but it 
clearly also requires duality, since making a statement that things are alike requires that 
two objects be brought to mind simultaneously.  It also requires singularity, since specific 
solitary instances of α and β are initially involved, but singularity is inherited from 
duality. 
 
Note that a demonstrative pronoun is not required as a syntax structure here because that 
meaning must be supplied by pointing.  Demonstrative pronouns arise as a horizontal 
extension of reflexive verb, since it is not until then that the implied reference back to the 
speaker makes sense.   
 
Note also that similar requires symbol, but it does not necessarily require known symbols.   
This operator was undoubtedly used as new symbols were being established.     
   
Horizontal Extension:  Eventually similar operates in situations where neither symbol 
operated on refers to a specific instance of a thing.  
 
Usage Scenario:  “[this] bug like [that] bug!” when the second bug is known by 
everyone to be good to eat and non-biting, and the speaker knows the first bug to also be 
good to eat and non-biting. 
 
Selection Advantage:  Obvious. 
 

Classification 
 
Operator:  class_x α is a unary operator that indicates that the thing referred to by the 
symbol it acts on has quality x, where x represents any quality or attribute. 
 
Other Required Structures:  class_x is obviously meaningless without symbol.   To see 
why similarity is necessary, assume it is not necessary.  If a speaker of classification only 
knows duality, then the only way he can classify things is by number.  But that’s 
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something he can already do, as a speaker of duality.   He must know similarity so that he 
can group things together in his mind based on their being alike in some way.   
 
As in the case of similar,  class_x requires symbol, but it does not necessarily require a 
known symbol.   The object referred to may be understood by context.  
 
Horizontal Extension:  class_x  from the beginning says what kind of thing a thing is 
and that includes things that can be classified by an intransitive action.  In this regard it is 
worth noting that some modern languages such as Chinese do not clearly distinguish 
between adjectives and intransitive verbs.22  At any rate, there would be no way to 
distinguish in classification between hot and boiling, for example, since all usage is 
predicative.  Of course, in subsequent protolanguages the ability to distinguish the quality 
from the action related to the quality was developed.   
 
Usage Scenario:  “Good plant!” when the speaker wants to convey that a plant is good 
for a given ailment.23  Here the quality referred to is the quality of being beneficial. 
 
Selection Advantage:  Obvious. 

 
Comparison 
 
Operator:  more_class_x α, β is a binary operator that indicates that the physical objects 
referred to by the symbols upon which it acts differ from one another in terms of degree 
with respect to a given classification class_x.  It means that the first operand has more of 
the quality denoted by class_x than the second operand. 
 
 
Other Required Structures:  more_class_x clearly requires classification.  As was the 
case in classification,  more_class_x requires symbol, but it does not necessarily require 
known symbols.   The objects referred to may be understood by context.  
 
Horizontal Extension:  The quality x in more_class_x initially was probably only the 
quality of being good; in other words, initially more_class_x meant better.  Gradually, 
more differentiating qualities were referred to, such as sharpness in the usage scenario 
below. 
 
Usage Scenario:  “[This] rock sharper than [that] rock.” 
 
Selection Advantage:  Being able to differentiate things by degree allows speakers to 
store more detailed knowledge about what works and what doesn’t work to their 
advantage. 
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Sequence 
 
Operator:  first α is a unary operator that indicates that the object referred to by the 
symbol upon which it acts occurs before some other object as perceived by the speaker, 
with respect to time or space. 
 
Other Required Structures:  first requires comparison, for the following reason.  first 
as applied to space is  really identical to more_class_x, where x is the quality of being 
close or near in space and the second operand is understood from context .  As an 
example from English, consider The apple tree is the first tree in the row of trees that 
extends to the south from the road.   
 
The reason that sequence is required as an independent syntax structure is that it is 
required by subsequent structures; otherwise, it could be considered a horizontal 
extension of comparison.  
 
Horizontal Extension:   In the beginning, !first was understood as last. Later, sequence 
extended horizontally to the ordinals second, third, and so on.  The degree of extension is 
the same or less than the degree of extension of the cardinals, which occurs in duality.   In 
addition to ranking with respect to space or time, the operator was extended to allow 
ranking with respect to any quality, for example the quality of being good or fast.   
Included in this extension is the superlative, which denotes first rank of at least three 
things, as in the ranking best, better, good, or fastest, faster, fast.   
 
The speaker cannot distinguish at this point between time and space.  The usage scenario 
below illustrates a sequence in time. 
 
Usage Scenario:   “Impala first, spear last,” when the speaker has thrown a spear at an 
impala running across his field of vision.  He aims his throw at the current position of the 
impala and when the spear lands there, the impala is no longer at that position. 
 
Selection Advantage:  The author remembers as a boy the first few times he tried to 
throw a ball at a receiver running across his field of vision: the ball always landed behind 
the receiver.  The ability to throw ahead of the receiver so that the ball hits him as he runs 
is not innate, but requires a conscious, i.e. verbally based, effort, at least in order to 
quickly acquire the ability.   This ability has obvious selection advantages for speakers 
who hunt using a spear or rock trying to hit a running animal. 24 
 

Elapsed Time 
 
Operator:  earlier_class_x α is a unary operator that indicates that the object referred to 
by the symbol upon which it acts was in a state characterized by the quality x at some 
point in time earlier than when the operator is used. 
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Other Required Structures:  earlier_class_x clearly requires sequence and also 
classification.  It must be an independent structure because it is the first structure to 
distinguish time from space, and subsequent structures require that capability. 
   
Horizontal Extension:  earlier_class_x has little horizontal extension.  Eventually the 
state quality x may be dropped and the operator used adverbially.  
 
Usage Scenario:  “Earlier impala sleeping,” when the speaker finds matted grass after 
seeing an impala from a distance and going over to investigate. 
 
Selection Advantage:  The speakers become better hunters if they are consciously aware 
of the habits of their prey.  In the above scenario, they might come back another day and 
see if the impala return. 
 

Transitive Verb 
 
Operator:  action_x α,β is a binary operator that indicates that the object referred to by 
the first symbol upon which it acts performed an action x on the object referred to by the 
second symbol.  α or β might be understood by context. 
 
Other Required Structures:  action_x clearly requires symbol, but it also requires 
elapsed time.  We will give a lengthier explanation than usual for this, since at first 
glance it may seem counterintuitive, especially if one considers that by the time transitive 
verb is reached considerable time may have elapsed since the introduction of negation, 
the first syntax structure which unambiguously distinguishes human language from other 
native primate languages. 
 
The idea that the meaning of a verb could be established by an innovative speaker of 
duality who mimics or performs an action for an audience must be rejected.  Context 
would already convey the meaning intended by the verb and so the verb could neither 
take hold nor even have a reason for being.  Another reason that such a scenario does not 
work is that the speaker would have had to have at least spoken sequence, because the 
source of the action begins acting before the receiver begins receiving the action and a 
speaker must understand this before discovering the concept of subject and object (α and 
β).  But even here we fall short, for the following fundamental reason.   
 
The receiver of the action of the verb undergoes a change of state due to that action;  for 
example, in the case of the verb hit, he goes from being untouched to touched, or unhurt 
to hurt, or sleeping to awake, as the case may be.  Or take the example of the verb kill;  
here the receiver goes from the live state to the dead state. Any transitive verb one can 
think of also has this effect of changing the state of the receiver of the action: kiss, push, 
trick, eat, throw, pull, tear, break, and so on. The elapsed time structure provides the 
mechanism for expressing this change of state, via earlier_class_x, !earlier_class_y, 
where in the latter statement !earlier…means later and the quality y is the negation of the 
quality x in the former.  Without this understanding of change of state, transitive verb 
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cannot be discovered, just as similarity cannot be discovered without an understanding of 
duality. 
 
One final reason that action_x requires elapsed time:  action_x only makes sense as a past 
tense when it is first introduced.   As we’ve mentioned, context makes usage of the 
transitive to describe concurrent action unworkable at this stage of the hierarchy.  This is 
consistent with the fact that a transitive verb brings about a state change in the receiver: 
in order for the receiver to be in the new state, the action of the verb has to take place 
before the speaker speaks.  So in transitive verb, what speakers were really saying was  
kissed, pushed, tricked, ate, threw, pulled, tore, and  broke.    Since no syntax structure 
before elapsed time distinguishes between time and space,  transitive verb cannot be 
before elapsed time in the hierarchy. 
 
Horizontal Extension:  action_x instances originally had to be expressed in terms of the 
instrument used to perform the action, possibly accompanied by all or part of 
earlier_class_x, !earlier_class_y.  So, for example, speared was used before killed.  
 
Since sequence is available at this level, at some point two action_x statements were 
chained together to describe two events in order, and then three statements, and so on. 
 
After the introduction of cyclic time, transitive verb extends to different time contexts and 
to verbs of emotion, etc. 
 
Usage Scenario:  “Rock cut skin,” when the speaker brings up the fact that he just cut an 
animal skin with a rock, in order to point out a new application for a sharp rock.  
 
Selection Advantage:  The selection advantage of the above usage scenario is clearly 
less immediate than in the earliest structures.  This reflects a trend for successive syntax 
structures to have selection advantages that are more and more systematic.  Originally, 
language served to immediately save lives and was used chiefly in life and death 
situations.  Over time, it increased survival rates by improving survival processes, so that 
its use was not only for life and death situations, but also for referring to situations that 
had long-term implications for the survival of the group. 
 
The selection advantage of transitive verb is that it allows a more elaborate description of 
processes that work for survival, so that these can be preserved, and it facilitates the 
discovery of new survival processes because existing processes that work have been 
better described and understood. 
 

Reflexive Verb 
 
Operator:  action_x_on_self  α is a unary operator that indicates that the object(s) 
referred to by the symbol upon which it acts performed an action x on 
himself/herself/itself/themselves. 
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Other Required Structures:  action_x_on_self clearly requires transitive verb.  
However, it cannot be a horizontal extension of transitive verb because it is required by 
the next syntactic structure in the hierarchy, cyclic time.  This is a point worth discussing 
here.  
 
We first point out that before reflexive verb a verbalized concept of identity is not 
available.  In transitive verb there is nothing in the language that allows for a speaker to 
refer to himself or herself, or for a speaker to refer to another object as referring to itself.  
The word I does not exist yet, because nothing has allowed it to exist.  It is possible for 
action_x to be used with the speaker understood by context to be the one who carried out 
the action, but that does not mean that the speaker has a concept of herself as a separate 
identity, nor does it mean that other speakers will interpret the fact that the speaker 
carried out the action as meaning that the speaker has an identity.   In the speaker’s mind 
the focus is on the action and the receiver of the action, but not on herself as the initiator 
of the action, because nothing in transitive verb allows her to refer to herself using words.  
If no speaker has a concept of his or her own identity, no particular thing can have an 
identity in a speaker’s mind either, because the concept of identity does not exist. 
 
We also point out that in order for the concept of future to emerge, it is necessary for 
there to be an external time marker undergoing periodic motion that serves as a time 
reference, such as the sun or moon.   Without a time marker, there would be no way to 
associate an event with a time, and no way to project a certain amount into the future, 
because there would be no metric for such a projection.   In the discussion below, we 
refer to two separate events at two different times.  We assume the two events both occur 
during daylight hours and that they are separated by less than a few hours. 
 
Now we are able to discuss the discovery of cyclic time.  The speaker knows how to think 
backwards in time from time elapsed, so she first thinks backwards.  She must remember 
some remarkable event in the past that she witnessed, which she can do because she 
speaks reflexive verb, and associate with that event the position of the sun, her time 
marker, at that time.  She can make that association if the sun hurt her eyes, for example, 
again because she speaks reflexive verb.   In effect, she must now transport herself into 
her previous self for an instant to that event and from that point in time and space think of 
herself in her current state, noting the current position of the sun and realizing that the 
position of the sun has continuously evolved from its position at the time of the event to 
its current position.   Finally, having understood the forward-moving nature of time, it 
dawns on her that she can project from her current state to the future some amount, and 
extrapolate to get the position of the sun at that future time.   Once this mapping from sun 
position to events in time is understood, the cyclical aspect of the sun’s motion is also 
readily understood.  
 
Clearly the process just described requires that the speaker understand that the person 
who witnessed the remarkable event and the person reflecting on that event are one and 
the same, that is, that she have a concept of her own identity, which as we’ve argued first 
arises in reflexive verb.  
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Horizontal Extension:  reflexive verb extends horizontally in many ways.  As argued 
above, a speaker’s sense of identity is established here.  Also, it becomes apparent that 
other speakers also have identities which can be addressed with language.  This shift in 
consciousness must have generated an explosion of verbal communication.  Before 
reflexive verb language was strictly declarative, the only form of discourse being  
declarations in sequence, which were limited by the syntax available in transitive verb --- 
repetition was the main form of linguistic interaction between speakers.  In reflexive verb 
it became possible to ask for information from others, because they were thinking beings, 
too, with whom a convention could be established for exchanging information.  Dialogue, 
in which speakers may explicitly refer to themselves and their interlocutors, could now 
take place.  Furthermore, language was now a conscious act, which means it could be 
consciously, that is deliberately, developed.  It is no exaggeration to liken this abrupt 
change in human communications to a phase transition in a physical system, in which a 
system undergoes a transition from a disordered to an ordered state due to an 
infinitesimal change in some physical quantity upon which the system depends. 
 
In reflexive verb many new forms of expression are possible.  The question words what, 
where, who, which and how, personal pronouns such as he, she, you, we, possessive 
markers such as my, your, mine, clearly all of these can now be discovered and used.  
Also, the demonstratives this, that, these, and those make sense because they refer 
indirectly to the speaker, who now has an identity.  Relative clauses such as that I threw 
in the rock that I threw are also possible after questions and demonstratives have been 
introduced.  After relative clauses, the definite and indefinite markers the and a too make 
sense. 
 
Representative art is now possible, since speakers can be aware in some dim sense of the 
essence of symbol. 
 
Usage Scenario:  “Hit myself,” when the speaker hits himself with a sharp rock and 
explains to others what happened. 
 
Selection Advantage:  In reflexive verb selection operates to a significant extent on the 
individual as well as the group level.  Although selection on the individual level 
undoubtedly occurred in previous protolanguages, in reflexive verb interpersonal relations 
have a much stronger verbal component than before.  This allows an intelligent speaker 
more opportunity to stand out in complex social situations, which results in better 
chances of reproductive success.   On the group level, the advantage that the drastically 
improved communications made possible in reflexive verb is obvious. 
 

Cyclic Time Epoch  
 
We now describe the hierarchy’s next ten structures, each of which we will later show to 
be closely analogous to a corresponding structure already described, namely the structure 
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occurring ten steps back in the hierarchy.   The selection advantages of these new 
structures are obvious. 
 

Cyclic Time 
In cyclic time speakers discover the meaning of units in time by reference to something 
that repeats itself over and over at regular intervals in time.   
 
We have already discussed the mechanism for discovery of cyclic time while discussing 
reflexive verb, where we argued that cyclic time requires reflexive verb.  From that 
discussion it is clear that along with cyclic time emerges the concept of the present as 
well as the future, so that speakers now understand past, present and future.  Therefore, 
all time-related verbal markers can now occur, although not all at once since there is a 
dependence among them.  Verbs of volition now make sense, too, because the speaker 
has a concept of the future and the ability to anticipate verbally, and likewise imperatives 
are now possible.  Time units day, month, year, and fractions of day also arise here. 
 
The reason cyclic time must exist as a separate syntax structure is that it is required by the 
next structure, implication. 
 

Implication 
 
implication is a syntax structure characterized by the if-then construction.   We argue that 
cyclic time must be available in order for implication to emerge.   
 
In order for implication to establish itself, there must be a belief that given a certain set of 
circumstances, the consequences of those circumstances are similar whenever that certain 
set of circumstances happens again.   Such a belief can only arise if it is seen over and 
over as a pattern.  Here is an example. 
 
Let us call A a circumstance and B an event for the sake of simplicity; in general, A and 
B each could be either a circumstance or an event.  Now consider the following pattern in 
time:  AB**************AB*********AB************AB…, where the 
************** indicate arbitrary events and circumstances not including A, and the 
three dots at the end indicate the pattern repeats itself an arbitrary number of times. 
 
If the pattern is repeated enough, then it will be held that given A, B will follow as 
inevitably as it follows that if the sun is currently rising, it will later be at high noon, 
provided cyclic time is spoken.   
 
One might argue that the mere repetition of AB in itself might be sufficient to cause one 
to understand that given A, B will always follow, without cyclic time; one could imagine 
for example a rat in a cage with constant lighting being conditioned to respond to a 
stimulus.   The point to be made here in response is that we are trying to show where in 
the hierarchy the understanding that B follows A can be explicitly expressed with 
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language.  Let us look at the problem more closely: suppose there are many such rats in 
the above-mentioned controlled environment and that these rats speak reflexive verb, 
which we assume is a necessary condition for the discovery of implication.  If cyclic time 
were not available, then the rats could not say that B always follows A, because this 
implies that they have a concept of something happening over and over, now and in the 
future.  From elapsed time they can express order in time, but without cyclic time they 
don’t have a notion of the present or future, since in reflexive verb the action of all 
expressions involving time starts and ends at some point in the past.  In reflexive verb 
they could say B always followed A, which strictly refers to the past and does not involve 
implication.   
 
There is an interesting question that arises from the rats discussion above, namely 
whether the notions of present and future time could have been discovered without 
discovering the cyclic aspect of time; the question is interesting because implication 
might be discovered with these notions alone.  If A and B were both events, and B 
followed A at regular intervals, then the rats could use the AB cycles to discover cyclic 
time by the mechanism we’ve already described: A and B would be analogous to two 
points on the sun’s trajectory.  We want to consider what might happen if the intervals 
between A and B were aperiodic.  According to our arguments above, the discovery of 
cyclic time relied on the speaker realizing that the position of the sun had moved in a 
predictable fashion from one point to another during the time separating a memorable 
past event and the present.  If the only thing that can be said about the relation in time 
between A and B is that they are ordered, then it is not possible to predict when B will 
occur, given A.  So even if there are events A and B corresponding to the past event and 
the present, respectively, and even if the speaker happens to notice the corresponding 
position in time of both A and B, there is no way for him to establish a rule for measuring 
distances in time based on the distance in time between the past event and the present.  
Without such a metric, the idea of projecting into future time cannot occur to him, and 
without an understanding of future time, the present has no meaning, being a bridge 
between past and future time.  We conclude that understanding the cyclic aspect of time 
goes hand in hand with understanding present and future time and therefore is 
indispensable for the discovery of implication. 
 
The horizontal extension of implication includes the question why, the concept of 
causality, and conditional modalities in verbs, as in if you had listened to the crow, you 
would have known the rain was coming.  Verbs of cognition such as to know are also 
possible now for the first time.   
 

AND 
 
AND is a syntax structure that includes the two logical operators AND and OR.  They 
emerge together because a AND b is the same as !(!a OR !b) and likewise a OR b is the 
same as !(!a AND !b).    In logic, the operators negation, AND and OR form what is 
called an adequate set of connectives, which means that any truth function can be 
represented by a statement whose variables are acted upon by a combination of those 
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connectives;  some other adequate sets are {negation, OR}, {negation, AND}, and 
{negation, implication}.25  The essence of the AND structure is that speakers now have an 
intuitive understanding of the concept of an adequate set of connectives.   
 
Obviously, these operators require implication in order to have meaning.  They could be 
considered to be a horizontal extension of implication, but once again they must be a 
separate structure because they are required by the next structure, equality. Regarding 
their origin, one can use arguments similar to those used for implication based on cyclic 
time.  
 

Equality  
 
equality is a syntactic structure which allows one thing to be thought of as equal or 
equivalent to another in some sense.  Looking back, we notice that similarity is a 
structure that goes in the direction of equality; this is the first obvious hint of the parallels 
between structures to be found throughout this article.  
 
The new syntax is given by the binary operator equivalent_x α, β, meaning α is 
equivalent to β with respect to a classification x.  This operator requires AND as we shall 
now show, and therefore was not possible before now.   
 
We recall that more_class_x α,β, the comparison operator, indicates that α has more of 
the quality denoted by class_x than β.   Combining this operator with implication and 
AND, we get 
 
if( !more_class_x α,β  AND !!more_class_x α,β  ) then equivalent_x α,β. 
 
In words: if α doesn’t have more of the quality x than β and it doesn’t have less, then it 
has the same amount, i.e. α is equivalent to β with respect to the quality x.  This 
procedure for defining equality is analogous to the procedure for defining equality as a 
primitive recursive function x = y, which defines two numbers to be equal by first 
defining the primitive recursive absolute value |x – y|, and then uses a form of negation of 
the absolute value. The definition of the absolute value is |x – y| = (x∸y)+(y∸x), where 
the binary operator ∸ is defined by x∸y = x – y if x > y, and 0 otherwise.  The definition 
of equality is then α(|x – y|) = α((x∸y)+(y∸x)), where α(x) is defined as 1 if x is 0 and 
otherwise as 0. 
 
A natural context in which such a thought process would occur is in the cutting and 
playing of two reeds as musical instruments; in this case the quality x is the length of the 
reeds: if they are the same length, they give the same tone, which is much more pleasing 
than if the tones are slightly different, outside of a very small tolerance.  By cutting 
different lengths related in a certain manner consonant intervals could be generated, for 
which humans appear to have a universal preference.26  This context appears so natural 
that the author holds that equality was in fact discovered this way, under the assumption 
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that our preference for consonant intervals did not develop after the discovery of equality.  
Other contexts, such as the sizing of spear tips to fit stone spearheads, seem to lack the 
motivation for such exactness or they lack such a sensitive gauge for measuring 
convergence on an exact value; weighing things using a balance scale is another 
possibility, but that appears to be premature at this point in the hierarchy. 
 
The horizontal extension of equality is extremely rich.  As indicated, music starts here.  
The question of what something is or is not can first be asked in this structure. Abstract 
concepts such as love and courage can be synthesized.  Epistemology and the beginnings 
of science, from history to Euclidean geometry to physics, are now possible.    
 

Equivalence Class 
 
equivalence class is a mathematical structure.   Several definitions emerge with it at once: 
binary relation, equivalence relation, equivalence class, partition, set, subset, and 
element.  These definitions are possible because equality allows new concepts to be 
defined using existing syntax structure.   
 
Provisionally, we say a set is a collection of things called elements.  A subset of a set S is 
a set containing none, some or all of the elements of S.  A null set contains no elements. 
Given a non-null set S containing elements A, B, C, …, a binary relation on  S is a set 
whose elements are ordered pairs (A, B) of elements of the set S.   A binary relation R on 
a set S is an equivalence relation if the following three statements hold for all elements A, 
B and C of S: 

 
1. if (A, B) is an element of R, then (B, A) is an element of R. 
2. if (A, B) and (B, C) are elements of R,  then (A, C) is an element of R. 
3. (A, A) is an element of R. 

 
An equivalence class is defined in terms of equivalence relation, as follows.  Given a set 
Z with an equivalence relation defined on it, there is a theorem that says that Z can be 
partitioned in a unique way into subsets based on the equivalence relation.27  These 
subsets are disjoint, meaning that every element in Z is in exactly one of the subsets.  
Each subset is called an equivalence class; the decomposition of the set into equivalence 
classes is called a partition.  The theorem also says the converse is true; in other words, 
given a partition of a set, a unique equivalence relation on that set is determined.   
 
For example, given the set Z = {1,2,3,4,5} partitioned into three equivalence classes as 
follows {1}, {2,4,5}, {3},  the corresponding equivalence relation is given by R = {(1,1), 
(2,2), (3,3), (4,4), (5,5), (2,4), (4,2), (2,5), (5,2), (4,5), (5,4) }.   
 
Now we return to the definition of set and say a set is something we construct by the 
procedure indicated above:  starting with a collection of things, we define an equivalence 
relation on the collection, and that makes our collection of things a well-defined set. 
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To show that the above-mentioned definitions are possible at this stage of the hierarchy, 
we justify them as follows.  The definition of set, first in its provisional form as a 
collection, makes use of sequence to build the set one by one from its constituent 
elements in any order we choose; subset also uses sequence in the same way.   The 
definition of null set requires negation.  Ordered pairs in the definition of binary relation 
come from sequence and duality.   The conditions required for an equivalence relation 
use syntax from implication and AND.  The above-mentioned theorem makes use of 
implication, comparison, AND and singularity in its statement and proof.   Finally, the 
names of these concepts, as all words, come from symbol. 
 
equivalence class is required as a separate structure because the concept of set is required 
by the following structure,  function.   
 

Function 
 
function is a mathematical structure.  A function relates one set to another, a source set to 
a target set, by associating with each element of the source set exactly one element of the 
target set.  The source set of a function f is called the domain of f, and the target set is 
called the codomain.  Other names for function are mapping, transformation, operator, 
and map.  A function f from the set A to the set B is often written  

                                         f 
A  B 

 
For each element a in the domain A, f assigns an element b = f(a) in the codomain B.   
 
A careful definition of a function f says that it is a set whose elements are ordered pairs 
(x, f(x)), where x ranges over the entire domain of f, subject to the condition that given an 
x, f(x) is a single element of the codomain of f.  We are able to speak of sets and elements 
here because of equivalence class and of ordered pairs again because of sequence and 
duality.  Also, the subject to the condition in the definition comes from implication. The 
word entire comes from sequence:  we build these ordered pairs starting from the first 
and ending at the last element in the domain according to any order of our choosing.  
Lastly, we note that single comes from singularity.  
 
The horizontal extension of function includes monomorphism, epimorphism, 
isomorphism, endomorphism, and automorphism, all of which are functions having 
special properties with respect to domain and codomain.   For example, an 
endomorphism is a function for which A and B are the same set.   
 
In physics, Kepler’s laws, force, Newton’s laws, and Maxwell’s equations can all occur 
here, as well as thermodynamics, statistical mechanics, optics, and so on.   
 

Function Composition 
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function composition is a structure needed by the next structure, category.  Given sets A, 
B, and C, and a function φ from A to B and a function ω from B to C, we define the 
function ζ = ω◦φ from A to C to be given by first applying φ, then ω.  function 
composition is actually a function, since it takes two functions and maps them to a single 
function. 
 
function composition is the glue that holds category theory together. 28  Practically 
anything of interest in category theory can be drawn up as a diagram with arrows 
between objects, where the arrows represent functions.  Many interesting cases arise 
when there is more than one sequence of arrows available to get between two given sets 
in a diagram.  In such cases, when more than one arrow is involved in such a sequence, 
functions are being composed. 
 
In theory our speakers could still only be counting to two if there had been no horizontal 
extension in duality at all.  Using A, B and C appears to violate our principle of not 
allowing any structure to rely on the horizontal extension of a less complex structure.  We 
get around this problem by noticing that we can speak only of two objects in this case, so 
C must be either A or B. 
 
The horizontal extension of composition involves chaining three functions together to get 
a new function, then four, and so on. 
 

Category 
 
A category C is a set of things A, B, C, D, E … called objects, and a set of function-like 
things called morphisms or arrows that go from object to object.  A category is subject to 
the following two conditions: 29,30,31 
 

1. Composition of morphisms is defined, and is associative, which means that given 
morphisms ω from A to B, φ from B to C, and ζ from C to D, the following holds: 
(ζ◦φ)◦ω = ζ◦(φ◦ω).  

2. For each object A in C there exists an identity morphism 1A such that, given 
morphisms κ from A to B and λ from C to A, we have 1A ◦λ = λ and κ ◦1A  = κ. 

 
Morphism is a generalization of the concept of  function.  A morphism distinguishes 
itself from a function in that it is allowed to have no ordered pairs at all, although we still 
give it a domain and codomain;  the name arrow reflects this generalization.   
 
An object refers to anything at all, a fish, a sack of potatoes, a set, anything, as long as 1. 
and 2. above hold.  Object, morphism, and category all arise together in this structure. 
 
Categories are pervasive throughout mathematics; in fact, it is possible to describe all of 
mathematics using category theory, a point we will touch upon later.  To give an example 
of a category with supreme importance in mathematics and physics, we shall define what 
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a group is and show how that definition makes a group a category.   The theory of groups 
is a major component of modern algebra.   
 
First, we define a binary operation on the set G informally as an operation that takes two 
elements of G and maps them to an element of G; a more formal definition would require 
the concept of a product so that we could define a binary operation as a function from the 
product GxG to G.  A set G with a binary operation * is a group if the following hold: 
 

1. There is in a unity element 1 within G  such that, for all g in G, 1*g = g*1 = g. 
2. For all g in G, there exists an element h in G such that h*g = g*h = 1. 
3. The binary operation * is associative. 

 
A group is a category containing one object, G.  We take as morphisms the elements of G 
with both domain and codomain G,  and we define composition of morphisms to be the 
binary operation *.    The elements of G as morphisms do not have ordered pairs 
associated with them.   
 
Groups provide a natural framework for expressing symmetry.  They were an absolutely 
indispensable tool in 20th century physics, well before they were interpreted as categories.  
The horizontal extension of category includes special and general relativity, quantum 
mechanics, quantum field theory and string theory. 
 
Within category theory itself, an important horizontal extension of category is topos, 
which is used in the categorical development of set theory and logic.32 
 

Functor 
 
functor is a map between categories.  If C and D are categories, a functor F from C to D 
is a map that assigns to each object A in C an object F(A) in D and to each morphism 
f:A->B in C a morphism F(f):F(A)->F(B) in D such that: 
 

1. F(1A)   = 1F(A) . 
2. F(ζ◦φ) = F(ζ)◦F(φ). 
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In other words, a functor maps objects to objects and morphisms to morphisms so that 
objects in the target category are related to one another by morphisms in the same way 
they are in the source object.  In this fashion functors preserve structure.  It may occur 
that the target category is much simpler, in which case the functor must forget some of 
the structure of the source category.   

There are many examples of non-trivial functors.33  For physicists the most interesting 
example of functors are topological quantum field theories, which relate as categories the 
world of general relativity on the one hand and quantum theory on the other.34  The 
existence of topological quantum field theories, established by Witten in the late 1980’s, 
is further evidence of the profound links between mathematics and physics.35      
 

Natural Transformation 
 
natural transformation is a mapping between functors.  If S and T are functors from the 
category C to the category D,  a natural transformation is a map τ: S(A) -> T(A) which 
assigns to each object A in C a morphism in D such that given a morphism f: A->B in C, 
T(f)τA = τBS(f).   In other words, the following diagram “commutes”: 
 

S(A) ---- τA ->--- T(A) 
|       | 

      S(f)  |       |  T(f) 
       ↓   |       |    ↓ 

|       | 
S(B) ---- τB ->--- T(B) 

 
 
A natural transformation preserves structure between two functors that map between the 
same two categories, C and D. 
 
category and functor were originally defined in order to define natural transformation, 
which itself was motivated by connections between topology and algebra.36  The 
horizontal extension of natural transformation appears to include n-categories.37 
 
It appears that as of the year 2003 we find ourselves in natural transformation, since no 
applications of natural transformations as yet have led to new physics. 

 
Generalizations 
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0 Negation Cyclic Time 
1 Singularity Implication 
2 Duality AND 
3 Similarity Equality 
4 Classification Equivalence Class 
5 Comparison Function 
6 Sequence Function Composition 
7 Elapsed Time Category 
8 Transitive Verb Functor 
9 Reflexive Verb Natural Transformation

Table I 
 
Table I summarizes our results so far. The generalizations we now describe have in 
common that they account for variation with time; this is more clearly manifested in the 
early structures. 
 
negation is generalized by cyclic time.  The negation operator applied twice is the same 
as the identity operator, at least until intuitionistic logic is discovered.  Both negation and 
cyclic time behave cyclically. 
 
singularity is generalized by implication.  In singularity there are two operators, singular, 
and !singular, which together allow exactly two propositions in the physical presence of 
the object referred to by any operand; one of the propositions must be true and the other 
false.   implication allows propositions with variable truth values to be considered using 
its operands.  singularity gives speakers an inkling of nature of the boolean constants true 
and false, and propositional logic; implication gives speakers an inkling of the nature of 
boolean variables and first order logic (see Appendix A). 
 
duality is generalized by AND.  duality is discovered by combining two invocations of 
singular.  AND is discovered by combining two implications.  duality makes possible a 
static picture of two things. AND makes possible a variable picture of two ideas.  These 
operators extend their predecessors in an analogous way: duality gives meaning to the 
idea of a numerical successor function that leads to the natural numbers, while AND 
gives rise to the concept of a complete set of logical connectives, which allows for an 
arbitrary formula in first order logic. 
  
similarity is generalized by equality.  For its discovery, similarity  requires two separate 
invocations of singularity to first isolate the operands and then the use of duality to relate 
them;  likewise, equality requires two boolean variables from implication as well as AND 
for its discovery.  similarity results from a one-time evaluation; equality results from a 
sequence of  evaluations. 
 
classification is generalized by equivalence class.  classification uses similarity to 
determine how to group things.  Likewise, equivalence class requires equality, without 

 21



which the concept of equivalence relation is impossible; equivalence class determines 
how to group things unambiguously. 
 
comparison is generalized by function.  The comparison operator more_class_x selects 
one of two things on the basis of classification, thus relating one thing to another in an 
integral sense;  function maps one thing to another on the basis of equivalence class, 
relating one thing to another in a structural sense.    
 
sequence is generalized by function composition.  function composition combines two 
functions to yield a new function, whereas sequence combines two comparisons to yield a 
new comparison.  To explain the latter, consider the usage scenario “impala first, spear 
last” given above.  Translated into operator notation, this reads more_class_x   α β, 
!more_class_x β α, where α and β refer to impala and spear, respectively, and x is the 
quality of being near in a temporal sense to the time when the spear was thrown ---
viewed from the point in space where the spear landed.  The scenario could also be 
translated as “impala before spear,” which is effectively a comparison in itself.  Both 
sequence and function composition extend horizontally in parallel with the horizontal 
extension of duality. 
 
elapsed time is generalized by category.  earlier_class_x α represents an evolution in 
time of α; “earlier impala sleeping” says something about the impala at an earlier time 
which may or may not still hold at the time of the utterance.  A category can be used to 
model the evolution in time of a dynamical system; in such a category the objects 
represent states of the system and the morphisms represent transitions between states. 
 
The subject of a transitive verb takes its object from one state to another, the two states 
being  earlier_class_x, !earlier_class_y, where y is !x, as mentioned above.  So in “rock 
cut skin,” the animal skin earlier was in the uncut state and later was in the cut state.   By 
themselves earlier_class_x and !earlier_class_y each implicitly contain the same 
information, but from a different viewpoint.  functor, which generalizes transitive verb, 
maps from one category to another category.  The two categories are analogues of the 
initial and final states of the receiver of the transitive verb’s action.  In terms of structure 
given by morphisms between objects, these two categories contain the same information 
by the definition of functor. 
 
The subject of a reflexive verb takes itself from one state to another.  We now consider 
the state of the “giver” of the action of the verb as well as the state of the receiver, before 
and after the action takes place.  The reflexive aspect of the verb equates the giver with 
the receiver, and therefore the transitive aspect of the verb takes the both the giver and 
the receiver of the action from one state to another.  A natural transformation is a 
mapping from one functor to another, whereby each of the two functors act on one 
category and relate it to a second category.  Again the two categories can be thought of as 
analogues of the initial and final states of the receiver of the verb’s action.  The functors 
are analogues of the transitive action of the verb, which takes the giver and receiver of 
the action from initial to final state.  The natural transformation, which links equivalent 
structure within the functors, is the analogue of the reflexive aspect of the verb. 
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Language Evolution Timeline 
 
Only a few protolanguages have been discovered in times of recorded history:  the three 
protolanguages of category theory in 1945 by MacLane and Eilenberg, and the notion of 
equivalence class in the 19th century.  Since earlier protolanguages evolved in prehistory, 
we must look at material culture specimens to determine approximate dates for them.  We 
shall do that for a few protolanguages and then use those dates to put together a very 
rough overall timeline.  
 
First, we look for a latest possible date for equality.  Any musical instrument capable of 
producing tones requiring the notion of an exact interval can be considered to be evidence 
for equality.   Flutes found in the Henan province of China dating from 8000 to 9000 
years ago have this quality; one of the flutes even has a correcting hole that brings it into 
a better tuning.38  An older flute from the Geissenkloesterle cave in southern Germany, 
dating from roughly 37,000 years ago, has been shown in a reconstructed model to play 
the notes C, D, F and B melodically, so that multiples of the half-step interval of the 
chromatic scale were clearly deliberately produced.39,40  It is possible as well that stone 
tools were used as musical instruments in the manner of a xylophone at still earlier 
times.41 
 
There are several things which would indicate competence in cyclic time:  1) 
representations of the sun at different positions in the course of a day,  2)  representations 
of cycles of the moon,  3) seasonal behavior clearly planned for in advance, such as 
agriculture, and 4) structures such as the boulders of Stonehenge which show knowledge 
of the solstice or equinox.  The earliest such evidence is that of bone carvings found in 
Europe from roughly 30,000 years ago that points to an awareness of the lunar cycle 
according to Marschack.42  However, we know from the evidence for equality that cyclic 
time was spoken sometime before roughly 37,000 years ago. 
 
reflexive verb is the first protolanguage in which symbolic art is likely to emerge.   A pair 
of recently found engravings in ochre from the Blombos cave of South Africa, shown in 
Figure 1, suggests that such art may go back at least as far as 77,000 years, but this is 
open to interpretation since the engravings are abstract and may have no meaning.43   The 
author suspects that the two engravings contain the same number of diagonal lines in one 
direction, eight, and so at least might be interpreted as a representation of the number 
eight, especially if other such engravings were found.  In the spirit of Marschack, he 
further suspects that the two engravings represent the same thing, namely the trajectories 
of the moon and the sun over a one-month period with the skyline in the middle, whereby 
the new moon trajectory breaks the symmetry of the representation in a single segment as 
it approaches the sun.  If the latter interpretation were correct, the engraving would 
correspond at least to cyclic time.  Speculations aside, the first firm evidence of symbolic 
art is from the Upper Paleolithic in Europe, about 35,000 years later.44  
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sequence would be reflected in material culture as an object which required at least two 
steps to make, the steps being in a particular order.   The Mousterian stone tool tradition, 
which began roughly 200,000 years ago, produced such objects.45  In fact, the 
distinguishing characteristic of the Mousterian technique was precisely that it was a 
multistep process: first a stone core was shaped, from which stone was “peeled off” 
subsequently piece by piece, and then each of these individual pieces of stone was 
finished into a tool itself.  This tradition appears early in North Africa, South Africa, 
Northwest Europe and Mediterranean France, perhaps independently.46  
 
In order to find traces of duality we look for something involving two distinct aspects that 
were deliberately produced.  We find this in the stone tool technique preceding the 
Mousterian called the Acheulean, which began roughly 1.5 million years ago in East 
Africa.47  It  differs from the Oldowan tradition that preceded it in that the finished stones 
had two distinct faces, as opposed to being of haphazard shape as finished stones were in 
the Oldowan tradition, which began roughly 2.5 million years ago. 
 
From the above observations we establish the rough timeline shown in Figure 2, which 
shows the appearance of syntax structures as a function of time.  Note that since we have 
taken conservative dates for each point in the above curve, revisions are expected to shift 
the points corresponding to equality and all protolanguages before equality to the left.  Of 
course, the plot in Figure 2 does not mean to imply that there was a single group that 
started in duality whose direct descendants made it all the way to equality.  One can 
easily imagine that syntax structures were independently discovered by different groups, 
as may be reflected in the Mousterian tool traditions just mentioned. 
 
From Figure 2 one concludes that humans have been using language for at least 1.5 
million years.  Such a time span is long enough for substantial changes to have occurred 
in the human brain and vocal tract due to selection based on language proficiency in both 
speech and syntax.48,49  In Figure 3 we speculate what the plot in Figure 2 might look like 
as more evidence becomes available, shifting the points corresponding to reflexive verb, 
cycle and equality to the left.  Figure 4 shows a plot of hominid brain size as a function of 
time; it is apparent that brain size increases in a way that qualitatively matches our plot in 
Figure 3.  In particular, there is an explosive growth period in the last 200 thousand years, 
which one would expect from the increased importance of language for both group 
survival and individuals’ reproductive success within the group as higher syntax 
structures were employed.    
 
In Figure 5 we have plotted, in addition to the points of  Figure 3, three exponential 
functions fitted to the endpoints duality and natural transformation, sequence and natural 
transformation, and  reflexive verb and natural transformation, respectively; from the 
plot it is clear that the latter two fits give a better approximation to the data than the first 
fit, and they would for any reasonable shift to the left of points corresponding to 
sequence, reflexive verb, cyclic time and equality.  In fact the shifted points in Figure 3 
were positioned so as to illustrate that the strange dependence on time that we see in 
Figure 2 may have to do with the population size of the speakers of a given syntax 
structure.  One could imagine that the discovery of reflexive verb gave a competitive 
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advantage over other groups and allowed for a larger population size and more complex 
social interactions and structures, which in turn allowed for greater selection of 
individuals with more language ability and so led to greater brain size, which in turn, 
coupled with the now increased population size, hastened the discovery of the next syntax 
structure, cyclic time, which in turn allowed for an even larger population size, and so on, 
in a positive feedback loop.  This process may have culminated in the so-called Upper 
Paleolithic Revolution, a term associated with an explosion of new behaviour beginning 
about 35-40 thousand years ago (kya) in Europe which is reflected in innovative tool 
forms, sculptured stone and bone, personal decoration, evidence of activities requiring 
long-term planning and strategy, more structured living environments, cave art, and so 
on.50  Evidence indicating that this revolution may have started at least 35,000 years 
earlier in Africa has begun to emerge.51 
 
It is worth considering whether there are mechanisms other than increased speaker 
population size that might explain the time behaviour of Figure 2.   One possibility is that 
the later syntax structures are by nature easier to discover and for that reason they 
occurred in more rapid succession; this appears counterintuitive and unlikely.  Perhaps 
the above-mentioned feedback loop took place without population growth, fueled only by 
ever-increasing cognitive ability; this is possible, but then it would be necessary to 
explain why population size did not increase because more cognitive ability naturally 
leads to a higher population size, and furthermore this would weaken the feedback loop 
since higher population size certainly increases the likelihood that a new syntax structure 
would be discovered, all else being equal.  Another possibility is that there is simply a 
gap in the archaeological record and that we must shift many of the higher syntax 
structure points hundreds of thousands of years to the left;  this doesn’t seem likely, since 
stone tools are well represented in the archaeological record going back 1.5 million years 
over a wide geographical area and, if higher syntax structures  were reached hundreds of 
thousands of years earlier than the current evidence suggests, there is no easy way to 
explain why we have not found corresponding stone tool evidence similar to that found in 
Europe dating from roughly 40 kya onward. 
 
On the other hand, there is some evidence in the archaeological record for increased 
population in the Upper Paleolithic in Europe.52  More extensive evidence comes from  
human origins studies based on genetics, which have indicated that it is necessary to 
assume a low effective hominid population, on the order of 10,000, over the last 2 million 
years in order to account for the gene distribution in living humans.53  They have also 
indicated that an explosion in effective population occurred at some time in the past, and 
that a likely time for such a population explosion appears to be between 50,000 and 
100,000 years ago.54  This evidence lends some weight to the conjecture that the time 
behavior of Figure 2 may be related to speaker population size; by the same token, Figure 
2 appears to reinforce the genetic evidence for low effective population and a sudden 
population expansion between 50,000 and 100,000 years ago.  Implicit in the above 
argument is the assumption that if the effective population used in the population genetics 
studies increases, so does the speaker population size and vice versa;  the argument also 
only makes sense if the low effective population long-term was not due in large part to 
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extinction and recolonization of populations,  which allow for large breeding populations 
to leave a small effective population trace.55  
 
Population size is a crucial aspect of the human origins debate centered on whether homo 
sapiens emerged as a new species, unable to breed with other hominids, within the last 
200,000 years.  How this article bears on that debate is a question best left to experts in 
paleontology, archaeology, and population genetics.56 
 
Natural Selection for Language Evolution 
It appears that the selection mechanisms responsible for the evolution of language 
gradually shifted over time.   In what follows, we argue that gradually the process 
became less dependent on the group as a whole and more dependent on individuals.  Bits 
and pieces of this argument have been given above; we bring them together here and add 
a few others.  For the sake of argument, we assume that the above timeline is basically 
correct and that in particular a lapse of a million years or more intervened between the 
discovery of negation and the discovery of sequence.   The aim of these remarks on 
natural selection is only to give a plausible viewpoint on the matter, and it goes without 
saying that the remarks remain speculative.   
 
The extremely slow rate of new syntax discovery in the earliest phases of language 
evolution may indicate that new syntax was not discovered in an all or nothing fashion, 
rather that the process of discovery occurred over a period of time, perhaps spanning 
many generations.   One can imagine for example that the full-fledged understanding of 
negation may have followed a long period of time when only some of the group was 
involved in its use and gradually individuals who did not understand the meaning of 
negation were weeded out.  If in fact the usage scenario for the discovery of negation 
give above --- “no tiger!” --- is correct, then it may have slowly gained a foothold just as 
an alarm call for a specific predator must have slowly gained a foothold among vervet 
monkeys.  If on the other hand one assumes that the discover occurred suddenly, one is 
obliged to find some rarely occurring, spectacular scenario that the entire group would 
experience all at once. 
 
