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Abstract. Mathematics is often taken to play one of two roles in the empirical sciences: either
it represents empirical phenomena, or it explains these phenomena by imposing constraints on
them. This paper identifies a third and distinct role which has not been fully appreciated in
the literature, and may be pervasive in scientific practice. I call this the “bridging” role of
mathematics, according to which mathematics acts as a connecting scheme in our explanatory
reasoning about why and how two different descriptions of an empirical phenomenon relate to
each other. I discuss two bridging roles appearing in biological and physical explanations.

1 Introduction
Some philosophers maintain that either mathematics is merely representational of the empirical
phenomena in scientific explanations, or it has a non-representational, constraining-explanatory
role. The former is uncontroversial. As an integral part of scientific explanations, mathematics
plays a significant role in idealized representations of the empirical world. In contemporary
literature this role is often analyzed in two ways: either by appealing to the so-called mapping
account of Pincock (2004, 2007), which suggests that there is some kind of structural morphism
between mathematics and the empirical world, or by the inferential account of Bueno and Coly-
van (2011) and Bueno and French (2018), which along with structural morphism emphasizes
pragmatic and context-dependent features in applying mathematics to the empirical world.1

In contrast, some philosophers have promoted a genuinely explanatory role for mathematics
in the empirical sciences. In one of its promising versions, Lange (2012, 2017) argues that
mathematics can factor into explanations by constraining the empirical world. For instance, in
1Earlier versions of Pincock’s (2004, 2007) view can be found in standard mathematics text-
books such as Stewart (2008, 24), and also in the classic work on measurement by Krantz et al.
(1971).
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explaining why a mother cannot divide 23 whole strawberries evenly among her three children,
the mathematical fact that 23 cannot be divided evenly by 3 constrains her action and explains
her inability. There are certainly additional accounts of how mathematics might explain physical
phenomena, e.g., Batterman (2009), but I will primarily restrict myself to the representational
and Lange’s constraining accounts in order to keep this paper to a manageable length. In section
3, however, some alternative accounts will be briefly mentioned.

Both of these views about the roles of mathematics, representing and constraining, have
much to recommend then, but as I will show, they are not exhaustive. In this paper, I identify
a third and distinct role which I will call the “bridging” role for mathematics in explanations.
According to this role, mathematics acts as a connecting scheme in our explanatory reasoning
about why and how two different descriptions of an empirical phenomenon relate to each other.
In section 2, I describe the representational and the constraining-explanatory roles of mathe-
matics. In section 3, I propose that the bridging role of mathematics is distinct from both the
representational and the constraining-explanatory roles. In support of my proposal, I present a
case study analyzing a scientific explanation of color pattern formation by mathematical biolo-
gists. Subsequently, I show why Bueno and Colyvan’s (2011) and Bueno and French’s (2018)
framework for the applicability of mathematics cannot fully accommodate the bridging role of
mathematics in this explanation. Hence, I revise their framework to fulfill this task. In section
4, I argue that the bridging role is general enough, and it is found in other cases of explanation,
one of which is a familiar historical example. In particular, I will discuss how this role appeared
in an explanation of why and how two variant descriptions of quantum phenomena were found
to have empirically-significant, mathematical equivalence. Section 5 concludes the paper.

2 The Representational and Constraining-explanatory Roles
Advocates of the representational role of mathematics in explanations, such as Pincock (2004,
2007), Bueno and Colyvan (2011), and Bueno and French (2018) believe that mathematics plays
a role in empirical sciences in virtue of some structural morphism between an abstract, formal
structure and its appropriate empirical counterpart. The role of Euler’s theorem in explaining
why no one can cross all the bridges of Königsberg only once before returning to their starting
point is a classic example. The explanation bears on the specific configuration of the bridges and
paths that exhibit the structure of a non-Eulerian graph. The idea is that given the topological
structure of the actual bridges and our abstract mathematical knowledge about the properties of
Eulerian and non-Eulerian paths, we find a mapping relation between the mathematical structure
and the empirical phenomenon. It is exactly in virtue of this structural mapping that mathematics
becomes explanatory.