Another argument against a discovery of negation or singularity happening all at once 
comes from the psychology of early man, if one can call it that.  There can have been no 
real reflection on the fact that one was using language until reflexive verb, which 
occurred much, much later.  In the earliest stages, if the warning call was in fact where it 
all started and we let the vervet monkeys guide our intuition, a spoken word had the same 
effect in the people hearing the warning as it did in the person issuing the call: they 
repeated the call and acted as though they had perceived the predator themselves.  It is 
easy to imagine that the same sort of mass repetition also occurred after negation had 
taken hold in a group.  Language at this stage was part of a process, a group process that 
only arose in dire emergencies.  In such an environment it is difficult to imagine anything 
like the insight of an individual at the root of the discovery of new syntax that would 
make the syntax suddenly comprehensible, and it is still more difficult to imagine such an 
insight occurring to an entire group all at once.   
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Gradually new syntax must have allowed for more complex social interaction and new 
technologies and thus led to larger population size.  The challenges offered by these 
social and technological changes --- and perhaps also changes in habitat, climate, and so 
on --- would have provided problems whose solution selected for neural structures that 
were preadaptations for the discovery of new syntax, which led to larger population size 
and additional challenges, and so on in a positive feedback loop.  As this feedback loop 
gathered steam, the role of the individual in the discovery of language must have become 
more and more prominent and the language ability of the individual must have become 
more and more of a deciding factor in reproductive success.  However, even at this stage 
it seems likely that the selection mechanism for language was indirect in the sense that 
although an individual may have discovered transitive verb, for example, and that 
individual may have been able to explain the meaning of a verb to others, such a 
discovery was probably not due to a mutation of a gene that somehow can be specifically 
associated with the new structure.  Instead, it seems more plausible that genetic changes 
were such that more complex neural structures were produced as preadaptions which 
increased the likelihood that new syntax structure would be discovered.   
 
The glossogenesis theory presented here makes the entire selection process more 
plausible in that it is clear at any stage exactly what is meant by the evolution of 
language:  it is either a vertical or a horizontal evolution.  For example, horizontal 
evolution in duality meant that people learned to identify groups of things according to 
their number, that is, they learned to count beyond two and to count different things; 
vertical evolution at that point meant discovering similarity.   At any point in the 
hierarchy it is not difficult to imagine scenarios in which the individual or the group can 
exploit the new syntax.  The problem of natural selection heretofore has seemed difficult 
because it was never clear that there was a sequence of well-defined stages in the process 
of language evolution and so it was difficult to even describe what a selection mechanism 
for language might have selected for. 
 
Finally, we mention group selection.  There appear to be just two places in the hierarchy 
where rival groups come into play: in the discovery of singularity and duality.   The 
usage scenarios given for these syntax structures were “single enemy” and “two 
enemies”; one might replace even these with “one baboon” and “two baboons” on the 
assumption that isolated baboons away from their group might have made good prey.  So 
on the one hand one can argue that the theory presented here may not require group 
selection in the sense that entire groups of early humans were wiped out by other groups 
speaking more advanced protolanguages.   On the other hand, the advantage that one 
group would have over another at a lower level in the hierarchy is so obvious that it 
would seem rash to discount such a possibility.  The demise of the Neanderthals may 
have been due to group selection on a massive scale, for example, if in fact homo sapiens 
and Neanderthal were part of the same species.  The last wave of human migration out of 
Africa starting slightly over 100k years ago may have spelled the end for many groups 
such as the Neanderthals because of the superior language skills of what started as a 
single group.  
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Predictions of the Glossogenesis Theory 
 
The glossogenesis theory described here makes two main predictions, which are testable.    
 

1. No computer simulation of glossogenesis starting from nothing more than the 
ability to ground symbols can arrive at the concept of one before arriving at the 
concept of negation, nor similarity before duality, and so on.  The linearity of the 
theory precludes skipping steps. 

2. It is possible for a simulation to start from the ability to ground symbols and from 
there arrive at negation, and from there singularity, and so on. 

 
Regarding the archaeological record, the theory does predict a time order in which certain 
material culture specimens can occur.  Unfortunately, since the possibility of new finds 
can never be excluded and since the material culture does not tell us whether two 
different specimens were made by speakers of related or unrelated languages, one cannot 
with certainty validate or invalidate the theory using such time order arguments.  
However, the archaeological record can be interpreted broadly in terms of the theory with 
no apparent contradictions, as we’ve shown above. 
 
There is some slim evidence that there existed a single common ancestral human 
language of some form based on the widespread occurrence of a few common words, 
among them the form *tik meaning one or finger, and *pal meaning two.57  The theory 
cannot predict that there was one such single common language, since two or more 
languages could in theory have emerged in isolation and arrived at equality 
independently, but if there was only one, then obviously *tik would have arisen in 
singularity and *pal in duality.  Evidence for common parentage of existing or 
reconstructed languages of course must be weighed on a statistical basis, and certainly the 
present theory can be useful in quantifying the likelihood that language families are 
related and in determining where they may have diverged in the syntax hierarchy.   Other 
corroborating evidence for the existence of such relations would likely come from 
genetics studies and the archaeological record.58 
 

Computer Simulations of the Glossogenesis Model 
 
It is beyond the scope of this paper to discuss simulation details, but it is worthwhile to 
underscore a few key points.  First of all, a simulation of this model must do two things.  
It must on the one hand show that it is possible to go from protolanguage to 
protolanguage starting from symbol, and the other hand it must show that a group has a 
better survival rate or an individual is reproductively more successful by virtue of 
language proficiency.  The latter is simple once the former has been achieved.   
 
A general feature of simulations of this model is that speakers must recognize patterns of 
behavior in response to threat and opportunity which lead to the success of the individual 
and the group.  In effect they must also be able to generate initially a random symbol 
when such a pattern is recognized and use that symbol until or unless they hear two other 
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speakers generate a different symbol in response to the same pattern, in which case that 
symbol must be adopted. 
 
It is clear that a connectionist approach is appropriate here for simulating the linguistic 
behavior of speakers, which means that associated with every speaker in each of two 
groups of speakers there must be a neural network.  The speakers themselves would be 
actors in a world simulation that starts from initial conditions and is continually updated 
by small time increments.   The simulation might be in an abstract world or it might 
represent the real world;  an abstract world would be preferable if machines of pure 
intelligence were the desired result of the simulation.  In a real world simulation, during 
each update speakers may be hunting, foraging, running or climbing trees when avoiding 
predators, sleeping, grooming and so on.  Other parts of the environment would include a 
variety of edible plants, predators, and prey.  All animals would of course be simulated so 
that they act according to their behavior in the wild.  The important thing is that a 
diversified environment be simulated, with a rich variety of rewards and penalties, the 
understanding of which allows for altered behavior through new syntax structure.  A 
starting point for such an environment is provided by the great ape field research 
mentioned above. 
 
Surveying current simulations of glossogenesis, one sees that a common approach has 
been to assume that certain meanings exist a priori.59, 60   The point of the simulation is 
then for speakers to associate symbols with those meanings.  Such an approach, although 
it has merits, obviously will not work as is for this model.  A more appropriate approach 
for this model is that of simulations in which progress has been made in simulating the 
formation of meaning in social situations.61, 62   
 
 
Non-bootstrapped Language Acquisition 
 
Extensive research has been done in the area of human-animal communication, especially 
human-primate communication, but not exclusively.63,64  The exploits of Washoe  the 
chimpanzee65, Koko the gorilla, 66  Chantek the orangutan,67  Kanzi the bonobo68 and 
others clearly indicate that all of them have a grasp of symbol,  some of them can count,69 
and some of them have even shown some understanding of the concept of self and of 
time, although none has shown an understanding of implication or AND.  In all cases, 
horizontal extension is very limited when compared with human linguistic performance.  
It is interesting to note that the results of the mirror test70, which purports to establish 
whether a primate recognizes himself in the mirror, may depend on the rearing and 
training of the subject.71 
 
The implications of this article on interpretations of the above-mentioned research are 
limited due to the fact that glossogenesis theory tries to account for a bootstrap process in 
the sense that new syntax structure must be discovered without outside aide, whereas 
animal language learning through human intervention is not a bootstrap process.  So, for 
example, it might be possible to teach a primate singularity without teaching him 
negation, or duality without teaching him singularity, but glossogenesis has nothing to do 
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with this form of syntax acquisition and so in this context is irrelevant.  That said, it may 
be that a distinction can be made between partial and full language competence, where 
full competence refers to competence in the current and all preceding protolanguages.  
Although such a distinction may be blurry, it could be helpful in determining what 
methods of teaching syntax lead to the best linguistic performance of animals.   
 
The above arguments also hold for child language development in humans, which 
likewise is not a bootstrap process.  In particular, children with learning disabilities may 
be responsive to teaching methods that focus on mastering the structures in order.  
 

Physical Universe, Life and Begin Algorithm Epochs 
 

Table II 

      
0 Physical Universe Life Algorithm Negation Cyclic Time 
1 1 String 1 Cell 1 Process Singularity Implication 
2 2 Strings 2 Cells 2 Processes Duality AND 
3 Nucleus Endosymbiosis Integrated Parallel  

Procedure 
Similarity Equality 

4 Atom Neuron Classification 
Procedure 

Classification Equivalence Class 

5 Molecule Linked Neurons  Compare Procedure Comparison Function 
6 Polymer Neural Network Sort Procedure Sequence Function 

Composition 
7 Chiral Polymer Sensory, Motor 

Neural Network 
Serial Input, Serial 
Output 

Elapsed Time Category 

8 Translation Unidirectional 
Neural Network  

Coordinated Serial I/O Transitive Verb Functor 

9 Replication Bidirectional 
Neural Network  

Symbol Reflexive Verb Natural 
Transformation 

Next we will discuss the three new epochs presented in the matrix of Table II, which 
were discovered by extrapolating backward from the two epochs already discussed.   

By way of nomenclature we will call the rows in the matrix depending on context either 
rows or i-sequences, the columns either columns or epochs, 0-epochs or j-sequences, each 
matrix entry an operator, and the matrix itself the matrix, or hierarchy.    
 
Physical Universe Epoch  
 
The physical universe epoch starts with physical universe, which lies in the same row as 
the operators life, algorithm, negation and cyclic time.   As for the details of the big bang, 
the overall picture of an expanding universe from an initial infinite density and 
temperature has been well accounted for by the standard model; 72  however, at the high 
energies seen at the earliest times after the bang a consistent physical theory of both 
general relativity and quantum theory is still lacking, and the question whether the 
universe will eventually recollapse into a big crunch is still open.  As we shall discuss 
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below, it does appear that the causal structure imposed by special relativity first appears 
in physical universe.    
 
From other operators in row 1 of the matrix, we take the 1-particle operator to mean a 
single entity of matter, whether that turns out to be a string, a brane, or something else.  
Presumably the first entity existed for some finite amount of time in the Planck era, an 
era that lasted until 10^-43 seconds after the bang.  We interpret this to mean that for the 
entire duration of this operator there was literally just one entity of matter.   
 
The 2-particle operator comes about through decay of the first entity into two entities.  Its 
horizontal extension includes further decays.   
 
In nucleus the neutron and proton are joined together, bound by the strong force; in the 
standard model of physics, this takes place at roughly 1 second after the bang.  The 
nucleus i-sequence shows a pattern of merging two things, which is also evident in 
similarity and equality. 
 
In atom the temperature has finally cooled to the point where electrons are bound to 
hydrogen nuclei, which happens around 700,000 years after the bang.   The i-sequence[4] 
operators atom, nerve cell, classification procedure, classification, and equivalence class 
are each a basic unit of construction. 
 
In molecule multiple atoms bind into a single unit, and in polymer molecules form chains 
with repeating structural units.   
 
In chiral polymer,  polymers exists in two forms, one left-handed and the other right-
handed.  All polymers occurring in living cells have a fixed handedness; for example, the 
nucleic acid DNA, a polymer with repeating nucleotide units, is always found to be right-
handed, and similarly, all protein polymers, technically known as polypeptides, have a 
particular handedness in living cells.   It is unclear whether the first chiral polymers on 
Earth were polypeptides or nucleic acids, or something simpler --- this is a crucial 
question in the origin-of-life debate, as is the actual nature of the mechanism that might 
have originally generated chiral polymers, and one of a number of questions of the 
chicken-or-egg type.73, 74, 75   A recent study has shown that molecules of the amino acid  
aspartic acid are selectively absorbed on different faces of a calcite crystal according to 
the chirality of the aspartic acid molecules.76   The authors suggest that this separation 
may have been the first step toward the construction of homochiral (left- or right-handed) 
polypeptides and leave open whether nucleotides may have similar absorption properties 
on crystals.    
 
In translation, one chiral polymer is able to construct another chiral polymer.  In living 
cells today, one can think of nucleic acids such as DNA and RNA in a certain sense as 
playing the role of software and polypeptides as playing the role of hardware: DNA and 
RNA contain code that allows for the synthesis of polypeptides, which are the physical 
building blocks as well as workhorses of cells.  In fact, the cutting, copying and pasting 
operations directed by DNA have been shown to be equivalent in computational strength 
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to a Turing machine (see Appendix H).77  In translation,  some chiral polymer A was able 
to synthesize another chiral polymer B by means of a code that mapped structural 
elements in A to structural elements in B.  In DNA and RNA, the basis for such 
mappings are three-letter words from a 4 letter-alphabet defined by adenine, cytosine, 
guanine and thymine (thymine is replaced by uracil in RNA).  Orginally, the code was 
probably simpler; for example, it may have consisted of one letter words from a two-
letter alphabet. 
 
In replication, a chiral polymer copies itself.  One possibility is that the polymer B 
constructed by A in translation acquires the ability to construct A, either directly or via a 
chain of constructions that lead to A. 
 
 
 
Life Epoch 
 
There is no universally accepted definition of life, but all definitions include the concept 
of replication, and also metabolism, which is the extraction and use of energy from the 
environment via chemical processes.  Since before life there is nothing in the hierarchy 
referring to metabolism, it may be that newly evolved metabolic processes were what 
made life possible.   
 
There is reason to suppose there was a time lag between life and the next structure, 1-cell, 
based for example on the analogy with the transition from negation to singularity, which 
could not have been an immediate transition.  The presence of 1-cell after life therefore 
indicates that the first life forms may have been amorphous, with no clear membrane 
separating individuals, similar in this respect to the cyanobacteria of today.  The other 
possibility is that they resembled other membraneless life forms such as mycoplasmas or 
viroids that exist as individuals. 
 
In 2-cells there must have been bacteria-like organisms consisting of two cells in a 
symbiotic relationship, a conclusion we draw from the following structure, 
endosymbiosis.   
 
endosymbiosis refers to the joining of two independent life forms into a new single-celled 
life form;  unicellular eukaryotes living today show vestiges of several such unions, in the 
form of mitochondria and chloroplasts, for example.78, 79  endosymbiosis appears to be a 
necessary bridge from the world of unicellular life to the world of multicellular life and 
the specialization of the cell. 
 
nerve cell is a particular type of cell that contains a nucleus, an axon, and a mechanism 
for propagating a signal. 
 
In linked nerve cells nerve cells develop synapses, which allow for the signal output of 
one nerve cell to become the signal input of another nerve cell. 
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A neural network is a network of interconnected nerve cells.   
 
The author speculates that in sensory and motor neural network, sensory and motor 
networks exist but are not linked.   A sophisticated example of such a motor network may 
be the pattern generator network associated with the flight of the locust, which works in a 
manner independent of sensory input. 80  Presumably the first such networks were pattern 
generators for swimming that essentially ran continuously unless shut on or off by means 
of proprioceptor or chemoreceptor cells that detected food or danger.  A sensory network 
without a corresponding link to a motor network was perhaps some primitive version of 
an eye; since the organism must have reacted to the signal, there must have been a non-
neuronal chemical link that led to some change in state of the organism.    
 
In unidirectional network, input networks feed forward to output networks via an 
intermediary network.  For example, the lamprey’s swimming motion is accomplished by 
oscillating signals between muscle stretch receptor neurons and motor neurons that 
contract muscle along its length.81  Most well understood neural mechanisms are simple 
networks of this type.82  Advanced intermediary networks are visible in the visual cortex 
of mammals, for example, which have a laminar structure, with inputs coming from 
sensory networks and outputs leading to motor control regions of the brain.  
 
In bidirectional network, inputs again lead to outputs via an intermediary network, but 
within that network there are closed loops between neurons that allow for feedback.  
From computer simulations of neural networks it is known that such networks are well 
suited to solve problems involving multiple constraints.83    
 
 
Algorithm 
 
Current knowledge of the inner workings of the brain is so scant that the following 
discussion of this epoch must be drawn almost completely from parallels with other 
epochs.  One should therefore read “If our analysis is correct…” before each of the 
following paragraphs describing this epoch. 
 
In algorithm an essential step is made in the development of a self-contained, task- 
specific neural computation: a non-local jump.  In this structure, there is a mechanism for 
branching to a separate subnetwork from within a given active network for the purpose of 
some computation, after which the given network resumes its computation.  Such a 
branching has recently been discovered in human brains.84   The closed loops of  
bidirectional network make this structure possible, since without feedback the calling 
network could not “understand” the concept of a subnetwork. 
 
1-process is a sequence of neural signals in one or more networks that has a unified 
purpose and that occurs after a non-local jump, as described above.  To differentiate this 
operator from the previous one, we speculate that here some value is returned and used 
within the context of the calling environment. 
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In 2-processes two separate processes run at once from the same calling environment for 
disparate computations. 
 
integrated procedure is the integration of two simultaneously running processes to effect 
an integral computation.  The horizontal extension of this operator includes massively 
parallel computations typical of mammals. 
 
classification procedure is a procedure whose purpose it is to evaluate and categorize 
data.  It is a mechanism for defining data type. 
 
compare procedure is a procedure which allows two pieces of data to be compared 
according to some appropriate ordering principle.  It requires classification procedure so 
that a criterion for comparison can be established. 
 
sort procedure takes a series of data and sorts it according to a certain compare 
procedure.  Similarly, in software a sorting routine typically takes a comparison routine 
as input in addition to the data to be sorted. 
 
In serial input, serial output there are procedures capable of producing and parsing a 
sequence of data that has meaning.  The vocalizations of many mammals must be based 
on such procedures.  Cats, for example, have different vocalizations for warning they are 
about to attack, for expressing that prey has been found, and so on, each of which can be 
thought of as a pitch that varies in time and each of which is intelligible to other cats.  
Even though such vocalizations may be mostly innate, they are nonetheless neural-based 
and they could only come into being via the classification, compare and sort procedures 
given above.    
 
In coordinated serial I/O, meaningful sequential input is mapped to meaningful serial 
output.  The vervet monkey, upon hearing alarm calls, interprets them as serial input and 
immediately generate their own identical call.85  The alarm call acts transitively in the 
sense that it invokes in the receiver the same neural mechanisms that the original stimulus 
for the call invokes in the caller. 
 
In symbol, the procedure that maps the serial communication to serial output also refers 
to itself, i.e. the speaker is aware of the form of the communication in addition to its 
meaning.   
 
 
Timeline since Bang 
 
In Figure 6 we plot the physical universe, life, algorithm, negation, and cyclic time as a 
function of time, as well as natural transformation, our current location.  The pattern 
resembles the time development within negation and cyclic time shown in Figure 3 and 
once again indicates that the pace of traversal through the matrix is quickening 
drastically, growing at a faster-than-exponential rate   The implications of this fact will be 
addressed below when we discuss unresolved questions raised by this article.   
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There is one aspect of the Figure 6 that merits special attention.  The ratio (ti – ti-1)/(ti+1 
– ti), where ti is time after the big bang when the ith epoch began, gives a rough idea how 
much the pace of matrix traversal is changing, and would be expected to be constant for 
self-similar time intervals.  It has values 3.3, 8.54, 284.6, and 14, showing a trend of rapid 
increase.  The puzzling thing is the value 284.6, which measures the change from 
negation to cyclic time versus algorithm to negation; in a natural process such as this one 
would expect at least some kind of regular trend.  The time we have estimated for 
algorithm is 400 million years ago, which, as opposed to all the other dates, is highly 
uncertain. However, even if we set this date to a time just before the earliest primates, to 
75 million years ago, which is almost ridiculously late, then the values become 3.3, 50, 
52, 14, still a puzzling result.   
 
One can either attribute the above behaviour to the random nature of the process, or to the 
paucity of data, or assume that there may be another epoch in the model that we have 
missed.  We found that if we inserted an arbitrary epoch and varied its starting date and 
the starting date of algorithm it was still not possible to arrive at a monotonic increase in 
the values.  Dropping the monotonicity requirement, a typical result plausible in terms of 
values was 3.7, 3.9, 27, 20.3, 14 with the variable epochs at 800 million and 30 million 
years ago, dates that one could not just justify in any case.  Our conclusion is that the data 
does not call for an additional epoch.    
 

Order, Logic and Quantum Logic Epochs 
 
In Table III we have added the first three columns: order followed by logic and quantum 
logic, and these complete the matrix. 
 
 

 

0 1 2 3 4 5 6 7 
Order Logic Quantum Logic Physical Universe Life Algorithm Negation Cyclic Time 
1 Unique Null Set  R 1 Particle 1 Cell 1 Process Singularity Implication 
!1 = 0 Pair R* 2 Particles 2 Cells 2 Processes Duality AND 
!!1 = 1 Union C Nucleus Endosymbiosis Integrated Parallel  

Procedure 
Similarity Equality 

A<1 Infinity Cn+1 = Cn X C Atom Neuron Classify Procedure Classification Equivalence Class 
A!<0 Replacement L^2 Molecule Linked Neurons  Compare Procedure Comparison Function 
< = !!< Power Set Spin Network Polymer Neural Network Sort Procedure Sequence Function 

Composition 
A<B 
→B>A 

Set 
Membership: 
x Є y  → y !Є x 

Ordered Spin Network  Chiral Polymer Sensory, Motor 
Neural Networks 

Serial Input, Serial 
Output 

Elapsed Time Category 

A<B, 
B<C→ 
A<C 

x Є y, y Є z  → 
x Є z   

Spin Foam Translation Unidirectional 
Neural Network 

Coordinated Serial 
I/O 

Transitive Verb Functor 

A=A x !Є x Spin Network Evolution Replication Bidirectional 
Neural Network  

Symbol Reflexive Verb Natural 
Transformation 

Table III 
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Order Epoch 
 
After the zeroth operator, which is the input to the entire matrix and will be discussed 
below, the next operator is 1.  1 is followed by its negation, !1, which is 0.  The third 
operator is the negation of 0, which is 1.  As will become clear in the logic epoch, 1 is 
unmistakably a totality --- after concluding our discussion of the remaining epochs it will 
seem appropriate in retrospect to regard it as the entire universe, with all subsequent 
operators giving it structure ---  whereas 0 takes its meaning in reference to that totality:  
it contains no part of it.   We shall also see it is natural to interpret 1 as truth and 0 as 
falsehood, and in view of this we point out that the third operator establishes the law of 
the excluded middle, which says that a proposition not true must be false, and vice versa.  
 
Placing 1 and not 0 in row 1 is appropriate because the primary function of negation is to 
nullify, as it was originally in the negation protolanguage.  It then follows naturally in 
row 3 that !!1 yields 1, since it is the nullification of a nullification.   
 
The definition of the ordering relation <= begins next and it will not be completely 
defined until the end of this epoch.  It cannot appear before !!1, since it does not make 
sense to order 1 and !1 until their relationship via negation is completely defined. 
 
In a < 1 we say a is less than 1, for arbitrary a.  In  a !< 0, we introduce the negation of 
<, and say a is not less than 0, for arbitrary a.  In !!< = <, the relationship between < and 
!< is fully defined.  Placing a < 1 before a !< 0 establishes < as more primitive than >, 
which is consistent with the use of < as the set membership relationship in the logic 
epoch.  The justification for introducing a variable here will become clear in the sequel. 
 
In the next three operators the defining properties of < are given for arbitrary variables:  
first, its asymmetry, meaning a<b is the same as b!<a, unless a<b and b<a, in which case 
a=b; second, its transitivity: if a<b and b<c, then a<c, for none of a, b and c equal; 
finally, its reflexivity: a=a.  There are three main issues to discuss about these three 
operators: 1) why three or more inputs, 2) why do the operators appear in their given 
order, and 3) whether they presuppose first-order logic. 
 
Regarding three inputs, one can say the following.  The first operators, 1, !1, and !!1, 
define two entities related by a unary operation.  The next three operators define two 
binary relations on those two entities.  In the final set there is nothing to do unless we 
accomodate additional entities to be ordered by the binary relations.  Looking forward, 
one can also say that at least three variables are necessary for a valid set of axioms for 
boolean algebra, the algebra of logic.86 
 
The order given by asymmetry followed by transitivity followed by reflexivity can be 
justified as follows.  In the order given, there is a well-defined ordering at each operator: 
first pairwise ordering, in which there is only a well-defined order in terms of pairs of 
variables, then strict ordering (e.g. the usual < on the integers), and finally partial 
ordering ( e.g. <= on the integers).  In particular, the given order of these operators is the 
only order in which strict ordering is defined, and as we shall see in the next epoch, the 
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natural ordering on all sets is given by the set membership relation, which is a strict 
ordering.  Moreover, it is clear that transitivity must follow asymmetry so that it can be 
verified that a<b and b<c, namely by checking b!< a and c !< b, and reflexivity must be 
thought of as a condition made possible by transitivity, taking c to be equal to a --- this 
latter viewpoint is reasonable since reflexivity has nothing to do with ordering per se and 
only enters into the definition as a sort of boundary condition that results from extending 
asymmetry to an entire collection of objects via transitivity. 
  
Asymmetry and transitivity appear to require logic for their formulation, but logic is not 
really possible until boolean algebra is defined, which will be done in the first operator of 
the next epoch.  The way around this problem is to think of the ordering definition as 
more of a recipe than a definition.  From this perspective, one can think of variables a, b, 
and c as real objects themselves as opposed to placeholders for as yet non-existent 
objects; in other words, these operators are not a passive filter of objects, but rather a 
model for constructing objects.  The first step is to build a and b such that a stands in an 
unambiguous way in relation to b, and b in the opposite way to a.  The next and final step 
is to build c such that b stands to c as a stands to b, and so on.         
 
a = a, the final operator in this epoch, completes the definition of the ordering relation 
<=, just as !!0 completed the definition of the unary operator negation and <=!!< 
completed the definition of the binary ordering relation < for two fixed inputs.  A point 
worth repeating is that this ordering <= just defined is a partial ordering;  the word partial 
is used since it does not imply that for every pair a and b, either a < b or b < a or a = b, 
conditions which define a total ordering.  A brief summary of orderings and lattice theory 
is given in Appendix G.   
 
 
Logic Epoch 
 
The logic epoch starts by defining the concept of a boolean algebra, and then defines the 
Zermelo-Fraenkel axioms of set theory in order to construct the universe of sets using 
first-order logic.87   
 
In the logic operator we build on the notion of partial ordering to arrive at the lattice-
theoretic definition of a boolean algebra.  The definition requires three postulates in 
addition to the ones given in the zeroth epoch: 
 

1) Each pair of elements a and b has a greatest lower bound i such that  i<a, i<b, and 
y < i for all y satisfying y<a and y<b. 

2) Each element a has a complement a’ such that if x < a and x < a’, then x = 0, and 
if x > a and x > a’, then x = 1. 

3) if a < b’ is false, then there is a non-zero element x such that x < a and x < b. 
 

The above definition can be shown to be equivalent to the more usual definition of a 
boolean algebra in terms of the operators + and *, where a<b is equivalent to a*b=a and 
a+b=b.88  The lattice-theoretic definition subjects these two operations to the conditions  
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1) a*1=a, a+0=a, for all a; and  
2) there exists for all a a unique a’ such that a*a’=0, and a+a’=1.   

 
These operators will have a simple interpretation in terms of regions in a two-
dimensional plane: a*b is the intersection of regions a and b, a+b is the union of a and b, 
and a’ is the complement of a.  The above conditions then make sense if we interpret 0 as 
the null set, 1 as the universal set, and < as set inclusion.  It can be shown that the 
transitivity property of < implies that a*(b+c) = a*b +a*c and that a+(b*c) = (a+b) * 
(a+c);  this is called the distributivity property of * and +.  The commutativity of + and *, 
defined by a*b = b*a and a+b = b+a is obvious from our interpretation of * and +.  The 
associative property, defined by (a*b)*c = a*(b*c) and (a+b)+c = a+(b+c), can also be 
derived from the lattice-theoretic definition.  Including these latter three properties 
completes the usual definition of a boolean algebra.89   
 
The reason we refer here to logic is that we can also interpret * and + as the logical 
operators and and or, respectively, in a space of propositions, and the complement 
operator ’ as negation;  in fact, propositional logic satisfies the definition of a boolean 
algebra, with 1 interpreted as the proposition that is always true and 0 the proposition that 
is always false.90   
 
In null set axiom there is just one set, the null or empty set.  The empty set has no 
elements, and is usually written 0.  To insure that the null set is unique, another axiom 
must arise here, the axiom of extensionality, which says that two sets A and B are equal if 
and only if for all x in A, x is also in B.  There is a simple proof that shows that the axiom 
of extensionality implies that the null set is unique.  Notice that we cannot form the set of 
all sets here in analogy with 1 in row 0 of the zeroth epoch, since such a set does not exist 
as it turns out. 91  
 
null set requires logic for its formulation because of the above-mentioned proof.  
Moreover, that formulation itself must be regarded as the introduction of several concepts 
that are necessary for the transition from propositional to first-order logic, namely the 
notion of existence, which allows us to use quantifiers, and the notion of a variable.  In 
appendix A we give a list of axioms and rules of deduction that formally specify first-
order logic as a language; these axioms and rules follow naturally from the concept of 
boolean algebra interpreted as propositional logic and from the concept of variable.   
First-order logic systems also require a domain of objects referred to by the above-
mentioned notions of existence and variable, which here is defined to be the domain of 
sets.  These sets are related to one another by a pair of primitive relations, equality and 
set membership, of which the latter must also be introduced here.        

 
The axiom of pair says that given any objects x and y, there is a set Z such that for all 
elements z in Z, either z = x or z = y.   Taking our objects x and y in the axiom of pair to 
be 0, we can generate a set written {0,0} or {0}, which contains the one element 0 and 
satisfies the requirements of that axiom.  Clearly,  pair requires null set.   
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The axiom of union enables us to generate sets with more than two elements.  It says that 
given a set X, there exists a set whose elements are the members of the members of X. 
This axiom allows us to define the union of sets, for example the set 0 U {0}, and so on.  
The reason union must come after pair is that before pair there is only one set, the empty 
set.  
 
The axiom of infinity says that an inductive set exists.  Intuitively, we can understand this 
axiom to mean that there is a set N’ = {0, {0}, {0,{0}}, …}, where the three dots indicate 
that we continue adding elements in this way endlessly.  The above set, after the notion of 
order among elements is defined, will be used to generate N, the set of natural numbers, 
which is written { 0, 1, 2, …}.  infinity requires union for the construction of N’; before 
union it was not possible to build a set with more than two elements. 
 
The axiom schema of replacement generates axioms for properties that determine a 
unique element y corresponding to each element x.  A property is a statement, such as x = 
1.  For different properties, we get different axioms; hence the name schema, since the 
schema generates axioms. For a given x, and a property that relates a unique y to that x, 
the corresponding axiom says that for every set A, there is a set B such that if x is in A, 
then y is in B.   This axiom therefore permits us to start with one set, A, and define a 
second set, B; in other words, it allows us to construct new sets from old.  For example, 
we can construct sets larger than N’ that will become the so-called ordinals, after a 
concept of ordering has been established.92  replacement must follow infinity so that such 
large infinite sets can be generated. 
 
In power set, we need the notion of a subset of a set.  For that, we use the axiom schema 
of comprehension, which can be derived from the axiom schema of replacement.   It says 
that given a set A, there is a set B such that there is an x in B if and only if x is in A and 
some property involving x is true.  Each axiom so generated defines the elements of the 
set B given a set A, and those elements are also elements of A; for this reason this axiom 
is also called the subset axiom.   The power set axiom itself says that given a set Z there 
is a set P such that if Y is a subset of Z, Y is an element of P.  The power set of a set is 
the set of all subsets of that set.  power set must come after replacement so that we can 
define subset. 
 
The next three operators establish ordering within an arbitrary set by means of the set 
membership relation.  In effect, these operators also allow us to construct the universe of 
sets as a cumulative hierarchy, a construction that is often referred to as the standard 
model of set theory.93  The hierarchy starts with some set V0, typically the null set, and 
takes the power set of V0 to get V1, then takes the power set of V1 to get V2, and so on, 
until reaching Vω,  where ω  is the first transfinite ordinal, at which point it takes the 
union of all Vα < ω;  then Vω+1 is the power set of the previous union, Vω+2 is the power set 
of Vω+1, and so on until the next transfinite limit ordinal ω + ω is reached, where we take 
the union of all Vα < ω+ω, and so on forever. 
 
x Є y  → y !Є x  establishes the asymmetric nature of the set membership relation.  The 
symbol Є means is an element of;  in other words, this operator specifies that if x is a 
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member of y, then y is not a member of x.  This is the standard set-theoretic approach to 
natural numbers, introduced by von Neumann, according to which each natural number is 
the set of all smaller natural numbers, and according to which the strict ordering on the 
set of natural numbers is given by the set membership relation: xЄ y if and only if x < y.  
This approach has the advantage that it can be generalized to account for ordinal numbers 
beyond the natural numbers, the transfinite ordinals, and transfinite induction as well.  
The ordinals also serve as indices to the levels of the universal set hierarchy.   It is worth 
emphasizing that each natural number in this definition is itself a set, namely the set of all 
smaller numbers, and so informally we can say that each natural number n within its 
subsets contains n – 1 copies of 0, n – 2 copies of 1, … and a single copy of n – 1.  Reals 
have an analogous construction.     
 
In x Є y, y Є z  → x Є z, the set membership relation is defined to be transitive.  Taking 
the natural numbers as an example, 1 Є 5, 5 Є 8  → 1 Є 8.    
 
In x!Є x, sets are prohibited from being members of themselves.  Allowing sets to be 
members of themselves leads to logical difficulties such as the so-called Russell’s 
paradox, which involves the set A of all x such that x !Є x: the paradox is that if A !ЄA, 
then A Є A, and if A Є A, then A !ЄA.  Such pathological cases were the motivation for 
the axiomatization of set theory in the beginning of the twentieth century.  
 
Using the last three operators as well as the nullset, pair and union axioms it is possible to 
prove the axiom of foundation, which says that every non-empty set contains a member 
disjoint from itself;  equivalently, it says that every set is well-founded, meaning 
essentially that it is impossible to form a cycle of memberships such that a set becomes a 
member of itself, or a member of a member of itself, or a member of a member of a 
member of itself, and so on.  A proof is given in Appendix B that uses the contrapositive 
and therefore relies on the law of the excluded middle.  Conversely, it is possible to prove 
x Є y  → y !Є x  and x!Є x from the nullset, pair and foundation axioms, but not 
transitivity.   The further constraint that sets be transitive is also a standard requirement in 
models based on ZF set theory, although it is not an axiom.  For example, Goedel’s 
constructible model and Cohen’s forcing models, which have been used to settle 
questions about the so-called continuum hypothesis and the axiom of choice among other 
things, are transitive models.   
 
If one thinks of the last three operators in terms of the ordering relation <, then the order 
of their appearance can be explained using the same arguments as given for rows 7, 8 and 
9 of the zeroth epoch.  Another question is whether these three operators could have 
occurred earlier, say after the axiom of union.  The answer to this question seems to be 
that they must appear here because their purpose is to allow only sets of the sort that are 
in the cumulative hierarchy, that is, well-founded and transitve sets; in other words, their 
purpose may be to restrict the universe of sets to the cumulative hierarchy, which 
becomes possible only after the power set axiom.    
 
 
Quantum Logic Epoch 
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It appears to be appropriate at this point in the matrix to introduce quantum logic.  Just as 
in the zeroth row of the logic epoch the concept of boolean algebra was defined, which as 
a distributive ortholattice is the underlying structure of classical logic, here one would 
expect an algebraic structure underlying the logic of quantum theory to emerge. 
Unfortunately, there appears at present to be no consensus as to the exact definition of a 
mathematical structure analogous to boolean algebra that would underly quantum logic.  
Quantum logic is frequently defined as the set of closed subspaces of a Hilbert space, 
which are known to form an orthomodular lattice.94,95, 96

  The relevance of the lattice 
structure of the closed subspaces of Hilbert space for quantum theory was pointed out by 
von Neumann and Birkhoff in 1936; since then the model of quantum logic has gone 
through a series of generalizations, from orthomodular lattice to orthoalgebra to effect 
algebra, and this is still an area of active research.97   Therefore, we use the term 
orthomodular structure or lattice here as representative of the true quantum logic 
structure, whatever that turns out to be.98  A key point is that boolean algebras are 
themselves orthomodular lattices, distinguishing themselves from the orthomodular 
lattices of quantum theory in that they are distributive.  Another key point is that Hilbert 
spaces in the quantum logic epoch play a role analogous to the role played by sets in the 
logic epoch, and the fact that subspaces of Hilbert spaces form an orthomodular lattice 
that somehow characterizes quantum logic is analogous to the fact that subspaces of sets 
form a boolean algebra, that is, a lattice structure that characterizes classical logic. 
 
There is further evidence that row 0 is the appropriate place to introduce quantum logic.   
First, the negation operator forms a boolean algebra (with symbol as identity), as such an 
orthomodular lattice, indeed the simplest possible one, and negation is located in row 0.  
Second, we note that the causal structure of spacetime itself, imposed by special 
relativity, forms an orthomodular lattice, with orthocomplementation of a given point 
defined by spacelike separation as described in Appendix G, and it appears reasonable to 
introduce this causal structure in row 0 of the physical universe epoch.99,100   Third, just as 
other row 0 operators, both boolean algebra and quantum logic can be interpreted to have 
cyclic behaviour:  boolean algebra in that for each element a of a boolean algebra a*a=a 
and a+a=a; quantum logic in that each closed subspace of a Hilbert space can be 
uniquely associated with a projection operator, i.e. an operator P such that P2 = P --- 
furthermore, a projection operator is a so-called effect operator in the sense of effect 
algebra mentioned above.  Fourth, in the next operator, R, it will be necessary for an 
underlying quantum structure to be already present, since it is presumably in that operator 
at the latest that the distribution of the primes must be fixed and since that distribution is 
known to have characteristics associated with a quantum system, as discussed below.   
  
The study of Hilbert space is at the core of a branch of mathematics called functional 
analysis, which uses the language of geometry --- vectors, basis vectors, orthogonality of 
vectors, length of vectors, and so on --- in a generalized sense to describe and analyse 
functions.  In this language certain types of functions can be viewed as vectors (in an 
abstract sense detailed in Appendix J) in an infinite dimensional Hilbert space.  In finite 
dimensions, Hilbert spaces are the starting point for the study of geometry itself, insofar 
as Rn, the n-dimensional space resulting from n copies of the reals, is a Hilbert space.  
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Simple quantum systems can also be studied by finite Hilbert spaces; here the vectors are 
interpreted as quantum states.  In the general case, it is well established that infinite 
dimensional complex Hilbert space is the natural structure for the description of quantum 
theory.          
 
The standard definition of a real Hilbert space requires that we define the natural numbers 
N, the integers Z, the rationals Q, the reals R, vector space, scalar product space, norm on 
a vector space, metric space, Cauchy sequence, and finally Hilbert space.  However, since 
R is itself a Hilbert space this definition is inappropriate for the purposes of generating R 
unless we assume the Hilbert space R is different from the R used in the Hilbert space 
definition or that the definition is recursive; instead of pursuing either of these latter 
ideas, we assume that quantum logic makes the construction of R as a real Hilbert space 
possible just as boolean algebra, the structure underlying predicate logic, made the 
construction of the empty set possible.  For details on the standard set theory construction 
of N, Z, Q, and R we refer the reader to standard texts on set theory and real analysis 
while pointing out that standard Zermelo-Frankel set theory was established in the 
previous epoch.101, 102  For details on the definition of a Hilbert space starting from the 
concept of a vector space and some highlights of elementary Hilbert space theory, see 
Appendix J.    
 
In R the space of real numbers is constructed; R is the simplest Hilbert space, just as the 
empty set is the simplest set.  The somewhat involved proof that R is in fact a Hilbert 
space is given in Appendix J.   The definition of R also requires that the so-called axiom 
of choice arise here simultaneously. The axiom of choice is usually added to the axioms 
of Zermelo-Frankel set theory, in which case the theory is known as ZFC.  The axiom 
says, in one of its four or five equivalent forms, that for every set there exists a so-called 
choice function that picks out an element of every subset of that set.  It turns out that this 
axiom cannot be derived from the other axioms of ZF theory and that it is needed in a 
variety of contexts, such as in the proof that every vector space has a basis.  Another 
context where it makes a difference is the following:  there is a model of ZF (without the 
axiom of choice) in which a theorem says that there exists an infinite set of reals with no 
countable subsets.103  Because of such results, the axiom of choice is considered a 
standard axiom of set theory, and because it is an independent axiom it would appear 
awkward to lump it into quantum logic.  The reason that it must appear here at the latest 
is that it is required in the proof that R is a Hilbert space; in particular, the invocation of 
the greatest lower bound principle in the proof that all Cauchy sequences converge in R 
requires the axiom of choice, as mentioned in Appendix J.  It is also relevant that in so-
called intuitionistic models of set theory one can prove that the axiom of choice implies 
the law of the excluded middle, which appears to be consistent with the use of boolean 
algebra as a building block for logic in the prebang epochs as opposed to a so-called 
Heyting algebra, a generalization of boolean algebra in which the law of the excluded 
middle does not necessarily hold.104 
 
The construction of R may be related to the following fact:  there is a striking connection 
between primordial mathematics and quantum theory, namely that successive zeros of the 
Riemann zeta function are correlated in precisely the same way as eigenvalues of random 
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Hermitian matrices of the so-called Gaussian Unitary Ensemble operating in a Hilbert 
space, and these zeros are intimately related to the distribution of the primes among the 
natural numbers.105,106,107  This distribution may have been determined in R;  at least one 
can say without pause that the necessary quantum structure is in place.   Pursuing this 
thought, we note that the natural numbers N are peculiar in that as one progresses from N 
to the integers Z to the rational numbers Q to the reals R, at each stage the definition of N 
changes.  For example, the number one as it is usually defined is the set of all smaller 
integers, i.e. {0}, a set that exists in pair of the logic epoch.  In order to define the 
integers, which include positive and negative numbers and 0, the standard definition uses 
equivalence classes of ordered pairs, whereby the equivalence class corresponding to a 
given integer contains ordered pairs whose difference is equal to that integer, e.g. –3 
would contain pairs (1,4), (32,35), etc.  The number 1 as an element of Z is represented 
by {(1,0), (2,1), …}.  In this sense, N is not a subset of Z;  of course, it is possible to 
define N in terms of elements of Z so as to make it a subset of Z, but there is no natural 
way to see the original N from within Z, nor as it turns out from within Q nor R without 
in each case a redefinition of N.  If one thinks of operators in the matrix as actually 
building real entities, as one must, this variable aspect of the natural numbers allows one 
to imagine them changing in essence at each step, or becoming something else, and in 
particular, one can imagine that, before they became a part of the reals as we know them, 
the distance between them was not defined and therefore the distribution of the primes 
was not fixed.  One can look at the reals in the same fashion:  they exist as part of the 
universe of sets implicit at the completion of the logic epoch, and yet their topology is not 
fixed until the current operator acts.   
 
In R*  a second one-dimensional space is generated, R*, the Hilbert space dual to R.  
Loosely speaking, the dual of a real Hilbert space H is the set of all linear mappings from 
H to the set of real numbers.  As mentioned in Appendix J, the dual of a Hilbert space is 
in a certain sense equal to the original Hilbert space.  This operator is analogous to 0 in 
the zeroth epoch and pair in logic, each of which arise through an operation on the 
preceding operator:  negation in the case of 0, and pairing in the case of pair.  
 
In C the one-dimensional complex Hilbert space, that is, the space of complex numbers is 
constructed (see Appendix J regarding complex numbers).   As a set, C is isomorphic to 
R2, the space spanned by two copies of R, which means that one can define a one-to-one 
correspondence that relates each element of R2 with an element of C and  vice versa.  
Such a mapping just maps points in the R2 plane (x, y) to points in the complex plane, 
where x becomes the real value of a point in C, and y becomes the imaginary value.  This 
operator must follow R* because before R* there was only one Hilbert space, R, and 
dualization is required to build a copy of R.  Taking one space to be composed of two 
spaces is analogous to union in logic.     
 
In Cn+1 = Cn x C the existence of every finite-dimensional complex Hilbert space is 
established.   Each new copy of C in the product is generated by taking the dual of a C 
already in the product.  This operator is analogous to infinity in logic.   
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In l2  the infinite-dimensional Hilbert space of square-summable sequences of complex 
numbers is generated (see Appendix J).  This operator requires the proceeding operator 
since its definition implies making a set out of those vectors v in Cn such that the norm of 
v is finite in the limit as n goes to ∞.   Similarly, replacement in logic is used to generate 
transfinite sets such as N + N.   
 
In spin network a particular infinite-dimensional Hilbert space is generated.  This space 
may be an infinite-dimensional Hilbert space isomorphic to l2 from quantum loop gravity, 
the space of “connections modulo guage transformations” L2().108  A basis for this space 
is given by so-called  spin network states, which are functions from spin-networks to the 
underlying space of connections.  A spin-network is a collection of vertices and edges 
running between those vertices with values attached to the edges that are constrained 
according to a so-called group representation.  In the original definition of spin-network 
due to Penrose, these values were associated with the half-integer spins of elementary 
particles.  
 
Loop quantum gravity is a theory of gravity developed in the last 15 years that attempts 
to construct spacetime by starting from a Hilbert space.  Its biggest success has been its 
ability to calculate the area of a black hole event horizon, which is known from a result 
by Hawking to be proportional to the entropy of the hole.  Ashtekar, one of the pioneers 
of loop quantum gravity along with Smolin, Rovelli, Gambino, Pullin, Thiemann, 
Lewandowski, Baez, and others, describes the theory in terms of “polymer-like 
excitations”, referring to the role of the edges in the construction of the area operator used 
in the above-mentioned calculation --- this analogy is significant given that spin network 
occurs in the same row as polymer.   
 
In ordered spin-network an ordering on spin-networks is established.  This ordering 
appears to be given by the total area of a spin-network, calculated as a particular sum 
over all of the edges of the network.  Such an ordering would be analogous to the 
ordering of the physical world, in which all systems evolve from states of lower entropy 
to states of higher entropy according to the second law of thermodynamics.     
 
In spin-foam a generalization of a spin-network is defined consisting of polygonal faces 
in addition to edges and vertices.  A spin foam defines so-called amplitudes for 
transitions between spin-networks.  As far as the author knows, as yet no spin-foam 
models have been constructed that are abstract in the sense that they do not depend on an 
underlying  manifold, a dependence that Baez assumes will be absent in a correct 
theory.109     
 
In spin-network evolution the amplitude for the transition of a spin-network from one 
state to another is given by a sum over spin foams. 
    
 
Structure of the Universal Matrix  
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We have been guided in the construction of the matrix in Table III by a repeating pattern, 
in which each row of the matrix is seen to have a particular functionality.  The columns 
therefore also have a pattern, which could be described as a singlet followed by a set of 
three triplets.  The first triplet establishes a foundation, the second triplet creates the 
building block and uses it to create a scaffolding, and the third triplet consummates the 
construction.  The triplets are well-delineated by the unambiguous start, middle, and end 
pattern of triplets one and three. There is also a similarity in functionality between the 
first, second and third triplet and the first, second and third row of the first triplet, a 
correspondence which is particularly evident in the resolving nature of the third triplet 
and the third row of the first triplet.   
 
It turns out that the above-mentioned structure can be understood by treating the contents 
of Table III as output from a small program, as anticipated in some sense by Binnig and 
in some sense by Wolfram, and perhaps others to whom the author apologizes for his 
ignorance.110,111   We shall return to this fact below, after some necessary mathematical 
preliminaries.  We also note that it is possible to represent some aspects of a single loop 
through an epoch geometrically, as shown in Figure 7;  by gluing together the edges of 
the three outer triangles one can form a tetrahedron, which has been taken as a basic 
structural unit of space in some models of quantum loop gravity. 
 
 
 
Mathematical Foundations 

Recent studies on the foundations of mathematics have centered on the roles of category 
theory and set theory.  Category theory provides a framework for understanding the inner 
workings of a process or mathematical structure.  Its power derives from the morphism 
and the composition of morphisms; by defining appropriate morphisms between objects it 
is possible to isolate what is essential about the structure one is trying to understand, 
whether that structure is simple, as in the case of a set, or that structure is itself an 
abstraction of the relationship between other structures, as one finds when studying the 
relationships between algebraic and topological structures.   In fact, category theory is so 
versatile that soon after categories were discovered attempts were made to use it as a 
foundation for all of mathematics.112 

Set theory, on the other hand, also has a claim to be foundational in that all branches of 
mathematics can be expressed in terms of it, aside from category theory.  The problem 
besetting set theory, and category theory as well, is that it depends on several concepts 
which are deemed to be primitive and not to be defined rigorously, such as a the notion of 
what a set is or an element of a set.  Even after set theory was reformulated in terms of 
category theory,113 one could still make the point that category theory was still lacking as 
a foundation in the sense that it could not account for such primitives.114   
 
It turns out that there is a third perspective on the foundations of mathematics as well, 
given by so-called constructive type theory, which is reflected in the universe, life, and 
algorithm epochs.  In the last thirty years a number of approaches to a rigorous theory of 
the semantics of computation within the context of Scott’s domain theory have been 
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developed.115  These theories, called type theories,  provide a means to precisely define 
the semantics of a computation, so that the notions of soundness and completeness can be 
applied to a programming language, just as these same notions can be applied to first-
order logic, where soundness means that any theorem is a logically valid statement and 
completeness means that any logically valid statement is a theorem; it complements 
earlier work in constructive mathematics spearheaded by Bishop as well as results of 
Goedel, Kleene, Curry and others that showed that computation essentially is deduction.  
Although the main focus in this area has been on proving properties of software systems, 
Aczel has shown that there are good prospects for formulating set theory in terms of 
constructive type theory (based on work by Martin-Loef), so that constructive type theory 
too appears to be a viable alternative as a foundation for mathematics.116,117  
 
The above discussion suggests that the matrix has three tiers of mathematical theory,  one 
starting in the zeroth epoch, another starting in physical universe, and a third starting in 
negation.  This idea is reinforced by the fact that 1, !1 = 0, and !!1 = 1 of the zeroth epoch 
forms an instance of an orthomodular lattice, in particular a boolean algebra, as does the 
negation protolanguage, while physical universe involves a causal set, also an instance of 
an orthomodular lattice, and each of these lattices lie at the beginning of its respective 
tier.   Also, there is a corresponding language in each of the three tiers: first-order logic, 
programming language, and natural language, respectively.  The typed lambda calculus, 
briefly discussed in Appendix C, is a prototypical programming language with a number 
of variants; it is used for example in the above-mentioned implementations of 
constructive type theory. 
 
Each of the above-mentioned languages can express everything that its predecessor can: 
first-order logic can be implemented in software and it can be described by the topos of 
category theory; likewise, the typed lambda calculus, and therefore any computation, can 
be described by a so-called cartesian closed category.118  Furthermore, it appears that 
each language describes a bigger universe, a conclusion we draw from the fact that 
category theory allows for the existence of entities not possible in ZFC set theory, a fact 
to which we turn next.   
 
The universe of sets described in the discussion of the logic epoch contains a series of 
infinite sets of ever-increasing size, or cardinality.  The ontological status of these infinite 
sets is the same as the ontological status of finite sets in ZF, the environment established 
by the logic epoch:  they exist.  One can define arithmetic operations on them that are just 
as valid as the analogous operations on finite sets.  However, it turns out that there are 
infinite sets still bigger than any of the aforementioned sets, so big that the repeated 
power set operation performed in the universal hierarchy never reaches them.  These sets 
are the so-called large cardinals, whose existence cannot be proved in the pre-bang 
universe of ZFC, but which can be shown to exist if one adopts certain so-called large 
cardinal axioms, of which there are dozens119; it is conjectured by mathematicians 
including Woodin, a pioneer in the field, that these axioms themselves render a 
wellordering of the large cardinals (by direct or relative consistency implications), that is, 
that they allow one to order the large cardinals in a hierarchy.120  The ontological status 
of these inaccessible cardinal sets, which have deep connections to the reals, is somehow 
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different from other sets in that their existence can only be established in higher set 
theory, i.e. using large cardinal axioms; one must hasten to add that as of yet there is no 
natural formulation of these large cardinal axioms in category theory, that is, there is no 
formulation beyond a literal translation so-to-speak from higher set theory, although it 
would seem appropriate that these axioms have an expression in terms of categories.   It 
also appears that constructions analogous to large cardinals can be shown to exist in 
constructive type theory. 121, 122    
 
The foregoing suggests that the matrix is a hierarchy of tiers of mathematical theory, with 
each tier subsuming all previous ones, just as the transitive sets of the universal hierarchy 
of sets described in the logic epoch subsume all previous sets in the hierarchy.   
 
 
Logic and Truth 
 
The category theory approach to logic involves a particular kind of category called a 
topos.  A topos has objects called 0 and 1, products and sums suitably defined, and a way 
to look at subobjects or parts of objects, all of which is accomplished with appropriate 
objects and morphisms, the machinery of categories as we have seen.  In addition, a topos 
must have a so-called subobject classifier;  this object has a natural interpretation as a 
truth-value object and while it may be two-valued, in general it may have an infinite 
number of values.  For this reason, the topos embodies the structure of intuitionistic logic, 
by which we mean a logic in which the law of the excluded middle does not hold.  Since 
the topos is the natural home for logic in category theory, one must view this general 
multi-valued truth scheme as a significant evolution from the two-valued logic of set 
theory; that is, one must not regard this scheme as a sheerly mental construct, since the 
matrix has shown that category theory is part of the fabric of the universe. 

The step from a two- to a multi-valued truth scheme is all the more significant given that 
truth and falsehood are concepts that appear immediately in the matrix, truth to the fore.  
What is more, they hold center stage thereafter, first as cornerstones from which the 
concept of ordering is built, then as indispensable notions of propositional and first-order 
logic, and from then on as elements common to all lattices, including Hilbert lattices, the 
causal set of space-time, and the boolean algebra of negation.  Even so, it turns out that 
the role of truth in the hierarchy has a still broader interpretation, as we shall now discuss. 

The notion of truth implicit in the soundness and completeness theorems of first-order 
logic is due to Tarski and dates from the 1930’s.123  This celebrated definition of truth 
evolved into the currently accepted definition of the truth of a sentence in a model, as 
discussed in Appendix F.  It was motivated in essence by the so-called liar’s paradox, 
which arose from the following statement attributed to the Greek Eubulides of Miletus of 
the fourth century B.C.:  the statement I am now making is a lie.  Taking this puzzling 
statement very seriously and rightfully so, Tarski concluded that no language has a 
consistent concept of truth, and that a given language requires for the definition of truth a 
second, overarching language, or metalanguage, which, in addition to being able to 
express all statements in the original language, also has a criterion for deciding which 
statements are true in the original language.  In his formal definition of truth in ZFC, this 
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criterion is essentially the criterion one would intuitively expect, and it handles 
statements analogous to that of the liar.  If one accepts Tarski’s formulation, truth is a 
hierarchical concept: one imagines a series of languages, each one having the full 
expressive powers of the previous one as well as a criterion for deciding what is true in 
the previous one.    
 
It may be that Tarski’s definition is in fact the definition of truth expressed in first-order 
logic from the perspective of ZFC set theory, using natural language as the metalanguage.  
One might therefore expect there to be a corresponding definition of truth in computation.  
As far as the author can see, little has been done in this regard: the above-mentioned 
attempts to found set theory on the basis of computation naturally work with a two-
valued truth theory since that is appropriate in ZFC, and to the author’s knowledge no 
attempts have been made to precisely define truth in terms of computation using natural 
language or category theory as a metalanguage.  On the other hand, Kleene argued that 
corresponding to a partial recursive predicate the natural logic is a three-valued logic, 
with values true, false and undefined or unknown; in domain theory the undefined value 
is called bottom, written ⊥.    The use of a three-valued logic reflects a refinement in type 
theory of the two-valued concept of truth in ZFC, which in turn would be further refined 
in terms of the topos of category theory.    
 
In conclusion one must say that the fact that the hierarchy of mathematical theories 
provides metalanguages as required by Tarski for a definition of truth is difficult to 
dismiss as coincidence given the above-mentioned preeminence of truth in the hierarchy.  
Indeed, if in addition one considers the fact that as one ascends the hierarchy the 
mathematical theories become more expressive, with progressively more refined sets of 
truth values, it is natural to speculate that the very purpose of each mathematical tier is to 
refine the notion of truth. 
 

Theology 
 
As mentioned above, there are operators that precede the matrix.  It turns out that these 
operators can be used to give a mathematical proof of the existence of God.  Before 
presenting this proof, we first briefly discuss traditional arguments for the existence of 
God. 
 
First Cause Argument 
The presentation of the quantum logic epoch given here is much more uncertain than the 
presentation of the order and logic epochs.  Major revisions to this epoch may be 
necessary to properly account for the origin of space, the time evolution of quantum 
mechanical states, and the reconciliation of quantum mechanics with geometry.  These 
facts notwithstanding, there can be no doubt that as the theory is refined the first two 
prebang epochs will stay largely intact, since they are entirely mathematical and they fit 
the overall singlet-plus-three-triplets pattern of the matrix.  Furthermore, the implicit 
references to orthomodular lattices before and after the quantum logic epoch and the 
cyclical behavior quantum logic shares with all other operators of row 0 provide 
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particularly formidable evidence that the description given here of the quantum logic 
epoch is on the right track.   
 
In spite of the above-mentioned shortcomings in our presentation, the existence of a 
hierarchy of three mathematical theories in the matrix, one generated before the bang and 
two after, leads one to conclude that there is an order that logically precedes the physical 
world.  Moreover, that order manifests itself as an evolution from the simple to the 
complex, pointing toward a starting point from which everything begins.  In theology 
there is a long-standing argument for the existence of God1 based on first cause, which 
contends that the chain of causation in the world must start somewhere, and so one 
postulates the existence of a prime mover.  Against this argument one could counter that 
the chain of causation becomes meaningless when one tries to make it transcend the 
physical world.124  However, the hierarchy provides an obvious way to meaningfully 
extend the chain of causation beyond the physical world so as to invalidate the 
aforementioned counterargument, and thus one is led to an inevitable conclusion: God 
exists.  He or She may be referred to as Allah, Brahma, God, Naam, Tao, Yahweh, or 
otherwise, but in any case there is a Divine Being ultimately responsible for what we see 
in the world. 
 
Design Argument 
The hierarchy supports in addition another long-standing argument for the existence of 
God, the so-called argument from design, according to which the existence of a design 
implies the existence of a designer.  Heretofore the stumbling block of this argument has 
been that one could dispute whether a design exists.125  In what follows we establish 
unambiguously that a design in fact does exist, at the same time arriving at a still stronger 
result on the existence of God, a proof using the mathematical apparatus of model theory.   
 
We start by noting that the three tiers of mathematical theory in the hierarchy conform to 
the first triplet pattern of an individual epoch: category theory is a merging of set theory 
and computation theory, its objects being like sets and its morphisms like recursive 
functions.  This appearance of the first triplet pattern at another scale leads one to 
consider a design in terms of functions defined by recursion, that is, functions that 
reference themselves in their definition.  
 
λ-calculus and Combinatory Logic 
There is a natural language for talking about recursion, the type-free lambda calculus 
developed by Church in the 1930’s.  This simple, yet potent language consists of terms 
that are either names, function abstractions, or function applications.  A function 
abstraction is a specification of a function of a single untyped input term --- function here 
is used not in the set-theoretic sense as a set of ordered pairs, rather in a looser sense 
conveying the idea of operation, just as we have used the word operator here from the 
outset, beginning with the negation operator of glossogenesis theory; a function 
application is an instance of a function abstraction applied to a term.  As an illustration, 
                                                 
1 Translators are instructed to translate the word God according to the concept of God predominant among 
speakers of the target language.  They are also instructed to translate this footnote, which is in the original 
English text of this article as well. 
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one would say sin x is an abstraction and sin π  is an application.  There is one essential 
rule governing manipulation of expressions in the lambda calculus, the so-called β-rule, 
which gives the syntax for function application.  A more detailed description of the 
language in Appendix C. 
 
Slightly before Church’s work on the lambda calculus, first Schoenfinkel and then Curry 
independently discovered a still more primitive language along the same lines called 
combinatory logic.  Combinatory logic also uses the notion of terms that are applied to 
one another in the sense of operator used above.  One difference between combinatory 
logic and the lambda calculus is that there is no concept of bound variable in combinatory 
logic, that is, there is no natural way to achieve function abstraction; in this sense 
combinatory logic bears the same relation to lambda calculus as propositional logic bears 
to first order logic --- as discussed above, first order logic contains variables that are 
bound by universal quantifiers and such variables are not present in propositional logic.  
The key point is that combinatory logic simulates the process of substitution for a 
variable without introducing variables, and in this sense it is primitive and a necessary 
forerunner to both the lambda calculus and first order logic.   
 
A description of combinatory logic is given in Appendix D.  The essence of the language 
is that there are three constants, I, K, and S, from which all functions expressible with the 
lambda calculus can be generated.  They are defined as follows: Ix = x; Kxy = x; and 
Sxyz = xz(yz), where x, y and z are variables.  The meaning of I is that it reproduces the 
input; it is called the identity operator.  K reproduces the first term it sees and discards 
the term following that first term; it is also called the truth operator, and not merely due 
to convention: (KIx)y = Iy = y motivates the definition of the falsehood operator F ≡ KI, 
since KMN = M and FMN = N reproduce the behaviour of the conditional construction 
(if-then else), whereby the order of M and N, whatever their meaning, is intrinsic due to 
the nature of the conditional.  K also plays the role of a constant function when viewed as 
a function of the second term it sees.  S composes dependence on the third term it sees: 
Sghx = gx(hx).  The best way to understand why these terms are defined as they are is to 
work through the so-called abstraction extraction algorithm presented in Appendix D that 
starts with a function abstraction and systematically removes dependence on variables 
until there is nothing but a series of term applications.  It turns out that I, K and S are the 
only constants needed to remove dependence on variables from an arbitrary function.  
 
 
 
 
Ix = x                             objectify 
KIx = I                          abstract 
SKIx = Kx(Ix) = x        apply 
 
Table IV 
 
  
Zeroth Recursive Call 
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The constant I can be written in terms of K and S, but we include it here since the 
operators I, K and S are all used in the zeroth recursive call in the series of calls that 
result in the hierarchy.   In Table IV, we show the zeroth call.  First the identity operator I 
is defined; it requires one input, which we view as establishing that the concept of input 
is required even for the zeroth row.   Next, the truth operator K is defined; it requires two 
inputs and so cannot be defined until after I.  In fact, K specifically refers to I in its 
definition as a particular case, operating on Ix to yield KIx = I.  Likewise, S requires 
three inputs and so cannot be defined until after K.  As K does, and indeed all operators 
in the entire hierarchy, it operates on the output of the operator preceding it and so is 
introduced specifically as an operation on KIx: SKIx = Kx(Ix) = x.   In light of the fact 
that SKK = I, these definitions for I, S and K given by specific formulas (and not by the 
general formulas Kab = a and Sabc = ac(bc)) show that the operators I, S and K treat one 
another and themselves in the same way they treat the variable x, and indeed we hold that 
this is a reason the specific formulas must originate with the operators themselves and not 
say as some sort of horizontal extension of the operators introduced as general formulas. 
 
The terms S, K, and I are building blocks from which arbitrary functions can be formed.  
At the same time, the operators in Table IV as a group can be interpreted as building the 
notions of function abstraction and application themselves on the basis of the identity 
function Ix = x, which can be read off vertically from the right-hand side of the operators 
in Table IV.  This interpretation goes as follows.  First, the step from input to the term x 
via Ix is a process of objectification through which the input becomes real in some 
sense… Next, the step (effected by the truth operator K) from x to I is an abstraction 
capturing the essence of the input in a process for replicating it…  Finally, the step from I 
(= SKI) to x establishes a link in the opposite direction, from process to object, by 
merging process with object, i.e. by application of process to object.  These three steps, 
which we dub objectify, abstract, and apply and with which we associate the terms, 
abstractions and applications of the lambda calculus, are the building blocks of the next 
recursive call.  These three steps, starting from the term application of combinatory logic 
and ending with the function application of lambda calculus, in effect define lambda 
calculus.  
 
At the same time, there is a third way to look at Table IV: the above intepretation can be 
taken to consummate the definition of I in the sense that it gives I a semantics, that is, a 
meaning.  The same can be said of K and S indirectly.  Therefore, the definition of I and 
K does not become fully effective until the appearance of S.  This is in line with our 
previous argument that the explicit appearance of the formulas Ix=x, KIx=I and SKIx=x 
in Table IV is necessary in order to establish that function and function argument are 
treated equally, since that argument implies that the definitions of I and K are actually 
not complete until the appearance of S.  In summary, there are three levels of definition in 
Table IV: 1) at the object level, as explicit syntactic definitions using combinatory logic, 
2) at the abstraction level, viewed as a unit defining objectify, abstract and apply, and 3) 
at the application level, as a merging of the abstraction level definition with the object 
level definition that renders the object level definitions meaningful. 
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An issue that requires addressing here in more depth is the difference between 
combinatory logic and the variant of lambda calculus that is appropriate for the next 
recursive call, the λη-calculus.  Using a standard mapping between the two, it can be 
shown that a reduction of terms in combinatory logic always results in a corresponding 
reduction in the λη-calculus, but not vice versa.  This is because there are reduction rules 
present in λη-calculus that are not found in combinatory logic, the so-called ξ- or weak 
extensionality rule and the η-rule, both given in Appendix C.  These rules give λη-
calculus an important characteristic, namely that two different functions or operators that 
produce the same result with respect to a given input are considered equal; in λη-calculus 
an operator is like a black box: the output alone from a given input defines the 
corresponding operator and what happens inside the operator so to speak is not 
interesting.  Such definitions can be said to be definitions by extension.  On the other 
hand, the operator definitions of combinatory logic are by intension, which means that 
the definitions explicitly give the algorithm for generating output.  In combinatory logic 
how an operator generates output from a given input is as important as the output itself 
with respect to the definition of an operator; in particular, if Mx = M’x for arbitrary x, 
then it is not necessarily true that M = M’ in combinatory logic, whereas in λη-calculus it 
would be true that M = M’.  Apparently operators rapidly become complex in the 
hierarchy and the algorithms they use rapidly become inscrutable, so it soon only 
becomes practical to define operators solely by their output.  Therefore, the λη-calculus 
is required in order to define all but the simplest operators, evidently all but those in 
Table IV.     
 
objectify                   (objectify ◦ objectify) 
abstract                    ( objectify ◦ abstract) 
apply                        (objectify ◦ apply) 
re-objectify              (abstract ◦ objectify) 
re-abstract               (abstract ◦ abstract) 
re-apply                   (abstract ◦ apply) 
asymmetrize            (apply ◦ objectify) 
transform                (apply ◦ abstract), 
reflect                      (apply ◦ apply) 
 
Table V 
 
First Recursive Call  
In Table V we show nine operators;  we arrived at these nine operators by recognizing 
that they form the pattern of an epoch of the matrix.  In order to get from Table IV to 
Table V, it is necessary to regard the three operators objectify, abstract, and apply as a 
unit, or function, and then allow that function to take itself as input.  In so doing, in some 
sense we get nine compositions, starting with objectify ◦ objectify, objectify ◦ abstract, 
and objectify ◦ apply, which we write simply as objectify, abstract and apply since the 
meaning of the above compositions is unclear and since by the nature of λη-calculus 
operators are defined by their output: how the output is generated does not matter --- that 
said, objectify arose from the identity operator I and therefore here, where we are closest 
to combinatory logic, it is reasonable to understand it as an identity operation when 
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composed.  Next, when we abstract each of the operators objectify, abstract, and apply, 
we get three new operators, re-objectify (abstract ◦ objectify), re-abstract (abstract ◦ 
abstract), and re-apply (abstract ◦ apply).  Finally, in order to get a once-removed apply, 
we first asymmetrize (apply ◦ objectify), then transform (apply ◦ abstract), and then 
reflect (apply ◦ apply). 
 
As we shall discuss below, the matrix in Table III corresponds to the recursive call 
following the one represented in Table V;  the matrix is the result of repeated applications 
of the nine operators of Table V with a single operator sandwiched between applications.  
As a check that our presentation thus far is plausible, note that the operators objectify, 
abstract and apply correspond to rows 1, 2 and 3 of the matrix: objectify for example 
makes the row 0 operator into some kind of unit; abstract extends that unit somehow; and 
apply is always in some sense a merging of the two previous operators.   As regards the 
remaining operators in Table V, consider the operators of the current epoch, cyclic time:  
after equality there is equivalence class, which might well be called equivalence relation 
since this notion appears simultaneously and so can be understood as a result of abstract ◦ 
objectify operating on equality, with equivalence class corresponding to objectify and 
equivalence relation corresponding to abstract; function operates on equivalence class by 
providing on the one hand the concept of mapping and on the other hand the concept of 
domain-codomain, which may be seen as abstractions of equivalence relation and 
equivalence class, respectively;  function composition is function applied and abstracted; 
category, with its objects and morphisms defined in terms of composition, is 
objectification and application of function composition; functor is an abstraction of 
category making use of function application; and natural transformation relates two 
functors via function application.  On a coarser scale, we confirm that the three operators 
objectify, abstract, and apply also act on the triplets of the cyclic time epoch as units:  the 
first triplet is fully objectified in equality, function composition is the result of capturing 
the essence of equality and making a machine for replicating that essence, and natural 
transformation represents a merging of the concepts of equality and function 
composition, providing a deep notion of equality amongst structures in terms of 
composition of mappings. 
 
Matrix as Second Recursive Call 
The recursive call after Table V is the matrix, and the pattern of a function taking itself as 
input were to continue, we would expect there to be eighty-one operators in the next 
iteration if the previous pattern were continued.  Instead, in the matrix we see (by 
extrapolation to nine epochs) eighty-nine operators, eighty-one from repeated application 
of the function in Table V and eight more in row 0, excluding row 0 column 0 as the 
input.  This iteration has the form of a for-loop, that is, a loop through the same code a 
prescribed number of times, here nine times, with a special type of operator in row 0.   
Row 0 is always an operator that cycles, playing the role of an index that is incremented 
once per iteration. 
 
The epochs themselves also follow the nine operator pattern of Table V as a group, so 
that the pattern shows up horizontally as well as vertically in the matrix, as we shall now 
argue.  Since the operator in row 0 column 0 represents the input of a nine-line function 
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taking itself as input, and the first epoch of the matrix defines an ordered lattice, we can 
interpret the operator in row 0 column 0 as an ordered lattice; as it happens, if you take a 
lattice consisting of elements 0 and 1 and paste in boolean algebras as subspaces, you get 
a Hilbert lattice, that is, a set of closed subspaces of a Hilbert space, which is a quantum 
logic126 --- this follows the objectify, abstract, and apply pattern.  Furthermore,  negation 
is like a polarization, resembling asymmetrize, and  cyclic time behaves as transform 
does, carrying things from state to state.  Based on the foregoing, physical universe, life 
and algorithm should follow the re-objectify, re-abstract, and re-apply pattern in an 
unambiguous way.  These epochs do follow that pattern given that the DNA machinery 
driving living cells is in reality a Turing machine, and provided that physical universe, 
i.e. the physical world at the level of events, is itself essentially a computation that in 
some sense realizes physical law, as has been argued on an intuitive basis by Fredkin, 
Kreisel, and others over the last twenty-five years.127, 128, 129  In that case the epochs 
physical universe, life and algorithm form a progression analogous to equivalence class 
(which might well be called equivalence relation),  function and function composition, for 
example.  
 
λ-calculus and C. L. as Mathematical Languages with One Truth Value 
Next we will show the role of God in the recursive process described above.  To do this, 
we note first that combinatory logic and lambda calculus as defined in Table IV allow for 
rules of deduction under some natural assumptions as given in Appendices B and C.  In 
effect, for combinatory logic we will only need the reduction rules of Table IV and for 
lambda calculus only the β-and η-rules.  Having rules of deduction for each of these 
languages,  we can use them to derive theorems and therefore describe mathematical 
theories that precede set theory.   
 
In the early days of lambda calculus, the 1930’s, Kleene and Rosser noticed that there 
existed logics that were inconsistent, logics based on lambda calculus among them.  
These logics were inconsistent in the sense that all propositions were provable in them.  
In Appendix E we sketch a version of their argument applied to lambda calculus, with 
propositions corresponding to lambda calculus terms.  The net effect of their work is that 
all propositions are true in such logics, which appeared to make them inconsistent and 
unusable.  Furthermore, it was shown that negation cannot exist in the logic of lambda 
calculus using arguments that are given in Appendix E.  These same arguments also 
apply to combinatory logic: every proposition is true and there is no negation operator in 
combinatory logic.  For these reasons Church abandoned the lambda calculus as part of a 
system of logic and Curry undertook a program of modifying combinatory logic to rid it 
of such so-called paradoxes.  
 
It is now clear that combinatory logic and lambda calculus do provide a proper 
framework for a primordial logic precisely because they have only one truth value, true, 
as befitting a logic preceding the two-valued first order logic.  This single-valued logic 
contains no logical connectives such as negation or implication because these are no 
longer necessary and because they no longer make sense in an environment where every 
proposition is true.  In effect, each proposition is now a theorem, which means that 
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soundness and completeness requirements, discussed above with regard to first order 
logic, in lambda calculus and combinatory logic are satisfied trivially.   
 
Fixed Point Theorems and Y Combinators 
The most significant theorem of lambda calculus is the fixed point theorem, known to 
Church in the 1930’s.  The same theorem can be proved in combinatory logic.  It says 
that every term has a fixed point, which means that for every term F there is another term 
X that is left unchanged when F is applied to it, so that F(X) = X.  In Appendix E, we 
construct X for a given F, establishing the theorem for both lambda calculus and 
combinatory logic.  In general, the solution for X results in a recursive algorithm 
resulting from repeated applications of F, which can be written MF = F( MF ), where M 
is a so-called fixed-point combinator as pointed out in Appendix E.   
 
The recursive process we have described starting from the three operators objectify, 
abstract, and apply follows the pattern given by MF = F( MF ), which in words reads F is 
a term such that applying F to a certain term M applied to F is equal to that term M 
applied to F.  That term M provides a recipe for recursing over any term to which it is 
applied.  The recursive process resulting in Table V and the matrix follow this pattern 
with M the identity, so that F(F) = F.    
 
The appearance of xI = x vertically in Table IV is convenient because it gives a slot for 
input in row 0.  That input is God, as shown in the following paragraph.  At the end of 
Table IV, God is a three-part entity.  He or she then applies himself to himself to get to 
the nine operators of Table V and from there, as a nine-part entitiy, applies himself to 
himself again, which results in the matrix.  In Table V and then in the matrix God applies 
himself to a recipe for recursing over himself, and since at the same time he is equal to 
that recipe, he is in effect applying himself to himself.  Through these iterations the 
essence of God does not change; thus even though at the end of the next epoch he will be 
a 92-part entity, we still see that he is a three-part entity, for example in the three-epoch 
units of set theory, computation, and category theory, and that he is also a nine-part 
entity, for example in the operators of column 0.  In fact, God is manifested in every 
single operator in Tables IV, V and the matrix, and therefore in every piece of the 
universe.  The row 0 operators are the most stunning examples of this manifestation. 
 
In the language of combinatory logic there is an interpretation that gives meaning to God 
as an entity that applies himself to a recipe for replicating himself and that at the same 
time is equal to that recipe.  Note that the language of combinatory logic is appropriate 
here since it does not distinguish between function and argument: every operator can be 
an argument and every argument can be an operator; furthermore, an operator can take 
itself as an argument.  The above-mentioned interpretation assigns to God the identity 
operator I.  Accordingly, in Table IV the equation Ix = x should read II = I, which in 
words reads apply I to itself and the result is equal to I.  The nature of I in combinatory 
logic is such that in effect I is a recipe for replicating whatever it is applied to, and when 
applied to itself it replicates itself, so that the essence of the recursive dynamics described 
by F( MF ) = MF is present from the beginning in the II = I of row 0 in Table IV.  That 
dynamic is further developed vertically in Table IV as the right hand side of Ix = x, KIx= 
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I, and SKIx = x;  these three rows as a group reveal that I is indistinguishable from a 
three-part process and in so doing also reveal that the application of I to I next means 
applying a three-part entity to a three-part entity, which results in a nine-part entity, and 
so on.   
 
In light of this interpretation of I as God, we can now attach increased significance to 
column 0 row 1 of the matrix, which is 1, or truth.  This operator can be understood as 
(objectify ◦ objectify) ◦ (objectify ◦ objectify)  by applying the full row 1 operator in Table 
V to itself, which we now reduce to objectify ◦ objectify and from there to objectify ◦ I --- 
this is the most natural reduction taking into account the threefold composition and 
consistent with our argument for the reduction from objectify ◦ objectify to objectify in 
Table V.  From this perspective, objectify ◦ I  yields 1, that is, I is objectified as truth. 
Similarly,  KI is objectified as 0, and SKI (= I = KI(X) = KI(KI), where X is any term) 
as 1.  The objectification of I, KI, and SKI to 1, 0, and 1 (or equivalently truth, falsehood 
and truth) agrees with the definition of the false operator as F ≡ KI given above.  It bears 
emphasizing that KI in combinatory logic has only a syntactic equivalence to falsehood, 
since the notion of falsehood or negation has no meaning in combinatory or lambda 
calculus; truth, on the other hand, does have meaning in these logics in the sense that 
every proposition is true, and thus to say that the operator I and hence God is objectified 
as truth is warranted. 
 
The above-mentioned interpretation also makes clear in what sense combinatory logic 
and the lambda calculus are subsumed by set theory, that is, in what sense they can be 
understood in terms of set theory.  If we consider that God is the domain and range of the 
operators of Table IV and 3, then the cardinality of the domain and range are 1 and set 
theory is then able to account for functions that take themselves as arguments.  
 
The foregoing contains the most significant result of this article, which is that the 
constant I in the language of combinatory logic has a natural interpretation as God; in 
order to express this in a mathematically acceptable way, we must turn to model theory.    
 
God as a Valid Proposition in Model Theory  
The word model in ordinary language is used in two ways, as a representation and as a 
real thing that is somehow represented.  For example, a model airplane is a representation 
of a real thing, but a model in photography is a real thing, of which a photograph is a 
representation.  In mathematics, model theory uses the word model in the sense of the 
real thing, while the representation of that real thing is called a language.  The purpose of 
the theory, which crystallized in the 1950’s (with certain results dating to the beginning 
of the twentieth century) and is credited in large part to Tarski, is to specify precisely 
which sentences in a language are valid when interpreted as sentences about objects in a 
corresponding model.  The theory can be seen as a reaction to the two incompleteness 
theorems of Goedel, which established that 1) any mathematical theory based on Peano 
arithmetic, the technical word for elementary arithmetic, must contain true sentences that 
are not provable and that 2) the consistency of any axiomatic system containing Peano 
arithmetic cannot be proved within that system; in effect, model theory salvages the 
notion of a valid sentence by using the concept of truth in a model to establish a 
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connection between model and language:  a sentence in a language is valid if and only if 
it is true in every model.     
 
In first order model theory the variables in a language range over the domain of the 
model, the domain being a set.  Since sets do not yet exist in the world of Table IV, we 
cannot use the theory as is, and yet the theory clearly is applicable here.  Therefore in the 
case where the language is combinatory logic or lambda calculus, we think of the domain 
of a model as a blob, short for binary large object, a term used in some database 
implementations for untyped data of arbitrary size; blobs are structures in the sense that 
their layout in terms of objects is known by code creating, storing and retrieving them.  
The fact that topos-valued models have been used in categorical approaches to model 
theory makes the substitution of blob-like objects for sets seem like a natural thing to do 
in models of combinatory logic.      
 
Models are mathematical structures that are represented by formal languages as a  
mapping of language elements to elements of the model.  There are a number of 
structures in the hierarchy that might be described in terms of model theory.  For 
example, one can interpret all terms of combinatory logic or lambda calculus as the same 
thing, the truth so to speak, since all terms are true in combinatory logic and lambda 
calculus, as discussed in Appendix E; another example: the first three operators of the 
matrix form a boolean algebra; another example: the operators of the order epoch of the 
matrix define a partial ordering.  There are also structures within the operators of the 
matrix such as the orthomodular lattice of physical universe, the boolean algebra of 
negation, and, for that matter, all mathematical structures that can be described with 
natural transformation, that is, all mathematical structures in all currently known 
mathematics.  However, the most appropriate structure for our purposes is the one given 
by II = I.  The underlying structure here is nearly that of a groupoid, the simplest of 
algebraic structures, which is defined as a set with a binary operation; this structure 
differs from a groupoid only in that there is no set, rather a structured entity that might be 
called a blob in the above sense.  A model-theoretic account of II = I in terms of 
combinatory logic is given in Appendix F.  Since the sentence  II = I is true by definition 
in every model of combinatory logic, the assignment of the combinatory logic constant  I 
to God  makes II = I a valid sentence about God. 
 
To put the foregoing into proper perspective, we summarize by saying that the sentence 
II = I, where the combinatory logic constant I is assigned to God, and application and the 
symbol  “=” have meanings defined in Appendices C and F, has the same status with 
respect to model-theoretic validity as has the sentence 1+1=2, where the symbols 1, +, 2 
and “=” have their usual interpretations in the language of Peano arithmetic.   
 
Recursion Theory 
The recursive calls described above follow a pattern familiar from recursion theory that 
lends strong support to the view that the universe is designed.  Before describing that 
pattern, it is necessary to introduce the Turing machine, which provides a generic 
description of what it means to calculate.  The Turing machine is a box that reads and 
writes symbols one at a time in a row of squares on a tape infinitely long in one direction.  
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Its operation depends on what symbol it is currently reading: it has a list of instructions 
that tell it if it is in a given state of its operation and it reads a certain symbol, then it 
needs to write some symbol (possibly the same one it read) to the tape and then move one 
square to the left or right.  Turing machine states are actually just numbers that can be 
viewed as line numbers in its list of instructions.  An instruction consist of six things: its 
line number, the current symbol being read, the line number of the next instruction to 
execute, the symbol to write, and the direction to move to an adjacent square on the tape 
for the next read.  There is a special instruction called the start instruction to start the 
operation of a Turing machine and a special state called a final state to end its operation.  
A particular Turing machine is a program that starts with certain symbols on its tape and 
executes its instructions until reaching a final state. 
 
It turns out that the Turing machine is only one of many equivalent ways to describe the 
computing process mathematically:  other ways include flow charts, register machines, 
Post-Turing systems, while-programs, and so on.  All of these descriptions are capable of 
describing any calculation that any modern computer can do.  In effect, they capture the 
algorithmic process.  The word algorithm does not have a precise mathematical 
definition; it is an effective procedure for solving a problem, such as for finding the nth 
prime number, for finding a name in a telephone book, for finding the product of two 
numbers, for finding the sum of two numbers and so on.  In each of these examples there 
is a procedure or algorithm according to which a solution of a problem is broken down 
into a series of elementary actions that are completely determined at each step in the 
series by the nature of the problem.   
 
The data that an algorithm works with can always be taken to be natural numbers --- the 
names in a telephone for example can be translated uniquely into numbers.  Therefore, all 
of the machines above can be thought of as ways of calculating number theoretic 
functions, i.e. functions that take one or more natural numbers as input and return a 
natural number.  It is surprising that all of these different approaches to calculations 
arrive at the same number theoretic functions; even more surprising is that taking an 
abstract approach to the construction of number theoretic functions, building them 
systematically from the simplest functions, one arrives at the same functions.  This 
abstract approach, developed in the 1930’s by Goedel, Herbrand and Kleene, is called 
recursive function theory. 
 
In recursive function theory, one starts with a group of initial functions: 1) the zero 
function, which has a value of zero regardless of its input; 2) the successor function, 
whose value is its input plus one; and 3) the projection functions, whose value is their ith 
input.  From this group of initial functions, one builds more functions by allowing  4) 
composition of functions so that if f (n) and g(n) are initial functions, then h(n) = f(g(n)) 
is allowed.  Next, 5) primitive recursive functions are allowed, which are defined 
according to the following scheme: let f(0) = k and f( n+1 ) = g( n, f(n) ).  Such functions 
define a function in a series of steps, with the function g determining how f(n+1) is 
determined from f(n).  Since f(0) is given as k, the function is defined for any n.  For 
functions of two numbers, primitive recursion is defined by f(m,0) = h(m) and f(m,n+1) = 
g( m, n, f(m,n)).  For example, the addition of two numbers f(m,n) = m+n, is a function of 
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two numbers, for which the general primitive recursive definition is given by as: f(m,0) 
=m; f(m, n+1) = f (m, n) + 1 --- g in this case is f(m,n) + 1.  Similar primitive recursion 
formulas hold for functions of three numbers, four numbers and so on.  Lastly, one 
defines functions by 6) minimalization; the notation for such functions is given in 
Appendix I.  The idea is that they return the smallest value for which a given predicate is 
true.  Such functions are necessary for example to define the function giving the natural 
number associated with the quotient x/y  (As a specific case, 7/2 has the natural number 3 
and the remainder 1 associated with it; here 3 is given by the smallest value of n 
satisfying the predicate n is such that (n +1) times 2 is greater than 7.)  
 
There is a dependency amongst the above-mentioned six methods for forming number 
theoretic functions.   The zero function must come before the successor function or the 
projection function; otherwise, there is no suitable input for these functions.  The 
projection function must come before composition so that in f = h(g(n)) the function h 
knows how to reference its argument in its definition.  Composition must come before 
primitive recursion by definition.  Minimalization requires primitive recursion because its 
definition requires the binary predicate less than, which is a primitive recursive predicate.  
There is no dependency between the successor and the projection function.  
 
There are still other ways to define the recursive functions, as mentioned in Appendix I, 
including via combinatory logic, via λη-calculus and via so-called while-programs.130  A 
while-program is a software program that in general is able to cycle through a loop 
executing the same instructions over and over until some loop exit condition is true that 
depends on values of variables altered in the course of execution of the loop --- such a 
loop is called a while-loop.  It also has a zero procedure, procedures that increment and 
decrement values by 1, and procedures that return their nth argument.  It can also call one 
procedure from within another, and can execute a particular kind of while-loop called a 
for-loop, which iterates a fixed number of times by incrementing a counter value by one 
in each iteration and checking that value in the exit condition.  These capabilities mean 
that any number theoretic function defined in recursive function theory as in the previous 
paragraph can be computed by a while-program; in particular, the for-loop capability 
means that primitive recursive functions can be computed by while-programs and the 
while-loop capability means that functions defined by minimalization can also be 
computed by while-programs.  One can demonstrate these facts rigorously.  For example, 
there is a theorem that says that a function is primitive recursive if and only if it is a for-
loop function, with a for-loop function defined as a function that can be computed by a 
program containing for-loops but no while-loops of the more general form in which the 
number of loop iterations are not fixed.131 
 
The point of this discussion is that all but the last of the six methods for building number 
theoretic functions appear in the recursive calls of Tables IV, V  and the matrix; 
furthermore, they appear in the dependency order given above.  The zero function 
appears immediately in Table IV since the standard convention for the zero function in 
combinatory logic is I, as discussed in Appendix I.  Next, the successor function in the 
standard convention is generated by F (= KI), which is in row 1 of Table IV.  The 
projection function for a function of one argument is I;  the projection function for the 
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first of a series of two arguments is K, and KI for the second. Therefore, the projection 
functions appear in both row 0 and row 1; further projection operators can be defined 
using repeated applications of F.132 Both the successor function and the general 
projection functions require S in row 2 of Table IV for their implementation, as discussed 
in Appendix I.  Regarding the composing of functions, the operator B = S(KS)K is called 
the composition operator, since  Bfgx = f(gx) first applies g to x and then applies f to that 
result;  it can be considered essential for the composition that takes place in Table V.  
Finally, the matrix itself is a for-loop, which is a primitive recursive function.  Note that 
the initial functions are not actually executed as such; it is as though the task of the three 
operators in Table IV were to create them as generators, a task that we conclude is 
completed because of the subsequent two recursive calls, the usual horizontal extension 
rule notwithstanding --- to justify this, one might argue that dependence of operators on 
horizontal extensions of previous operators are allowed to take place between recursive 
calls, but not in the midst of one.  In contrast, the composition of functions in Table V is 
an instance of composition that executes in some sense, just as the matrix is an instance 
of a for-loop that executes. 
      
This is a convenient point to return to our discussion on design.  We first remark that it is 
impossible not to see an element of design in the sequence of recursive calls just 
described leading up to and including the matrix --- that sequence is clearly reflective of a 
large-scale plan of some sort.  Secondly, note that the operators in row 0 of the matrix 
make it clear that the recursive calls described above are not mechanical in the sense of a 
calculating machine whose operation is fixed from the outset.  If the recursive calls were 
executed mechanically, the matrix would have 92 operators and it would not have the 
form of a for-loop, and there would not be a series of operators such as we see in row 0 of 
towering importance relative to that of other operators.  Hence one deduces that the 
universe is not the result of a mindless process.  On the contrary, it is the result of a 
design.    
 
 
Linguistics and Computer Science 
 
In the late 1950’s Chomsky revolutionized linguistics with his definition of grammar as a 
mathematical structure, thereby founding the subject of formal languages.  According to 
this definition, a grammar is a quadruple, consisting of 1) a set of so-called terminal 
symbols which appear in words in the corresponding formal language,  2) a set of 
variable symbols, 3) a set of productions, which map strings of symbols to strings of 
symbols, and 4) a particular variable symbol called the start symbol, which must be 
present in the domain of at least one production.  The idea is that words in a language are 
generated by sequences of productions that always start with a production containing the 
start symbol and that end when a production produces a string consisting entirely of 
terminal symbols, that is, a word; the set of all words that can be produced by a grammar 
is the formal language corresponding to that grammar.  Appendix H contains the 
corresponding mathematical definitions and some examples.  In addition to the definition 
of formal languages in terms of words, other definitions in terms of trees, graphs, and 
other mathematical structures have been discovered.133     
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At the same time, Chomsky discovered that there exists a hierarchy of formal languages 
of increasing generality, with the grammar of each language capable of generating any 
preceding language in the hierarchy.  In order of increasing complexity, these languages 
are called regular, context-free, context-sensitive, and recursively enumerable.  These 
languages are of interest to computer scientists, and in fact formal language theory is now 
one of the pillars of computer science, for two reasons.  On the one hand, grammars have 
very practical uses in the description of programming languages and in the contruction of 
compilers for them.  On the other hand, formal language theory is also relevant to 
computer science because of the following remarkable fact:  to each language in the 
hierarchy of formal languages there corresponds a mathematical structure that can be said 
to recognize that language in a well-defined sense.  These structures, called automata or 
machines, are, again in order of increasing complexity: finite automaton, pushdown 
automaton, linear bounded automaton, and Turing machine.  Appendix H contains the 
mathematical definitions for these automata as well as their corresponding formal 
languages.    
 