Pincock (2004, 2007) develops his mapping account according to the widespread view that
the applicability of mathematics to the empirical world is due to sharing some structural sim-
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ilarity between mathematics and the empirical phenomenon of interest. The existence of such
structural similarity sufficiently accommodates the applicability of a given mathematical struc-
ture to the empirical phenomenon.

Bueno and Colyvan (2011) and Bueno and French (2018, Chapter 2) introduce the inferential
account for the applicability of mathematics by expanding upon Pincock’s structural-mapping
account. Along with structural morphism, they incorporate some pragmatic elements that are
relevant to mathematical explanation and idealization, and are necessary for the applicability
of mathematics to the empirical world. The main claim of Bueno and Colyvan (2011) and
Bueno and French (2018) is that when certain features of the empirical world are embedded
into a mathematical structure, we can obtain inferences which might otherwise be impossible
(or at least, extremely difficult) to draw. This account proceeds in three steps: (i) immersion:
establishing a mapping between a mathematical structure M1 and a characterization of an em-
pirical phenomenon L1; (ii) derivation: drawing mathematical consequences M2 from M1; (iii)
interpretation: interpreting M2 back to a descriptive level of the empirical phenomenon L2 by
establishing some sort of mapping relation. Step (ii) is empty of pragmatic considerations; as
Bueno and Colyvan (2011, 353) and Bueno and French (2018, 52–3) put it: “The second step
consists in drawing consequences from the mathematical formalism, using the mathematical
structure obtained in the immersion step.” Hence, according to the inferential framework, M2

is always a purely mathematical consequence of M1. On the other hand, the steps (i) and (iii)
encode some pragmatic and context-sensitive features, such as what to map and interpret, in
applying mathematics to the empirical world.2 This account is illustrated in figure 1.

L1 M1

M2L2

immersion

drawing of consequences

interpretation

Figure 1: The inferential account.

In this paper, I am concerned with cases in which a given empirical phenomenon of interest

2In the rest of the paper, I only focus on Bueno and Colyvan’s (2011) and Bueno and French’s
(2018) representational account, as their account extends Pincock’s mapping account by incor-
porating pragmatic considerations.
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is characterized at two distinct descriptive levels L1 and L2. Understanding how and why the
two levels connect then would be a legitimate explanatory question. For each of the L1 and L2,
the mathematical representations M1 and M2 are distinctly obtained. Each representation illus-
trates a mapping between a mathematical structure and the empirical phenomenon. To explain
why the two descriptive levels L1 and L2 connect, the characteristics of the relation between
the two mathematical representations M1 and M2 should be examined. The exploration of why
and how the two descriptive levels connect is especially interesting, because the mathematical
representations are limited to a particular scientific discourse, mathematical/computational bi-
ology (section 3), and physics (section 4). In other words, the investigation of the relationship
between the two representations pertains to a specific group of scientists. The second step of
the inferential account, as illustrated in figure 1, provides resources to capture the derivation of
mathematical consequences M2 from the mathematical representation M1. Although in some
cases the link between the representations M1 and M2 is explained in terms of consequence
derivation, I will shortly discuss the shortcomings of step (ii). I then propose how these short-
comings can be overcome by recognizing the bridging role of mathematics.