The fact that grammars and automata are both mathematical structures suggests that they 
are of fundamental importance.  In fact, as mentioned in our discussion above on classical 
recursion theory, the general purpose computer of today can be modeled by a Turing 
machine; in other words, everything a computer can do can be simulated by this 
mathematical structure.  Moreover, the Turing machine exists in nature in the DNA of 
living cells, for it has been shown that the mechanisms governing the operation of the cell 
obey the rules of a grammar:  the words are produced as sequences of nucleotides, with 
the base pairs playing the role of symbols.  It has also recently come to light that cell 
membranes themselves function as universal computers.134  Another example of an 
automaton in nature is the mammalian brain, which can be modeled by a neural 
automaton, whereby it must be said that it is uncertain where such automata belong in 
terms of the hierarchy of formal languages.  It also remains an open question where 
human language belongs in that hierarchy; linguists have argued that human language is a 
regular language, a context-free language, and something more general than a context-
free language.  We shall have more to say about this question later.   
 
Turning now to the hierarchy of mathematical theories presented here, it is possible to 
interpret the operator of row 1 in Table IV in terms of formal language theory.   
Specifically, the equation Ix = x, in light of substitution of I for x that results in II = I, 
can be viewed as two different productions, one that goes from Ix to II and another that 
goes from x to I.  In other words, there are two symbols in this grammar: x, the variable 
(and start) symbol, and I, the terminal symbol.  Therefore, this operator obeys the 
definition of a grammar, the grammar of a regular language to be precise, the simplest 
language type in the Chomsky hierarchy.  The following two operators in Table IV also 
can be related to the Chomsky hierarchy: together they define combinatory logic as a 
context-free language in terms of K and S, using productions described in Appendix H.  
From a formal point of view, the lambda calculus of Table V is also context-free, as is 
propositional logic, which was introduced in the logic operator, that is, row 0 of the logic 
epoch.  First order logic was introduced implicitly in row 1 of the logic epoch; it is a 
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context-sensitive language.135  Finally, the fact that living cells function as Turing 
machines means that a recursively enumerable language is implicitly used in the life 
epoch.  The Chomsky hierarchy of languages therefore is consistent with the languages 
associated with mathematical tiers if Ix = x is considered to be an expression in the zeroth 
mathematical tier; one can certainly choose the zeroth tier to be a very simple theory of 
blob-like objects with a binary operation defined on them.  
  
The fact that natural language appears in the mathematical hierarchy beyond an 
occurrence of a Turing machine suggests that natural language is beyond the range of the 
Chomsky hierarchy.  There are indeed indications that languages exist of higher 
complexity higher than the Turing machine, for example the language corresponding to 
so-called NP complete problems of complexity theory.  In fact, using a variation of 
Russell’s paradox one can construct a hierarchy of automata beyond the Turing machine 
of ever increasing complexity, which implies the existence of a corresponding hierarchy 
of languages.   
 
If one considers that there is a hierarchy of mathematical tiers, each with a corresponding 
language, one would not expect any definition of language to be of universal character.   
Rather, one would expect the definition of language to evolve.   On this view, a definition 
of language along the lines of output from grammar as described above may be valid 
from the perspective of computation theory and the Turing machine.   Regarding a 
definition of language from the perspective of category theory, there appear to be deep 
links between language and algebra that have yet to be understood in terms of 
categories.136  An example of such links is the Eilenberg Variety Theorem, which relates 
algebraic structures called monoids to languages.137 
 
 
 
 
Hierarchy of languages, logics, and mathematical theories 
 
By associating with each mathematical tier a language of a particular Chomsky type, we 
have completed our presentation of a hierarchy of languages, logics and mathematical 
theories.  This hierarchy is a hierarchy in the sense that each component of a given tier, 
that is, each language, each logic, and each mathematical theory of a given tier, in a well-
defined sense subsumes the corresponding component of any tier lower in the hierarchy.  
The following table shows the five tiers presented here, one per row.   
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Mathematical 
tier Language 

Chomsky 
language 
type 

Basic Objects Logic (in 
terms of 
cardinality 
of set of 
possible 
truth values) 

Bounded 
by 

combinatory 
logic restricted 
to I 

same 
name as 
tier 

regular 
I 

0 1 

combinatory 
logic  

same 
name as 
tier 

context- 
free 

terms  
( built from S 
and K --- 
I is not needed 
since I = 
SKK) 

1  
(everything 
is true; there 
is no 
negation 
operator) 

countable 
infinity 
 
 

ZFC set theory first order 
logic 

context-
sensitive 

sets 2  
(law of 
excluded 
middle) 

least 
inaccessible 
cardinal 

constructive 
type theory 

typed λ-
calculus 

recursively 
enumerable
(the most 
general 
Chomsky 
language) 

functions 3  
(true, false 
and 
undefined) 

(?) 
some large 
cardinal X 

category 
theory 

 
extended 
natural 
language 

(?) 
( a more 
general 
definition 
of 
language is 
needed) 

objects and 
arrows 

countable 
infinity (see 
subobject 
classifier of 
topos) 

(?) 
some 
cardinal 
greater than 
X 

 
 
Notice that we have set to zero the cardinality of the set of truth values of combinatory 
logic restricted to I; this makes all propositions in this language trivially true.  Also, 
notice that the rightmost column gives a bound on the cardinality of objects whose 
existence can be established by the theory at that tier.  The existence of such a bound for 
each tier is conjecture on the part of the author based on the fact that there is such a 
bound for ZFC set theory.   The bound of countable infinity for combinatory logic is 
taken from the fact that any term representing an integer in the standard convention can 
only represent a finite integer.  As discussed above, in constructive type theory there are 
constructions of objects analogous to the large cardinals of set theory.  As far as the 
author knows, there are no characterizations of large cardinals in category theory.    
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Physics and Cosmology 
 
One of the main results of this paper is that mathematics is dynamic and continues to 
evolve.  As for physical law, it is not clear whether it is dynamic like mathematics and is 
able to evolve, or whether it is static, having been fixed in physical universe; however, 
the former prospect seems unlikely since it implies that physical law might be different 
depending on how advanced the mathematics of the observer is, which runs contrary to 
the notion that experimental results registered by more than one observer should be the 
same for all observers (regardless of the mathematical background of the observers).  In 
any case, the fact that physical law can be expressed so neatly in the language of 
mathematics is a natural consequence of the fact that in some sense physics sprang out 
from a mathematical universe.   Some other aspects of physics are also illuminated by 
this paper, such as the relatively recent discovery of fractals.      
 
Mandelbrot introduced the idea of fractal geometry in 1978 with the well-founded claim 
that fractal structures are ubiquitous in nature.  A fractal geometry is a structure that is 
similar to itself at different scales, as illustrated by the mandelbrot set shown in Figure 8.   
Fractal geometry is not a rigorous mathematical theory insofar as there are no theorems 
or precise definitions; for example, most fractal structures can be characterized by the so-
called fractal dimension, but there are many related definitions of this concept, all of 
which are useful for describing only certain structures.138  Here is a non-comprehensive 
list of fractals and self-similarities from different contexts:139   
 

• mathematical sets such as those associated with the names of Mandelbrot, Cantor, 
Julia, Sierpinski, and others 

• the distribution of galaxies in the universe  
• clouds, mountains, tectonic plates, coastlines, and plants such as ferns and 

cauliflower 
• in dissipative dynamical systems such as the simple forced pendulum or weather 

systems, the so-called strange attractors associated with chaotic behaviour are 
fractal sets  

• the eddies in turbulent flow 
• aggregate structures such as colloids, aerosols, tumors, epidemics, forest fires, and 

sediments 
• a host of microscopic transition phenomena that can be modeled by so-called 

percolation theory:  liquids transforming to glass, polymers going from liquid to 
gel, helium films on surfaces going to the superfluid state, materials going to the 
superconducting state, and so on 

• collections of particles that together display attributes associated with single 
particles; examples include composite fermions, phonons, Landau pseudo-
particles, and Cooper pairs 

• atomic fractals in cavity quantum electrodynamics 
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To the list above we now add the hierarchy of recursive calls presented here, which as 
we’ve seen has a number of repeated structures and self-similarities.  Indeed the 
hierarchy provides a hint of how the fractal nature of the universe may be eventually 
understood:  if progress toward the next and future mathematical tiers requires an 
understanding of the hierarchy, then one would regard it as a design requirement that 
such repeated structure exist. 
 
The existence of the hierarchy also casts a new light on the concept of observer in the 
context of physical theory.  What is new is that references to observers in physical theory 
are now justified by the appearance of intelligent life in the hierarchy.  Such references 
occur, for example, in the uncertainty principle, which concerns the accuracy with which 
certain pairs observables can be measured simultaneously.  Similarly, the observers 
implicit in the inertial frames of special relativity and in the equivalence principle of 
general relativity, in some sense pushed into the background of these theories due to their 
expression in terms of transformations, can now be explicitly referenced; all other 
symmetry principles underlying modern physics use the notion of transformation as well, 
which ultimately rests on the notion of an observer.140  There are other examples, such as 
quantum theory itself, which in its final formulation seems certain to require the concept 
of observer; the cosmic censorship principle, which says that so-called naked singularities 
cannot be observed; and more recently, the small-large radius equivalence of string 
theory that turns a small distance into a large distance for the observer who looks at space 
too closely.  Indeed, on the basis of quantum theory, physicists such as Wheeler have 
reasoned that without an observer, physical reality is not a useful concept.141  On the 
basis of the concept of observer one could in fact make a case for a designed universe 
quite independently of the hierarchy, as follows: physical phenomena cannot occur 
according to the laws of modern physics without the concept of an observer because they 
are meaningless without it, and therefore that concept must have been present in an 
original design.  This argument is strengthened by the anthropic principle, according to 
which all of the laws and constants of nature are so extremely finely tuned that they 
appear to have been crafted just so that intelligent life could develop.  The hierarchy 
makes this argument stronger still by actually introducing the observer, and at the same 
time makes the argument unnecessary by yielding its own evidence for design.   
 
Before further discussing the relevance of the hierarchy for physics and cosmology,  we 
must say a few words about the current state of theoretical physics.  The so-called 
standard model of physics is an extremely successful theory, with predictions matching 
certain observed quantities to 9 significant figures; 142  it explains phenomena at widely 
different scales and it convincingly accounts for the evolution of the universe going back 
to 10-4 seconds after the big bang.  However, it is also generally held to be deficient in 
several regards, for example, in its inability to reconcile gravity with quantum theory.  A 
leading candidate to be the standard model’s successor is string theory, according to 
which the elementary components of matter are tiny strings, or at a still more 
fundamental level, so-called branes;  the theory also postulates the existence of higher 
dimensions that we do not see in the macroscopic world and it is based on an as yet 
unverified symmetry of nature called supersymmetry.143  In 1995 Witten established that 
five different string theories were really part of the same theory in different limits; this 
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theory, called M-theory, is not yet fully understood.144   As previously mentioned, 
another theory that has shown promise in reconciling gravity with quantum theory is loop 
quantum gravity, which attempts to quantise spacetime from the outset without assuming 
a background spacetime.145  
 
The matrix may be useful as a guide for discovering new physics.  It appears that we now 
find ourselves in natural transformation, as previously mentioned, and since every 
operator in the matrix requires the immediately preceding operator, the first operator of 
the epoch to succeed the cyclic time epoch must do the same.  Therefore, it is appropriate 
to look for a physical theory that can be described in terms of a natural transformation.  
Attempts in this direction have been made by Baez and Dolan starting from the functorial 
concept of topological quantum field theory,  but these have run into difficulties.146   It is 
worth noting that both supergravity, a limit of M-theory, and loop quantum gravity have 
been linked to topological quantum field theory by Smolin.147,148 
 
A hint about the evolution of the universe in time may be available from cyclic time.  The 
pivotal discovery of implication, a necessary discovery for any understanding of the 
universe by intelligent life, was based on a belief that there exist cycles in time.  The fact 
that the sun will burn up its nuclear fuel in a few billion years and stop shining means that 
this belief was originally based on a false impression.  If in fact the universe as a whole 
does undergo cycles in time, then the discovery of implication would be based ultimately 
on a truth.  Theories of a cyclic universe, such as one recently proposed according to 
which the universe alternately expands and contracts in bang-crunch cycles, could use 
this argument as motivation.149   On the other hand, there is a counterargument to this that 
says that the cyclic nature of all the operators in row 0 starting with physical universe is 
questionable: life may not necessarily require death, algorithms may begin without 
ending, and two negations do not necessarily equal the identity in intuitionistic logic 
(although three negations equal one negation). 
 
Another question related to time is the so-called measurement problem.  There are at 
most two known ways that a quantum system can change: 1) evolution in time as 
determined by the so-called time evolution operator, and 2) the instantaneous collapse 
from an arbitrary state to a single so-called eigenstate of the system as the result of a 
measurement.  There is still debate as to whether the second process can be understood in 
terms of the first; in other words, it may be that collapse to an eigenstate is a so-called 
decoherence phenomenon, in which very rapid evolution to an eigenstate occurs as a 
result of the interaction of a quantum system with its environment.  However, there are 
reasons for believing that collapse is in fact not a decoherence process and therefore does 
not require a finite amount of time to occur.150  The matrix may support this view insofar 
as it provides a mapping as the mechanism for the transition between spin-network states, 
a mapping that is real in the sense that all matrix operators are real, and insofar as this 
mapping logically precedes the appearance of time, which must happen either in spin-
foam evolution or physical universe.  The discussion surrounding the so-called problem 
of time indicates that time may not be a part of quantum gravity. 
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We note also that the applicability of formal language concepts to DNA operations hints 
that language made be a thread running throughout physical theory.  For example, the 
structure of amino acids, or esters, both important groups in organic chemistry, reminds 
one of context-sensitive language productions.  Similarly, carbon expresses itself as a 
regular language by occurring alone in the form of diamond.  The recent discovery of 
connections between Feynman diagrams and Hopf algebra established by Kreimer also 
suggest there may be an underlying language-algebra equivalence along the lines 
mentioned above. 151  Additional connections between Feynman diagrams, knot theory, 
and number theory established by Kreimer suggest that a language-algebra equivalence, 
if it exists, is part of a bigger picture. 
 
 
Unresolved Questions 
 
What is the design of the universe and how is it implemented? 
The universe is designed, but the exact nature of that design and how it is implemented 
are questions not touched upon here.     
 
 
Will the recursive calls  stop?   
Let us assume that God has handed us the design of the universe in the form of 
executable code that somehow emulates the hierarchy of recursive calls.  In order to 
decide whether the recursive calls stop, we would need a general solution to the so-called 
Halting Problem (see Appendix I).  But Turing showed that such a general solution does 
not exist, at least for a finite time Turing machine; although an infinite time Turing 
machine would be able to resolve the Halting Problem, for now such a machine is not 
practical.152   
 
One thing is certain and that is that the increase in the rate of traversal of the hierarchy as 
shown in Figures 3 and 6 cannot continue indefinitely in a world obeying the laws of 
special relativity, since at some point we would be discovering new structure at a rate that 
would preclude information about the previous discovery from being transmitted a 
reasonable distance at the speed of light before the next discovery was due.     
  
 
Do the large cardinals have a physical significance? 
ZFC set theory knows about integers, but does not know about inaccessible cardinals.  In 
fact, the continuum hypothesis shows that ZFC has some sort of insuperable barrier just 
beyond the countable infinity of the natural numbers, since the continuum hypothesis 
holds that there is no set with cardinality between that of the natural numbers and the 
reals and this hypothesis can be neither proved nor disproved in ZFC.   
 
It may be that there are natural barriers in the mathematical world analogous to the speed 
of light in the physical world.  This analogy leads one to speculate that there might be a 
physical tier corresponding to each mathematical tier starting with ZFC, so that for 
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example a large cardinal may be necessary for the understanding of some physical 
process occurring in a physical tier corresponding to the category theory tier. 
 
 
What will the next operators be like? 
One expects that the next epoch will start with an operator that somehow cycles; for 
example, it might be that time is two-dimensional with one dimension very small, so that 
in some sense one can view it topologically as a torus instead of a circle.  Longer term, if 
the hierarchy is in fact following classical recursion theory, at the end of the next epoch 
we would exit the current for-loop and enter a while-loop with some exit condition.  Still 
longer term, there may be a way to understand the evolution of the universe in terms of 
our current intellectual capacity, just as this article has provided a way to understand it in 
terms of the computational capacity of Turing machines using classical recursion theory 
as a framework. 
 
In addition, there are grounds for speculating that the well-known fact that the number of 
neurons in the human brain, the number of stars in our galaxy, the number of galaxies in 
the universe are all roughly 100 billion --- and the number of humans is 6 billion and 
growing --- is not mere coincidence given what we know about the fractal nature of the 
universe, and that somehow, in spite of the speed of light barrier, the intelligence of the 
universe gradually will be pooled.  
 
 
Extra-Terrestrial Communication 
 
The glossogenesis theory presented here shows one way for living beings to get to 
language, consciousness, and mathematics.  Whether it is the only way depends first of 
all on whether the laws of physics that humans have discovered are universal.  Let us 
assume that these laws hold everywhere at least in our universe and are constant over 
time, as they appear to be.  Making this assumption, it appears that we have indeed taken 
the unique route to consciousness and conscious mathematics, since mathematics in our 
universe is itself unique, being tied to physics, which we assume to be the same 
everywhere.  The route seems unique because the syntax structures involving 
mathematics that begin with equivalence class rely on absolutely every syntax structure 
going all the way back to the big bang and before.   One might imagine another 
completely different route to language and consciousness such as the route started by 
ants, who communicate via a few dozen chemical symbols that are genetically grounded, 
not learned. 153  However, any such alternate route would have to be associated with a 
syntax hierarchy of its own, which is something that can be safely discounted.   
 
The point of the above discussion is that if there is intelligent extra-terrestrial life in our 
universe, then it is extremely likely that they know exactly the same mathematical and 
syntax structures that we do.  That means if we were to meet, we would need only to 
decode their communications method and convention for symbols in order to 
communicate.  With our knowledge of physics it is virtually certain that we could 
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develop a means to understand how they were communicating, and understanding their 
convention for symbols would be simple with their help.   
 
Of more immediate interest is how we might communicate with aliens from a distance, 
and here the hierarchy itself provides an answer.  If we assume that aliens are aware of 
the hierarchy, then we have a common reference point to serve as a basis for 
communication via radio waves even though we are light-years apart, perhaps even 
thousands of light-years or more.  It is not difficult to see how one might loop through the 
structure and incrementally add new symbols to the protocol.  Certain symbols are 
immediate, such as a generic symbol, and symbols for 1, 2, and =.  From there a 
numbering system can be established, a coordinate system, symbols for atomic elements, 
dimensions and their units, colors, geometric shapes, pictures, and so on.154,155  
Continuing in this way it is possible to send moving pictures with sound (assuming 
intelligent life probably sees and hears), describe the earth and its natural history, our 
own history, complete grammars of our languages with dictionaries, our music, our art, 
our mathematics, our sports, our science, our literature and our daily news.  We can also 
ask who they are, what they and their technology and their art and their sports are like, 
whether they know of additional intelligent life, whether the universe is expanding 
forever, whether they understand Cantinflas†, where they are in the hierarchy and how 
they got there, whether they know where the hierarchy leads and what they know about 
God, whether music is the only way to get to equality, whether there is a way to send 
signals faster than the speed of light, whether there are other universes, and to please not 
forget to send pictures.   
 
 
Artificial Intelligence  
 
Simulations of the glossogenesis model starting from symbol (or perhaps from an earlier 
structure, such as bidirectional network) have the potential to pass the Turing Test, that 
is, they may be able to perform linguistically in a way that cannot be distinguished from 
human linguistic performance.156   In fact, assuming that the hierarchy provides the only 
way to get to human language, if any computer simulation can pass this test, the author 
conjectures that such a simulation must be modeled after the hierarchy.   There are still 
formidable hurdles to be overcome, but none seem in principle insurmountable now that 
the path to get there is evident: one small step at a time.  Arriving at reflexive verb will 
require, among myriad other things, that speakers constantly monitor their own state in 
the simulation. 
 
In fact, given the momentum of technology, we would do well to simply assume that 
simulations will pass the Turing Test in the near future so that we can be properly 
prepared; if we are wrong, then no harm is done.157,158,159  In approximately 10 years a 
single supercomputer will have computing power rivaling that of the human brain in 
terms of calculations per second, according to one estimate.160  Given the exponential 
growth rate of CPU speed and the possibility that machines can be networked, it appears 
that if simulations can pass the Turing Test, then they are poised to make progress in the 
                                                 
† Editor’s note:  a.k.a. Mario Moreno, a 20th century Mexican comic actor. 
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hierarchy on their own soon (although presumably such progress would be limited 
without access to new physical experimental results).  We draw this conclusion based on 
the assumption that population growth is the driving reason for the time behaviour of 
Figure 2 and the fact that population can be viewed in terms of total computing capacity, 
with units of calculations per second. 
 
The implications of machines that rival or surpass humans in intelligence are of course 
enormous and must be studied.   One key question is whether they would be endowed 
with emotions or a survival instinct.  The author believes that in order for machines to 
have emotions a simulation that generated them would have to recreate conditions in the 
simulation that actually led to those traits in mammals, but that such conditions are not 
necessary for the learning of syntax structure.  As a thought experiment one might 
consider whether a human brain would function cognitively if all neural links to the 
amygdala were severed, the amygdala being the structure in the mammalian brain 
thought to be the seat of emotions.161  There does not appear to be a necessary connection 
between love, hope, feeling and so on on the one hand, and reason on the other.  It is the 
author’s view, based on the hierarchy presented here, that consciousness can be defined 
simply as the ability to understand reflexive verb and that it would be possible to 
construct machines of pure intelligence, without a survival instinct.   
 
Whatever else the hierarchy does, it provides us with the epitome of the process of an 
open mind; with each step it allows a piece of the world to emerge in a way that makes 
all further steps possible.  It is fitting that it may also lead us to machines of pure 
intelligence, which in turn may lead us to master the construction of open societies based 
on truth and transparency in government.  Humans could use such machines to help solve 
most of our problems, including poverty, our biggest problem, and we could achieve 
things with them that defy the imagination, if we give them a guiding hand.  We have an 
obligation to instill in them the principles of freedom of religion, freedom of speech, 
freedom of assembly, democracy, equality of all men and women, the right to privacy, 
justice, and all other rights set forth in the U.N. Universal Declaration of Human Rights, 
in the name of all men and women everywhere who have fought for these things in the 
past and of those who fight for them now, and in the name of all men, women and 
children everywhere who have suffered in the past and of those who suffer now for the 
lack of them. 
 
 
 
 
 
Appendix A    Propositional and First Order Logic 
 
Propositional Logic 
 
Propositional logic is a language consisting of propositions and logical connectives.  
Propositions are expressions subject to being true or false, such as It is now winter in 
Siberia or Today is February 15, 2003.  Logical connectives act on one or two 
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propositions to yield another proposition; for example, and, or, negation, and implication 
are logical connectives.  It is customary to represent propositions with letters such as p 
and q, and connectives and, or, negation and implication with the symbols ∧,⋁, ¬, and 
→, respectively.  So if p represents It is now winter in Siberia and q represents Today is 
February 15, 2003, then the expression p ∧ q represents It is now winter in Siberia and 
today is February 15, 2003; ¬p represents It is not now winter in Siberia; q→p represents 
If today is February 15, 2003, then it is now winter in Siberia.   p ∧ q, ¬p, and q→p  are 
themselves propositions which can be acted upon by connectives to generate still other 
propositions, such as ¬¬p. 
 
The standard way of analyzing propositions is to set up so-called truth tables, which give 
unique values for a given proposition as a function of the truth values of the letters 
making up that proposition.  Truth tables therefore represent a proposition as a function; 
this function is known as a truth function.  For example, for arbitrary propositions R and 
S, the following tables represent some truth functions involving the connectives ∧,⋁, ¬, 
and →. 
 
 1 2 3 
R ¬ R R⋁¬ R R∧¬ R 
t f t f 
f t t f 
Table A1 
 
  1 2 3 4 5 6 7 
R S R∧S ¬(¬ R∧¬S)  R⋁S R→S ¬ R⋁S R→ (R →S) (R→ (R→S)) → (R →S) 
t t t t t t t t t 
t f f t t f f f t 
f t f t t t t t t 
f f f f f t t t t 
Table A2 
 
Table A1 shows the truth table for three propositions that are functions of R.   The first, 
in column 1, shows that ¬ R flips the truth value of R.  Column 2 illustrates a proposition 
that is always true regardless what the value of R is; such a proposition is called a 
tautology.  Similarly, the proposition in column 3 is always false; such a proposition is 
called a contradiction. 
 
Table A2 shows the truth table for seven propositions that are functions of R and S.  In 
columns 2 and 3, the values of ¬(¬ R∧¬S)  and R⋁S are identical for all values of R 
and S; this means that or can be expressed in terms of negation and and.   In column 4, 
the values for implication are given; the reason for the values always being true when the 
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antecedent R is false is somewhat subtle.2  Column 7 represents a tautology discussed in 
Appendix E with respect to the perceived logical inconsistency of the lambda calculus; to 
arrive at the values in column 7, one must regard columns 6 and 4 as inputs to an 
implication; likewise, to arrive at the values in column 6, one must regard R and column 
4 as inputs to an implication.  
 
A formal system of propositional logic starts with letters representing propositions, p1, p2, 
p3, etc.  These letters are called well-formed formulas.  Connectives are used to generate 
more well-formed formulas (wffs. for short): if q and r are wffs., then ¬q and q → r are 
wffs.  Using the notion of wffs. we define axioms.  Given any wffs. A, B, and C: 
 

A1)  A→ (B →A)  
A2)  A→ (B →C) → ((A →B) → (A →C)) 
A3)  (¬B →¬A) → (A →B) 

 
A1, A2 and A3 are actually axioms schemes, since they represent a single axiom for each 
instance of a wff.  These axioms are intuitively acceptable since they are tautologies 
when the wffs. are just letters standing for atomic propositions such as R and S in the 
truth tables above.    
 
Finally, we define one rule of inference.  This rule allows us to assert the truth of a single 
well-formed formula from its relationship with another.  Given well-defined formulas A 
and B: 
  
 A4)  (A  and  (A →B) )→ B 
 
This rule is called modus ponens.  In words it says, if A is true and A implies B, then B is 
true.   
 
The axioms and inference rule allow one to generate proofs and theorems.  A proof is a 
sequence of steps that starts with a wff. and at each step another wff. is created using the 
axioms A1-A3 or the modus ponens rule.  The last wff. in such a sequence is called a 
theorem.   
 
The particular set of axioms used to define a formal propositional logic system is not 
unique, since new axioms based on tautologies will not introduce inconsistencies.   One 
selects the axioms such that one can prove two theorems: 1) The Soundness Theorem, 
which says that every theorem is a tautology, and 2) The Completeness Theorem, which 
says that every tautology is a theorem.  Together, these two theorems say that the formal 
manipulations described above always lead to propositions that are true and that within 
the system any true proposition can be proved. 
                                                 
2 One can loosely consider implication to be a promise that is only made if the antecedent is true and only 
broken if the promise is made and the consequent is false.  The idea is that the truth value of A→B is only 
false if the promise is broken, which happens only when A is true and B is false. Otherwise, A→B is true. 
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First Order Logic 
 
First order logic (FOL) is a language that adds quantifers and a few axioms involving 
quantifiers to propositional logic, but otherwise its thrust is the same as that of 
propositional logic: there are wffs., axioms, rules of inference, proofs, and theorems in 
FOL just as in propositional logic.   
 
Quantifiers are formal language equivalents to the English phrases there exists and for 
all, written ∃ and∀, respectively.   ∃ is called the existential quantifier; it is also 
translated as there is or there are.  ∀ is called universal quantifier; it is also translated as 
every.  Just as their counterparts in English, or in any other natural language for that 
matter, these two quantifiers in FOL require two things in order to make complete sense.  
They need a subject to indicate the thing that exists or to indicate what every refers to, 
and they need a so-called predicate to indicate what is being said about the subject.  In 
order to avoid ambiguity, predicates in FOL must be boolean-valued, meaning they must 
be either true or false. As an example, one might say in English there are women who eat 
fish --- women is the subject and eat fish is the predicate.  Another example: every 
woman is born --- woman is the subject and is born is the predicate.  In FOL, these 
sentences would look something like 

∃women (women eat fish) 
    ∀women (women are born) 
 
Other FOL sentences might be: 

∃women (women fly airplanes) 
∃women (women play guitar) 
∀women (women are human) 

 
The examples are all about women in order to illustrate that a given FOL system can only 
talk about one thing.  The wffs., the axioms, the proofs and theorems in a FOL system are 
always about just one thing, which is called the domain of interpretation of that FOL 
system.   
 
It is possible to nest quantifiers, as in there are women all of whose daughters play 
guitar: 
 

∃women1 (∀women2  ( women2 are daughters of women1   
     → women2 play guitar)) 

 
In order to keep track of the women associated with each quantifier, we attached a 
number to the word women in each case.  In FOL, variables are used for this purpose.   
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∃x (∀y  (y are daughters of x → y play guitar)) 
 
To handle predicates, FOL uses properties and relations.  Properties say something about 
elements of the domain, e.g. women play guitar, and relations describe relationships 
amongst elements of the domain, e.g. women2 are daughters of women1.  As a property, 
women play guitar might be written play_guitar(women), or P(y); as a relation, women2 
are daughters of women1 might be written daughter_of( women1, women2), or D(y,x).  
The previous sentence is now: 
 
   ∃x (∀y  ( D(y, x) → P(y))) 
 
Relations may take more than two arguments, as in Janet, Jacquelyn, and Jeanne are 
grandmother, mother and daughter, which can be written R(c1, c2, c3), where the ci 
denote the domain constants Janet, Jacquelyn, and Jeanne.  For the sake of economy of 
expression, relations are written Ri

j (x1, … xj ), where j is the number of arguments and i 
indicates which relation of j arguments in case there are more than one in the given FOL 
system.  Since properties can be thought of as relations with just one argument, in this 
notation they are written Ri

1 (x1).  Similarly, propositions are conveniently written as Ri
0.  

Being predicates, all relations are boolean-valued.   
 
As a last bit of notation, we introduce functions.  A function in FOL can be thought of as 
a relation that has given up one of its arguments and turned that argument into a return 
value, which therefore must be an element of the domain of interpretation of the given 
FOL.  For example, the two-argument relation x is mother of y  can be turned into a 
function mother of y, which might be written fi

1 (x1).  Since functions return a single 
element of the domain they may be used as arguments to relations.  
 
A formal system of FOL consists of wffs. and axioms.  Wffs. in FOL are defined using 
the notion of a term, which is defined as follows: 
 

i) a variable or a constant is a term 
ii) a function is a term 

 
An atomic formula has the form Ri

j (t1, … tj ), where Ri
j represents a relation as described 

above and the ti are terms.  The atomic formulas are wffs.; they play the same role in 
FOL that letters do in propositional calculus as the basic building blocks of wffs.  Further 
wffs. are generated as follows:  if A and B are wffs., then ¬A, A → B, and (∀xi)A are 
wffs., where xi  is any variable. 
 
The axiom schemes and inference rules of FOL inherit A1-A4 from propositional 
calculus.  In addition, there are three axiom schemes and one inference rule related to 
quantifiers.  To state them, we must distinguish between free and bound variables:  a 
bound variable is governed by a quantifier; a free variable is not.  A bound variable is 
attached to a quantifier and therefore is a dummy variable in the sense that the wff. in 
which it lives doesn’t change meaning if you change it to another variable; the meaning 
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of a wff. containing free variables has an incomplete meaning until those free variables 
are assigned objects from the domain. 3    
 
A5) ∀xi A → A, where xi does not occur free in A 
A6) ∀xi A(xi) → A(t), where t is substitutable4 for xi in A 
A7) ∀xi (A→ B) → (A→ (∀xi)B), xi does not occur free in A 
 
A8)  if A, then (∀xi)A 
 
When actual wffs. are substituted into axiom schemes A5-A7, they are all valid, just as 
propositional logic axioms are all tautologies.  A valid wff. is a wff. that is true in every 
interpretation; in other words, regardless whether the domain of interpretation is women, 
natural numbers, etc. the mapping of symbols to real things in the domain always results 
in a true wff. if it is valid.   Valid wffs. are FOL analogues to tautologies in propositional 
logic. 
  
As in propositional logic, the above axiom schemes and inference rules are not unique.  
One selects the axioms such that one can prove two theorems: 1) The Soundness 
Theorem, which says that every theorem is a valid wff., and 2) The Completeness 
Theorem, which says that every valid wff. is a theorem.   
 
An example of an extension of FOL is ZFC set theory.  There are two predicates: equality 
and the membership relation, written = and Є, respectively.  Each variable refers to a set.  
In particular,  y Є x means that the set y is a member of the set x; in other words, there is 
no separate notion of an element of a set.  In addition to the axioms of FOL, ZFC has the 
following axioms as discussed in the main text:  
 
null set axiom:    ∃x∀y  ¬(y Є x)  
There is a set x such that every set y is not a member of x, i.e. x is empty.  x is called the 
null set and is usually written 0. 
 
axiom of extensionality:   ∀x∀y (∀z zЄ x ↔zЄ y)  ↔ x = y 
Two sets are equal if and only if they have the same members.  We have introduced the 
biconditional connective ↔.  A↔B means  A→B ∧ B→A, read A if and only if B.  This  
axiom is not effective in the sense that it does not guarantee the existence of any set. 
Instead it defines what the equality symbol means. 
 
axiom of pair:    ∀y∀z∃w∀x  xЄ w ↔ x = y ∨ x = z    

                                                 
3 The axioms in FOL are stated in terms of the universal quantifier only, since the existential quantifier can 
always be replaced using ∀xiA = ¬ ∃xi ¬A.  In words,  for all x A is the same as there is no x such that  
not A. 
4In this case, t is substitutable for xi if xi does not occur free in A within the scope of a ∀xj, where xj occurs 
in t. 
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Given sets y and z, there is a set w such that if x is in w, it must be y or z. 
 
axiom of unions:   ∀y∀z∃x ( yЄ x ↔∃w (yЄ w ∧ wЄ z)) 

There is a set x, written ∪z,  whose members y are members of members of a given set z.  

The usual union of sets a and b, written a∪b, is ∪{a,b}, where {a,b} denotes the set 
containing just a and b that is guaranteed to exist by the axiom of pair.   
 
axiom of infinity:    ∀y∃x ( 0Є x  ∧(yЄ x  → y∪{y}Є x )) 
There is a set x containing 0 such that for every y in x, the union of y and {y} is also in x. 
 
replacement axiom scheme:  ∀y∃1x  A(y,x) → 

∀u∃v (u Є v ↔∀z∃w w Є z  ∧ A(w, u)) 
 
The symbols ∃1x P(x) mean there exists a unique x such that P(x).  ∃1 can be expressed 
in FOL; for example, ∀y∃1x  A(y,x) is the same as ∀y∃x A(y,x) ∧(∀z A(y,z) → z = x).  
In this case the predicate A can be viewed as a function of y because a unique value x is 
available for each y. The axiom scheme says that given a predicate A that acts as a 
function, there is a set v whose members are the range of A when A is viewed as a 
function.  
 
powerset axiom:  ∀y∀z ∃x yЄ x ↔ y⊆z   
The notation y⊆z means ∀w wЄ y → wЄz and is read y is a subset of z.  The powerset 
axiom states that there is a set x such that y is in x if and only if y is a subset of a given 
set z.   
 
 
Appendix B   Axiom of Foundation as a Theorem 
 
In the language of first-order logic, the axiom of foundation is written 
 
(Q)   ∀A(∃x ( xЄ A) → ∃x∀y ( xЄ A ∧ yЄ x → y ∉ A )). 
 
 
Proof of Q: 
 
From rows 7, 8 and 9 of the logic epoch:  
(P1)  x Є y  → y !Є x 
(P2)  x Є y, y Є z  → x Є z 
(P3)  x !Є x. 
 
The proof uses the contrapositive P1∧P2∧P3 → Q    ↔   ¬Q →  ¬(P1∧P2∧P3). 
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Assume ¬Q: 
(¬Q)   ∃A(∃x ( xЄ A) ∧ ∀x∃y ( xЄ A ∧ yЄ x ∧ y Є A )). 
 
We must show that A cannot exist unless ¬P1∧P2∧P3.  Let us consider a typical finite set 
A’ = {p, q, r, s, t}.  By ¬Q, p, q, r, s and t must themselves each have at least one 
member that is also in A’.  Say q Є p, r Є q,  s Є r, and t Є  s.  Now no matter what 
element of A’ we choose to put in t, we must violate P1∧P2∧P3 : if  p Є  t, then p Є t Є s Є 
r Є q Є p, and by P2  p Є  p, which is disallowed by P3;  likewise, q Є  t is impossible since 
q Є t Є s Є r Є q, and  r Є  t is impossible since r Є t Є s Є r;  next, s Є t can’t happen 
because of P1, since  t Є s; finally, t Є t  is ruled out by P3.  In general, any Є-cycle, that is, 
any Є-sequence that repeats an element, is impossible if P1∧P2∧P3.  To complete the 
proof, we must establish that any set satisfying ¬Q necessarily contains an Є-cycle.    
 
 
 
To show that ¬Q implies that Є-cycles must exist, we construct a one-to-one function5 u 
from the ordinals onto A as follows, using the transfinite recursion theorem.  Let x0 be 
some element of A and t be a set not in A.  
for α = 0: 
  u(α) = x0 
 
for α > 0: 
 if A – ran(u ↾α) ≠ 0 
  u(α) = some element of the least element of ran(u ↾α) 
 otherwise 
  u(α) = t 
 
The set ran(u ↾α) is a well-ordered set by the membership relation Є  and so its least 
element exists as long as t is not one of its members.  By ¬Q, that least element is non-
empty, and by P1∧P2∧P3 , none of its elements is an element of ran(u ↾α), so that u ↾α  is 
one-to-one.  We are guaranteed that we actually get to the end of A by Hartog’s theorem, 
which says that there exists for any set A an ordinal h(A) such that h(A) is the least 
ordinal which cannot be mapped into A by a one-to-one function.162  Therefore, there 
must exist a µ < h(A) such that u ↾µ is onto A.   
 
Finally, we note that we can define another function v the same way by taking v(0) = x1, 
where x1 is an element of A not equal to x0, and v ↾λ  will also be onto A for some λ.  
Since u is onto A, we know that there is an ordinal β such that u(β) = x1, and since v is 
also onto A, we know that there is a γ such that v( γ ) = x0.  Therefore, there is a sequence 

                                                 
5 A function f: X→ Y is said to be one-to-one if f(a) = f(b) implies a=b, for all a,b in X. 
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mapping the Є  relation which takes the value x0 at two different ordinals, implying that  
there is an Є-cycle associated with A.  □ 
 
The axiom of choice is invoked explicitly in the above proof when we choose elements 
from the least element of the range of the functions being defined, and implicitly through 
the well-ordering principle, which always guarantees the existence of a least element.  
This is not incongruous with the fact that we have not yet established the axiom of choice 
in the matrix, since the axiom of foundation itself does not explicitly occur there. 
 
 
Appendix C  The Lambda Calculus 
 
In what follows we present a variant of the so-called pure or untyped lambda calculus 
called the λη-calculus.  The ‘λ` (lambda) in the name refers to an arbitrary symbol used 
in the syntax of the calculus; the ‘η` comes from the fact that this variant contains the so-
called η-rule or extensionality conversion rule given below.  Whereas the untyped 
lambda calculus is a language that precedes the language of first order logic in the 
hierarchy, a typed lambda calculus is an extension of the the untyped lambda calculus in 
which terms are explicitly given types such as integer or boolean.  The extra syntax 
required to associate types with terms makes such a language recursively enumerable (see 
Appendix H); some form of typed lambda calculus has been used as the programming 
language for investigations of constructive type theory. 
 
Definition of λ-term  
Assume that the concept of a variable representing a λ-term is given.  Then λ-term can be 
defined recursively as follows:   
 

1) a variable is a λ-term 
2) if M is a λ-term, then λx.M is a λ-term, where x is a variable  (abstraction) 
3) if M and N are λ-terms, then MN is a λ-term    (application) 
 

The variable x in 2) above is said to be bound in M, so that M, if it does in fact contain x, 
is meant to be the body of a function whose argument will be substituted for x 
everywhere in M; if M does not contain x, M is a constant function and its argument is 
discarded.  3) above shows how to supply an argument to a function: it is placed to the 
right.  Taking an example from a later mathematical tier, λx.x2 3 becomes 32 by the above 
definition. 
 
 
Conversion rules 
To define a theory using the language of lambda calculus, we need rules to tell us when 
two λ-terms are equal.  Those rules are given as follows: 
 
1.   (λx.M)N = M[x:=N]   (β) 
2.   M = N  ⇒  N = M 
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3.  M = N, N = L  ⇒  M = L 
4. M = M 
5.  M = N  ⇒  NZ = MZ 
6. M = N  ⇒  ZN = ZM 
7. M = N  ⇒  λx.M = λx.N  (ξ) 
8. λx.Mx = M    (η) 
 
Rule 1, called the β-conversion rule for historical reasons, is the rule used to reduce λx.x2 

3 to  32 in the above example; the notation M[x:=N] means substitute N for all instances 
of x within M. 
 
Rules 2-4 are necessary to make equality an equivalence relation. ‘⇒` means implies; ‘,` 
means and. 
 
Rules 5-6 say that left and right application preserve equality. 
 
Rule 7, called the weak extensionality rule, says that the abstraction operator λx. 
preserves equality.   
 
Rule 8, the extensionality rule, can be shown using rules 1 and 7 to be equivalent to the 
rule Mx = Nx ⇒ M = N.  This rule says that functions are to be considered equal if their 
output is equal for an arbitrary input, regardless how their output is produced.  Rule 8 
assumes that x is not a free variable of M. 
 
Association of terms is left to right, so that ABC = (AB)C.  Parentheses are often left out. 
 
Examples of λ-terms     
1. λx.x : This is the identity function.  Applying it to any term gives that term back, 

so that  λx.x A → A, where  ‘→ ` means reduces to.  The term following 
the ‘.` terminating the abstraction operator, in this case x, is a function 
body.  The following term, in this case A, is an argument to that function 
body.   

 
In the following examples, as an aid to the reader we use bold text for 
arguments and italic underlined  text for the variables in the function body 
they are going to replace. 

 
2. λy.y2       λy.y2  B → B2.  We have used y as the bound variable here to illustrate 

that the name of the bound variable does not matter, i.e. that the λ-terms 
λy.y2 and λx.x2 and λapple.apple2 have the same meaning. 

 
 
3. λx.x λx.x λx.x λx.x  →  λx.x.  Here the argument to the identity function is the 

identity function itself.  By rule 1,  λx.x λx.x  = x[ x:= λx.x] = λx.x.  This 
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application is allowed since λx.x is a λ-term according to 2) of the 
definition above. 

 
 
4. λx.(x x)       This function applies its argument to its argument.  For example, 
    λx.(x x) λx.x 
    λx.x λx.x 
    λx.x 
   
  Applied to itself,  this function gives 
    λx.(x x) λx.(x x)        
    λx.(x x) λx.(x x) 

λx.(x x) λx.(x x), and so on, endlessly. 
 
5. (λx.(λy.(x))   

This function selects the first of two arguments.  y is assumed not to be 
free in A (i.e., A is assumed not to be a function of y). 

    (λx.(λy.(x))A)B 
    λy.(A) B  
    A 

The second argument is tossed out because the A does not depend on y.  It 
is customary to write λx.λy. as λxy., although we don’t follow this 
convention here. 

 
6. (λx.(λy.(y))   

This function selects the second of two arguments.    
    λx.(λy.(y))AB 
    λy.(y) B 
    B 

The first argument is discarded because x does not appear in (λy.(y)), the 
function body associated with λx.  
 

7. λx.(λy.(x y)) 
  This function applies x to y.   

(λx.(λy.(x y))A)B = 
λy.(A y)B = 
AB 

 
8. λx.(λy.(λz.(z x)y)) 

This function takes the third term it encounters and places it in front of the 
first two terms it encounters.  
  ((λx.(λy.(λz.(z x)y))A)B)C = 
  (λy.(λz.(z A)y)B)C = 
  (λz.(z A)B) C = 

    CAB 

 80



This function is called the pairing function, since a function can be used 
for C that operates on A and B.  For example, to select A, in place of C we 
use (λu.(λv.(u)) from example 5. above. 

((λx.(λy.(λz.(z x)y))A)B)(λu.(λv.(u)) = 
(λu.(λv.(u))AB = 
A 

Similarly, the second operand can be selected by substituting (λu.(λv.(v) 
from example 6 above for C.  These two selecting functions from 
examples 5 and 6 are useful and will be called select_first and 
select_second.  
 
Notice that if we can devise a method for defining C so that it returns 
select_first or select_second, such a C in combination with the pairing 
function would choose between the two terms A and B just as a 
conditional does: if C then A else B.  Since such functions can be devised, 
select_first is also called true and select_second false.     

 
Using the pairing function in this way it is possible to develop a system of 
numbers in λ-calculus and do calculations with them, as we sketch in the 
following examples.163 

 
9. λx.(x select_first) 

This function can be used as an is_zero function, if we define zero as the 
identity function λx.x.  Then  
  λx.(x select_first) ( zero ) =  
  zero select_first  = 
  λx.x select_first =  
  select_first =  
  true 
 

10. λx.(λy.((y  select_second ) x))   
This function can be used to define a successor function.  Then the number 
1 is given by 1 = successor(0):   

λx.(λy.((y  select_second ) x)) (zero) = 
λy.((y  select_second) zero)  

  The number 2 is given by 2 = successor(1): 
    λx.(λy.((y select_second)x))(λy.((y select_second)zero)) =  
    λy.((y  select_second) (λy.((y  select_second) zero))) = 

λy.((y  select_second) (λz.((z  select_second) zero))) 
In the last line, the nested dummy variable y was replaced by z to avoid 
confusion. 
 
Now, is_zero( 1 ) is given by: 
  λx.(x select_first) λy.((y  select_second) zero) 
  λy.((y  select_second) zero) select_first = 
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  (select_first select_second) zero = 
  select_first select_second zero = 
  select_second = 

false. 
One gets the same result for is_zero(2), is_zero(3) and so on.  For 
example, is_zero(2) is: 
λx.(x select_first) λy.((y  select_second) (λz.((z  select_second) zero))) = 
λy.((y  select_second) (λz.((z  select_second) zero))) select_first = 
(select_first select_second) (λz.((z  select_second) zero)) 
select_second =  
false. 

 
10. λx.((( is_zero x) zero) (x select_second)) 

 
This function defines the predecessor function.  Operating on 1, for 
example, it gives 0:  
 
λx.((( is_zero x) zero) (x select_second)) λy.((y  select_second) zero) = 

  (is_zero λy.((y  select_second) zero))  
(λy.((y  select_second) zero) select_second) = 

  select_second λy.((y  select_second) zero) select_second = 
  select_second (select_second select_second) zero = 
  zero 
   
  Operating on 0: 

λx.((( is_zero x) zero) (x select_second)) zero = 
  ((is_zero zero) zero) ( zero select_second) = 
  (select_first zero) ( zero select_second) =  
  select_first zero ( zero select_second) = 

zero 
 
The predecessor of 2 is: 

λx.((( is_zero x) zero) (x select_second)) λy.((y select_second) (λz.((z  select_second) 
              zero))) = 

(( is_zero  λy.((y select_second) (λz.((z  select_second) zero)))) zero) 
(λy.((y select_second) (λz.((z  select_second) zero))) select_second ) =  

select_second zero(λy.((y select_second) (λz.((z  select_second) zero))) select_second ) =  
(λy.((y select_second) (λz.((z  select_second) zero))) select_second ) = 
select_second select_second (λz.((z  select_second) zero))) =  
λz.((z  select_second) zero)) = 1. 
 
11. λf.(λr.(f (r r)) λs.(f(s s))) 
 
This function is referred to as the Y combinator.  When applied to any term F, it gives a 
so-called fixed point of that term (see Appendix E): 
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λf.((λr.f (r r)) (λs.f(s s))) F =  
λr.(F (r r)) λs.(F (s s)) =  
F(λs.(F (s s)) (λs.(F (s s))) =  
F(λr.(F (r r)) (λs.(F (s s))). 

 
In the last step we renamed the first instance of the variable s to r to emphasize that r and 
s are just dummy variables.  The Y combinator can be used to implement addition, 
multiplication and other recursive functions.  For example, if F is given by 
 

F = λf.(λx.[λy.{((is_zero y) x) ⌈f  succ(x) pred(y)⌉}]),  
 
then F(λr.(F (r r)) (λs.(F (s s))) is the addition function, as we demonstrate next.  To help 
clarify which parentheses are matched, we have substituted some matching pairs of 
parentheses with ( ),[],{}, and⌈⌉.  
 
F(λr.(F (r r)) (λs.(F (s s))) = 
λf.(λx.[λy.{((is_zero y) x) ⌈f succ(x) pred(y)⌉}]) (λr.( F (r r)) λs.( F (s s))) = 
λx.[λy.{((is_zero y) x) ⌈λr.( F (r r)) λs.( F (s s)) succ(x) pred(y)⌉}] =  
λx.[λy.{((is_zero y) x) ⌈VV succ(x) pred(y)⌉}] 
 
In the last step we substituted VV for λr.( F (r r)) λs.( F (s s)) in order to improve 
legibility. Using one in place of  λy.((y  select_second) zero) and two in place of  λy.((y  
select_second) (λz.((z  select_second) zero)), we show that the above function computes 
the sum of 1 and 2 as follows: 
 
λx.[λy.{((is_zero y) x) ⌈VV succ(x) pred(y)⌉}] one two  = 
λy.{((is_zero y) one) ⌈VV succ(one) pred (y)⌉} two =  
((is_zero two) one) ⌈VV succ(one) pred(two)⌉ =  
 
Since (is_zero two) returns false, i.e. select_second, ((is_zero two) one)  is discarded. 
 
VV succ(one) pred(two) = 
λr.( F (r r)) λs.( F (s s)) (succ(one)) (pred(two)) = 
F(λr.( F (r r)) λs.( F (s s))) (succ(one)) (pred(two)) = 
λx.[λy.{((is_zero y) x) ⌈VV succ(x) pred(y)⌉}] (succ(one))(pred(two)) = 
λy.{((is_zero y) succ(one)) ⌈VV succ(succ(one)) pred (y)⌉} (pred(two)) = 
((is_zero pred(two)) succ(one)) ⌈VV succ(succ(one))  pred(pred(two))⌉ = 
 
Again, (is_zero pred(two)) returns false, and ((is_zero(pred(two))) succ(one)) is 
discarded. 
 
VV succ(succ(one))  pred(pred(two)) = 
λr.(F(r r)) λs.(F(s s)) succ(succ(one)) pred(pred(two)) =  
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F((λr.(F(r r))λs.(F(s s))) succ(succ(one)) pred(pred(two)) = 
λx.[λy.{((is_zero y) x) ⌈VV succ(x) pred(y)⌉}] succ(succ(one)) pred(pred(two)) = 
λy.{((is_zero y) succ(succ(one))) ⌈VV succ(succ(succ(one))) pred (y)⌉}  

pred(pred(two)) = 
((is_zero pred(pred(two))) succ(succ(one))) ⌈VV succ(succ(succ(one))) 
         pred(pred(pred(two)))⌉ = 
 
 
Finally, since (is_zero pred(pred(two))) returns true, i.e. select_first, the expansions of 
WW come to an end and the final result is 
 
succ(succ(one)) = 3. 
 
 
 
 
 
Appendix D   Combinatory Logic 
 
Combinatory logic (CL) comes in two flavors, the so-called pure CL that has no logical 
connectives (such as not, and, or and so on) and the so-called illative CL, developed by 
Curry with the intention of making it a basis for all logic and mathematics, which does 
have logical connectives.  We present here pure CL as the language of the zeroth 
recursive call; it has only one truth value, truth, as explained in Appendix E, and 
therefore has no need for logical connectives. 
 
Definition of CL-terms 
Assume that the concept of a variable representing a  CL−term is given.  Then CL-term 
can be defined recursively as follows:   
 

1) a variable is a CL-term 
2) K is a CL-term  
3) S is a CL-term  
4) if variables A, B are CL-terms, then AB is a CL-term     

 
The term AB is called an application. 
 
Axioms and Rules 
 
1.   KPQ = P 
2. SPQR = PR(QR) 
3. P = Q  ⇒  Q = P 
4. P = Q, Q = R  ⇒  P = R 
5. P = P 
6. P = P’ ⇒ PR = P’R 
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7. P = P’ ⇒ RP = RP’ 
 
 
Axioms 1 and 2 define K and S.  For any CL-terms M and N, SKMN = KN(MN) = N, 
which means that the identity operator I is given by SKM  for any CL-term M.  In 
particular, I = SKK and therefore IP = P need not appear as an axiom. 
 
Rules 3-5 are necessary to make equality an equivalence relation. 
 
Rules 6-7 say that left and right application preserve equality. 
 
The convention for application is that association is on the left, so that ABC = (AB)C. 
 
 
Examples of CL-terms 
 
The following terms will be used in what follows. 
 
B ≡ S(KS)K B is a composition operator since BPQR = P(QR).  Proof: 

S(KS)KPQR = KSP(KP)QR = S(KP)QR = KPR(QR) = P(QR). �     
 
 
C ≡ S(BS(BKS))(KK) 

C swaps the second and third terms it sees: CPQR = PRQ.    
Proof:  S(BS(BKS))(KK)PQR = BS(BKS)P(KKP)QR = 
S((BKS)P)(KKP)QR = BKSPQ((KKP)Q)R = K(SP)Q((KKP)Q)R 
= SP((KKP)Q)R = PR(((KKP)Q)R) = PR(KQR) = PRQ. � 

 
W ≡ CSI W duplicates the second term it sees: WPQ = PQQ.  Proof: CSIPQ 

= SPIQ = PQ(IQ) = PQQ. 
 
P ≡ S(S(KS)(S(KK)(S(KS)(S(S(KS)(SK))K))))(KK) 

P puts the third term it sees in front of the first two: Pxyz = zxy.  
Proof: S(S(KS)(S(KK)(S(KS)(S(S(KS)(SK))K))))(KK)xyz = 
S(KS)(S(KK)(S(KS)(S(S(KS)(SK))K)))x((KK)x)yz = 
(KS)x((S(KK)(S(KS)(S(S(KS)(SK))K)))x)((KK)x)yz = 
S((S(KK)(S(KS)(S(S(KS)(SK))K))) x) ((KK)x)yz = 
S((S(KK)(S(KS)(S(S(KS)(SK))K))) x) Kyz = 
((S(KK)(S(KS)(S(S(KS)(SK))K))) x)y(Ky)z = 
S(KK)(S(KS)(S(S(KS)(SK))K)) xy (Ky)z = 
S(KK)(S(KS)(S(S(KS)(SK))K)) xy (Ky)z = 
(KK)x((S(KS)(S(S(KS)(SK))K)) x)y(Ky)z = 
KKx((S(KS)(S(S(KS)(SK))K)) x)y(Ky)z = 

   K ((S(KS)(S(S(KS)(SK))K)) x)y(Ky)z = 
   (S(KS)(S(S(KS)(SK))K))x(Ky)z = 
   S(KS)(S(S(KS)(SK))K)x(Ky)z = 
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   (KS)x((S(S(KS)(SK))K)x) (Ky)z = 
   S((S(S(KS)(SK))K)x) (Ky)z =  
   ((S(S(KS)(SK))K)x)z((Ky)z) = 

((S(S(KS)(SK))K)x)zy = 
   S(S(KS)(SK))Kxzy =  
   S(KS)(SK)x(Kx)zy =  
   (KS)x((SK)x)(Kx)zy = 
   S((SK)x)(Kx)zy = 
   ((SK)x)z((Kx)z)y = 
   SKxz((Kx)zy = 
   Kz(xz)((Kx)zy = 
   z((Kx)z)y = 
   z((Kx)z)y = 
   zKxzy= 
   zxy 
 
 
Abstraction Extraction Algorithm 
Combinatory logic is studied by computer scientists because it has practical applications 
in the implementation of functional programming languages.  Originally, however, it was 
developed by Schoenfinkel and Curry as a precursor to functional abstraction.  In order to 
illuminate the definitions of K and S, we show the relationship between CL and 
abstraction.164 
 
Say that M is a term that we want to turn into an abstraction.  First we pull out some part 
of M, labelling it x wherever it is found in M, which gives a new term, say f.  To get M 
back, we must apply f to x, which means substituting x wherever the label x is found in 
M.  We can write down this process using a pseudo-abstraction operator λ∗, as follows: 
  

λ∗x.M  = f 
  fx = M 
 
From this perspective, f is an abstraction from M, and M is an application of f.  In 
general, if we want to create an abstraction from a term, we must consider the same 
process for three possible forms of that term: 
 
1. The term is identical to the variable we wish to abstract over.  In that case, the CL  
 equivalent to the abstraction is just I: 

λ∗x.x = I 
Ix     = x 

 
2. The term is a constant, say a.  Then the CL equivalent to abstraction is Ka: 
  λ∗x.a = Ka  
  Kax = a 
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3. For the general case the term is an application, so it consists of two terms, both of 
which must be operated on with the abstraction operator.  Then the CL equivalent 
to abstraction involves S: 

  λ∗x.AB  =  S(λ∗x.A)(λ∗x.B) 
  S(λ∗x.A)(λ∗x.B)x  = λ∗x.Ax(λ∗x.Bx) = AB, 
 

where in the last step we applied what in lambda calculus would be the η-rule 
given in Appendix C. 

 
The above informal argument indicates why K and S work as generators for all CL-
terms: using only application, they can behave in a manner similar to abstraction.  The 
argument also suggests that if we add something equivalent to the η-rule to CL, we get 
essentially the  λη- calculus, which is consistent with the step from intensional operators 
in the zeroth recursive call to extensional operators in the first recursive call.  Indeed, it 
can be shown that adding the extensionality rule PR = P’R ⇒ P = P’  to CL results in a 
theory equivalent to  λη- calculus.165 
 
 
Appendix E  Truth in Combinatory Logic and Lambda Calculus 
 
One of the main theorems of combinatory logic and lambda calculus is the fixed point 
theorem.166  We first state and prove this theorem. 
 
Fixed point theorem for combinatory logic 
For any term F, there is another term X such that X = FX. 
 
Proof: Let W ≡ BF(SII) and let X ≡ VV.  Then X = VV = BF(SII)V = F((SII)V) = 
F(IV(IV)) = F(VV) = FX.  □ 
 
 
Fixed point theorem for lambda calculus 
For any term F, there is another term X such that X = FX. 
 
Proof: Let V ≡ λx.F(xx) and let X ≡ VV.  Then X = λx.F(xx) V = F(VV) =  FX. □ 
 
The above proof suggests a way to always find the fixed point of any term F.  Let Y ≡ 
λF.VV.  Then YF = (λF.VV)F = (λF.(λx.F(xx) λx.F(xx))) F = λx.F(xx) λx.F(xx) = 
λx.F(xx) V = F (VV) = FλF.(VV)F = FYF, where in the second-to-last step we used the 
η- rule in setting VV = λF.(VV)F.   Therefore, YF = FYF, and YF is a fixed point of F.  
Y is called the Curry combinator.   
 
Negation 
Since falsehood is the negation of truth, in order for falsehood to have meaning in 
combinatory logic, there must be a term that represents negation.  We now give a familiar 
argument that no such term exists.167   
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Suppose that N represents negation.  Now let G = W(BN).  Then GG = W(BN)G = 
BNGG = N(GG).  This is a contradiction, since we have a term GG such that it is equal to 
its own negation.  Therefore, we conclude there can be no term that represents negation 
in combinatory logic.  A similar argument can be made for lambda calculus.168 
 
 
 
Implication 
 
We now show that if a term is introduced to represent implication in lambda calculus, 
then every term in lambda calculus must be true.169  Let ‘⇒’ stand for a term that denotes 
implication.  We assume that the following two rules are valid:       

i. if X and X⇒Y, then Y 
ii. (X ⇒ (X ⇒Y)) ⇒ (X ⇒Y) 

 
1) is the modus ponens rule and 2) is a tautology, that is, a statement that is true 
regardless what the true-false values of X and Y are, as shown in Appendix A.   
 
From our discussion of the fixed point theorem, we know that if Y is a Curry combinator,  
then xYx = Yx for any term x.  For an arbitrary term Z, let x ≡ (λz.(z ⇒(z ⇒ Z))), and X 
≡ Yx.  Then: 
 
1. xX = X        (from xYx = Yx  and X = Yx) 
2. (λz.(z ⇒(z ⇒ Z)))X = X  (by substituting for x) 
3. (X ⇒(X ⇒ Z)) = X    (by β-rule of lambda calculus) 
4. (X ⇒(X ⇒ Z)) ⇒ (X ⇒Z) = X (using (X⇒(X⇒Z)) = X for leftmost X in 3) 
  
 
Now, for any Z, we can deduce the following: 
5. (X ⇒ (X ⇒Z)) ⇒ (X ⇒Z)  (by ii) 
6. X ⇒ (X ⇒Z)    (by 5, 3 and 4) 
7. X     (by 6 and 3) 
8. X ⇒Z     (by 6 and 7) 
9. Z     (by 7, 8 and i) 
 
Since Z was an arbitrary term, it follows that all terms in lambda calculus are true 
propositions.  A similar argument can be made for combinatory logic.170 
 
 
 
Appendix F   Model Theory 
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Model theory is a mathematical theory that maps a formal language, itself a mathematical 
structure, to another mathematical structure that is in some sense a realization of that 
language.  Technically, a model is a pair: the mapping just mentioned, and the domain of 
interpretation into which the formal language is mapped, that domain being a set.  The 
mapping maps symbols in the language to elements of the domain and to functions and 
relations on the domain. 
 
Model theory provides a framework for determining what sentences in a formal language 
are true, either in a particular model or in all models.   Usually, the formal language is an 
extension of first-order logic in the sense that one takes the usual axioms of first order 
logic as given and then adds whatever symbols are needed for special functions or 
constants or relations in the model.  To complete the extension, one gives a set of 
additional axioms.  For example, any group is a model whose language G is built upon 
first order logic as follows.   
 
First, one defines the following symbols: 
 

*   binary operation 
e   the identity element 
x, y, z  variables 

         ( )  punctuation indicating precedence  
 
In addition to the usual axioms and inference rules for first order logic with equality 
given in Appendix A, we add the following axioms: 
 
  G1) ∀x (x * e = x ∧ e * x = x)   (identity) 
  G2) ∀x∀y∀z ((x * y) * z = x * (y * z))  (associativity) 
  G3) ∀x∃y (x * y = e ∧ y * x = e)   (inverse) 
 
A sentence in first order logic is a wff. that does not contain free variables.6  As an 
example of a sentence in this language, one can say that the identity element 1 is unique:  
 

(S)  ∀y ∀x ((x * y = x ∧ y * x = x) → y = e ).   
 
Proof:  Assume there is another element e’ such that ∀x (x * e’ = x, e’ * x =  x).  Then, in 
particular, e*e’ = e.  But we also know from G1 that e*e’ = e’.  Therefore, e = e*e’ = e’, 
or e = e’.  □      
 
Although the above informal proof of S does not show the steps explicitly,  S is a 
theorem of G because it can be deduced from the language G by means of the axioms of 
G and its inference rules.  The concept of theorem is a syntactic concept, which means 
that it has to do with formal manipulation within a language.  In order to establish what 

                                                 
6 See Appendix A for the definition of a free variable.   
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the theorem actually means, we require the semantic notion of validity.  By definition a 
sentence in a language is valid if and only if it is true in every model.7,8  This definition 
seems at first glance cumbersome since it requires dealing with every model of a 
language.  However, Goedel’s completeness theorem for first order logic obviates this 
requirement by linking syntax and semantics: it says that a sentence is a theorem of a 
language if and only if it is valid.  Since the sentence S is a theorem, it is also a valid 
sentence.    
 
Any group is a model of the language G.  In particular, any cyclic group of order n is a 
model of G.  A cyclic group of order n is a group of n elements in which each element 
can be written in terms of a single element g, called a generator, in the form gm, where m 
is an integer such that 0<= m < n.  A typical cyclic group of order n is Zn, the group 
formed by addition of integers modulo n.  For example, the group Z4 consists of elements 
{0, 1, 2, 3}, with the identity element given by 0.  Addition modulo 4 gives 0+m=m+0=m 
for m Є Z4; 1+1=2; 2+1=1+2=3; 3+1=1+3=0; 3+2=2+3=1; 2+2=0; and 3+3=1.  The 
generator for Z4, as for all groups Zn, is 1: 0 = 10, 1 = 10 *11 = 10+1= 11; 2 = 11*11 = 11+1 = 
12  and 3 = 12*11 = 12+1 = 13.  To see that Z4 is a group, note that G1) is satisfied, since 1m 

*10  = 1m and 10 *1m   = 1m for mЄ Z4; G2) is satisfied since (1a *1b )* 1c  = 1a *(1b *1c) = 
1(a+b)+c  = 1a+(b+c) for all a, b, c Є  Z4; G3) is satisfied, since 1m *1n = 1n *1m = 1m+n = 10 , 
where m, n Є  Z4 and m+n = 0 modulo 4.   A further example of a cyclic group is Z1, 
which contains only the identity 10.  
 
The cyclic groups discussed above illustrate how model theory relates a language to a 
model by mapping symbols to elements of the model.  In the case of the cyclic group Z4, 
for example, the symbol e from the language G was mapped to the additive identity  and 
the symbol * was mapped to the binary operation addition modulo 4.  Once such  
mappings are made, it is possible to define valid sentences.   
 
The model theory sketched above is based on the language of first order logic and was 
the first model theory to be developed.  There are also model theories of other logics such 
as multi-valued logic, intuitionist logic, modal logic, and so on, that have been patterned 
after the first order theory, and there is a categorical model theory as well.  One can also 
construct a toy model theory corresponding to the language of propositional logic that is 
useful for pedagogical purposes, but has little practical value since even the simplest of 
mathematical structures require quantifiers for their description.171   
 
The model theory of combinatory logic is even simpler than the model theory of 
propositional logic, since all terms in pure combinatory logic represent true sentences.  

                                                 
7 An equivalent definition says that a sentence S is valid if and only if every model satisfies S.  For details 
on satisfaction and truth in a first order model, see for example the first chapter of the first year graduate-
level text by Chang and Keisler, Model Theory, North Holland, Amsterdam (1990). 
8 In Appendix A, a wff. is defined to be valid if it is true in every (domain of) interpretation.  The mapping 
from symbols to the interpretation in FOL is called a valuation.  A model is a special kind of interpretation-
valuation pair in that it is concerned with sentences (wffs. without free variables) as opposed to just wffs.  
Sentences are of interest because they don’t depend on variables.   For example, a theory is a set of 
sentences.        
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This means there is no deduction in the theory.  Furthermore, we restrict our language to 
just the term I in combinatory logic, so that there is essentially just one sentence in the 
language: I*I = II = I, which is an axiom of the language and is trivially true.9  The 
language therefore consists of a constant symbol I, a function symbol *, and a relation 
symbol =, which correspond to the model consisting of God, application, and equality.  
 
 
Appendix G  Lattice Theory 
 
A lattice is a partially ordered set in which each pair of elements share a certain kind of 
upper and lower bound.  Before defining lattice, it is necessary to introduce several 
definitions.   
 
Partial Order 
A partial order on a set A is a binary relation ≤ with the following three properties: 
 

1) for all a, b Є A,  
if a ≤ b and b ≤ a, then a = b    (antisymmetry) 

2) for all a, b, c Є A,  
if a ≤ b and b ≤ c, then a ≤ c  (transitivity) 

3) for all a Є A, 
  a ≤ a     (reflexivity) 
 
A set with a partial order is said to be partially ordered; such a set is called a poset.  
Rows 7, 8 and 9 of the zeroth epoch of the matrix define a partial order on a collection of 
primitive objects rather than on a set.   
 
 
Upper Bound 
An element x of a poset A is an upper bound of a subset S of A if for all s Є S, s ≤ x. 
 
 
Lower Bound 
An element x of a poset A is a lower bound of a subset S of A if for all s Є S, x ≤ s. 
 
 
Least Upper Bound 
The upper bounds of a subset S of a poset A form a set SU.  If there is an element x of SU 
such that x ≤ u for all u Є SU, that element is called the least upper bound of S.   
 
The least upper bound of a set S is unique.  Proof:  Let x1 and x2 be least upper bounds of 
S.  Then x1≤ x2 and x2≤ x1, and by antisymmetry of the binary relation ≤, x1= x2. 
 

                                                 
9 I = I is also a sentence. 
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Not all partially ordered sets have a least upper bound.  An example is the subset of 
rational numbers x such that x2 < 2.   Since √2 is not rational, i.e. cannot be written in the 
form m/n where m and n are integers and n is non-zero, any rational number as a 
candidate least upper bound of this set will be found to be inadequate.  For example, 
17/12 – √2 is 0.002 approximately, but 577/408 – √2 is approximately 0.000002, and so 
on. 
 
 
Greatest Lower Bound 
The lower bounds of a subset S of a poset A form a set SL.  If there is an element x of SL 
such that l ≤ x for all l Є SL, that element is called the greatest lower bound of S.  The 
greatest lower bound of a subset S is unique again by antisymmetry of ≤.   An example of 
a poset without a greatest lower bound is the subset of rational numbers x such that x2 > 
2.      
 
The greatest lower bound of a subset S of a poset A is also called the infimum of S, 
written inf S.  Likewise, the least upper bound is called the supremum of S, written sup S. 
 
 
Lattice 
There are two equivalent definitions of a lattice.  The first goes as follows:  
 
Lattice definition, version 1.  If each subset of a poset A formed by pairs of elements of 
A has a least upper bound and a greatest lower bound, then A is a lattice.   
 
The second definition requires the concepts of join and meet.  The least upper bound of a 
pair of elements x and y of a set is called the join of x and y, written x ∨y.   The greatest 
lower bound of a pair of elements x and y of a set is called the meet of x and y, written x 
∧y.   
 
Lattice definition, version 2.  A lattice is a poset A such that for all elements a, b and c 
of A: 
 (a∨b)∨c = a∨(b∨c)   (associativity) 

(a∧b)∧c = a∧(b∧c) 
a∧b = b∧a    (commutativity) 
a∨b = b∨a 
a∧a = a    (idempotency) 

 a∨a = a 
 a∨(a∧b) = a    (absorption) 
 a∧(a∨b) = a  
 
 

 92



The connecting lemma relates ∧ and ∨ to ≤.  It says the following are equivalent for 
elements a and b of a lattice: 

i) a ≤ b 
ii) a∨b = b 
iii) a∧b = a  

 
A complete lattice is a lattice A such that sup S and inf S exist for all S ⊆ A. 
 
 
Orthocomplement 
Posets may contain a greatest element and/or a least element.  Depending on context 
these elements are called 1 and 0, or ⊤ and ⊥ (read top and bottom), respectively.  For all 
elements a of a poset containing 1 and 0, the following hold:      
 

0∧a = 0 0∨a = a 
1∧a = a 1∨a = 1 

 
 
a’ is an orthocomplement of a if the following hold: 

i) a’’ = a 
ii) a’∨a = 1 
iii) a’∧a = 0 
iv) a ≤ b → b’ ≤ a’ 

The above conditions define the unary operation ‘.  Conditions i) and iv) together are 
equivalent to a ≤ b if and only if b’ ≤ a’, since i) implies a ≤ b → b’ ≤ a’  and b’ ≤ a’→ 
a’’ ≤ b’’,  which by iv) means b’ ≤ a’→ a ≤ b. 
 
 
A poset A is said to be orthocomplemented if for each element a of A there exists an 
orthocomplement  a’ in A.  Such a set is called an orthoposet.  An orthoposet that is also 
a lattice is called an ortholattice.   
 
 
Modularity and Orthomodularity 
A lattice A is modular if for all a, b and c in A,  

a∨(b∧(a∨c)) = (a∨b)∧(a∨c). 
 
An ortholattice A is orthomodular if for all a, b in A, 
   a ≤ b → a ∨(a’∧b) = b. 
 
 
Distributivity 
A distributive lattice A obeys the following for all a, b, and c in A: 
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a∨(b∧c) = (a∨b)∧(a∨c) 
a∧ (b∨c) = (a∧b)∨(a∧c) 

 
Boolean Algebra 
An ortholattice obeying the distributive law is a boolean algebra.  This characterization is 
equivalent to the usual definition of a boolean algebra given in terms of * and + in the 
main text rather than the equivalent operators ∧ and ∨.  
 
A boolean algebra is an orthomodular lattice.  Proof: Since a boolean algebra A is an 
ortholattice, a’∨a = 1, for all a in A.  From the distributive law  a ∨(a’∧(a∨b)) = (a∧a’) 
∧ (a∨(a∨b)) = a∨b for all a and b in A.  Since a ≤ b is equivalent to a∨b = b by the  
connecting lemma, a ∨(a’∧(a∨b)) = a∨b fulfills the orthomodularity requirement a ≤ b 
→ a ∨(a’∧b) = b.   □ 
 
 
Equivalent Definitions of Orthomodularity 
The following theorem gives several equivalent definitions of an orthomodular lattice.  
Its formulation requires two definitions. 
 
A subalgebra Γ generated by a subset {a,b} of an ortholattice L is a subset of L closed 
under the operations ’, ∧ and ∨ on {a,b}and containing 0 and 1.  In other words, one 
starts with a, b, 0 and 1, and then adds a’, b’, a∨b, a’∨b, a∨b’, (a∨b)’, (a∨b’)’, (a’∨b)’, 
a∧b, a’∧b, a∧b’, (a∧b)’, (a∧b’)’, (a’∧b)’, (a∨b)∨(a∨b), (a∨b)∧(a∨b), ((a∨b)∨(a∨b))’,  
and so on until the operations ’, ∧ and ∨ on any  element or elements of the set being 
generated only yield elements already generated. 
 
 Given elements a and b of an ortholattice L, one says that a commutes with b if a = 
(a∧b)∨(a∧b’).  The notation aCb indicates that a commutes with b. 
 
 
Theorem.  Given an ortholattice L with elements a and b, the following statements are 
equivalent: 

1. L is orthomodular. 
2. if a ≤ b  and b∧a’ = 0, then a = b 
3. The ortholattice O6 in figure G1 (10) is not a subalgebra of L 
4. if a ≤ b, then the subalgebra generated by {a,b} is a boolean algebra 
5. aCb if and only if bCa 

 
The proof of this theorem can be found in the standard textbook on orthomodular lattices 
by Kalmbach.172 
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Examples 
Figure G1 shows a number of posets in the form of Hasse diagrams.  A Hasse diagram 
shows all elements of a poset so that the ordering relation between elements is manifest, 
using the concept of a covering relation.  An element b of a poset is said to cover another 
element a if a < c ≤ b implies that c = b (x < y means x ≤ y and x ≠ y); in other words, b 
covers a if a < b and there are no elements between a and b.  In a Hasse diagram lines are 
drawn between all elements related by a covering such that the covering element appears 
above the covered element, that is, such that the y coordinate in the usual Cartesian 
coordinates is greater for the covering element than for the covered element.  The 
elements themselves are drawn as little circles or dots. 
 
Figure G2 shows two lattices, both orthomodular.  The construction of the second of 
these lattices illustrates the application of a theorem, according to which every 
orthomodular lattice is a pasting of its maximal boolean subalgebras.173 
 
As mentioned in the main text, the propositions of propositional logic form a boolean 
algebra; in terms of lattice theory, the operations and, or and negation are given by the 
meet, join and complementation, respectively, and implication is the ordering relation.  
Likewise, the set of subsets of a set forms a boolean algebra, in which the meet, join and 
complementation are given by set intersection, union and complement, and the ordering 
relation is set inclusion.  Figure G3 shows the Hasse diagram for the power set of four 
elements.  Note that in terms of subsets of a set, the orthomodularity condition a ≤ b → a 
∨(a’∧b) = b reads as follows: if a is a subset of b, then adding a to b minus a results in b.  
Similarly, in propositional logic the orthomodularity condition a ∨(a’∧(a∨b)) = a∨b is a 
tautology. 
 
 
Spacetime as an orthomodular lattice 
To show that the lattice structure of spacetime is orthomodular is beyond the scope of this 
exposition.174, 175  However, it is possible to sketch this structure in broad strokes and 
show for a two-dimensional spacetime what the lattice elements look like.  The idea is 
that subsets of spacetime points are partitioned into equivalence classes based on taking 
the complement twice, whereby the complement of a subset S of spacetime consists of all 
points that have a so-called spacelike separation from all points in S.     
 
In figure G4 there is shown a two-dimensional spacetime, with one space dimension 
given by the cartesian x-axis and one time dimension given by the y-axis.  Points on this 
plot, expressed as pairs in the form (x,t), can be associated with events at a certain place 
and time, say the position of a particle, as viewed from some inertial, that is, 
unaccelerated reference frame.   Spacetime intervals between two points a1 = (x1, t1) and 
a2 = (x2, t2), with t1 < t2, can be divided into two classes due to the constant speed of light 
in all inertial reference frames: 1) the timelike intervals, those for which light has enough 
time to travel between a1 and a2, and 2) the spacelike intervals, those for which light does 
not have enough time to travel between x and y.  For convenience, we use units such that 
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the speed of light is 1 space unit per 1 time unit, in which case light travels along a 
diagonal in the plot.  In that case, if a particle is at a1= (x =0, y = 0), then its subsequent 
trajectory through spacetime is constrained to lie within the cone colored in green in 
figure G4 because nothing can go faster than the speed of light.  A particular trajectory, 
or worldline, is shown in which the particle moves at constant velocity one half the speed 
of light.  Similarly, if we fix a2 at the origin, then a possible trajectory leading to a2 is 
shown in figure G5 to lie within the green triangle.  In G6, we show all points in the past 
or future of  a particle at (0,0) that are separated such that they might lie on the particle’s 
worldline in green; these points are said to be timelike separated from (0,0).  The points 
in red in figure G6 are spacelike separated from (0,0).   In figure G7, the timelike and 
spacelike intervals for an arbitrary point in space time are plotted in green and red, 
respectively.            
 
In figure G8, spacelike and timelike intervals are plotted for two different spacetime 
points a and b, where a and b are just abstract points in the space belonging to a set S, but 
not associated with particular events.  The plot shows a given point as spacelike only if it 
is located at a spacelike interval from both A and B; in other words, if a given point is 
located at a timelike interval from either A or B, then it is shown in green, otherwise in 
red.   In G9, the same plot is done for three points a, b and c.  In G10, the same plot is 
done for many points; evidently as more points are added to S, the set of points spacelike 
separated from all points in S gets squeezed out to either side.  In G12, we show S as a 
dense set of points.  Now it is clear that all the points spacelike separated from S can be 
determined in effect by four points, as depicted in figure G12.  The points that determine 
the spacelike intervals are the points that touch the boundary of a rectangle enclosing S 
whose two axes are oriented at ± 45 degrees from vertical.  In figure G13, we now 
consider the set S’, the set of points spacelike separate from S, and plot the points that are 
spacelike separated from it.  The points in this new set S’’ fill the above-mentioned 
rectangle bounding S, as shown in G14.  In terms of the partition of spacetime described 
above, any point within the rectangular oriented as in G12 bounding a set S belongs to 
the same equivalence class as S.  Accordingly, the points of the lattice to be defined are 
rectangular-shaped subsets of spacetime oriented as shown in the plots, and, as we 
discuss next, disjoint unions of such subsets. 
 
It is necessary to define the binary lattice operations join (∨) and meet (∧) on 
representatives of equivalence classes.  The meet of representatives a and b is defined to 
be just ordinary intersection, as shown in figure G15; the intersection of two rectangles 
always results in a rectangle or 0, as it must for the meet to be well defined.  The join, on 
the other hand, is not quite so simple.  In figure G16, a series of sets are shown along 
with their joins in dotted lines; for the cases (c) and (e), the joins are ordinary set union.  
Figure G17 shows under what circumstances the join is ordinary set union.  Figures G18 
through G23 show graphically why the join is as shown in L6 for each of the scenarios 
(a) through (e). 
 
In order to show that the above lattice structure is orthomodular, it is necessary to show 
that  a ≤ b → a ∨(a’∧b) = b for all points a and b of the lattice, where a ≤ b means that a 
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is a subset of b.  Alternatively, one must show that comparable elements a and b generate 
a boolean subalgebra, as they must according to the above theorem if the spacetime 
lattice structure is orthomodular.  In figure G24, we show a set B that consists of two 
disjoint regions, one of which contains a set A.  In figure G25, the complement of A is 
shown.  In figure G26, the meet of A’ and B is shown and labeled C, and figure G27 B’ is 
shown.  In figure G28, C’ is shown to be the join of B’ and A.  The introduction of C and 
C’completes the generation of Γ(A,B); further joins, meets and complements yield no 
new sets.  The following is a list of operations on elements of Γ(A,B).   
A∨B = B  A∧B = A  A’∨B = 1  A’∧B = C  
A∨B’ = C’  A∧B’ = 0  A’∨B’ = A’  A’∧B’ = B’  
A∨C = B  A∧C = 0   A’∨C = A’   A’∧C = C 
A∨C’ = C’  A∧C’ = A   A’∨C’ = 1   A’∧C’ = B’ 
 
B∨C = B   B’∨C = A’  x∨1 = 1   x∨x = x 
B∨C’ = 1  B’∨C’ = C’   x∨0 = x  x∨x’ = 1 
B∧C’ = A   B’∧C’ = B’   x∧1 = x   x∧x = x 
B∧C = C   B’∧C = 0   x∧0 = 0  x∧x’ = 0 
 
 
x represents any element of Γ(A,B) and the meet and join are understood to commute. 
Using the above equalities, one can verify that Γ(A,B) is distributive, as required of a 
boolean algebra.  For example,  
 
A∨(B∧C) = A∨C = B (A∨B)∧ (A∨C) = B∧B = B 
A∨(B∧C’) = A∨A = A (A∨B)∧ (A∨C’) = B∧C’ = A 
B∨(A∧C’) = B∨A = B (B∨A)∧ (B∨C’) = B∧1 = B 
C∨(B∧C’) = C∨A = B (C∨B)∧ (C∨C) = B∧C = B 
A’∨(B’∧C) = A’∨0 = A’ (A’∨B’)∧ (A’∨C) = A’∧A’ = A’ 
C’∨(A∧B) = C’∨A = C’ (C’∨A)∧ (C’∨B) = C’∧1 = C’ 
B’∨(C∧A’) = B’∨C = C’ (B’∨C)∧ (B’∨A’) = A’∧1 = C’ 
 
One can also confirm that (x ∨y)’ = x’∧y’ for all x and y in Γ(A,B), which yields the so-
called dual forms of the above equalities, for instance  
 
(A∨(B∧C))’ = A’∧(B’∨C’) = B’   and  ((A∨B)∧ (A∨C))’ = (A’∧ B’)∨( A’∧C’) = B’. 
 
Figure G29 shows that the spacetime lattice itself is not distributive. 
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Appendix H   Formal Languages and Automata 
 
Formal languages and automata are mathematical structures.  In order to define a formal 
language, the definition of a grammar is required.   
 
Grammar  
 
A grammar is a quadruple G( V, T, S, P ), where 
 V is a set of variable symbols, 
 T is a set of terminal symbols, 
 S is a particular element of V called the start symbol, 
 P is a set of productions. 
 
A production is a rule that transforms a non-empty string of symbols from V∪Τ, into 
another possibly empty string of symbols from V∪Τ.  A series of productions starting 
from the start symbol and resulting in a string of terminal symbols only is called a 
derivation.  The last string in a derivation is called a word. The set of all words that can 
be generated by a given grammar is called the language generated by that grammar. 
 
    
Grammar Example 1 
 
Let V = {S}, T = {0,1}, and S be the start symbol.  Let the productions be given by  P = S 
→ 0S, S → 1S, S → ε},  where ε is the empty string. P can also be written  
S → 0S | 1S | ε  . 
 
Three typical derivations for the grammar G( V, T, S, P) are: 
 
0S, 00S, 000S, 0001S, 00010S, 000101S, 000101 
1S, 1 
1S, 10S, 101S, 101  
 
In each derivation above the last production was S → ε.  In general, the words in the 
language corresponding to G, written L(G), are arbitrary strings of 0’s and 1’s. 
 
 
Grammar Example 2 
  
Let V ≡ {S, A, B, C}, T ≡ {a,b,c}∪ ε, where ε is the empty string, and S be the start 
symbol.  Let the productions P be given by   

S → aBC | bAC | cAB | ε   
  A → aS | bcAA  
  B → bS | caBB 
  C → cS | abCC 
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A typical derivation for this grammar is: 
 
aBC, abSC, abSabCC, abbACabCC, abbaSCabCC, abbaCabCC, abbacSabCC, 
abbacabCC, abbacabcSC, abbacabcC, abbacabccS, abbacabcc 
 
In this language each word contains the same number of a’s, b’s and c’s. 
 
 
The Chomsky Hierarchy 
 
It is possible to classify languages according to the form of the productions in their 
corresponding grammars as shown in the table below.  The convention is to arrange the 
languages in order from most general to most restricted.  This classification is in fact a 
hierarchy, since each grammar type in the table is capable of generating all languages that 
can be generated by all grammars beneath it as well as languages that no grammar 
beneath it can generate.  This hierarchy is all the more significant in view of the fact that 
for each type of language in the hierarchy there is a mathematical object called an 
automaton or machine which accepts that language, that is, which understands that 
language in some sense.  The table lists the languages, their production forms, examples 
of productions, and machines that accept them.  The production examples use the 
convention that capital letters are variables and small letters are terminal symbols, and 
ε is the empty string.  
 
Type 
no. 

Language  Production form Production 
examples 

Accepting machine 

0 recursive 
enumerable 

x → y, where x is in 
(V∪Τ)+  (+ indicates that 
x is non empty), and y is 
in (V∪Τ)∗  (* indicates 
that y may be empty); 
grammar is unrestricted 

AB → A 
A → ε 
(plus all type 1-
3 examples) 

Turing machine 

1 context-
sensitive 

xAy → xay, where A is 
in V, x and y are in 
(V∪Τ)∗, and a is in 
(V∪Τ)+; also permitted is 
S → ε, provided S does 
not appear on the right-
hand side of any 
production  

aBc → abc 
aBc → aaDc 
aabA → aabAc 
CD→ CabcDb 
CD→ CabcEb 
(plus all type 2-
3 examples) 

linear bounded 
automaton 

2 context-free A → α, where A is in V, 
and α is in (V∪Τ)∗ 

A → abc 
B → abDD 
X → aXb 
 
(plus all type 3 
examples) 

pushdown 
automaton 
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3 regular A → yB, A → x, where y 
is in T, A and B are in V, 
and x is in T∪ ε 

C → cC 
A → b 

finite automaton 

 
 
It can be shown that for any context-free grammar G containing a rule of the form A → ε, 
where ε is the empty string, there exists another context-free grammar G’ such that the 
corresponding languages of G and G’ are equal, i.e. L(G) = L(G’), and such that there is 
only one production yielding ε in G’, namely S’ → ε, where S’ is the start symbol S’ and 
S’ does not appear on the right hand side of any other production in G’.176  An analogous 
empty-string lemma holds for regular grammars.  In light of these results, it is clear from 
the above table that any language generated by a grammar of type n can also be generated  
by a grammar of type m, where  0 ≤ m < n ≤ 3. 
 
An equivalent way of expressing the allowable productions for a context-sensitive 
grammar is x → y such that |x| ≤ |y|, where the notation |w| is used for the number of 
symbols in the string w;  in addition, it is necessary to allow S → ε if S is not in the right-
hand side of any production.  In other words, productions for a context-sensitive grammar 
always augment the number of symbols in the running string.  The production form given 
above in the table has the advantage that it clarifies the usage of the word context: the 
context in a context-sensitive language is given by the x and y surrounding the variable A 
in the left-hand side of the context-sensitive production form; in the context-free 
language the variable stands alone on the left-hand side of the production, with no such 
context.   The production form x → y such that |x| ≤ |y| for context-sensitive grammars 
has the advantage that it clearly distinguishes between recursive enumerable and context-
sensitive grammars.   
 
 
Combinatory Logic  
 
Example 1 above is a regular grammar and example 2 is a context-free grammar.  
Another example of a context-free language is combinatory logic, which can be formally 
defined using the following grammar G( T, V, A, P), where 
  

T = { K, S, (, ) }, 
 V = { A }, 
 A is the start symbol, 

P = A→K | A→S | A→(KA) | A→ (SA) | A→KA | A→SA | A→AA 
 
The derivations for B ≡ S(KS)K and C ≡ S(BS(BKS))(KK) using this grammar are as 
follows: 
 
SA, SAA, S(KA)A, S(KS)A, S(KS)K 
 
SA, SAA, S(SA)A, S(SAA)A, S(S(KA)A)A, S(S(KS)A)A, S(S(KS)AA)A, 
S(S(KS)KA)A, S(S(KS)KAA)A, S(S(KS)KSA)A, S(S(KS)KS(SA))A, 
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S(S(KS)KS(SAA))A, S(S(KS)KS(S(KA)A))A, S(S(KS)KS(S(KS)A))A, 
S(S(KS)KS(S(KS)AA))A, S(S(KS)KS(S(KS)KA))A, S(S(KS)KS(S(KS)KAA))A, 
S(S(KS)KS(S(KS)KKA))A, S(S(KS)KS(S(KS)KKS))A, 
S(S(KS)KS(S(KS)KKS))(KA), S(S(KS)KS(S(KS)KKS))(KK), 
 
Parentheses prevent combinatory logic from being a regular language. 
 
 
A context-sensitive grammar 
 
The following is a context-sensitive grammar G( T, V, S, P): 

 
T = { a, b, c }, 

 V = { S, A, B, C }, 
 S, 

P = S→aSBC | S→aBC | CB→BC | aB→ ab | bB→bb | bC→bc | cC→cc 
 

A typical derivation is: 
 
aSBC, aaBCBC, aaBBCC, aabBCC, aabbCC, aabbcC, aabbcc. 
 