Before I discuss my point further, I would briefly clarify why the bridging role of mathe-
matics is also distinct from the constraining-explanatory role. Defenders of the genuinely con-
straining role such as Lange (2009, 2012, 2017) attribute a constraining strength to mathematics.
On this view, Euler’s theorem becomes explanatorily relevant, because it imposes mathematical
constraints on how things can be in the empirical world. Lange’s account, of course, requires
commitment to a particular relation among different constraining strengths; mathematics being
more constraining than the empirical laws of nature. Hence, Lange’s view about the explanatory
role of mathematics may be appealing to those who share his theory of constraining strengths,
but controversial to those who reject that theory. The bridging role of mathematics, as I will
discuss shortly, is compatible with this constraining-explanatory role, but it does not need to
be. The two examples presented in sections 3 and 4 primarily examine some problems for the
mapping and the inferential approaches. The reason that I have very briefly mentioned Lange’s
proposal, as a prominent exemplar for the explanatory role of mathematics, is to show that in ad-
dition to the bridging role proposed in this paper, there are other philosophical views challenging
the idea that mathematics merely plays a representational role in scientific explanations. In other
words, I aim to highlight that my proposal is not the only one challenging the representational
view.

In the rest of the paper, I provide two case studies to illustrate how the bridging role works
in scientific practice. In section 3, I discuss how mathematical biologists appeal to the bridg-
ing role to explain the relation between a macro-level and a micro-level characterization of an
empirical phenomenon, namely the pattern formation on animal skins. I show how using new
parts of mathematics, independent from the mathematics employed for capturing the similari-
ties with the empirical phenomenon of interest, helps obtaining the micro-level representation
from the macro-level mathematical representation. In section 4, I illustrate the bridging role
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of mathematics in explaining the empirical adequacy of two mathematical representations of
quantum phenomena. The two case studies reveal how obtaining approximate representations,
using bridging mathematical facts, is a very different activity when compared to drawing of
consequences as suggested in step (ii) of Bueno and Colyvan’s (2011) and Bueno and French’s
(2018) inferential framework. The examples discussed in sections 3 and 4 show that the rela-
tion between the two mathematical representations is not necessarily a consequence derivation.
The relation in question can be an approximation relation (section 3) or an equivalence relation
(section 4). In both examples, without a mathematical bridge, linking the two mathematical
representations of the case studies seemed impossible.

3 The Bridging Role of Mathematics at Work
In this section, I provide an example of a bridging role of mathematics in biology. Biological
phenomena such as the pattern formation of skin colors are often explained either functionally
or mechanistically. Mechanistic explanations work by identifying the mechanisms responsible
for the occurrence of the empirical phenomena (see Machamer et al. 2000). Biologists may
also appeal to some functional features such as sexual selection or camouflage to explain the
biological phenomena, but these functional explanations are beyond the scope of this paper.3

Mathematical biologists often explain the formation of the skin patterns of vertebrates by
appealing to Turing equation models to capture reaction-diffusion (RD) mechanisms between
biological cells. In his landmark paper, “The chemical basis of morphogenesis”, Turing (1952)
proposed a mechanistic explanation for the phenomenon of morphogenesis: the shapes in liv-
ing organisms are generated through the RD system.4 An RD system uses a set of nonlinear
continuous dynamical equations to represent the interactions between microscopic biological
cells. Hence, Turing models play a representational role in explaining why does this particular
skin color pattern occur? The models trace the activities and interactions between microscopic

3I am not dismissing the extremely important functional explanations of evolutionary biology.
Since in this paper I am interested in examining the roles of mathematics in explanations, I
focus here on the mechanistic explanations as a grounding for the higher-level explanation
of the phenomenon of interest: namely, why (from a mechanistic point of view) is there a
particular pattern formation on the skin color?

4In his paper, Turing was chiefly motivated to discuss a mechanism by which the genes of a
zygote may determine the anatomical structure of the resulting organism. His proposal was
later developed and mathematically elaborated upon, to explain the mechanism of the formation
of different skin patterns on animal skins by using the partial differential equations of the RD
mechanisms. These became later known as Turing equations. For a philosophical discussion of
this topic, see Kitcher (1999).
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biological cells involved in formation of the patterns in any self-regulated system with an under-
pinning RD mechanism.