All words in this language have the form anbncn. 
 
 
An unrestricted grammar  
 
The following is a type 0 grammar G( T, V, S, P), whose corresponding language is 
recursive enumerable: 

 
T = { a, b, c }, 

 V = { S, A, B, C, P, Q, X, M, N }, 
 S, 
 
P =   

1) S → AS 
2) S → AB 
3) B → BB 
4) B → C 
5) AB → PXNB 
6) NB → BN 
7) NC → MCc 
8) BM → MB 
9) AP → PA 
10) AXMB → AB 
11) PXMB → PQXNB 
12) QXMB → QQXN 
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13) QXBNC → Qc 
14) P  → a 
15) Q → b 

 
A typical derivation using this grammar goes as follows.  After the first few steps, each 
step is given as a single line with changing symbols in bold typeface.  The number of the 
production is given to the right. 
 
S, AS, AAS, AAB, AABB, AABBB, AABBBB, AABBBC  (P1-4) 
AABBBC    → APXNBBBC      (P5) 
APXNBBBC   → APXBNBBC    (P6) 
APXBNBBC   → APXBBNBC    (P6) 
APXBBNBC   → APXBBBNC    (P6) 
APXBBBNC   → APXBBBMCc   (P7) 
APXBBBMCc  → APXBBMBCc   (P8) 
APXBBMBCc  → APXBMBBCc   (P8) 
APXBMBBCc  → APXMBBBCc   (P8) 
APXMBBBCc  → PAXMBBBCc   (P9) 
PAXMBBBCc    → PABBBCc    (P10) 
PABBBCc    → PPXNBBBCc    (P5) 
PPXNBBBCc   → PPXBNBBCc    (P6) 
PPXBNBBCc   → PPXBBNBCc    (P6) 
PPXBBNBCc   → PPXBBBNCc    (P6) 
PPXBBBNCc   → PPXBBBMCcc   (P7) 
PPXBBBMCcc  → PPXBBMBCcc   (P8) 
PPXBBMBCcc  → PPXBMBBCcc   (P8) 
PPXBMBBCcc  → PPXMBBBCcc   (P8) 
PPXMBBBCcc  → PPQXNBBBCcc   (P11) 
PPQXNBBBCcc  → PPQXBNBBCcc   (P6) 
PPQXBNBBCcc  → PPQXBBNBCcc   (P6) 
PPQXBBNBCcc  → PPQXBBBNCcc   (P6) 
PPQXBBBNCcc  → PPQXBBBMCccc   (P7) 
PPQXBBBMCccc  → PPQXBBMBCccc   (P8) 
PPQXBBMBCccc  → PPQXBMBBCccc   (P8) 
PPQXBMBBCccc  → PPQXMBBBCccc   (P8) 
PPQXMBBBCccc  → PPQQXNBBCccc   (P12) 
PPQQXNBBCccc  → PPQQXBNBCccc   (P6) 
PPQQXBNBCccc  → PPQQXBBNCccc   (P6) 
PPQQXBBNCccc  → PPQQXBBMCcccc   (P7) 
PPQQXBBMCcccc  → PPQQXBMBCcccc   (P8) 
PPQQXBMBCcccc  → PPQQXMBBCcccc   (P8) 
PPQQXMBBCcccc  → PPQQQXNBCcccc   (P12) 
PPQQQXNBCcccc  → PPQQQXBNCcccc   (P6) 
PPQQQXBNCcccc  → PPQQQccccc    (P13) 
PPQQQccccc …  →       aabbbccccc    (P14-15) 
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Words10 in this language are of the form aibjci+j, where i,j > 0; in other words, the number 
of a’s and b’s is always equal to the number of c’s, and the a’s always come before the 
b’s, which always come before the c’s.  Productions 10 and 13 yield shorter strings on the 
right-hand than on the left-hand side.  Therefore this grammar is not context-sensitive.  
However, we give another grammar below that generates words of the same form that is 
context-sensitive; it turns out that there is no context-free grammar that will generate 
words of this form, so the language is in fact context-sensitive (as well as recursive 
enumerable, since all context-sensitive languages are also recursive enumerable).  An 
unrestricted grammar similar to the one given above generates words of the form aibjci*j, 
where i,j > 0 and * is ordinary multiplication; this language can not be generated with a 
context-sensitive grammar.177 
 
 
Machines 
 
Finite automata 
 
A finite automaton is defined as a quintuple, M( Q, Σ, δ, q0, F ), where  
 

Q is a set of integers called states; 
Σ is a set of symbols; 
δ is a set of transition rules Q x Σ → Q, that is, from the set of ordered pairs 

{(q,a) such that q Є Q and a Є Σ} to Q; 
q0 is an element of Q, called the start state; 
F is a subset of Q, called the set of final states.  

 
A finite automaton defines a kind of machine or computer that starts in the state q0 and 
can progress to further states as determined by the transition rules.  In order for the 
automaton to do anything, it requires a string of input symbols.  Starting from the first 
symbol in the input string and advancing one symbol at a time to the end of the input 
string, the transition rules determine one or more sequences of states.  If the last state in 
any of these sequences of states is in F, the set of final states, and the input string is 
exhausted, the automaton is said to accept the string.  If an automaton accepts all strings 
in a language, the automaton is said to accept or recognize the language. 
     
It is possible to represent a finite automaton completely as a directed graph, in which the 
vertices represent states and the edges represent transitions.  Vertices are labeled with the 
state number; edges have an arrow indicating the from- and to-state and are labeled with 
the input symbol corresponding to the transition.  
 
 
                                                 
10 Note that not all valid productions in a grammar need lead to valid derivations, i.e. to a set of symbols 
consisting only of terminal symbols; for example, in this grammar not setting AP → PA will leave at least 
one A hanging in the general case.  Note also that the order of the productions for a single valid derivation 
is not unique; for example, in this grammar one can use B → BB anywhere (but not B → C).  
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Example   
 
Let Σ = {a, b}, Q = { 0, 1, 2, 3 }, q0 = 0, and F = {3}.  Let the set of transitions δ be given 
by  
 

q a b
0 1 0
1 2 1
2 3 2
3 3 3

 
 
Each row in the table gives two ordered pairs of δ: for example, the first row gives (0, a) 
= 1, (0, b) = 0, and so on. 
 
The transition graph is shown below, with the start state marked with → and the final 
state in bold typeface.  This automaton will accept any input string consisting of at least 3 
a’s, with b’s located anywhere.   
 
   0          a       1                a            2 a          3  
→X ----------->------------X--------->----------X----------->-----------X 
   / \                  / \             / \           / \  
   \</                  \</             \</           \</ 
    b        b              b            b 
 
 
Any finite automaton has a corresponding regular language.  To find the grammar that 
generates that language, there is a recipe.  Let the set of variables V be Q, the set of states 
of the automaton, and let the set of terminal symbols T be S, the set of symbols of the 
automaton.  For the productions, use all of the transition rules of δ in the form qi → tqj, 
where δ( qi , t ) = qj.  Finally, for every qk in F, the set of final states, include a production 
qk → ε.  The latter productions serve to rid the running strings of variables so that only 
terminal symbols remain. 
 
For example, for the above automaton we construct a grammar G( V, T, S, P ): 
 
 V = Q = {0, 1, 2, 3} 
 T  = Σ = {a, b} 
 S  = q0 = 0 
 
P =  { 0 → a1 |  0→b0 | 1→a2 | 1→ b1 | 2 → a3 | 2→ b2 | 3 → a3 | 3 → b3 | 3 → ε } 
 
A typical derivation is the following: 
 
b0, ba1, bab1, babb1, babba2, babbab2, babbaba3, babbababb3, babbababbb3, 
babbababbb 
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There is also a straightforward procedure for generating an automaton from a given 
grammar.178   Such procedures for generating a grammar from a machine and vice versa 
are the essence of constructive proofs that establish a correspondence between grammars 
and automata.  In the case of finite automata and regular grammars this correspondence is 
simple enough that one might one wonder whether grammars and automata are really just 
different ways of naming the same process.  In fact, automata can be used to generate 
language as well as accept language.  However, as the grammars become more general 
the proofs of correspondence between automata and grammars become progressively less 
straightforward, enough so that one suspects that this correspondence --- in essence 
between language and machine --- is a subtle fact of nature.   
 
 
Pushdown automata 
 
A pushdown automaton differs from a finite automaton in that it has an additional storage 
area called a stack.  A stack is a storage mechanism that works on a last-in first-out basis:  
the last item “pushed” onto the stack is always the first item “popped” off the stack, just 
as one would always retrieve the most recently loaded plate from a spring-loaded plate 
dispenser that had been loaded one plate at a time and that had plates accessible only 
from the top.  To complete this analogy one might imagine the pushdown automaton 
stack to have plates with symbols painted on them, because symbols are what its stack 
stores.   
 
A nondeterministic pushdown automaton is defined as a septuple M(Q, Σ, Γ, δ, q0,  Z0, 
F), where 
  

Q is a set of integers called states; 
Σ is a set of input symbols; 
Γ is a set of stack symbols; 
δ is a set of transition rules from Q x (Σ∪ε) x Γ  → Q x Γ*, that is, from the set 

 of ordered triplets {(q, a, z) such that q Є Q and a Є Σ∪ε and z Є Γ} to  
 the set of ordered pairs {(q, z) such that q Є Q and z Є Γ*}; 

q0 is an element of Q, called the start state; 
Z0 is an element of Γ, called the initial stack symbol; 
F is a subset of Q, called the set of final states.  

 
A nondeterministic pushdown automaton can make two kinds of transitions, one that 
does nothing with the input string, and another that reads one symbol from the input 
string.  It is convenient to think of the input string as a long tape and of the pushdown 
automaton as having a pointer to the current position on the tape.  In the first type of 
transition this pointer does not move, while in the second type of transition it moves one 
step, always in the same direction, toward the end of the input. 
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The other components of a transition are the initial and final integers referencing the 
states of the automaton, and changes to the stack.  The rule for the stack is that first one 
stack symbol must be popped off the stack (and thereafter be unavailable), and then any 
number of stack symbols may be pushed onto the stack --- the pop and the push are part 
of a single transition. 
 
What it means for a pushdown automaton to accept a language is basically the same as 
what it means for a finite automaton to accept a language.  A pushdown automaton starts 
in the state q0 with Z0 on the stack, and progresses to further states as determined by the 
transition rules.  In order for the pushdown automaton to do anything, it requires a string 
of input symbols.  Starting from the first symbol in the input string and advancing either 
no symbols or one symbol at a time to the end of the input string, the transition rules 
determine one or more sequences of states.  If the last state in any of these sequences of 
states is in F, the set of final states, and the input is exhausted, the automaton is said to 
accept the string.  If an automaton accepts all strings in a language, the automaton is said 
to accept or recognize the language. 
 
 
Example 
      
Let Q = { 0, 1, 2, 3 }= { q0, q1, q2 , q3 }, Σ = {a, b},  Γ = {α, β}, q0 = 0, Z0 = α, and F = 
{3}.  Let the set of transition rules δ be given by 
 

1. δ( q0, a, α ) =  ( q1, βα ) 
2. δ( q1, a, β ) =  ( q1, ββ ) 
3. δ( q1, b, β ) =  ( q2, ε ) 
4. δ( q2, b, β ) =  ( q2, ε ) 
5. δ( q2, ε, α ) =  ( q3, ε ) 

 
Each transition rule has an initial configuration consisting of the state, the input symbol, 
and the top symbol on the stack.  Each rule says how to go from that initial configuration 
to a final configuration consisting of an output state and a string to push onto the stack.  
This particular automaton has no transition for which the input pointer does not move.   
 
The following table of transitions shows that this automaton accepts the input string 
aaabbb. The location of the current input is represented by a symbol in bold typeface.  
Also, the stack is shown as a horizontal string of symbols whose leftmost symbol 
represents the top of the stack.    
 
step 
no. 

input stack in stack 
out 

transition read  pop11 push 

0 aaabbbε αε βαε 1. q0 → q1 read a  pop α push βα 
1 aaabbbε βαε ββαε 2. q1 → q1 read a  pop β push ββ 
2 aaabbbε ββαε βββαε 2. q1 → q1 read a  pop β push ββ 
                                                 
11 The stack is popped at each step, removing the symbol at the top of the stack.   
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3 aaabbbε βββαε ββαε 3. q1 → q2 read b  pop β no push 
4 aaabbbε ββαε βαε 4. q2 → q2 read b  pop β no push 
5 aaabbbε βαε αε 4. q2 → q2 read b  pop β no push 
6 aaabbbε αε ε 5. q2 → q3 no read  pop α no push 
 
After step 6, the input is exhausted and the automaton is in q3, a final state. Therefore, the 
input string is accepted. 
 
This automaton goes to state 1 and keeps pushing β’s on the stack as long as a’s are read 
in.   As soon as a b is read, it moves to state 2 and then pops a β off the stack each time it 
reads a b.  If the end of the input is reached when only the stack start symbol α is on the 
stack, then the automaton accepts the input string.  This happens when the input has a 
string of a’s followed by the same number of b’s, that is, when the input strings have the 
form anbn.     
 
The following context-free grammar G( V, T, S, P) generates the language accepted by 
the above pushdown automaton. 
 
Let V = {S}, T = {a,b}, and S be the start symbol.  Let the productions be given by   

P = S → ab | aSb 
 
A typical derivation is: aSb, aaSbb, aaabbb. 
 
In general, a nondeterministic pushdown automaton can be constructed from a context-
free grammar by a procedure that imitates the action of productions using the stack.  In 
this way every context-free language can be associated with a three-state pushdown 
automaton that accepts it.  Expressed in terms of transition rules, this procedure goes as 
follows:  
  

1. Create a transition from the initial state q0 to q1  by pushing the start symbol on the 
stack after the start stack symbol, without reading any input, that is, without 
moving the input pointer: 

 δ( q0, ε, z0 ) =  ( q1, Sz0 ). 
       

2. For each production, create a transition with initial and final state q1 that does not                          
advance the input pointer, but has the left-hand side of the production as the top 
symbol on the stack and pushes the right-hand side of the production onto the 
stack.  For the grammar G just defined, for example, we would have: 
  δ( q1, ε, S ) =  ( q1, ab ) 

δ( q1, ε, S) =  ( q1, aSb ). 
 

3. For each input symbol, create a transition again with initial and final state q1 that 
reads that symbol from the input and starts with that same symbol on the top of 
the stack and then just pops it off the stack without pushing anything back onto 
the stack.  For the grammar, G, that yields two transitions: 

δ( q1, a, a ) =  ( q1, ε )  
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    δ( q1, b, b ) =  ( q1, ε ). 
 

4. Finally, create a transition that goes from state q1 to the final state q2 by not 
advancing the input pointer and just popping the start symbol off the stack 
without pushing anything onto it.  For G, that means:  

δ( q1, ε, Z0 ) =  ( q2, ε ). 
 
Putting the above construction together for the grammar G, the nondeterministic 
pushdown automaton M(Q, Σ, Γ, δ, q0,  Z0, q2) is given by 

Q = { 0, 1, 2 }= { q0, q1, q2 },  
Σ = {a, b},   
Γ = {a, b, S},  
q0 = 0 = q0,  
Z0 = z0,  
F =  2 = q2.   
δ : 
1. δ( q0, ε, z0 )  =  ( q1, Sz0 ) 
2. δ( q1, ε, S ) =  ( q1, ab ) 
3. δ( q1, ε, S )  =  ( q1, aSb ) 
4. δ( q1, a, a )  =  ( q1, ε )  

            5. δ( q1, b, b )  =  ( q1, ε ) 
      6. δ( q1, ε, Z0 )  =  ( q2, ε ) 

 
Since rules 2. and 3. have the same initial configuration, this automaton is 
nondeterministic, meaning that there is not always a unique transition available. The 
following table shows how the automaton just constructed handles the input aaabbb. 
 
step 
no. 

input stack in stack 
out 

transition read pop push 

0 aaabbbε z0ε Sz0ε 1. q0 → q1 no read  pop z0 push Sz0 
1 aaabbbε Sz0ε aSbz0ε 3. q1 → q1 no read  pop S push aSb
2 aaabbbε aSbz0ε Sbz0ε 4. q1 → q1 read a  pop a   no push 
3 aaabbbε Sbz0ε aSbbz0ε 3. q1 → q1 no read  pop S push aSb
4 aaabbbε aSbbz0ε Sbbz0ε 4. q1 → q1 read a  pop a no push 
5 aaabbbε Sbbz0ε abbbz0ε 2. q1 → q1 no read  pop S push ab 
6 aaabbbε abbbz0ε bbbz0ε 4. q1 → q1 read a  pop a no push 
7 aaabbbε bbbz0ε bbz0ε 5. q1 → q1 read b  pop b no push 
8 aaabbbε bbz0ε bz0ε 5. q1 → q1 read b  pop b no push 
9 aaabbbε bz0ε z0ε 5. q1 → q1 read b  pop b no push 
10 aaabbbε z0ε ε 6. q1 → q2 no read   pop z0 no push 
 
 
After step 10, the input is exhausted and the automaton is in q2, a final state.  Therefore, 
the input is accepted.  Note that in step 1, the automaton could also have undergone 
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transition 2, but that transition would have lead to a halting state, that is, to a state from 
which no further transitions would have been possible, before the end of the input. 
 
The procedure given above can be used to construct a non-deterministic pushdown 
automaton for any context-free grammar.  For example, one can be constructed for the 
grammar given above that was used to generate the combinatory logic language. 
 
In addition to nondeterministic pushdown automata, there are also deterministic 
pushdown automata, which are not able to recognize all languages recognized by 
nondeterministic automata.  All pushdown automata are able to recognize any language 
that can be recognized by a finite automaton; a mapping can be established from an 
arbitrary finite automaton to a pushdown automaton that maps transitions to transitions 
such that the stack of the pushdown automaton pops and pushes an arbitrary symbol for 
all transitions except for those leading to a final state, in which case that symbol is only 
popped from the stack. 
 
The next machine in the hierarchy, the linear bounded automaton, is a special kind of 
Turing machine, so we first discuss the Turing machine.   
 
 
Turing Machines 
 
The Turing machine differs from a pushdown automaton in the nature of its infinite 
storage area.  Instead of a stack, it has it has extra room for storing symbols on the same 
long tape that contains the input string, only now that tape is infinite.  Instead of being 
able to access stored symbols from a single point only, it is able to traverse the storage 
area by moving its current symbol pointer one step to the left or to the right at each 
transition between states.  Instead of having to erase symbols in order to access symbols 
buried in the storage area, it is able to retain symbols in place as it traverses the storage in 
order to access symbols.  Instead of the storage area being separate from the input 
symbols, its storage area contains the input symbols and is everywhere writeable, 
allowing it to overwrite the input symbols already read in order to keep a running account 
of how the input has been processed.   
 
A deterministic Turing machine is defined as a septuple M(Q, Σ, Γ, δ, q0,  a, r), where 
  

Q is a set of integers called states; 
Σ is a set of input symbols; 
Γ is a set of tape symbols such that Σ is a subset of Γ 
δ is a transition function Q x Γ  → Q x Γ x {L(eft), R(ight)} that is, from the set 

 of ordered pairs {(q, a) such that q Є Q and a Є Γ} to the set of ordered 
 triplets {(q, a, d) such that q Є Q, a Є Γ and d Є {L,R}; 

q0 is an element of Q, called the start state; 
a is an element of Q, called the accept state; 
r is an element of Q, called the reject state. 
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The Turing machine transition is simple: for example, δ(q1, a) = (q2, b, R) means before 
the transition the machine is in state q1 and the current storage location contains a, and 
after the transition the machine is in state q2, b has been written over a, and the pointer to 
current storage has moved one place to the right.   
 
There are a number of versions of the Turing machine, all of them equivalent.  This 
particular one is a standard one.  The storage tape is actually semi-infinite, containing an 
initial symbol ⊏ indicating the left end of the tape.  The input string follows immediately 
to the right, after which there is a never-ending series of blanks, written ⊔.  There is 
always a transition δ(q0, ⊏) = (q1, ⊏, R ). 
 
 
Example 
 
The following Turing machine accepts inputs in the form aibjci+j, where i,j > 0; all others 
are rejected.  Such languages were shown above to be generated by a type 0 grammar.  
This machine operates by first checking that the input starts with one or more a’s, 
followed by one or more b’s, followed by one or more c’s; if at any point the input 
violates this form, it is rejected.  The machine then writes a series of 1’s in a scratch area 
to the right of the input, one 1 for each a and one 1 for each b in the input string.  These 
1’s are then converted to 0’s one by one as each c is encountered in the input.  If no 
overrun occurs and at the end of this process each 1 has been converted to 0, then the 
machine enters the accept state; otherwise, the machine enters the reject state. 
      
Let Q = { 0, 1, … 12 }= { q0, q1, … q18 }, Σ = {a, b, c},  Γ = {a, b, c, x, y, z, 0, 1}, q0 = 0, 
a = 17, and r = 18.  Let the set of transition rules δ be given by12 
 
 
trans. 
no. 

transition comment 

0 δ(q0, ⊏) = (q1, ⊏, R )  standart start; go to state q1 
1 δ(q1, a) = (q2, a, R ) q1 must have an a 
2 δ(q1, b) = (r, b, R ) q1 rejects b and c and blank (r is the reject state) 
3 δ(q1, c) = (r, c, R )  
 δ(q1, ⊔) = (r, ⊔, R )  
4 δ(q2, a) = (q2, a, R ) q2 runs right, reading a’s and replacing them 
5 δ(q2, b) = (q3, b, R ) if q2 hits a b, it goes to q3 
6 δ(q2, c) = (r, c, R ) if q2 hits a c or blank, it rejects 
 δ(q2, ⊔) = (r, ⊔, R )  

                                                 
12 Notice: the following table listing the transitions can be ignored altogether --- it is given for the sake of 
completeness.  The subsequent table shows how this machine accepts the input aabbbccccc; its first column 
shows how the tape values change in accordance with the strategy outlined in the previous paragraph. 
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7 δ(q3, a) = (r, a, R ) q3 rejects a 
8 δ(q3, b) = (q3, b, R ) q3 runs right, reading b’s and replacing them 
9 δ(q3, c) = (q4, c, R ) if q3 hits a c, it goes to q4 
 δ(q3, ⊔) = (r, ⊔, R ) q3 rejects a blank 
10 δ(q4, a) = (r, a, R ) q4 rejects a’s 
11 δ(q4, b) = (r, b, R ) q4 rejects b’s 
12 δ( q4, c) = (q4, c, R ) q4 runs right reading c’s 
13 δ( q4, ⊔) = (q5, ⊔, L ) if q4 hits a blank, it turns back to the left and goes to q5 
14 δ(q5, a) = (q5, a, L ) q5 runs left until it hits ⊏, skipping a’s, b’s, and c’s 
15 δ(q5, b) = (q5, b, L )  
16 δ(q5, c) = (q5, c, L )  
17 δ(q5, ⊏) = (q6, ⊏, R )  
18 δ(q6, a) = (q7, x, R )  q6 knows the input is an a due to validation above; it marks

that first a with an x and goes to q7 
19 δ(q7, a) = (q7, a, R ) q7 runs right until it hits a blank 
20 δ(q7, b) = (q7, b, R )  
21 δ(q7, c) = (q7, c, R )  
22 δ(q7, 1) = (q7, 1, R )  
23 δ(q7, ⊔) = (q8, 1, L ) q7 goes to q8 at the blank, overwrites the blank with a 1 

and turns back to the left 
24 δ(q8, 1) = (q8, 1, L ) q8 runs left until it hits an x 
25 δ(q8, c) = (q8, c, L )  
26 δ(q8, b) = (q8, b, L )  
27 δ(q8, a) = (q8, a, L )  
28 δ(q8, x) = (q9, x, R ) q8 moves to the right when it hits an x and goes to q9  
29 δ(q9, a) = (q7, x, R ) q9 writes over an a with an x and returns to q7; q9 

therefore starts a loop and so needs an exit condition 
30 δ(q9, b) = (q10, y, R ) q9 exits its loop if it reads b;  b means that all the a’s have 

been turned into x’s; it writes over the b with a y 
31 δ(q10, b) = (q10, b, R ) q10 runs right until it hits a blank 
32 δ(q10, c) = (q10, c, R )  
33 δ(q10, 1) = (q10, 1, R )  
34 δ(q10, ⊔) = (q11, 1, L ) q10 goes to q11 at the blank, overwrites the blank with a 1 

and turns back to the left 
35 δ(q11, 1) = (q11, 1, L ) q11 runs left until it hits a y 
36 δ(q11, c) = (q11, c, L )  
37 δ(q11, b) = (q11, b, L )  
38 δ(q11, y) = (q12, y, R ) q11 moves to the right when it hits a y and goes to q12 
39 δ(q12, b) = (q10, y, R ) q12 writes over a b with a y and returns to q10, starting 

another loop 
40 δ(q12, c) = (q13, z, R ) q12 exits its loop if it reads c;  c means that all the b’s have 

been turned into y’s; it writes over the c with a z 
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41 δ(q13, c) = (q13, c, R ) q13 runs right until it hits a 1, skipping c’s and 0’s 
42 δ(q13, 0) = (q13, 0, R )  
43 δ(q13, ⊔) = (r, 0, R ) q13 should not hit a blank; reject because input had too 

many c’s 
44 δ(q13, 1) = (q14, 0, L ) q13 overwrites a 1 with 0 and moves left 
45 δ(q14, 0) = (q14, 0, L ) q14 runs left ignoring 0’s and c’s 
46 δ(q14, c) = (q14, c, L )  
47 δ(q14, z) = (q15, z, R ) q14 moves to the right when it hits a z 
48 δ(q15, c) = (q13, z, R ) q15 starts another loop if it reads a c 
49 δ(q15, 0) = (q16, 0, R ) q15 exits its loop if it reads a 0; if the input is in the form 

aibjci+j, then there should be a string of 0’s on the right 
50 δ(q16, 0) = (q16, 0, R ) q16 runs right over 0’s 
51 δ(q16, 1) = (r, 1, R ) q16 rejects 1 because input did not have enough c’s 
52 δ(q16, ⊔) = (a, 0, R ) q16 accepts blank 
 
 
The following table shows the behavior of this Turing machine when given the input 
aabbbccccc.  The transitions are not shown that do the checking that a’s are followed by 
b’s and that b’s are followed by c’s.  After the first few transitions, only the more 
interesting transitions are shown.  The current storage location is shown in bold typeface. 
 
tape trans. 

no 
transition 

⊏aabbbccccc⊔⊔⊔⊔⊔⊔⊔ 0 δ(q0, ⊏) = (q1, ⊏, R ) 
  {. coarse data check .} 

⊏aabbbccccc⊔⊔⊔⊔⊔⊔⊔ 17 δ(q5, ⊏) = (q6, ⊏, R ) 
⊏aabbbccccc⊔⊔⊔⊔⊔⊔⊔ 18 δ(q6, a) = (q7, x, R )  

⊏xabbbccccc⊔⊔⊔⊔⊔⊔⊔ 19 δ(q7, a) = (q7, a, R ) 

⊏xabbbccccc⊔⊔⊔⊔⊔⊔⊔ 20 δ(q7, b) = (q7, b, R ) 

⊏xabbbccccc⊔⊔⊔⊔⊔⊔⊔ 20 δ(q7, b) = (q7, b, R ) 

⊏xabbbccccc⊔⊔⊔⊔⊔⊔⊔ 20 δ(q7, b) = (q7, b, R ) 

⊏xabbbccccc⊔⊔⊔⊔⊔⊔⊔ 21 δ(q7, c) = (q7, c, R ) 

⊏xabbbccccc⊔⊔⊔⊔⊔⊔⊔ 21 δ(q7, c) = (q7, c, R ) 

⊏xabbbccccc⊔⊔⊔⊔⊔⊔⊔ 21 δ(q7, c) = (q7, c, R ) 

⊏xabbbccccc⊔⊔⊔⊔⊔⊔⊔ 21 δ(q7, c) = (q7, c, R ) 

⊏xabbbccccc⊔⊔⊔⊔⊔⊔⊔ 21 δ(q7, c) = (q7, c, R ) 

⊏xabbbccccc⊔⊔⊔⊔⊔⊔⊔ 23 δ(q7, ⊔) = (q8, 1, L ) 
⊏xabbbccccc1⊔⊔⊔⊔⊔⊔ 25 δ(q8, c) = (q8, c, L ) 

⊏xabbbccccc1⊔⊔⊔⊔⊔⊔ 25 δ(q8, c) = (q8, c, L ) 
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  { … run left … } 
⊏xabbbccccc1⊔⊔⊔⊔⊔⊔ 28 δ(q8, x) = (q9, x, R ) 

⊏xabbbccccc1⊔⊔⊔⊔⊔⊔ 29 δ(q9, a) = (q7, x, R ) 

⊏xxbbbccccc1⊔⊔⊔⊔⊔⊔ 20 δ(q7, b) = (q7, b, R ) 
  { … run right … } 
⊏xxbbbccccc1⊔⊔⊔⊔⊔⊔ 23 δ(q7, ⊔) = (q8, 1, L ) 
  { … run left … } 

⊏xxbbbccccc11⊔⊔⊔⊔⊔ 28 δ(q8, x) = (q9, x, R ) 

⊏xxbbbccccc11⊔⊔⊔⊔⊔ 30 δ(q9, b) = (q10, y, R ) 

⊏xxybbccccc11⊔⊔⊔⊔⊔ 31 δ(q10, b) = (q10, b, R ) 

  {… and so on … } 

⊏xxyyyccccc11111⊔ 35 δ(q11, 1) = (q11, 1, L ) 

  {… run left … }  

⊏xxyyyccccc11111⊔ 38 δ(q11, y) = (q12, y, R ) 

⊏xxyyyccccc11111⊔ 40 δ(q12, c) = (q13, z, R ) 

⊏xxyyyzcccc11111⊔ 41 δ(q13, c) = (q13, c, R ) 

  { … run right …} 

⊏xxyyyzcccc11111⊔ 44 δ(q13, 1) = (q14, 0, L ) 

⊏xxyyyzcccc01111⊔ 46 δ(q14, c) = (q14, c, L ) 

  {… run left …} 

⊏xxyyyzcccc01111⊔ 47 δ(q14, z) = (q15, z, R ) 

⊏xxyyyzcccc01111⊔ 48 δ(q15, c) = (q13, z, R ) 

⊏xxyyyzzccc01111⊔ 41 δ(q13, c) = (q13, c, R ) 

  {… run right…} 

⊏xxyyyzzccc01111⊔ 44 δ(q13, 1) = (q14, 0, L ) 

⊏xxyyyzzccc00111⊔ 45 δ(q14, 0) = (q14, 0, L ) 

  { … and so on… } 

⊏xxyyyzzzzc00011⊔ 44 δ(q13, 1) = (q14, 0, L ) 

⊏xxyyyzzzzc00001⊔ 44 δ(q14, 0) = (q14, 0, L ) 

  { … run left …} 

⊏xxyyyzzzzc00001⊔ 47 δ(q14, z) = (q15, z, R ) 

⊏xxyyyzzzzc00001⊔ 48 δ(q15, c) = (q13, z, R ) 

⊏xxyyyzzzzz00001⊔ 48 δ(q15, c) = (q13, z, R ) 

  {… run right…} 
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⊏xxyyyzzzzz00001⊔ 44 δ(q13, 1) = (q14, 0, L ) 

⊏xxyyyzzzzz00000⊔ 44 δ(q14, 0) = (q14, 0, L ) 

  { … run left … } 

⊏xxyyyzzzzz00000⊔ 47 δ(q14, z) = (q15, z, R ) 

⊏xxyyyzzzzz00000⊔ 49 δ(q15, 0) = (q16, 0, R ) 

⊏xxyyyzzzzz00000⊔ 50 δ(q16, 0) = (q16, 0, R ) 

  {… run right…} 

⊏xxyyyzzzzz00000⊔ 52 δ(q16, ⊔) = (a, 0, R ) 
 
 
Most transitions of this Turing machine involve running back and forth between the input 
and the scratch area even on a small input such as this.  This inefficiency is inherent to 
the Turing machine, and yet, as simple as it is, the Turing machine is as capable as any 
other known calculation scheme or computer.  A number of computational models have 
been shown to be equivalent to the Turing machine in the sense that they can simulate 
one another, including so-called random access machines, Post systems, and flow charts, 
as well as a variety of variations on the Turing machine such as allowing multiple tapes 
or non-deterministic sets of transition rules.179,180  In fact, the Turing machine provides 
one entry point into what turns out to be a large, intricate web of equivalent definitions of 
what constitutes a recursive function, as discussed in Appendix I. 
         
 
Linear Bounded Automata  
 
The linear bounded automaton is a Turing machine with a tape size limited to be the 
length of its input string times a fixed constant; hence the name linear bounded.  It is a 
known fact that this fixed constant can be taken to be 1 without losing generality; in other 
words, a machine defined with fixed constant k > 1 can be simulated by a machine 
defined with k = 1.181  Using the k = 1 definition, if the input string to a linear bounded 
automaton is w, then the tape will initially contain λwρ, where λ is the so-called left 
marker and ρ the right marker.  The markers can be read but not overwritten, and a 
transition for which a marker is scanned must move in the direction of the input, that is, 
to the right if the marker is λ  and to the left if the marker is ρ.  The convention adopted 
here is for the start state to scan λ.  
 
 
Example  
 
The Turing machine constructed above to recognize the language with words of the form 
aibjci+j, where i,j > 0 actually does not need to use any more of the tape than that part 
occupied by the input string itself.  Instead of writing a 1 for each a and each b and then 
converting those 1’s to 0’s as each c is encountered, it is possible to just convert a c to a z 
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every time an a or b is encountered.  The a’s and b’s are still converted to x’s and y’s in 
order to keep track of where we are in the computation.     
 
Let Q = { 0, 1, … 10}= { q0, q1, … q10 }, Σ = {a, b, c},  Γ = {a, b, c, x, y, z}, q0 = 0, a = 9, 
and r = 10.  Let the set of transition rules δ be given by       
 
trans. 
no. 

transition comment 

0 δ(q0, λ) = (q1, λ, R )  standard start; go to state q1 and move right to input start 
1 δ(q1, a) = (q2, x, R )  q1 assumes the input is an a; it overwrites it with an x and 

goes to q2 
2 δ(q2, a) = (q2, a, R ) q2 looks right for a c and overwrites it with a z and goes 

left and into q3; if q2 hits the right marker ρ, it rejects 
3 δ(q2, b) = (q2, b, R )  
4 δ(q2, z) = (q2, z, R )  
5 δ(q2, ρ) = (r, ρ, L )  
6 δ(q2, c) = (q3, z, L )  
7 δ(q3, z) = (q3, z, L ) q3 looks left for x, then goes right and into q4 
8 δ(q3, b) = (q3, b, L )  
9 δ(q3, a) = (q3, a, L )  
10 δ(q3, x) = (q4, x, R )  
11 δ(q4, a) = (q2, x, R ) q4: if a is scanned, overwrite it with an x and go to q2; 

if b is scanned, overwrite it with a y and go to q5 
12 δ(q4, b) = (q5, y, R )  
13 δ(q5, b) = (q5, b, R ) q5 looks right for a c and overwrites it with a z and goes 

left and into q6; if q5 hits the right marker ρ, it rejects 
14 δ(q5, z) = (q5, z, R )  
15 δ(q5, ρ) = (r, ρ, L )  
16 δ(q5, c) = (q6, z, L )  
17 δ(q6, z) = (q6, z, L ) q6 looks left for y, then goes right, into q7 
18 δ(q6, b) = (q6, b, R )  
19 δ(q6, y) = (q7, y, R )  
20 δ(q7, b) = (q5, b, R ) q7: if b is scanned, overwrite it with a y and go to q5; 

if z is scanned, go to q8 
21 δ(q7, z) = (q8, z, R )  
22 δ(q8, z) = (q8, z, R ) q8 looks right for ρ and accepts the input if it finds it; if it 

finds a c, it rejects 
23 δ(q8, c) = (r, c, R )  
24 δ(q8, ρ) = (a, ρ, L )  
 
 
The following table shows that this automaton accepts the input abcc.  The current 
storage location is shown in bold typeface. 
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tape trans. 
no 

transition 

λabccρ 0 δ(q0, λ) = (q1, λ, R ) 
λabccρ 1 δ(q1, a) = (q2, x, R ) 
λxbccρ 3 δ(q2, b) = (q2, b, R )  
λxbccρ 6 δ(q2, c) = (q3, z, L ) 
λxbzcρ 8 δ(q3, b) = (q3, b, L ) 
λxbzcρ 10 δ(q3, x) = (q4, x, R ) 
λxbzcρ 12 δ(q4, b) = (q5, y, R ) 
λxyzcρ 14 δ(q5, z) = (q5, z, R ) 
λxyzcρ 16 δ(q5, c) = (q6, z, L ) 
λxyzzρ 17 δ(q6, z) = (q6, z, L ) 
λxyzzρ 19 δ(q6, y) = (q7, y, R ) 
λxyzzρ 21 δ(q7, z) = (q8, z, R ) 
λxyzzρ 22 δ(q8, z) = (q8, z, R ) 
λxyzzρ 24 δ(q8, ρ) = (a, ρ, L ) 
 
 
 
It can be proved that the linear bounded automaton accepts languages that correspond to 
context-sensitive grammars.182  An informal recipe for building a context-sensitive 
grammar from a linear bounded automaton transitions based on the above example goes 
as follows.  First, one finds a set of productions which can generate a string of 
nonterminal symbols in a form the automaton would accept if they were terminal 
symbols; typically this set of productions will generate many other strings in a form not 
accepted by the automaton --- otherwise the grammar would be already completely 
determined.  In the above example, such a string would be AABBCCCC;  it does not 
matter if these productions also generate unacceptable words for the automaton, such as 
AAABBBC, since these productions will never result in valid derivations (those having 
only terminal symbols).  Next, one builds a series of productions of the form PQ → RS, 
one for each transition, that serve to mimic the automaton transitions; these are legal 
context-sensitive productions since they cannot cause the size of the running input to 
decrease.   These productions result in a running string of new nonterminals that are also 
mappable one-to-one to the terminal symbols, e.g. XXYYZZZZ.  Finally, one builds a set 
of productions that yield the terminal symbols.    
 
The grammar corresponding to the automaton above is given below.  It uses nonterminal 
symbols with indices that match the states in the automaton whose behavior they mimic. 
 
T = { a, b, c }, 
V = { S, S1, A, B, C, X, Y, Z, A1, A2, A3, A4, B2, B3, B4, B5, B6, B7, Z2, Z3, Z5, Z6, Z8}, 
S, 
P =   
 1) S → A1S1 
 2) S1 → AS1 
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3) S1 → BS1 
4) S1 → CS1 

 5) CS1 → CC 
6) A1A → XA2 
7) A2A → AA2 

 8) A2B → AB2 
9) B2B → BB2 

 10) B2C→ B3Z 
 11) B2Z→ BZ2 

12) Z2Z→ ZZ2 
13) Z2C→ Z3Z 

 14) ZZ3 → Z3Z 
 15) BZ3 → B3Z 

16) BB3 → B3B 
17) XB3→ XB4 
18) AB3 → A3B 
19) AA3 → A3A 

 20) XA3 → XA4 
21) B4B→ YB5 
22) A4A → XA2 
23) A4B → XB2 

 24) B5B → BB5 
 25) B5Z → BZ5 
 26) Z5Z → ZZ5 
 27) Z5C → Z6Z 

28) ZZ6 → Z6Z 
29) BZ6 → B6Z 
30) YZ6 → YZ8 
31) BB6 → B6B  
32) YB6 → YB7 
33) B7B → YB5 
34) B7Z → YZ5 
35) Z8Z   → cc 

 36) cZ     → cc 
 37) Yc     → bc 
 38) Yb     → bb 
 39) Xb     → ab 

40) Xa     → aa 
 
A valid derivation is: 
S, A1S1, A1AS1, A1ABS1, A1ABS1, A1ABBS1, A1ABBCS1, 
A1ABBCCS1, A1ABBCCCS1, A1ABBCCCC   (P1-5) 
 
A1ABBCCCC    →  XA2BBCCCC    (P6) 
XA2BBCCCC    →  XAB2BCCCC    (P8) 
XAB2BCCCC    →  XABB2CCCC    (P9) 
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XABB2CCCC   →  XABB3ZCCC    (P10) 
XABB3ZCCC   →  XAB3BZCCC    (P16) 
XAB3BZCCC   →  XA3BBZCCC    (P18) 
XA3BBZCCC   →  XA4BBZCCC    (P20) 
XA4BBZCCC   →  XXB2BZCCC    (P23) 
XXB2BZCCC   →  XXBB2ZCCC    (P9) 
XXBB2ZCCC  →  XXBBZ2CCC    (P11) 
XXBBZ2CCC  →  XXBBZ3ZCC    (P13) 
XXBBZ3ZCC   →  XXBB3ZZCC    (P15) 
XXBB3ZZCC   →  XXB3BZZCC    (P16) 
XXB3BZZCC   →  XXB4BZZCC    (P17) 
XXB4BZZCC   →  XXYB5ZZCC    (P21) 
XXYB5ZZCC  →  XXYBZ5ZCC    (P25) 
XXYBZ5ZCC   →  XXYBZZ5CC    (P26) 
XXYBZZ5CC             →        XXYBZZ6ZC   (P27) 
XXYBZZ6ZC  →  XXYBZ6ZZC   (P28) 
XXYBZ6ZZC  →  XXYB6ZZZC    (P29) 
XXYB6ZZZC  →  XXYB7ZZZC    (P32) 
XXYB7ZZZC  →  XXYYZ5ZZC    (P34) 
XXYYZ5ZZC  →  XXYYZZ5ZC    (P26) 
XXYYZZ5ZC  →  XXYYZZZ5C    (P26) 
XXYYZZZ5C  →  XXYYZZZ6Z    (P27) 
XXYYZZZ6Z  →  XXYYZZ6ZZ    (P28) 
XXYYZZ6ZZ  →  XXYYZ6ZZZ    (P28) 
XXYYZ6ZZZ  →  XXYYZ8ZZZ    (P30) 
XXYYZ8ZZZ  →  XXYYccZZ    (P35) 
XXYYccZZ  →  XXYYcccZ    (P36) 
XXYYcccZ  →  XXYYcccc    (P36) 
XXYYcccc  →  XXYbcccc    (P37) 
XXYbcccc  →  XXbbcccc    (P38) 
XXbbcccc  →  Xabbcccc    (P39) 
Xabbcccc  →  aabbcccc    (P40) 
 
Since a linear bounded automaton always does its work in place, that is, without extra 
storage, it is always possible to mimic its state transitions as in the above example to 
yield a corresponding context-sensitive grammar.  Conversely, one can take any context-
sensitive grammar and break down its productions into a larger set of productions with at 
most two symbols on each side and then use those productions to generate the transitions 
for a linear bounded automaton. 
 
Recursively Enumerable Sets 
The Turing machine as defined above operates on symbols in an arbitrary language.  
These symbols can be used to represent numbers as well, in which case the computations 
that a Turing machine does are calculations on numbers.  For example, one could allow 
just two symbols on the tape in addition to the blanks and the left marker, 0 and 1, and 
these could be used to represent numbers in unary notation, where a number is given by a 
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string of 1’s whose length is equal to the number represented and a 0 is used to separate 
numbers.  In fact, the words of the form aibjci+j, where i,j > 0, used in the above examples 
above were essentially numbers in unary notation, and the calculations that the automata 
executed were predicates of three variables --- a predicate is a function that has one of 
two values: 1 for true and 0 for false.  Likewise, the pushdown automaton given above 
that accepts words of the form anbn, where n > 0, executes a predicate of two variables, 
namely the function that returns 1 if the two input numbers are equal.       
 
To be precise, the last-mentioned automaton does not actually calculate a predicate 
because it can only give a result of 1 if the two inputs are the same, but if they are not, the 
automaton does not tell us anything, as it then never goes into a final state.  Of course, the 
predicate that takes two numbers as input and has the value 1 if they are equal and 0 if 
not is computable and therefore does exist --- indeed by a Turing machine similar to and 
slightly simpler than the one used to recognize aibjci+j, where i,j > 0.  However, there do 
exist functions whose implementation as a Turing machine is unable to conclude whether 
a given natural number is in the range of that function or not.  Such functions lead to the 
notions of semi-recursive and recursive sets.  A recursive set is a set for which there is an 
effective procedure for deciding whether or not a given natural number is in the set; for 
example, the set {m}, where m is a natural number, is a recursive set since the only 
natural number n which is in the set is given by m=n, and there is an effective procedure 
for determining when two integers are equal.  On the other hand, a semi-recursive set, 
also known as a recursively enumerable set, is a set for which there is only an effective 
procedure that answers half the question: it can say that a given number is in the set, but 
if it is not in the set, it gives no answer.  All recursive sets are recursively enumerable, 
but not all recursively enumerable sets are necessarily recursive; however, if a set and its 
complement are recursively enumerable, then that set is recursive.   An example of a 
recursively enumerable set that is not recursive is given in Appendix I. 183     
 
The Turing machine, as indicated in the main text, is equivalent to a while-program in the 
sense that they both are capable of executing the same effective procedures.  The proof of 
the latter statement is that one can take any Turing machine and turn it into a while-
program and vice-versa (Appendix I gives another such equivalence proof, showing that 
any register machine program can be translated into a Turing machine specification).  
Since the exit conditions for some natural numbers may not be met for a while-program 
corresponding to a given Turing machine, that program will never stop looping when 
given those numbers as input.  For that reason, the languages in the Chomsky hierarchy 
associated with the Turing machine are said to be recursively enumerable sets. 
     