In the case of squamates (lizards and snakes), the interactions between different elements of
chromatophore cells result in the dynamic formation of skin color patterns.5 RD models then
calculate the concentration of the pigmentary and structural elements at a given time, based on
the substances’ diffusion, feed rate, removal rate, and reactions between them. More details
about the mathematics of the Turing patterns are provided in section 3.2.

In contrast to the Turing explanation, which appeals to the interactions among microscopic
biological skin cells, Manukyan et al. (2017) study a case according to which the full explanation
of the formation of the labyrinth color pattern on the skin of a species of lizard requires more
than the proposed Turing mechanism. Their study is the first in biological research on the
formation of animals’ skin color patterns proposing a different mathematical model, that of a
discrete cellular automaton, to that of Turing’s equations. They show that for a species of lizard,
known as the ocellated lizard, the macro-dynamics of the skin color pattern is represented by
the dynamics between the mesoscopic skin scales, rather than microscopic biological cells.6

Mesoscopic skin scales are quasi-hexagons whose long diagonal is about 150–200 microns in a
newborn individual, and about 1mm in an adult. Microscopic biological skin cells are typically
20 microns in size, and not visible to the naked eye.7 Figure 2 illustrates the changes in skin color
patterns of the ocellated lizards at multiple time points over about three years, from juvenile
(figure 2a) to adult (figure 2b).

Manukyan et al. (2017) claim that the units of the mesoscopic skin scale, rather than micro-
scopic biological cells, establish the pattern formation of skin color in ocellated lizards. They
show how the mesoscopic scale units can be modeled by a discrete cellular automaton that gen-
erates color patterns at the macroscopic scale of the skin of ocellated lizards. This seems to be
fairly different to the Turing explanation according to which the microscopic skin scales, rather
than mesoscopic biological cells, establish the color pattern. In this context, a natural puzzle
for mathematical biologists arises: how can two distinct representations, the Turing model and
the cellular automaton model, capture the dynamics of a single empirical phenomenon, the for-
mation of color patterns on ocellated lizards? Take the explanandum as: there are two distinct
descriptions for the formation of patterns on the skin of ocellated lizards. Before answering why
this is the case, it is necessary to say a few words about the mathematics of cellular automata.

5Chromatophore cells are prominent in animals including amphibians, fish, and reptiles. These
cells either contain pigments or reflect structures.

6Ocellated lizards (Timon lepidus) are primarily found in Southern Europe. The study is based
on the analysis of time series of ocellated lizards over four years.

7I obtained the exact size of the different cell scales from Michel C. Milinkovitch, the leading
author of the paper.
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Figure 2: Change in the skin color patterns of ocellated lizards from Manukyan et al. (2017).

3.1 Cellular Automaton Models as Higher-level Representations
Cellular automaton models, originally developed by Von Neumann (1951), offer a mathematical
characterization of the dynamics of various kinds of complex empirical and natural phenomena
(see Wolfram 1984; Toffoli 1984; Langton 1986; Ermentrout and Edelstein-Keshet 1993 for
an overview and examples). Roughly speaking, cellular automata are composed of a set of
units (grids of elements) spanned over an (n-dimensional) spatial structure. At time t1, for a
given cellular automaton, each unit is in a state σi from a set Σ of finitely many possible states.
Each unit can only interact with units in its neighborhood, according to a set R, composed of
deterministic or probabilistic rules. These rules specify how the state of a unit should change
based on the structure of the states of its local neighbors. Time-steps in cellular automata are
discretely incremented. At each incremental time-step t2, t3, · · · , tn, unit states are organized
according to the instructions of R relative to their local neighbors. The organization of the unit
states continues by iterating on the set R. From these local interactions, a cellular automaton
evolves into different kinds of macro-patterns over the whole spatial structure. The diachronic
aggregation of the cellular automaton instructions for the state change of units of a grid gives
rise to the emergence of various complex patterns at a macro-level.

Take the units of the cellular automaton to be the mesoscopic hexagon skin scales. The
pattern formation of the skin color of ocellated lizards is generated by changes in influence
dynamics of the quasi-hexagonal units of a probabilistic cellular automaton model. Consider
the ocellated lizard skin as a spatially expanded grid of units, each element being a mesoscopic
scale unit of skin. The set of states for the units of this cellular automaton are two colors, green
and black. At birth, ocellated lizards have brown skin with white polka dots spread over it
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(as shown in figure 2). Within a few months, the skin pattern turns into arrays of black and
green units; and the color pattern grows over their skin according to the dynamic computation
of the color states of individual mesoscopic skin scales until the lizards reach the age of sexual
maturity. During transition from juvenile to adult patterns, the skin color units flip between
green and black according to some probabilistic rules over the quasi-hexagonal lattice of skin
scales.

The color of the mesoscopic skin scales switches depending on the colors of the neighboring
units. The general rules are as follows: with a very high probability, green units tend to exhibit
four black and two adjacent green units; with a very high probability, black units tend to exhibit
three green and three neighboring black units.8 Hence, formation of the skin color pattern on
ocellated lizards invokes an appeal to cellular automaton models and mesoscopic skin units. This
seems to be fairly different from the micro-level Turing explanation of the pattern formation in
which microscopic biological cells, rather than the mesoscopic skin units, establish the pattern
formation of skin color in ocellated lizards. The following question with respect to the formation
of skin patterns arises: how does this cellular automaton pattern relate to the theoretical Turing
explanation in mathematical biology? To answer, first let us briefly look at Turing models.

3.2 Turing Models as Lower-level Representations
In “The chemical basis of morphogenesis”, Turing (1952) proposed a mechanistic explanation
of morphogenesis in terms of RD systems. His main idea was that the formation of spatial
patterns in living organisms can happen by interaction between two substances with different
spreading rates. Turing showed that in certain systems, a homogeneous steady state is indeed
unstable, and any small local deviation from this steady state (i.e., diffusion) is sufficient to
trigger the beginning of pattern formation. Assume we only have two substances in a finite
domain: activators, which produce more of themselves; and inhibitors, which slow down the
production of activators. Diffusion as a stabilizing mechanism balances the amount of each.

The dynamic formation of skin color patterns in vertebrates such as zebrafish is known to
be the result of microscopic non-linear interactions among pigment cells that obey the Turing
equations.9 It is shown that a set of nonlinear partial differential equations gives a mechanistic
explanation for the color pattern formation of zebrafish (Nakamasu et al. 2009). These equations
reveal that only two types of choromatophore cells (melanophores and xanthophores) dominate
the biological process of pattern formation. Manukyan et al. (2017) adapt this set of equations

8The probabilistic distributions of the color transition rules for this cellular automaton model are
derived from discrete RD numerical simulations.

9The micro-scale Turing explanation for such pattern formation is an approximation of the sus-
tained micro-scale non-equilibrium dissipation, involving short- and long-range interactions
among biological cells.
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to formulate the color pattern formation on the skin of ocellated lizards. Consider the two
variables u and v representing the densities of two kinds of pigment cells, melanophore and
xanthophore, respectively; w representing a long-range factor of diffusion; F ,G,H representing
interactions among the chromatophore cells; cu, cv, and cw representing the coefficients for
the decay processes; Du∇2u, Dv∇2v, and Dw∇2w representing diffusion processes (Du is the
diffusion coeffiecient and ∇2u is the Laplacian).10 The following system of partial differential
equations gives the two-dimensional representation of the skin color patterns of zebrafish:11

∂u

∂t
= F (u, v, w)− cuu+Du∇2u ,

∂v

∂t
= G(u, v, w)− cvv +Dv∇2v

∂w

∂t
= H(u, v, w)− cww +Dw∇2w

Call the micro-level description of the color pattern formation L1 and these Turing models
representing this descriptive level M1. M2 (as discussed in section 3.1.), is a discrete cellular
automaton model representing the macroscopic pattern formation of the skin colors by referring
to the mesoscopic skin scale units. Hence, there are two different kinds of models M1 and
M2, at two different representational levels. But how can we get from the micro-level, the
Turing model, to the macro-level, the cellular automaton representation? Why are there two
very different representations for the same empirical phenomenon, the color pattern formation?
How do these two representations relate?