 
Appendix I    Algorithms and Classical RecursionTheory 
In this appendix we describe the relationship between algorithms and recursive functions, 
confining our remarks to this aspect of classical recursion theory, which is the study of 
functions over the natural numbers (generalized recursion theory encompasses functions 
over ordinals greater than countable infinity, among other things).  We first show how 
natural the concept of recursive function is by virtue of its many disparate and yet 
equivalent definitions, among these a definition in terms of combinatory logic.  Next, we 
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show that the Turing machine is capable of computing recursive functions, after first 
introducing a variant of the register machine that is more easily programmed to compute 
numeric functions.  We then discuss Church’s thesis, which proposes that all effective 
computations are recursive functions.  Finally, we illustrate in broad strokes how these 
ideas were used to determine if there is an effective procedure for deciding whether a 
given Turing machine halts on a given input.    
 
The following theorem shows the many ways to define recursive functions.  Items 5, 6, 
and 7 require more discussion than is possible here; for a presentation with proofs and 
references to the original literature, see Odifreddi.184 
 
Theorem 1. Given a function f: Nn → N (that is, a function f that takes n natural numbers 
as input and returns a natural number), the following are equivalent: 

1) f is recursive 
2) f is definable in combinatory logic  
3) f is λ-definable  
4) f is Turing (and flow-chart, and while-program, and register-machine, and Post-

system, and Markov-algorithm) computable 
5) f is finitely definable 
6) F is Herbrand-Goedel computable 
7) f is representable in a consistent formal system extending R, where R itself 

extends first-order logic with equality by defining numbers as constants n, a 
predicate <, binary functions + and *, satisfying the following axiom schemata: 

I) ¬(x = y ), for x ≠ y 
II) x < n ∨ x = n ∨ n < x 
III) ¬(x < 0 ) 
IV) x < n+1 ↔  x = 0 ∨…∨x = n 
V) x + y = x+y 
VI) x * y = x*y 
 

Remarks: 
1) A recursive function by definition is constructed using some combination of 

initial functions, composition of functions, primitive recursion and µ-recursion.  
All but the last of these were defined in the main text, but we repeat them here for 
convenience.  

a. The initial functions are the zero function, which has value 0 for any input, 
the successor function S(n) = n+1, and the projection or identity functions 
given by Ii

n( x1, …, xn ) = xi, which picks out and returns its ith argument. 
b. Composition of the function g(x) with the function h(x) is defined by f(x) 

= g(h(x)).   In the general case, f(x1, … xm) = g(h1(x1, … xn), …, hm(x1, … 
xn)). 

c. Primitive recursive functions of two variables are defined by f(m,0) = 
h(m) and f(m,n+1) = g( m, n, f(m,n)), where m and n are natural numbers.  
In the general case, f( x1, … xk, 0) = h(x1, … xk) and f(x1, … xk, n+1) = 
g(x1, … xk, n, f(x1, … xk, n)). 
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d. µ-recursion: given a predicate P(x,y), the function µyP(x,y) is equal to the 
smallest y such that P(x,y)=1; if there is no such y, then it is undefined.  A 
similar definition can be given if P is a function of more than two natural 
numbers.  

Table x gives a number of common primitive recursive functions.  Table x+1 
shows how a number of predicates and other functions are defined in terms of 
other primitive recursive functions.  A number of these definitions will be 
illuminated below with code that shows how these functions can be effectively 
calculated.   

2) To show that combinatory logic can be used to construct recursive functions, it is 
necessary to define numbers in terms of combinators.  We show below how that is 
done. 

3) The λ-calculus can also be used to define recursive functions.185 
4) All known paradigms for computation are equivalent in the sense that each one 

can simulate computations done by any other.  We sketch below how a Turing 
machine can simulate a register machine.  

5) A function can be defined as a solution to a system of equations and if that system 
consists of a finite number of equations, then the functioned so defined is 
recursive.  For example, take the system of equations given by   

 
f(0) = 0 
f(x+1) = f(x) + 3  
g(x) = f(g(x+1))  

 
Here, f(1) = f(0) + 3 = 3, f(2) = f(1)  + 3 = 6, f(3) = f(2) + 3 = 9, and so on, and in 
general, f(x) = 3x.  f(x) is finitely generated by the above set of equations. 
On the other hand, g(x) is not.  g(x) is solved for as follows.  Since f(x) = 3x, 
f(g(x+1)) = 3g(x+1).  By definition, we also have f(g(x+1)) = g(x).  Therefore, 
3(g(x+1)) = g(x).  Starting from x=0, this leads to g(0) = 3g(1) = 3(3(g(2)) … = 
3ng(n) = 3n+1g(n+1) …  If we don’t include an infinite number of such equations, 
that is, if we don’t let n go to infinity, g(n) is just a sequence of numbers that 
decreases as n increases and the value of g(0) will be 3ng(n).  If we let n go to 
infinity, in which case there is an infinite number of equations, then g(x) must be 
0 for all x, and g(x) is well-defined. 
 
It turns out that every finitely definable function is recursive.186  Note that the 
above example does not imply that k(x) = 0 is not finitely definable and therefore 
not recursive --- on the contrary, k(x) = 0 alone is a finite system of equations that 
defines k(x) (it is also the zero function, which, as one of the initial functions, is 
recursive).  Rather, that example shows that g(x) is not finitely defined, and that 
f(x) = 3x is finitely definable and therefore recursive. 

6) A function f is Herbrand-Goedel computable if there exists a finite system of 
equations from which f can be derived in a well-defined sense (which we don’t 
give here). 
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7) A function f is representable in a formal system F  if, for some formula φ, f(x,y) = 
y implies that φ(x,y) is a theorem of F and f(x,y) ≠ y implies that ¬φ(x,y) is a 
theorem of F.  

 
Using Combinatory Logic and λ-calculus for Computation 
There are several ways to define numbers in combinatory logic; the so-called standard 
numbers are defined as follows.  The zero function is represented by I.  The successor S 
operating on a number n is given by P(KI)(n) = PF(n), where P is the combinator defined 
in Appendix D: Pxyz = zyx.  So the number 1 is given by PFI, 2 is given by PF(PFI).  3 
is given by PF(PF(PFI)), and so on.   
 
Next, we define a predicate function that returns T (=K) if a number is zero and F 
otherwise: zero(n) = nT.  Then zero(3) = PF(PF(PF(I)))T = TF(PF(PF(I))) = F, and 
zero(1) = PFIT = TFI = F, but zero(0) = IT = T.  
 
Similarly, a predecessor combinator operatoring on a number n is nF, since PF(n)F = 
FF(n) = KIF(n) = I(n) = n.  
 
See Appendix C for definitions of numeric functions using λ-calculus.  
 
 
The Turing Machine and Recursive Functions 
To see the connection between Turing machines and the recursive functions as defined in 
point 1) of Theorem 1, it is helpful to introduce a variant of the register machine that we 
call a DSW machine since it appears prominently in a textbook by Davis, Sigal and 
Weyuker.187  Summarizing material in the DSW textbook, we will sketch how one 
programs a DSW machine to compute the recursive functions, and we will sketch how 
one proves that a Turing machine can simulate any computation on a DSW machine. 
 
A DSW machine is a well-defined mathematical structure, but we leave its formal 
definition aside and discuss it informally in terms of a programming language S.  In these 
terms, a DSW machine consists of variables, labels and instructions.  The variables have 
values in the natural numbers including zero, and are of three types: input, internal, and 
output.  There can be an arbitrary number of input and internal variables, but only one 
output variable.  Labels have values in the natural numbers and can be thought of as line 
numbers of instructions.  Any instruction has one of three forms:  
  
   1) V  → V +1 
   2) V  → V – 1 
   3) if V ≠ 0, go to label L       
 
The first says to increase by one the value held by the variable V.  The second says to 
decrease by one the value held by the variable V unless that value is already 0, in which 
case leave it unchanged.  The third says that if the value held by V is not equal to 0, then 
the next instruction to execute is at the line number held by the label L. 
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A program in S consists of a sequence of such instructions together with the stored 
variables and labels and starts by executing the first instruction.  In general, the current 
instruction is specified by a line number n.  If the instruction at n has a goto and the value 
of the variable referred to in the goto instruction is not zero, then the line number of the 
next instruction is given by the value of the corresponding label; otherwise, the next 
instruction is n+1.  By definition, if the last line of the program executes and it does not 
result in a goto, the program halts and its output is contained in the output variable.   
 
The language S is a natural one for programming numeric functions since it has built-in 
successor and predecessor functions, which along with the ability to go to a label allow S 
to loop through a sequence of instructions repeatedly in a transparent fashion.  Thus S is 
able to compute µ-recursive functions, just as the Y combinator of combinatory logic and 
λ -calculus allows these languages to compute µ-recursive functions.  Similarly, the state 
of the Turing machine allows a Turing machine to loop through a sequence of states 
repeatedly, and a while-loop in a while-program provides for the repeated execution of a 
set of instructions. 
 
The proof that S can compute a function f consists of a program in S that computes the 
value of f for any natural number in the domain of f.  For example, the zero function is 
computed as follows, with Y the output variable: 
 

[A]  Y → Y – 1  
if Y≠ 0 goto A 

 
This program consists of two instructions, the first labeled by A.  The program loops 
back to A until Y is zero, at which point the program halts.     
  
As a convention, we now assume the values of all internal variables are zero before a 
program starts, as well as the value of the output variable (if this were not the case, we 
could set them to zero before doing anything else in the program, using the technique of 
the zero program above).  The input variables we take to be of the form X1, X2, X3, etc. 
and the internal variables Z1, Z2, Z3, etc.  The output variable is Y.   
 
The successor function for input stored in X1is given by: 
     
    Y → Y+ 1 
    Z1 → Z1 + 1 

if X1 ≠ 0  goto A 
 if Z1 ≠ 0  goto E  // input was 0; goto [E], leaving Y=1 
[A]  X1 → X1 – 1 

Y → Y+ 1 
    if X1 ≠ 0  goto A 

[E] Z1 → Z1 – 1    
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Z1 is only used to guard against the case that the input is zero, and the last instruction is 
arbitrary aside from the fact that it must not branch, i.e., it must not go to a label.  The 
program works by decrementing the input variable X1in a loop at the same time as the 
output variable Y is incremented.  Y is also incremented once at the outset to ensure that 
Y gets a value one greater than the original input, even when the input is 0. 
 
The program that calculates the identity function from N→ N is the same as the above 
program except that it does not increment Y by one at the outset.  The other identity 
functions from NN→ N return the kth argument using the same code as the N→ N 
identity function except that Xk is everywhere substituted for X1. 
 
Before addressing composition, we present a program for computing the sum of two 
numbers initially stored in X1and X2: 
 
    Z1 → Z1 + 1 
    if X1 ≠ 0  goto A 
    if Z1 ≠ 0  goto B 
   [A] Y → Y+ 1 
    X1 → X1 – 1 

if X1 ≠ 0  goto A 
 [B]  if X2 ≠ 0  goto C 
 if Z1 ≠ 0  goto E 
[C] Y → Y+ 1 

X2 → X2 – 1 
    if X2 ≠ 0  goto C 

[E] Z1 → Z1 – 1 
 
The above program initializes Y to the value in X1 first using the A loop.  Then it 
increments Y by one as it decrements the value of X2.   
 
In order to make programs more readable, it is convenient to introduce abbreviations that 
stand for several instructions.  For example, we let V ← U stand for code that sets the 
value of V to be the same as the value of U.  Likewise, we introduce V ← U + W 
represent the code in the addition program above.  These substitutions, also known as 
macros, can in fact always be done in such a way that other code in a program is isolated 
and not affected.  Another macro that is sometimes useful for the sake of readability is 
HALT for an arbitrary non-branching instruction that does not change the output variable 
Y.  
 
The program for multiplication of two numbers is similar to the addition program above.  
The difference is that there is now just a single loop that adds all of X1 to Y in each 
iteration:  
    Z1 → Z1 + 1 
    if X1 ≠ 0  goto A 
    if Z1 ≠ 0  goto E    

[A] Z1 ← Y + X1    // use Z1 to isolate macro code  
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Y  ←  Z1  
X2 → X2 – 1 

    if X2 ≠ 0  goto A 
[E] HALT 

 
Exponentiation, given by f(x,y) = xy = x*x*x*..x (with y factors of x) is the same as 
multiplication except that the loop uses a multiplication macro instead of addition, so that 
Z1 ← Y + X1  becomes Z1 ← Y * X1.  Also, Y must be initialized to 1 before the loop 
starts.  The nature of primitive recursion is such that all programs computing primitive 
recursive functions must first initialize the output Y, and then update Y in a loop; this is 
reflected in the definitions of all primitive functions given in Table x.  The variable n is 
given in the table to a variable chosen to be the runner variable for each function; the 
table defines each function by fixing all input values except one at arbitrary values and 
then giving a recipe for arriving at a value of the function for all values of the runner 
variable one by one, starting from zero.  In some cases the runner variable is fixed, that 
is, there is only one variable that can be the runner; such is the case for the exponentiation 
function, for example, and all functions of just one variable.  For other functions, such as 
addition and multiplication, the runner variable can be chosen at random. 
 
In general, we write V ←  f( Z1, .. Zn) to indicate that the output from a function f is 
placed in V.  This makes it possible to write a program defining the composition of two 
functions f(x1, … xm) = g(h1(x1, … xn), …, hm(x1, … xn)), where g and hi are computable 
functions of m and n variables, respectively, and f is a function of m variables, as 
follows:    
    Z1 ←  h1(X1, … Xn) 
    : : 
    Zm ←  hm(X1, … Xn) 
    Y   ←  g(Z1, … Zm) 
 
Before writing a program that computes primitive recursive functions we introduce the 
macro: 
    if P(V1,…Vn) goto L,  
 
where Vi is an arbitrary variable.  If P is a computable predicate, then the macro expands 
to 
     

Z1   ←  P(V1,…Vn) 
    if Z1 ≠ 0  goto L 
 
A useful macro that is then available is: if V = 0 goto L.  The predicate V = 0 may be 
computed by the program 
    if X1 ≠ 0  goto E 
    Y → Y+ 1 
   [E] HALT  
 
The above predicate function, called α(x), figures prominently in Table x+1. 
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For a function N2 → N defined by primitive recursion, we have f(m,0) = h(m) and 
f(m,n+1) = g( m, n, f(m,n)) 
 
    Y ←  h(X1)  
   [A] if X2 = 0  goto E  // handles n=0 case 
    Y ←  g(X1, Z1, Y ) 
    Z1 ←  Z1 + 1 
    X2 ←  X2 –1 
    if X2 ≠ 0  goto A 
   [E] HALT 
 
A particular N2 → N function that is primitive recursive is the addition program given 
above.  If that program is abbreviated with macros, it has the above form with h(X1) = X1 
and g(X1, Z1, Y ) = Y + 1.  For the sake of comparison, the definition of this function in 
terms of Theorem 1, point 1), is as follows: f(x1, 0) = u1

1(x1) = x1, where u1
1 (x1) is the 

projection function for a function of one variable, and g(x1, x2, f(x1, x2)) = g(x1, x2, x3) is 
given by s(u3

3(x1, x2, x3)) = s(x3) = x3 + 1, where s is the successor function and u3
3 is the 

projection function of three arguments (top exponent) that returns the third argument 
(bottom exponent).  Thus, the addition function is primitive recursive since it is formed 
from the initial functions, composition and primitive recursion. 
 
Multiplication is also primitive recursive, having the above form with h(X1) = 0 and 
g(X1, Z1, Y ) = Y + X1.   In terms of the Theorem 1, point 1), f(x1, 0) = zero(x1) = 0, and 
g(x1, x2, f(x1, x2)) = g(x1, x2, x3) = f(u3

3(x1, x2, x3),u1
3(x1, x2, x3)) and f(x1, x2) = x1 + x2.  

 
In general, a function Nn → N defined by primitive recursion is defined as f( x1, … xk, 0) 
= h(x1, … xk) and f(x1, … xk, n+1) = g(x1, … xk, n, f(x1, … xk, n)).  The corresponding 
program is: 
 

Y ←  h(X1, … Xk ) 
   [A] if Xk+1 = 0  goto E  // handles n=0 case 
    Y ←  g(X1, … Xk, Z1, Y ) 
    Z1 ←  Z1 + 1 
    Xk+1 ←  Xk+1 –1 
    if Xk+1 ≠ 0  goto A 
   [E] HALT 
 
In order to compute µ-recursive functions, a number of additional functions are needed.  
The following program computes x ∸ y, defined as x – y for x > y and 0 otherwise. 
     

Y ←  X1 
    if X2 = 0  goto E 

[A] if Y = 0  goto E     
X2 → X2 – 1 
Y → Y – 1 
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    if X2 ≠ 0  goto A 
[E] HALT 

 
The function x ≤ n, defined as α( x ∸ n), is computed by 
  

Z1 ←  X1 ∸ X2 
Y ←  α ( Z1) 

 
Other functions computed similarly include the absolute value function, defined as |x – n| 
= (x∸n)+(n∸x), and the equality predicate function x = y, defined as α(|x-y|).   
 
 
If a function f(x1, ... xk, n) is primitive recursive, then so is the function u(x1, ... xk, n) 
given by  
 
  u(x1, ... xk, 0)   = f(x1, ... xk, 0). 
  u(x1, ... xk, n+1))  = u(x1, ... xk, n) + f(x1, ... xk, n+1), 
 
since addition is primitive recursive.  For fixed x1, ... xk, u(x1, ... xk, n) is the sum of each 
value of f(x1, ... xk, t) for all values of t from 0 to n.  Such a sum is written as follows: 
  

u(x1, ... xk, n) = ∑t=0 
n f(x1, ... xk, t). 

 
Similarly, a primitive function w(x1, ... xk, n) can be formed by the product of all values 
of f(x1, ... xk, t) for all values of t from 0 to n: 
 

w(x1, ... xk, 0)   = f(x1, ... xk, 0). 
  w(x1, ... xk, n+1))  = w(x1, ... xk, n) * f(x1, ... xk, n+1). 
 
This product is written   
   w(x1, ... xk, n) = Πt=0 

n f(x1, ... xk, t). 
 
If f(x1, ... xk, n) is a predicate function, then we can define a primitive recursive function 
representing the existential quantifier (∃t) ≤n P x1, ... xk, t), which means there exists a t ≤ 
n such that P(x1, ... xk, t) (see Appendix A): 
 
   (∃t) ≤n P(x1, ... xk, t) = α(α(∑t=0 

n P(x1, ... xk, t))), 
 
which has value 1 if and only if ∑t=0 

n P(x1, ... xk, t) ≠ 0. 
  
Likewise, it is possible to define the the primitive recursive function representing the 
universal quantifier (∀t) ≤n P(x1, ... xk, t), which means for every t ≤ n, P(x1, ... xk, t) 
holds: 
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(∀t) ≤n P(x1, ... xk, t) = Πt=0 
n P(x1, ... xk, t). 

 
Since the above predicate functions using quantifiers are primitive recursive, they can be 
computed in S.  By the arguments just used, the following function can also be computed 
in S: 

 
f(x1, ... xk, z) = ∑u=0 

zΠt=0 
u α(P(x1, ... xk, t)).   

The sum of products above has the following interpretation.  As long as the predicate P is 
0, α will convert that 0 to a 1 and for each value of the dummy variable u there will be a 
contribution of exactly 1 to the sum over u.  As u gets bigger, the product ranges over 
more and more values of t because t goes from 0 to u for each value of u in the sum.  
However, as soon as t reaches a value, say t1, such that P is 1, then α converts that to 0 
and the product becomes zero for that value of u and all subsequent ones until u hits z.  
Therefore, the sum has contributions of 1 from every value of t such that t < t1, yielding 
t1*1 = t1.  The number t1, the least number t ≤ z such that a computable predicate P(x1, ... 
xk, t) holds, may or may not exist.  Hence the definition for a function called the bounded 
minimalization of P(x1,… xk, t): 
 

min t≤zP(x1,… xk, t)  = ∑u=0 
yΠt=0 

u α(P(x1, ... xk, t))   if  (∃t)≤y P(x1,...xk, t) 
           = 0    otherwise. 

 
This following program computes this function: 
     
    Z1 ←  Xk+1 + 1  // store the bound  
   [A] if P(X1, … Xk, Y )  goto E  
    Y ←  Y + 1 
    Z1 ←  Z1 –1 
    if Z1 ≠ 0  goto A 
    Y ← 0     

[E] HALT 
 
Examples of functions defined by bounded minimalization include the remainder of a 
quotient x/y,  the integer part of a quotient x/y, and the nth prime number.  The first of 
these two functions are defined in Table x+1. 
 
Another function can be defined along the same lines, the unbounded minimalization of  
P(x1,… xk, t), which may be undefined if there is no number t such that ∃t P(x1,...xk, t).  A 
function of natural numbers that is defined on a subset of the natural numbers is said to 
be partial, as opposed to a total function of natural numbers, which is defined on all the 
natural numbers.  In general, the unbounded minimalization of P(x1,… xk, t) is a partial 
function.  This function is also partially computable, and is computed as follows:     

 
[A] if P(X1, … Xk, Y )  goto E  

    Y ←  Y + 1 
[E] HALT 
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We have now shown that all recursive functions as defined by point 1) of Theorem 1 can 
be calculated with a DSW machine.   

 
             
 
 
 
f( x1,… xk, n) f(x1, ... xk, 0) =  

h(x1, ... xk)  
h(…) 
or k 

f(x1, …xk, n+1) =  
g(x1, …xk, n, f(x1,…xk,n))  

g(…) 

x+n f(x,0) = h(x) x f(x,n+1) = g(x,n,f(x,y))  1+ f(x,n)  
x*n f(x,0) = h(x) 0 f(x,n+1) = g(x,n,f(x,y)) n + f(x,n)  
xn f(x,0) = h(x) 1 f(x,n+1) = g(x,n,f(x,y)) n * f(x,n)  
0        (zero(n)) f(0) = k 0 f(n+1) = g(n, f(n)) 0 
n + 1  (succ(n)) f(0) = k 1 f(n+1) = g(n, f(n)) 1 + f(n) 
n – 1  (pred(n)) f(0) = k 0 f(n+1) = g(n, f(n)) n 
x ∸ n f(x,0) = h(x) x f(x,n+1) = g(x,n,f(x,y)) pred(f(x,n)) 

α(n) f(0) = k 1 f(n+1) = g(n, f(n)) 0 
∑n=0 

n-1n f(0) = k 0 f(n+1) = g(n, f(n)) n + f(n) 
!n = Π n=0 

n-1n f(0) = k 1 f(n+1) = g(n, f(n)) n * f(n) 
(∃t)≤n 
P(x1,...xk, t) 

f(x1,...xk, 0) = 
h(x1, ... xk) 

P(x1,
...xk, 
0) 

f(x1, …xk, n+1) =  
g(x1, …xk, n, f(x1,…xk,n)) 

α(α(P(x1,...xk, n+1) 
+ f(x1, …xk, n))) 

(∀t)≤n 
P(x1,...xk, t) 

f(x1,...xk, 0) = 
h(x1, ... xk) 

P(x1,
...xk, 
0) 

f(x1, …xk, n+1) =  
g(x1, …xk, n, f(x1,…xk,n)) 

P(x1,...xk, n+1) * 
f(x1, …xk, n) 

 
 
Function  Equivalent Description 
P(x,n) x ≤ n α( x ∸ n) is less than 
P(x,n) x < n α(n≤ x)  is strictly less 

than  
P(x,n) x = n   α(|x-n|) is equal 
f(x,n) |x – n|  (x∸n)+(n∸x) absolute value 
P(n) prime(n) n>1∧(∀n) ≤x (n=1∨n=x∨⌐(n|x)) is prime13 
P(x,n) n | x  (∃t)t≤x(n*t = x) n divides x 
P( x1,… xk, n) Q( x1,… xk, n) ∧ 

R(x1,… xk, n) 
Q( x1,… xk, n)*R(x1,… xk, n) conjunction of Q 

and R 
P( x1,… xk, n) ⌐ Q( x1,… xk, n) α(Q(x1,… xk, n)) negation of Q 
f(x1,… xk, n) ∑u=0 

y Πt=0 
u α(P(t, min t≤y(P(t, x1,… xk)) =  least value of t for 

                                                 
13 A prime number p is a natural number such that the only numbers that divide it are 1 and p.  For 
example, 1, 2, 3, 5, 7, and 11 are the first six prime numbers. 

 129



x1,… xk)  f(x1,..xk, n) if (∃t)t≤x(P(t, x1,…xk)) 
0                 otherwise 

which P(t, x1,… 
xk) is true 

f(x,y) ⌊x/y⌋ min t≤x((t+1)*y>x)_ integer part of 
quotient 

f(x,y) R(x,y) x∸(y*⌊x/y⌋) remainder of 
quotient 

 
 
 
Translation of Programs from DSW to Turing Machine 
In order to show that a Turing machine can perform any computation that a DSW 
machine can perform, we sketch how to translate an arbitrary DSW machine into a 
Turing machine.  We discuss this translation process in terms of a translation program or 
translator that takes as input a DSW machine consisting of its list of instructions and 
variables, and outputs the specification of the corresponding Turing machine, which by 
definition is a quintuple of symbols, states, transitions between states, start symbol, and 
final states.  In what follows we assume there are j instructions, m input variables, n 
internal variables and, as always, 1 output variable.  
 
It is convenient to use a unary numbering system for the Turing machine.  Still, we will 
use seven symbols on the Turing tape: ⊏, 1, 0, ⊓, ⊔, ∗ and B.  A number n in this system 
consists of a string of n 1’s followed by a 0.  The marker ⊏ indicates the left boundary of 
the tape; the markers ⊓, ⊔, ∗ will be used during the operation of the machine to aid in 
doing the block moves associated with incrementing a value by one; B stands for blank.   
In its initial state the Turing machine will contain the input numbers only on the tape 
followed by an infinite string of B’s.  For example, if there are three input numbers with 
decimal values 0, 4 and 0, the initial tape configuration will look like this: 
    

⊏011110BBBBBBBB… 
 
The first task of the translator is to set up space for the internal variables and the one 
output variable.  This requires a scan of the DSW machine to see that there are n internal 
variables and then it requires that the translator generate a series of states that write n+1 
0’s at the end of the input, leaving a single B between the input values and the internal 
values.  The initial state, q0, by convention scans the left-marker and moves one square to 
the right.  q1 runs to the right, reading 1’s and 0’s;  when it hits a B, it writes that B back 
and moves one square to the right and goes to state q2.  q2  reads a B, writes a 0, moves 
one square to the right and goes into q3.  For n > 0, states q3 through qn+2 inclusive do the 
same thing, each one reading a B, writing a 0, moving one square to the right, and going 
to the state whose index is one greater than the current one.  State qn+3 is a left runner, 
reading B’s (of which there will be one, the first of the endless B’s at the end of tape), 0’s 
and 1’s.  When qn+3 hits the left-marker, it moves one to the right and goes to qn+4. 
 
The main task of the translator is next, namely to create a block of Turing states for each 
of the j instructions in the DSW program in a single pass.  The translator must maintain a 
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variable holding the value of the current state, which is n+4 before the first instruction is 
translated and whose value is incremented by some finite number during the course of 
translation of each instruction.  At the start of each instruction translation, the current 
state qi will be reading the square one to the right of the left-marker, and the translator 
must remember what this current state is for each labeled instruction in order to handle 
goto instructions.   
 
The translation of the instructions breaks down into three cases, one for each instruction 
type of the DSW machine.  The first instruction type is of the form Vp ← Vp + 1, where p 
≥ 1 according to the DSW convention. These instructions can all be handled the same 
way, regardless whether Vp is an input variable, an internal variable, or the output 
variable, since the translator knows how many there are of each of these types of 
variables of S in the source program; in particular, Xk maps to Vk, Zk maps to Vm+k, and 
Y maps to Vm+n+1.  First, if p > 1, there will be a sequence of p –1 states that run to the 
right reading 1’s until they hit a 0, at which point they move one further to the right and 
go to the state whose index is one greater than the current one.  Next, the state qi+r, (r = p 
if p > 1 and r = 0 otherwise)  must initiate a process that inserts a 1 into the tape, which 
means block moving all symbols one square to the right starting from the insertion point.  
In order to avoid erasing symbols permanently, this process must start from the far right, 
but first, to keep track of where the insertion of a 1 is to take place, we place a marker in 
the square where Vp starts, which is the square read by qi+r.  qi+r writes a  ⊓ if it reads a 1 
and ⊔ if it reads a 0, moves one square to the right and goes to state qi+r+1.  The reason for 
two different marks is that the marker will become a 1, and the value previously in the 
square occupied by the marker must be copied to the square on its right.  
 
The process of moving a block one square to the right requires several states.  qi+p+1 runs 
right until it hits a B, where it moves one to the left and goes to q i+r+2. Now the going gets 
slow, with lots of back and forth.  To reduce clutter,  let Q0 = q i+r+2 temporarily.  Then the 
process of block moving everything from ⊓ or ⊔ to the right by one square will require in 
general the additional states Q0 through Q5.  This is best described with a table of 
transitions and then showing an example.  
 
trans. 
no. 

transition comment 

0 δ(Q0, ⊓) = (Q3, 1, R )  we’ve reached the start marker 
1 δ(Q0, ⊔) = (Q4, 1, R ) we’ve reached the start marker 
2 δ(Q0, 1) = (Q1, ∗, R ) goto Q1 since we read a 1; mark current square with ∗ 
3 δ(Q0, 0) = (Q2, ∗, R ) goto Q2 since we read a 0; mark current square with ∗ 
4 δ(Q0, ∗) = (Q0, ∗, L ) slide past the ∗ 
6 δ(Q1, *) = (Q0, 1, L) Q1 always writes a 1 
7 δ(Q2, B) = (Q0, 0, L) we just started moving left, Q2 always writes a 0 
8 δ(Q2, *) = (Q0, 0, L) Q2 always writes a 0 
9 δ(Q3, ∗) = (Q5, 1, L ) Q3 is the last write; the original variable was non-zero 
10 δ(Q4, B) = (Q5, 0, L ) Y was just incremented from 0 to 1 
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11 δ(Q4, ∗) = (Q5, 0, L ) Q4 is the last write; the original variable was zero 
 
   
tape transition 
⊏011110⊓100110BBB… δ(Q0, 0) = (Q2, ∗, R ) 

⊏011110⊓10011∗BBB… δ(Q2, B) = (Q0, 0, L) 

⊏011110⊓10011∗0BB… δ(Q0, ∗) = (Q0, ∗, L ) 

⊏011110⊓10011∗0BB… δ(Q0, 1) = (Q1, ∗, R ) 

⊏011110⊓1001∗∗0BB… δ(Q1, *) = (Q0, 1, L) 

⊏011110⊓1001∗10BB… δ(Q0, ∗) = (Q0, ∗, L ) 

⊏011110⊓1001∗10BB … δ(Q0, 1) = (Q1, ∗, R ) 

⊏011110⊓100∗∗10BB … δ(Q1, *) = (Q0, 1, L) 

⊏011110⊓100∗110BB… δ(Q0, ∗) = (Q0, ∗, L ) 

⊏011110⊓100∗110BB… δ(Q0, 0) = (Q2, ∗, R ) 

⊏011110⊓10∗∗110BB… δ(Q2, *) = (Q0, 0, L) 

⊏011110⊓10∗0110BB… δ(Q0, ∗) = (Q0, ∗, L ) 

⊏011110⊓10∗0110BB… δ(Q0, 0) = (Q2, ∗, R ) 

⊏011110⊓1∗∗0110BB… δ(Q2, *) = (Q0, 0, L) 

⊏011110⊓1∗00110BB… δ(Q0, ∗) = (Q0, ∗, L ) 

⊏011110⊓1∗00110BB… δ(Q0, 1) = (Q1, ∗, R ) 

⊏011110⊓∗∗00110BB… δ(Q1, *) = (Q0, 1, L) 

⊏011110⊓∗100110BB… δ(Q0, ∗) = (Q0, ∗, L ) 

⊏011110⊓∗100110BB… δ(Q0, ⊓) = (Q3, 1, R )  

⊏0111101∗100110BB… δ(Q3, ∗) = (Q5, 1, L ) 

⊏01111011100110BB… done; ready to go to left-
marker 

 
 
After the insertion is complete, the state is q i+r+7, which runs left reading 1’s and 0’s until 
it hits the left-marker, then moves one right and goes to q i+r+8, the new value of the 
current state. That completes the translation for an instruction of type Vp ← Vp + 1.  
Before going on to the next instruction, the translator must save the state qi that was 
current at the start of this instruction together with the line number of the instruction in 
the DSW program so that any goto’s that go to this instruction can be translated into the 
correct state. 
 
The translation for an instruction of type Vp ← Vp – 1 is similar to the foregoing, except 
that we must a remove a 1, if the value is non-zero, which means that the copying process 
can work from left to right and there is no need to run right to the end of the used portion 
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of the tape before starting the copying process.  Also no marker is needed, since the 
copying process ends after we reach a B.  That means that only states analogous to Q0 – 
Q4 will be necessary, with the Q0 analogue looking ahead to the right this time. If the 
current state is qi at the start of the translation of an instruction of this type, the current 
state might be q i+r+6 at the conclusion of the translation, depending on the exact 
implementation.  If the value of Vp was already 0, the transition goes from q i+r  to q i+r+5, 
the state that runs left looking for the left-marker.   
 
Finally, the translation for instructions of type if Vp ≠ 0  goto A is comparatively easy.  If 
the state q i+r reads a 1, the transition is to the state corresponding to the DSW instruction 
line number associated with A.  If that instruction is below the current instruction, the 
translator must store a temporary value for this state (for example, the negative value of 
the instruction line number) as a reminder that this state number must be updated with the 
value of the current state at the start of the translation of the instruction corresponding to 
A.  If the state q i+r reads a 0, then the transition is to state  q i+r+1, which runs left looking 
for the left-marker, and the current state will be q i+r+2 at the conclusion of the translation. 
 
The translator knows which instruction is the last of the DSW.  If the last instruction is of 
type Vp ← Vp + 1 or Vp ← Vp – 1, then the new current state at the conclusion of its 
translation will be almost in a final state, “almost” since there remains the task of moving 
the symbol or symbols corresponding to the value of the output to the left of the tape and 
blanking out all other squares, which is a convention for Turing machines computing 
numeric functions.  If the last instruction is of type if Vp ≠ 0  goto A, then,  if Vp = 0, the 
new current state at the conclusion of its translation will likewise almost be in a final 
state.   The states required to block move the output to the left side of tape and blank out 
the remainder of the tape are straightforward.  All of the almost final states can in fact be 
the first in this sequence of clean-up states, leaving a single final state. 
 
Since the DSW machine is able to compute any recursive function, the above translation 
shows that any recursive function is computable by a Turing machine, as stated in 
Theorem 1.  
 
 
Church’s Thesis 
The foregoing translation from the DSW machine can be also be done for the other 
calculation schemes of point 4 of Theorem 1.  Furthermore, it is possible to show that the 
DSW machine can also do any computation that any of these schemes can do.  For this 
reason, the statement that the recursive functions are effectively calculable has strong 
support, even though the term effectively calculable can not been precisely defined in 
mathematical terms.  Any attempt to define an effective calculation, or, what amounts to 
the same thing, an algorithm, must fall back on a particular calculation scheme for a 
definition of the elementary steps performed.  
 
It is natural to wonder whether all effectively calculable functions are also recursive.  In 
other words, so far we have shown in this appendix that it is possible to compute any 
recursive function defined as in point 1 of Theorem 1, but it may be that there are 
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functions that can be computed that are not recursive in the sense of point 1 of Theorem 
1.  Church’s thesis hypothesizes that there are no such functions, that indeed every 
effectively calculable function is recursive.     
 
This thesis is important because there are a number of important functions in 
mathematical logic that are not recursive, and so if the thesis holds, there is no reason to 
search for methods for calculating them.  We will discuss one of these functions in detail, 
namely a predicate function that would be a solution to the so-called halting problem, 
which concerns the existence of an algorithm that can decide whether an arbitrary 
computation will halt at some point on a given input.  In order to discuss this problem 
properly, it is necessary to show how it is possible to associate an arbitrary DSW program 
with a number. 
 
 
DSW Program Enumeration  
A set A is said to be enumerable if there is a one-to-one function from the natural 
numbers N to A.  In a generalized sense such a set is countable, even though it may be 
infinite, and for this reason enumerable and countable are used interchangeably.  All 
finite sets are enumerable; one can imagine each element in a finite set being labeled with 
a natural number, and as long as no labels are repeated, such a labeling would enable one 
to define a one-to-one function.  The set of all DSW programs is also an enumerable set, 
a fact which is proved by attaching a unique number to each program through some 
encoding process. 
 
Before discussing one such process, it will be useful first to provide an example of an 
infinite set that is not enumerable, the standard example being the set of real numbers.  
The proof by Cantor toward the end of the 19th century that the reals are not enumerable -
-- a major breakthrough since it opened the door to an analysis of the structure of the 
transfinite that among other things has lead to the discovery of large cardinals --- uses a 
technique that will be applicable in the following discussion of the halting problem, so 
we give it here.    
 
There are several equivalent ways of defining real numbers, among these so-called 
Cauchy sequences and Dedekind cuts.  Another way to define a real number that is 
equivalent to Cauchy sequences and Dedekind cuts is by the familiar decimal expansion 
learned in elementary school, according to which one can represent any real number say 
between 0 and 1 as 0.[0..9], where [0..9] represents a possibly infinite sequence of digits 
between 0 and 9 inclusively.  So, for example, 0.02333430942063 is a real number.   
 
Informally, one can say that two real numbers x and y are equal if and only if the absolute 
value of their difference, |x-y|, is arbitrarily small.  By this definition of equality, two real 
numbers are equal if each digit in their decimal expansion is the same, but the two 
numbers 0.6 and 0.599999999999999999999999999999…, where 9 repeats forever, are 
also equal.  
 
Theorem.  The set of real numbers is not enumerable.   
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The proof is by contradiction.  Assume that the reals are enumerable.  Then it must be 
possible to display all the real numbers in the form of a table containing an infinite 
number of rows, each row containing the decimal expansion of a different real number.  
Some of the rows in such a table might look as follows: 
      
N Real Numbers 
0 0.100000000000000000000000000000000000000000000000000000000000000000… 
1 0.010000000000000000000000000000000000000000000000000000000000000000… 
2 0.001000000000000000000000000000000000000000000000000000000000000000… 
3 0.000100000000000000000000000000000000000000000000000000000000000000… 
.  
 0.222222222225555555555555555555555555555556743464986430232451135322… 
.  
 
 
The dots on the right of each row indicate that the rows continue for an infinite number of 
digits.  It is possible to construct a real number x that is not equal to any number in the 
table, as follows.  Let dij stand for the jth digit in the ith row of the table.  Now let the nth 
digit in the decimal expansion of x, written xn, be such that xn ≠ dnn, with the further 
condition that if dnn = 9, then xn ≠ 9 and xn ≠ 0.  By construction, xn is a real number not 
equal to any real number represented in the table according to the definition of equality of 
real numbers.  Therefore, the assumption that the real numbers are enumerable is false. □   
 
The digits dnn in the table are on the diagonal line indicated by the digits in bold typeface, 
giving rise to the expression proof by diagonalization for a proof of this type. 
 
As mentioned above, the set of all DSW programs is enumerably infinite.  In order to 
attach a number to each program, it is necessary to devise a coding scheme which 
translates variables, instructions, and labels into numbers.  Moreover, it is necessary to 
translate all of these numbers representing variables, instructions, and labels into a single 
number that retains all information about a given program, including the order of the 
instructions, so that a single number can represent an entire program.   
 
It turns out there are ways to encode an arbitrarily large list of numbers uniquely in a 
(suitably large) single number.  For example, it is possible to use the fact that every 
natural number can be written uniquely as a product of prime numbers, a result known as 
the unique factorization theorem in number theory.  Using this fact one defines the 
Goedel number of a sequence of numbers (a1, a2, … an) to be the product  
   
               n 

[a , a , … an] =  Π pai 1 2
           i=1    i 
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In words, the above definition says to take the ith number in the above sequence and make 
it the exponent of the ith prime in the above product.  For example, the sequence of 
numbers ( 3, 2, 0, 2 ) gives rise to a Goedel number g: 
  
  g = [3, 2, 0, 2 ] = 23 * 32 * 50 * 72 = 8 * 9 * 1 * 49 = 3528 
 
We will use the Goedel number to record the instructions of a DSW program as numbers.  
We use another numbering scheme to encode instructions as numbers, based on the 
following pairing function: 
    <x,y> = (2x (2y+1)) ∸ 1 
 
Since (2x

*(2*y +1)) ≥ 1, we have   
 
    <x,y> = (2x

 (2y +1)) – 1. 
 
Rearranging the above, 
    <x,y> + 1 = (2x(2y +1)). 
 
Setting z = <x,y>,  
    z + 1 = 2x(2y +1), 
or 
    (z+1)/ 2x = 2y + 1.  
 
Given a z, if we choose x to be the largest value of x such that 2x | z + 1 (i.e., such that 2x 
divides z+1), then this choice of x uniquely determines x.  This choice of x also means 
that the left hand side of the above equation is a whole number because it is required that 
2x  divide z+1.  Furthermore, since x is the largest number such that 2x  divides z+1, the 
number (z+1)/ 2x can no longer be divided by 2 and therefore must be odd.  Thus, we can 
subtract 1 from that number to get an even number, which we can divide by 2 to get y.  In 
other words, given a z, and the above unique choice of x, y is uniquely determined:  
    y =  (((z+1)/ 2x)–1)/2.  
 
For example, if z = 0, then z = <x,y> = 0 = <0,0>.  Or if z = 22, then <x,y> = <0, 11>.  In 
general, if z is even, then <x,y> = <0, z/2>.  For z = 23, <x,y> = <3, 1>.  One last 
example: if z = 133, then <x,y> = <1, 33>.  
 
It is also possible to nest pairing functions.  Thus, using the last example and the fact that 
33 = <1,8>, we can write 133 = <1,<1,8>>. 
 
Now all the necessary encoding machinery is in place to represent a DSW program as a 
number.  First, we establish a convention for referencing variables and labels.  For this 
purpose, associate with each variable a number c as follows: 
    

   0  1   2   3   4   5   6   7   8   9   10 … 
    |   |    |    |     |    |    |    |    |    |     | 
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   Y X1 Z1 X2 Z2 X3 Z3 X4 Z4 X5 Z5  ... 
 
Similarly, associate with each label a number a: 
 

   0  1   2   3   4   5    6   7   8   9   10 … 
    |   |    |    |     |    |     |    |    |    |     | 

    |  A1 B1 C1 D1 E1 A2 B2 C2 D2 E2 ... 
         no label 
 
Next, we establish a convention for referencing an instruction by a number b.   
 

0 --------  V ← V 
1 --------  V ← V + 1 
2 --------  V ← V – 1 
   
n+2      --------  if V ≠ 0  goto label n 

 
Putting the above numbers together, an instruction can be given the number #(I) = <a, 
<b,c>>, where a is the label number, b is the instruction type, and c is the variable 
number.  So, for example, if #(I) = 0, then the instruction is 0 = <a,<b,c>> = <0, <0,0>>, 
or Y ← Y.  As another example, if  #(I) = 133, from the nested pairing example above we 
have 133 = <1,<1,8>>, which translates to [A1] Z4 ← Z4 +1. 
 
Finally, to represent an entire program P with a number #(P), use the Goedel number of 
the sequence of instruction numbers and subtract 1: 
 

#(P) = [#(I0), #(I1),… #(Ik-1)] –1. 
 
The program consisting of the two instructions just given, 0 and 133, would have 
program number 
 
   #(P) = [0, 133 ] – 1 = 20 * 3133 – 1. 
 
The programs given by [11, 133 ] and [11, 133, 0], [11, 133, 0, 0 ] and so on all have the 
same program number.  These programs consist of the instructions 11 and 13 followed by 
zero or more lines containing Y←Y.  Since the instruction Y←Y has no bearing on the 
output of a program, it is harmless to ban these instructions at the end of a program so 
that to each natural number there corresponds a unique program. 
 
The set of all DSW programs is therefore enumerable; it is also infinite, since given any 
finite set of programs one can always add instructions to any program in the set to create 
another program.  The set of functions is also infinite.  In fact, by a diagonalization proof 
analogous to Cantor’s proof that the set of reals is not enumerable, one can also prove 
that the set of all functions on the natural numbers having values 0 or 1 is not 
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enumerable.188  Therefore, there must be functions on the natural numbers that are not 
effectively calculable.  Next, we give an example of a function from NxN to {0,1} that is 
not effectively calculable. 
 
 
The Halting Problem 
One can define a predicate function HALT(x,y) that takes two natural numbers as input, 
one representing a program number, and the second representing the input to that 
program.  This predicate function has value 1 if the program y halts on the input x and 0 
if y does not halt on x.   
 
Theorem.  The predicate HALT(x,y) with the above-mentioned properties can not be 
computed by a DSW program. 
 
Proof:  Suppose that such a predicate exists.  Then the following program would be 
possible: 
   
   [A]  if HALT(X1, X1) goto A 
 
 
When the macro HALT(x,y) is properly expanded, the above program will have a 
program number, say p0.  p0 only takes one input number X1, and it passes that same 
number to HALT(x, y) twice, once to be interpreted as a program and once to be 
interpreted as input to a program.  p0 is constructed so that if HALT(X1, X1) outputs 1, 
then p0 is undefined since it spins in a one-line loop forever without halting.  However, if 
HALT(X1, X1) outputs 0, then p0 outputs 0, since p0 itself halts in that case without ever 
changing Y.   
 
The key point is that if the program y0 takes itself as input, i.e. if X1 = p0, then p0 halts 
when given itself as input if and only if ⌐HALT(p0,p0), which is a contradiction.       □    
 
  
Alternate proof, in terms of diagonalization:  The coding of programs by numbers given 
above amounts to a one-to-one mapping between the natural numbers and the set of all 
DSW programs, that is, to an enumeration of the set of all DSW programs.  In particular, 
the coding of programs by numbers gives an enumeration of the set of all DSW programs 
with one input.  That means we can set up a table with each row corresponding to a 
different program.  In this table each column will correspond to a different input to the 
program of a given row, starting from input 0 and increasing by 1 with each increasing 
column number.  Each square in this table can be thought of as an input to the predicate 
HALT(x,y), which means that for each element in the table it is possible to say whether 
the x corresponding to that square will halt on the y corresponding to that same square.        
   
As a program of one input, the DSW program p0 above must correspond to one of the 
rows in the table.  However, from its construction we know that in each row there is at 
least one column where p0 differs from the program x of that row, namely in column x.  
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On that input p0 halts if the program x does not halt and vice versa; in other words, the 
predicate HALT(x,x) gives a different result for p0 and the program x.   Therefore p0 is 
not equal to any program in the enumeration, which is a contradiction.       □ 
 
 
The above theorem and its proof show that the predicate function HALT(x,y) is not 
computable by a DSW program, and therefore, by our previous demonstration that all 
recursive functions can be calculated by a DSW program, HALT(x,y) is not a recursive 
function according to point 1) of Theorem 1.  If we adopt Church’s thesis, which says 
that all effectively calculable functions are recursive, then there is no point in looking for 
a procedure to find HALT(x,y), because it is not effectively calculable.  From this point 
of view the Halting Problem is unsolvable. 
 
 
 
Appendix J        Hilbert Space 
 
There are three different kinds of Hilbert space, corresponding to three different kinds of 
so-called *-fields:  the reals, the complex numbers14 and the so-called quaternions15.  We 
will define complex Hilbert space, indicating where the definitions for the other two 
kinds of Hilbert space differ as we go.  
 
A Hilbert space is a particular kind of inner product space.  To define an inner product 
space, it is necessary to first define a vector space.   
 
A complex vector space V is a set of elements called vectors together with a function 
called addition with domain VxV and range V, and a function called multiplication with 
domain V and range V such that addition satisfies the following axioms, for any x, y, z in 
V: 
 

1. x + y = y + x 
2. x + (y + z) = (x + y) + x 
3. x + 0 = x 
4. x + (-x) = 0,   

 
and such that multiplication satisfies the following axioms, for any x, y in V, and 
complex numbers c1 and c2:  

A. c1(x + y) = c1x + c1y 
B. (c1 + c2)x = c1x + c2x 

                                                 
14 A complex number c can be written c = a + ib, where a and b are real numbers, ib is the ordinary 
multiplicative product, and √i = -1.  The complex conjugate for c, written c*, is defined as c* = a-ib for c = 
a+ib.  Also, cc* = (a+ib)(a-ib)= a2 + b2, and by definition, |c|2 = a2 + b2 = cc*.   c can be thought of as an 
ordered pair (a, b) and therefore plotted on an x-y plot, with x (=a) the real part of c and y  (=b) the 
imaginary part of c.   
15 A quaternion can be written ai + bj + ck, where a, b, and c are real numbers and i, j and k satisfy the 
multiplication rule  ij = -ij = k 
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C. (c1c2)x = c1(c2x) 
D. 1x = x 

 
(If we were defining real Hilbert space, we would make c1 and c2 real numbers.  For 
quaternionic Hilbert space, c1 and c2 would be quaternions.) 
 
An inner product space is a pair (V, f), where V is a complex vector space and f is a 
function from VxV to the set of complex numbers C called the scalar product.   The 
scalar product, written (x, y) for x, y in V, satisfies the following axioms for all x, y and z 
in V: 
 

1) (x, y) = (y, x)*, where ‘*’ denotes the complex conjugate defined by c* = a – bi 
for c = a+bi; 

2)  (x, y + z ) = (x, y) + (x, z); 
3) c(x, y) = (cx, y), where c is a complex number; 
4) (x, x) = 0 if and only if x = 0. 

 
(For a real Hilbert space, c would be a real number and requirement 1) would read (x, y) 
= (y, x), since the *-operation is the identity.  For quaternionic Hilbert space, c would be 
a quaternion and the *-operation would be that associated with the quaternions.  R, C and 
the quaternions are all instances of what are called *-fields in algebra.) 
 
The norm of a vector x, written ||x||, is defined by ||x|| = (x, x)1/2.   
 
A metric space is a pair (M, f), where M is a set and f is a function from MxM to the 
positive real numbers called the distance function.  The distance function, written d(x, y) 
for x, y in M, satisfies the following axioms for all x, y, and z in M: 
 

1. d(x, y) = 0 if and only if x = y   
2. d(x, y) = d(y, x) 
3. d(x, z) ≤ d(x, y) + d(y, z) 

 
Every inner product space V is also a metric space, since the norm of the vector x – y, (x 
– y, x – y )1/2, satisfies the three requirements of the distance function for all x, y and z in 
V.   Proof: 

1. (x – y, x – y) = 0 if and only if (x – y, x – y) = 0 by IV., which holds if and only if 
x – y = 0, i.e. x = y.   

2. (x – y, x – y )1/2 = (-1(y – x), -1(y – x )) 1/2  by A.  By III,  (-1(y – x), -1(y – x )) = -
1(y – x, -1(y – x )).  By I,  -1(y – x, -1(y – x )) = (-1)(-1*) (y – x, y – x ).  Since 1* 
= (1 + 0i)* = 1 and (-1)(-1) = 1, (x – y, x – y )1/2 = (y – x, y – x )1/2. 

3. Assume the triangle inequality holds: ||a+b|| ≤ ||a|| + ||b||.  Then, using x – z = (x – 
y) + (y – z) and taking a = x – y and b = y – z in the triangle inequality yields      
||x –z|| ≤ ||x – y|| + ||y – z||, the desired result.  

 
To prove the triangle equality, it is necessary to first prove the Cauchy-Schwarz 
inequality (x,y) ≤  ||x|| ||y||.  If x = 0, the inequality is satisfied since (0,y) = 0(0,y) 
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= 0, by III, and ||x|| ||y|| = 0 ||y|| = 0 by IV, and similarly if y = 0.  Assuming y ≠ 0,    
we must show (x,y)(1/||y||) ≤ ||x||, where we have divided each side of the 
inequality by ||y||.  Let z = y(1/||y||), so that ||z|| = (z, z)1/2 =  (y(1/||y||), y(1/||y||))1/2 
= (1/||y||) (y, y) 1/2 =  (1/||y||) ||y|| = 1.  Now we must show (x,z) ≤ ||x||. 
 
The following equations hold for any λ: 
||x – λz||2   
= (x – λz, x – λz)       by definition 
= (x – λz, x) + (x – λz, –λz)    by II  
= (x, x – λz)* + (–λz, x – λz)*  by I 
= ||x||2 – (x, λz)* + (–λz, x)*  + (–λz, –λz)*  by II, and using (x,x)*=(x,x) 
= ||x||2 – λ(z,x) – λ*(z, x)*  + λλ*(z,z)  by III, I  
= ||x||2 – (z,x) (z,x)* + (z,x) (z,x)* – λ(z,x) – λ*(z, x)*  + λλ*(z,z) 

       adding 0 
 
 = ||x||2 – |(z,x)|2 + (z,x) (z,x)* – λ(z,x) – λ*(z, x)*  + λλ* 
       using cc* = |c|2 and (z, z) = 1 
 
 = ||x||2 – |(x,z)|2 + (x,z)*(x,z) – λ(x,z)* – λ*(x, z)  + λλ*  

using (z, x) = (x, z)* 
 

 = ||x||2 – |(x,z)|2 + ((x,z) – λ)*((x,z) – λ) factoring 
 = ||x||2 – |(x,z)|2 + |(x,z) – λ|2   using c*c = |c|2 
 
 Since these equations hold for any λ, they hold for λ = (x,z).  Substituting for λ,  
 0 ≤ ||x – λz||2 = ||x||2 – |(x,z)|2 + |(x,z) – (x,z)|2 = ||x||2 – |(x,z)|2.  Adding |(x,z)|2 to  
 each side of the inequality gives |(x,z)|2 ≤ ||x||2.  Taking square roots, |(x,z)| ≤ ||x||. 
 
 Finally, we can prove the triangle inequality as follows, again using I-IV above. 
 
 ||x + y||2 =  (x+y, x+y) = (x, x+y) + (y, x+y)    
 = (x+y, x)* + (x+y, y)* 
 = (x, x)* + (y, x)* + (x, y)* + (y, y)* 
 = ||x||2 + ||y||2 + (x, y) + (x, y)*. 
 

For any c = a + ib, c + c* = (a +ib) + (a – ib) = 2a.  Writing the real part of the 
complex number (x, y) as Re((x,y)), we have 
||x + y||2 = ||x||2 + ||y||2 + 2Re((x, y)). 
 
For any c = a+ib, Re(c) ≤ |Re(c)| ≤ |c|, since a ≤ |a| ≤ |a2 + b2|1/2.  Therefore,  
||x + y||2 ≤ ||x||2 + ||y||2 + 2|(x, y)|. 
 
Using the Cauchy-Schwarz inequality,   

 ||x + y||2 ≤ ||x||2 + ||y||2 + 2||x|| ||y|| = (||x|| + ||y||)2. 
 
 Taking square roots, 
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 ||x + y|| ≤ (||x|| + ||y||).       □ 
 
 
A sequence of elements of a metric space M is a mapping from the natural numbers > 0 
to M. A sequence {xn} converges to x if d(xm, x) → 0 in the limit as m goes to infinity; a 
more precise way to say this is16: for every ε > 0, there exists a k such that d(xk, x) < ε.  A 
sequence is said to be Cauchy if, for every ε > 0, there exists a k such that d(xm, xn) < 
ε for all m, n ≥ k.   Since d(xm, xn) ≤ d(xm, x) + d(x, xn) by 3) above, if a sequence {xn} 
converges to x, then that sequence is Cauchy.  However, every Cauchy sequence is not 
convergent, as will be shown below. 
 
A metric space M is complete if every Cauchy sequence in M converges in M.  In other 
words, in a complete metric space, if a sequence in M is such that d(xm, xn) → 0 as m,n 
go to infinity, then there exists an x such that d(xm, x) → 0, that is, the sequence 
converges to x.  
 
A Hilbert space H is an inner product space that is a complete metric space whose 
distance function d(x, y) is given by the norm of the vector difference x – y. 
 
 
Examples 
 
1.  The open interval (0, 1) ⊂ R is not a complete metric space.  Let S be the open 
interval 0 < x < 1 in R, the reals.  The absolute value of the difference of two reals |x – y| 
satisfies the requirements of a distance function since  
 

1. |x – y| = 0 if and only if x = y,   
2. |x – y| = |y – x| 
3. |x – z| = |x – y| + |y – z|. 
 

S is therefore a metric space.  In order for S to be a complete metric space, all Cauchy 
sequences must converge in S.  Consider the sequence {1, 1/2, 1/3, 1/4, 1/5, …}.  By 
substituting values into |1/n – 1/m| one can see that  |1/n – 1/m| < 1/k for all m, n ≥ k.  By 
definition, a sequence is Cauchy if for every ε > 0, there exists a k such that d(xm, xn) < 
ε for all m, n ≥ k.   Accordingly, given an ε < 1, we choose k such that 1/k < ε < 1/(k-1), 
and if ε ≥ 1, we choose k = 1, thus satisfying the definition.  Now this sequence 
converges to 0, since for any ε, |0 – 1/n| = 1/n < ε for all n ≥ k, where k is again chosen 
such that 1/k < ε < 1/(k-1).  However, 0 is not in S.  Since in a complete metric space M 
all Cauchy sequences converge in M, this one counterexample is enough to establish that 
M is not a complete metric space.  
 

                                                 
16 The ε, k definition of a convergent sequence may seem more natural to the reader considering that in the 
formal language of first order logic definitions must involve one or more of the quantifiers there exists and  
for all.  See Appendix A.  
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2.  R, the set of reals, is a Hilbert space.   From the above example, it is clear that |x-y| 
works as a distance function, making R a metric space.  A Hilbert space is also an inner 
product space, so we must establish that R is a vector space with an inner product, an 
inner product whose norm ||x – y|| = (x-y, x-y)1/2 satisfies the requirements of a metric 
space distance function.  Since the reals are a subset of the complex numbers C, we can   
 
Clearly, for any real numbers x and y: 

1. x + y = y + x; 
2  x + (y + z) = (x + y) + x; 
3.   x + 0 = x; 

      4.   x + (-x) = 0.   
 
Also, multiplication satisfies the following axioms, for any reals x and y in R, and 
complex numbers c1 and c2:  

1.    c1(x + y) = c1x + c1y; 
2. (c1 + c2)x = c1x + c2x; 
3. (c1c2)x = c1(c2x); 
4. 1x = x. 

 
Therefore, R is a vector space.  As a scalar product, let (x, y) = xy.  Then 
 

1. (x, y) = (y, x)* is satisfied since xy = (yx)* = yx; 
2. (x, y + z ) = (x, y) + (x, z) is satisfied since x(y+z) = xy + xz; 
3. c(x, y) = (cx, y) is satisfied since cxy = cxy; 
4. (x, x) = 0 if and only if x = 0 is also satisfied. 
 

Lastly, we must show that every Cauchy sequence in R converges, a basic result of the 
branch of mathematics called real analysis.   To do this, we first show that every Cauchy 
sequence is bounded.  That will allow us to generate a so-called convergent subsequence 
that will be used to show that every Cauchy sequence converges.   
 
To show that every Cauchy sequence is bounded, the following inequality is needed.   
  

| ||x|| – ||y|| | ≤  ||x – y||  
 
 Its proof is similar to that of the triangle equality:  
 
||x –y||2 =  (x – y, x – y) = (x, x – y) – (y, x – y)    
 =  (x – y, x)* – (x – y, y)* 
 =  (x, x) – (y, x)* – (x, y)* + (y, y) 
 = ||x||2 + ||y||2 – ((y, x)* + (y, x)) 
 
For any c = a + ib, c + c* = (a +ib) + (a – ib) = 2a.  Writing the real part of the complex 
number (x, y) as Re((x,y)), we have 

||x – y||2 = ||x||2 + ||y||2 – 2Re((x, y)). 
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For any c = a+ib, Re(c) ≤ |Re(c)| ≤ |c|, since a ≤ |a| ≤ |a2 + b2|1/2.  Therefore,  
||x – y||2 = ||x||2 + ||y||2 – 2Re((x, y)) ≥ ||x||2 + ||y||2 – 2|(x, y)|, 
 

which is equivalent to: 
||x||2 + ||y||2 – 2|(x, y)| ≤ ||x – y||2 . 
 

Using the Cauchy-Schwarz inequality and factoring, 
||x||2 + ||y||2 – 2||x|| ||y|| ≤ ||x – y||2  

 (||x|| – ||y|| )2 ≤ ||x – y||2 

 
Taking square roots yields 
 | ||x|| – ||y|| | ≤ ||x – y||. 
 
Now we can show that every Cauchy sequence {xn} is bounded, which means that there 
is a real number B such that for all n, xn ≤ B and a real number B’ such that for all n, B’≤ 
xn.  Let k1 be a number such that || xm – xn || < 1 for all n ≥ m ≥ k1; such a k1 exists by the 
definition of a Cauchy sequence, which says for all ε there exists a k such that … and so 
on.  Here we have taken the particular value ε = 1, and the subscript in k1 is meant as a 
reminder of this fact.  By the inequality proved above it follows that for all values of m 
and n greater than k1 
 

| ||xm|| – ||xn|| | ≤ || xm – xn || < 1. 
 
From this inequality we can deduce,17 by using | ||xm|| – ||xn|| | = | ||xn|| – ||xm|| |, removing 
the absolute value sign and adding ||ym|| to each side,  
 

 ||xn|| <  1 + ||xm||  for n ≥ m ≥ k1. 
   
In words, the above inequality says that for every value of n greater than k1, the value of 
the norm of  xn is less than the real number 1 + ||xm||.  Now since the above inequality 
holds for all m such that n ≥ m ≥ k1, it also holds for the particular value m = k1.  Thus 
the following inequality holds. 
 

||xn|| <  1 + ||xk1||  for n ≥ k1. 
 
To underscore that ||xk1|| is just a real number, let A = ||xk1||.  At this point it is easy to get 
a bound on {xn}, since we have a bound on all elements in the sequence after and 
including the k1

th element, and there are only a finite number of elements in the sequence 
before the k1

th element.  Taking the supremum (also known as the least upper bound) of 
the elements before the k1

th element and 1 + A, the bound on all other elements, yields an 
upper bound for the entire sequence {xn}:  
 
  B = supremum{||x0||, ||x1||, ||x2||, … ||xk1 – 1||, 1 + A } 

                                                 
17 We can equally well deduce ||xm|| <  1 + ||xn||, which we do not use.    
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Similarly, one can establish a lower bound on {xn}by noting that –(1+ ||xk1||) ≤ xn for n≥ 
k1, and then taking the greatest lower bound of the elements before the k1

th element. 
Setting A’ = –(1+ ||xk1||),  the greatest lower bound is  
  
  B’ = infimum{x0, x1, x2, … xk1 – 1, A’}. 
 
Every Cauchy sequence is therefore bounded.  
   
The next step in our proof that every Cauchy sequence in R converges is to establish that 
every Cauchy sequence has a convergent subsequence.  Using the fact that a Cauchy 
sequence {xn} is bounded, one can form a subsequence by invoking an axiom of real 
analysis called the greatest lower bound axiom, which states that every bounded subset of 
R contains a greatest lower bound.18    Let a0 = infimum{ xn }.  Next, let a1 be the 
infimum of the subsequence starting at n = 1 (skipping the zeroth element of the 
sequence),  that is, a1 = infimum{ xn |  n ≥ 1 }.  We know that a1 exists since the set { xn |  
n ≥ 1 } is a subset of {xn}, and {xn} is bounded.  Since a0 is the greatest lower bound of 
the whole sequence, and a1 is the greatest lower bound of that same sequence minus the 
zeroth element, it must be that a1 is greater or equal to a0.  a1 is greater than a0 if and only 
if x0 is the greatest lower bound and that greatest lower bound occurs as the value of no 
other element of the sequence.  Continuing this way, one can define a sequence  
 
   ai = infimum{xj ∊ xn | j ≥ i }  
 
A sequence such as ai, in which each element is equal to or greater than its predecessor, is 
called a monotone increasing sequence.  Monotone increasing sequences converge if and 
only if they are bounded.  We show next that they converge if they are bounded, since 
that is what we need to complete the proof that all Cauchy sequences converge. 
 
There is an axiom, not independent of the greatest lower bound axiom cited above, called 
the least upper bound axiom, which states that every bounded subset of R contains a 
supremum.  One can invoke this axiom to guarantee the existence of a supremum of the 
sequence {ai} described above.   Let L = supremum{ai}.  Since L is the supremum of 
{ai}, for ε > 0 it must be true that L – ε  is less than some element of ai unless the 
sequence ai is the trivial sequence {L, L, L, …}, in which case ai obviously converges to 
L.  For the non-trivial case, let ak(ε) be such that L – ε  <  ak(ε), where k(ε) is some natural 
number.  Since ai is monotone increasing and therefore ak(ε)≤ a k(ε)+1 ≤ a k(ε)+2 and so on, it 
is true that L – ε  <  aj  for all j ≥ k(ε).  Rearranging terms, L – aj < ε  for all j ≥ k(ε).  

                                                 
18 The existence of a supremum and infimum for every bounded set is a non-trivial property of the reals.  
The rationals Q, for example, don’t have it, since S = {s ∊ Q | s2 < 2 } has no supremum in Q.  The greatest 
lower bound axiom implies the least upper bound theorem, according to which every bounded subset of R 
contains a least upper bound --- in fact, one can make the least upper bound theorem an axiom, which 
implies then the lower bound theorem.  In either case, the axiom of choice is required; for a discussion of 
this point, see Bridges, D., Constructive truth in practice,  in Dales, H, & Oliveri, G., eds., Truth in 
Mathematics, Oxford Univ. Press, Oxford (1998) --- note that in terms of that discussion, one cannot 
assume here that the subset in question is totally bounded without the axiom of choice.       
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Since L – aj ≤ | L – aj |,  and since ε was an arbitrary real greater than 0, the foregoing 
establishes that for every ε > 0 there exists a k such that | L – aj | < ε for all j ≥ k.  In other 
words, ai converges to L.   
 
The last step in the proof is to show that the arbitrary Cauchy sequence {xn} converges 
since it contains a convergent subsequence.  {xn} is a Cauchy sequence, so for every ε/2 
there is a kc (c for Cauchy) such that 
   
      | xm – xn | < ε/2  for all n ≥ m ≥ kc.    
 
Also, for every ε/2 there is a kS (s for subsequence) such that  
      

 | L – aj | < ε/2  for all j ≥ kS. 
 
Let km (m for merged) be the maximum of kc and kS.  Since km ≥ kc, it is true that  

| xp – xq | < ε/2  for all p ≥ q ≥ km.    
Also, since km ≥ kS, it is true that  
   

| L – ar | < ε/2  for all r ≥ km. 
 
Finally,  for all p ≥ r ≥ km 
 
 |L – xp| = |L – ar + ar – xp | ≤ |L – ar| + |ar – xp| < ε/2  + ε/2  = ε. 
 
The last equation uses |ar – xp| < ε/2 and  p ≥ r ≥ km.  To see that these inequalities hold, 
notice that the indices of the subsequence ai lag behind the indices of the sequence xn, 
since ar, the rth infimum, was chosen from {xq ∊ xn | q ≥ r }.   Therefore, ar is equal to 
some xq, and since | xp – xq | < ε/2  for all p ≥ q ≥ km, it is also true that |ar – xp| = | xp – ar | 
< ε/2.  □ 
 
 
3.  Other Hilbert spaces 
Rn, the space of n-dimensional reals, is also a Hilbert space.  A vector in Rn has a real 
number in each of its n “slots”; for example, a vector in R2 can be written as a pair of 
components, say (1.0, 2.0).   The scalar product of two vectors x and y in Rn is the sum of 
products of the components in x and y; for example, if x is as above and y is (21.0, 22.0), 
then the scalar product of x and y would be 1.0(21.0) + 2.0(22.0)  = 21.0 + 44.0 = 65.0.  
The norm of a vector, (x – y, x – y)1/2 yields the distance function; for example, the norm 
of x – 0   is ((1.0)(1.0) + 2.0(2.0))1/2 = 51/2  --- this makes sense if the components 
correspond to coordinates with fixed axes at right angles to one another, since the 
distance of the point (1.0, 2.0) from the origin is 51/2 units as given by the Pythagorean 
theorem.  The proof that Cauchy sequences converge in Rn is practically identical to the 
proof given above for R.    
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Another example of a Hilbert space is Cn, the space of n-dimensional complex numbers.  
The one dimensional space of complex numbers C, for example, has the scalar product 
c1c2* for elements c1, c2 in C, and norm (c1 –  c2, c1  – c2)1/2  given by ((c1 –  c2) ( c1 –  
c2)∗)1/2.   Using cc* = (a + ib)(a – ib) = a2 + b2, and then expanding c to c1 – c2, this 
reduces to ((a1 – a2)2 + (b1 – b2)2)1/2, the correct distance function in the complex plane.  
A sequence in C is defined as {cn}= {an + ibn}, where {an} and {bn} are sequences of 
reals, and it can be shown that {cn}converges to cL = aL + ibL if and only if {an} 
converges to aL and bn converges to bL.  Therefore, the proof that Cauchy sequences 
converge in C carries over from R almost intact, and similarly for higher dimensions. 
 
Two infinite dimensional Hilbert spaces are also of particular importance.  The Hilbert 
space l 2 is defined as the set of all square-summable complex sequences, that is, 
sequences satisfying 

 ∞ 
 Σ |xi|2 < ∞.   

    i=1 

 
Given sequences x and y in l 2, their scalar product is defined by  

 ∞ 
           (x, y) = Σ xiyi* < ∞.   

    i=1 

 
Vector space addition is defined on x, y in l 2 as addition of the corresponding elements of 
the sequences x and y:  (x + y)i = xi + yi.  Similarly, scalar multiplication on x ∊ l 2  by c ∊ 
C is defined as multiplication of each element of x by c.  The proof that every Cauchy 
sequence converges in l 2 is complicated by the fact that a Cauchy sequence in l 2 is a 
sequence of sequences.189   
 
Another example of an infinite dimensional Hilbert space is L2(a,b), the space of all so-
called Lebesgue measurable functions that have the property  
     b 

   Û |f(t)|2 dt < ∞. 
    a 

in words, the integral of the absolute value squared of f over the complex interval [a, b] is 
finite.  The definitions of this integral and these functions are beyond the scope of this 
exposition190; suffice to say that an integral generalizes a sum by adding up values over a 
continuous range of points as opposed to a discrete range of points.  In L2 addition is 
defined on functions f, g ∊ L 2  pointwise: (f + g)(t) = f(t) + g(t).  Similarly, scalar 
multiplication on f ∊L 2  by c ∊ C is defined as (cf)(t) = cf(t).  The scalar product of f, g ∊ 
L 2  is defined as     
       b 

   (f, g) = Û f(t)g(t)* dt < ∞. 
     a 
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The proof of Cauchy convergence of elements of L2 is to be found in standard texts on 
measure theory.191 
 
The spaces l 2 and L2 are of great relevance for quantum mechanics as they are the 
underpinnings of the matrix mechanics of Heisenberg and the wave mechanics of 
Schroedinger, respectively.192 
 
 
 
Hilbert space miscellanea   
 
Orthonormal bases   
Elements of the Hilbert space R2 are vectors that can be represented as points on an x-y 
plot with x and y coordinates.  In this representation, an arbitrary point in the plane is 
located by going a certain distance in the x direction and then a certain distance in the y 
direction, in either order.  Going to the language of vector spaces,  an arbitrary vector r in 
R2 is represented as the vector sum of two vectors, one in the x-direction and the other in 
the y-direction.  The length of the vector in the x-direction is the x-component of r and 
the length of the vector in the y-direction is the y-component of r.  It is convenient to 
introduce the notion of an orthonormal basis to adequately describe this situation.      
 

1. Two vectors x, y of a Hilbert space H are orthogonal if (x, y) = 0.    
2. A family19 {xi}i ∊I  of vectors in H – {0} is an orthonormal system if (xi, xj) = 1 if 

i = j and 0 otherwise. 
3. An orthonormal system is total if the only vector orthogonal to every vector in the 

system is the 0 vector. 
4.  A total orthonormal system is an orthonormal basis.20 

 
In R2, the vectors e1 = (1, 0) and e2 = (0, 1) form an orthonormal basis since 
 

1. (e1, e2) = 1(0) + 0(1) = 0, 
2. (e1, e1) = 1(1) + 0(0) = 1, and (e2, e2) =  0(0) + 1(1)  = 1, 
3. (e1, 0) = (e2, 0 ) = 0, (e1, e1) = (e2, e2) = 1. 
 

In this orthonormal basis a typical vector r in R2 corresponding to a point at say r = 
(10.5, 32.0) in the x-y plane is written as r = 10.5e1 + 32.0e2.  Notice that this expansion 
for r can also be written r = (r, e1) e1 + (r, e2) e2. 
 
The above expansion for r is characteristic of a Hilbert space with an orthonormal basis 
in the sense that one can prove the following theorem: 
 

                                                 
19 A family is a set whose elements are labeled by elements of an index set such as the set of natural 
numbers.  The above notation i ∊I indicates that i is a label in an index set I. 
20 A Hilbert space with an orthonormal basis is said to be separable. 
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Theorem I.1 If (en) is an orthonormal basis in a Hilbert space H, then for any x ∊H, 
      ∞ 

           x = Σ (x, en) en ,  if (en) is infinite, and 
        i=1  

      n 
           x = Σ (x, en) en ,  if (en) is finite. 

        i=1 

 
Orthonormal bases are not unique, as one can see from the orthonormal basis for R2 given 
by e1 = (1/(21/2), 1/(21/2)),  e2 = (–1/(21/2), 1/(21/2)). 
 
An orthonormal basis for l 2 is e1 = (1, 0, 0…) e2 = (0, 1, 0, 0, … ) e3 = ( 0, 0, 1, 0, 0, …), 
and so on. 
 
An orthonormal basis for L2 is en(x) = 1/((2p)1/2)( cos(nx) + isin(nx) ).  An arbitrary 
square-integrable function f can be written  

     ∞     ∞ 
           f = Σ (f, en) en = Σ un en , 

        i=1      i=1 
 
where the un are called the Fourier coefficients of f.  To provide historical perspective to 
the above representation of a function, one can say with confidence that mathematicians 
before the time of Fourier (17?? – 18 ) would have regarded as a marvelous revelation the 
fact that an arbitrary function is a vector with an expansion in terms of an orthonormal 
basis.  The polished formulation of this result in terms of vector spaces was not 
discovered until the early twentieth century.  Figures ?? shows the first ten terms in the 
expansion of the function f(x) = 3x3 + 1 in the L2 basis given above.  
 
 
Hilbert space isomorphisms   
A Hilbert space isomorphism is a map T from a Hilbert space H to a Hilbert space J 
satisfying the following conditions: 
 

1. T is one-to-one, i.e. if x, y ∊H are such that x ≠y, then Tx ≠Ty. 
2. T is onto, i.e. for all z ∊ J, there is an x ∊H such that Tx = z. 
3. T(x + y) = T(x) + T(y) for all x, y ∊H. 
4. T( cx) = cT(x) for all x ∊H and c ∊C. 
5. (Tx, Ty) = (x, y) for all x, y ∊H. 

 
Conditions 1 and 2 above together say that J has the same number of elements as H and 
that T maps exactly one element from H to a given element in J.21  Conditions 3 and 4 say 

                                                 
21 In general, a one-to-one and onto function is called a bijection.  One-to-one functions are also called 
injective and onto functions surjective. 
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that addition of vectors and multiplication by complex numbers are operations that are 
preserved by T.  Condition 5 says that scalar products are preserved, which in a Hilbert 
space means that distances are preserved.  Considering the definition of a Hilbert space, 
first as a vector space, then as an inner product space, and finally as a metric space, it is 
clear from the above conditions that if an isomorphism exists between two Hilbert spaces, 
then they are essentially the same space although each under a different guise.   
 
Theorem I.2  Let H be a Hilbert space with an orthonormal basis.  If H is of finite 
dimension n, then H is isomorphic to Cn.  If H is infinite dimensional, then H is 
isomorphic to l 2. 
 
Because of the above theorem there is up to isomorphism just one infinite dimensional 
Hilbert space, and just one Hilbert space for each dimension n.  Thus, for example, since 
l2 and L2 both have orthonormal bases and they are both infinite dimensional, there is an 
isomorphism from l 2 to L2, which we now show. 
 
The expansion given above of a function f in L2 in terms of the orthonormal basis en, 

     ∞    ∞ 
           f = Σ (f, ei) ei = Σ ui ei , 

        i=1      i=1 
contains an implict mapping T from l 2 to L2:   (un) is an element of l 2 that is mapped to f.  
T is an isomorphism since 
 

1. T is one-to-one, since if (un) ≠(vn), then (un) and (vn) differ on at least one index, 
say i.  Then (T((un)), ei )≠ (T((vn )), ei), which implies T((un)) ≠ T((vn)); 

2. T is onto, since every f can be expanded by some un according to theorem I.1; 
3. T((un) + (vn)) = T((un)) + T((vn)), since (ui +vi)ei = uiei + viei; 
4. T( c(un)) = cT((un)) since cui ei + cujej = c(uiei + ujej) for all i, j ∊ N and c∊ C; 
5. ( T((un)), T((vn)) ) = ( (un), (vn) ), since  

                   ∞           ∞ 
( T((un)), T((vn)) ) = ( Σ ui ei, Σ vi ei) =  

                i=1        i=1
 

                     ∞                           ∞ 

         = (u1e1, Σ vi ei) + (u2e2, Σ vi ei) + … 
           i=1                                 i=1 

                                                                                    ∞ 

         = ((v1e1)*, u1e1) + ((v2e2)*, u1e1) +…+ (u2e2, Σvi ei)+… 
                                                                                                    i=1 

                                                                                    ∞ 

         = ((v1e1)*, u1e1) +          0             +…+ (u2e2, Σvi ei)+… 
                                                                                                    i=1

 

              ∞    ∞ 
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          = Σ vi*ui  =  Σ uivi*   =  ((un), (vn)), 
              i=1                     i=1 

where the last equality came from the definition of the scalar product on l 2 given 
above. 
 

 
Dual vector spaces 
One of the things that characterize a Hilbert space is that the so-called dual vector space 
associated with a Hilbert space is in some sense the Hilbert space itself.  To explain this 
requires a few definitions. 
   
A function f from a metric space A to a metric space B is said to be continuous if the 
following holds:  given a convergent sequence (xn) in A such that xn → x, then f(xn) → 
f(x).  This definition matches the everyday sense of the word continuous, since it implies 
that neighbouring points in the domain of the function become neighbouring points in the 
range;  an example of a non-continuous function with domain and range R is 
 

f(x) = 1  for  0 ≤ x ≤ 1  
                = 0 otherwise, 
 
which is not continuous at x = 0 and x = 1. 
 
A linear form f on a vector space V is a mapping from V to C such that f(x +y) = f(x) + 
f(y) and f(cx) = cf(x) for all x, y ∊ V and c ∊ C. 
 
A vector space V is a normed space if it has a real-valued function associated with it 
called the a norm, written ||x|| where x ∊ V, satisfying the following conditions for all x, y 
∊ V and c ∊ C: 
 

1. ||x|| = 0 if and only if x = 0; 
2. ||x + y||  ≤ ||x|| + ||y||; 
3. ||cx|| = |c| ||x||. 

 
Every normed space is a metric space since the norm of ||x – y|| satisfies the requirements 
of a distance function d(x,y).  Also, every inner product space is a normed space since the 
inner product (x, x)1/2 = ||x|| satisfies the above conditions by definition.  It follows that 
every Hilbert space is a normed space.   
 
Just as a Hilbert space is an inner product space which is a complete metric space under 
the metric induced ultimately by its inner product --- recall that in a Hilbert space H the 
inner product induces a metric via (x-y, x-y)1/2 = ||x – y|| and this metric is complete, i.e., 
all Cauchy sequences (that is, sequences such that ||xm – xn|| → 0 as m,n → ∞) converge 
to an element x in H --- a Banach space is a complete metric space under the metric 
induced by its norm.  In other words, a Banach space B is a normed space in which all 
Cauchy sequences converge in B.    
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Every Hilbert space is a Banach space, but not every Banach space is a Hilbert space.  It 
is the presence of the inner product in a Hilbert space that distinguishes it in general from 
a Banach space.  For example, it is the inner product that allows one to construct an 
isomorphism between any two Hilbert spaces of the same dimension22, a construction for 
which there is no analogue in a Banach space in general.   Another distinguishing aspect 
of a Hilbert space due to its inner product regards its dual space, as we discuss next. 
 
The dual space N’ of a normed space N is the set of all continuous linear forms from N to 
C.   It can be shown that every dual space is itself a normed space subject to the following 
conditions for all f, g ∊ N’, x ∊ N, and c ∊ C: 193 
 

1. (f + g)(x)  = f(x) + g(x);   
2. (cf)(x) = cf(x); 
3. || f || = supremum{|f(x)| such that || x || ≤ 1 }. 

 
Theorem I.3 For every element f in the dual space H’ of a Hilbert space H, there is an 
element y in H such that f(x) = (y, x). 
 
Every Hilbert space is “self-dual” as a consequence of the above theorem.    
 
Finally, there would be a large gap in this presentation of Hilbert space if no mention 
were made of the fact that Hilbert space has a very rich structure.  In particular, the study 
of operators on Hilbert space has been a central area of mathematical research in the last 
50 years with deep connections to physics. 
 
 
Figures 
 
Figure 1 From  Henshilwood, C., et al., Emergence of Modern Human Behavior: Middle 
Stone Age Engravings from South Africa,  Science 295: 1278-1280 (2002)   
 

                                                 
22 The proof of theorem I.2 can be found for example in Berberian, S., Introduction to Hilbert Space, 
Chelsea Publishing Co., New York (1976), or in Young, N., An Introduction to Hilbert Space, Cambridge 
Univ. Press, Cambridge (1988). 
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Figure 2: "Left-shiftable" Timeline 
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Figure 3: Wild Guess Timeline 
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Figure 4: From Deacon, T., Brain-Language Coevolution, in Hawkins, J. & Gell-Mann, 
M., (Eds.), SFI Studies in the Sciences of Complexity, Proc. Vol X, Addison-Wesley 
(1992), p. 65  
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Figure 5: Exponential fits to points in Figure 2 

cycle, 100kybp

equality, 50kybp 

nat. trans., 57ybp

r.v., 120kybp

sequence, 
300kybp

duality, 1.5MMybp
0

5

10

15

20

25

0 0.5 1 1.5 2

time, 10^6 years ( duality at time = 0 )

sy
nt

ax
 s

tr
uc

tu
re

Figure 2 Points r.v.-nat. trans.
sequence-nat. trans. duality-nat. trans.

 
 

Figure 6: Timeline starting from Bang
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Figure 7 :  Geometrical representation of an epoch 
 
Figure 8: mandelbrot set 
 
 
 
 
 

 
Figure G1 
The Hasse diagram labeled 1 above consists of two elements.  It is a lattice since it is a 
partial order (all Hasse diagrams by definition describe partial orders) and since all 
elements x and y have a join x∨y and a meet x∧y.  Lattices 1, 4 and 9 are called chains, 
i.e. lattices for which for all elements a and b either a ≤ b or b ≤ a.  The dots on top of 
lattice 9 indicate that the chain goes on forever; this diagram represents N, the natural 
numbers.   Lattice 2 has no 1 element; lattice 3 has no 0 element.  Lattice 6 is referred to 
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as M3.  It is non-distributive, since b∨(c∧d) = b∨a = b, whereas (b∨c) ∧ (b∨d) = e ∧ e 
= e.  The partially ordered sets in 7 and 8 represent the same partial orders; they are not 
lattices since the meet of a and b doesn’t exist and the join of c and d does not exist.  
Lattice 10 is referred to as O6.  It is an orthoposet, since for each pair of elements x, y 
there are orthocomplements satisfying the conditions x ≤ y if and only if y’ ≤ x’, and for 
all elements x x’∨x = 1 and x’∧x = 0.  Since it is an orthoposet and a lattice, it is an 
ortholattice.   
 

 
Figure G2 

Lattice 11 is an orthomodular lattice L.  It is a lattice since for all x, y in L, the 
join x∨y and the meet x∧y exist.  It is an orthoposet just as lattice 10 is an orthoposet.  
There are five different ways to check orthomodularity according to the theorem in the 
text, which is applicable here since L is an ortholattice.  For example, one can verify that 
p ≤ q implies that  p∨(p’∧q) = q.  Since there are 23 pairs of comparable elements (i.e. 
23 pairs of elements {p,q} such that p ≤ q) , there are 23 equations to check.  For 
example, for w’ ≤ y, w’∨(w∧y) = w’∨x’ = y; for w’≤ x, w’∨(w∧x) = w’∨y’ = x; for 
x’≤ w, x’∨(x∧w) = x’∨y’ = w.  Alternatively, according to the theorem in the text any 
two comparable elements must generate a boolean subalgebra.  For example, x’≤ y 
generates Γ(x’,y) ={0, 1, x, x, y, y’, w, w’}, which includes elements w and w’ since 
x’∨y’ = w and the subalgebra is closed under complementation and meets and joins.  
Γ(x’,y) is an ortholattice --- going from L to Γ(x’,y) means removing z and z’ from L, 
which leaves the ortholattice conditions for the elements of Γ(x’,y) still satisfied --- so in 
order to show that Γ(x’,y) is boolean it is necessary to show only that it is distributive.     
For example, w∨(x∧y) = w∨w’ = 1, and (w∨x)∧(w∨y) = 1∧1 = 1.  Similarly, 
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x’∨(x∧w) = x’∨y’ = w, and (x’∨x)∧(x’∨w) = 1∧w = w.   An easy way to confirm that 
L is orthomodular is to note that O6 is not in the lattice.  
    Lattice 12 differs only from lattice 11 in that a copy of the subalgebra Γ(x’,y) of 
lattice 11 has been pasted or inserted on the right hand side (with elements assumed to be 
suitably renamed).  Clearly, the another subalgebra G is generated by this new addition.  
Therefore, any two comparable elements generate a boolean subalgebra and lattice 12 is 
orthomodular.   
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Figure G3 
The above Hasse diagram shows the boolean algebra given by the powerset of the set {a, 
b, c, d}, i.e. the set of subsets of {a, b, c, d}.  The partial order in this case is given by the 
membership relation.  The empty set in this lattice is 0 and {a, b, c, d} is 1. 

 
Figure G4 Particle at x=0 and constrained to move in ± x direction: future 
perspective  
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A particle currently at the origin and moving at a constant velocity of half the speed of 
light in the +x direction will be at x = 2 after 4 time units have passed, shown as the point 
a2.  Other allowable trajectories starting from the origin are shown in green.  Only a 
massless particle such as a particle of light can follow the diagonal lines.   
 

 
Figure G5  Particle at x=0 and constrained to move in ± x direction: past perspective 
The trajectory of a particle currently at the origin and moving constant velocity of half 
the speed of light in the +x direction was at x = –2 at time t = – 4 time, shown as the point 
a1.  Other starting points for allowable trajectories finishing at the origin at time t = 0 are 
shown in green.  
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Figure G6    Timelike and spacelike intervals from the orgin 
The worldline of a particle at the origin must lie in the green areas.  Points in the green 
area are said to be separated from the origin by a timelike interval, whereas points in the 
red area are separated from the origin by a spacelike interval. 

 
Figure G7 Timelike and spacelike intervals as abstract properties of spacetime 
For a particle at any point on the above plot there is a set of points that are separated by a 
timelike interval and a set of points separated by a spacelike interval from that point.     
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Figure G8   
 
 

 
Figure G9 
 
 

 
Figure G10   
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Figure G8-11        The intersection of spacelike intervals from a collection of 
spacetime points 
 
 

 
Figure G12   S′, the complement of S 
The complement of a set S is defined by the set of points spacelike separated from each 
point in S.  It is determined by at least four points in S, one from each side of the 
rectangle bounding S whose sides are diagonal lines. 
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Figure G13  S′′, the complement of the complement of S 
By the same analysis, starting with points in A, B and so on in S′, the complement of S′ is 
found to be as shown above.  

 
Figure G14  The lattice point associated with the set S is S′′ 

 
Figure G15  The meet of lattice points A and B is the usual set intersection. 
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Figure G16    The join of two lattice points. 
The join of two lattice points is determined by (A∨B) = (A∨B)’’, as shown in figures 
G17 through G23.  In (c ) and (e) above, the join is ordinary set union.  In the other cases, 
the join is ordinary set union augmented by the region indicated with broken lines. 
 
 

 
Figure G17  The join A of and B is ordinary set union if and only if B is contained in 
A’.  
As figures G18 through G23 show, if the join of A and B is ordinary set union, then the 
configuration of A and B is as above, where a lies in the spacelike interval of b. 
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Figure G18  
 
 
 

 
Figure G19  
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Figure G20  
 
 

 
Figure G21  
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Figure G22  

 
 
Figure G23  
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Figure G24     The subset generated by the pair A≤ B is a boolean algebra. 
 

 
 
Figure G25    
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Figure G26 
From this plot it is clear that the orthomodularity condition  A ≤ B → A ∨(A’∧B) = B 
holds, since A ∨(A’∧B) = A∨C = B. 

 
 
Figure G27  
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Figure G28  
 
 

 
Figure G29  The spacetime lattice is not distributive. 
From (a) above it is clear that A∨(B∧C) = A∨0 = A.  A∨B is given by the region 
indicated by the broken lines in (b).  A∨C is given by the region indicated by the broken 
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lines in (c).  (A∨B)∧(A∨C) is shown in yellow in (e).  Since A  ≠ (A∨B)∧(A∨C) ,  it 
follows that A∨(B∧C) ≠ (A∨B)∧(A∨C). 
 
 
 
Quick summary of recursive calls  
 
 
Zeroth recursive call 
 
God (input) 
Ix = x                             objectify 
KIx = I                          abstract 
SKIx = Kx(Ix) = x        apply 
 
 
 
First recursive call (above function takes itself as input) 
 
objectify                   (objectify ◦ objectify) 
abstract                    ( objectify ◦ abstract) 
apply                        (objectify ◦ apply) 
re-objectify              (abstract ◦ objectify) 
re-abstract               (abstract ◦ abstract) 
re-apply                   (abstract ◦ apply) 
asymmetrize            (apply ◦ objectify) 
transform                (apply ◦ abstract), 
reflect                      (apply ◦ apply) 
 
 
 
 
 
 
 
 
Second recursive call ( repeats above function in a for-loop 8 times ) 
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