To explain why the cellular automaton pattern is a plausible mathematical representation
of the skin color pattern, we need to understand how the microscopic interactions among the
biological cells translate into a cellular automaton pattern.

3.3 From Turing Models to Cellular Automaton Patterns
The case study presents the following explanatory gap: Given that pattern formation at the
micro-level of biological cells can be represented by a set of differential equations, how can we
explain the formation of cellular automaton patterns on the macro-level of the skin? Scientific
intuition says there should be a way to fill this gap. To confirm this intuition in a stable and
reliable way, Manukyan et al. (2017) appeal to a set of mathematical facts. To obtain the
discrete RD models from the continuous ones requires considering the dual correspondence
between Voronoi diagrams and Delaunay triangulation.12 Only after adding this duality fact to
10The decay terms model cell behaviors such as division, differentiation, and death. The values

of cu, cv, cw parameters are based on Nakamasu’s model.
11The authors also consider boundary conditions on the functions F,G,H to avoid any unreal-

istic production rate of the substances.
12For a given set of discrete points P in a plane, a Delaunay triangulation is a triangulation such

that no point of the given set is inside the circumcircle of any triangle obtained. A Voronoi
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mathematical knowledge about continuous RD models, obtaining discrete RD models became
possible. This duality is the bridge principle at work.

First, to obtain the discrete RD equations, Manukyan et al. (2017) approximate the continu-
ous RD equations by discretization to edges of a square lattice (with edge length equal to S and
a sufficiently small edge width ε). Discretization is such that the RD equations are essentially
unchanged, with the same coefficients. The only difference with the continuous RD equations is
the replacement of the Laplacian∇2u(x) by its discrete counterpart:

∑
x′ [u(x′)−u(x)], where x′

is the neighbor of x. The diffusion coefficient Du is replaced by a factor of ε−2Du. Continuous
RD equations on a Voronoi diagram approximate the lizard skin scales. Discrete RD equations
on Delaunay triangulation are then obtained from the continuous RD equations. Consider z
denoting the center of a hexagon, and z′ denoting the centers of the adjacent hexagons. The dis-
crete Laplacian on the Delaunay triangulation becomes: ∇2U(z) =

∑
z′ [U(z′)−U(z)].13 Then,

they show that functions U, V,W approximately satisfy the discrete RD equations on the Delau-
nay triangulation. The bridge principle, the mathematical fact concerning the transformation of
the continuous RD equations on a Voronoi diagram to the discrete RD equations on the corre-
sponding Delaunay triangulation, provides a sufficiency condition for obtaining the discrete RD
equations from the continuous ones. Figure 3 illustrates this dual correspondence.

This example shows that the drawing of consequence step of the inferential framework is too
simplistic to straightforwardly capture how some scientists such as Manukyan et al. (2017) use
some pieces of mathematics, independent from any mathematical representationsM1 andM2, to
explain the link between the two different descriptions of an empirical phenomenon. Obtaining
the discrete RD model from the continuous one is not just drawing consequences, in the sense
of Bueno and Colyvan (2011, 353) and Bueno and French (2018, 52–53):

The second step consists in drawing consequences from the mathematical formal-
ism, using the mathematical structure obtained in the immersion step. We call this
step derivation. This is, of course, the key point of the application process, where
consequences from the mathematical formalism are generated.

In the case study presented, it is epistemically impossible to obtain the discrete RD model
without adding a new mathematical fact, the duality between Voronoi diagram and Delaunay
triangulation, to the toolbox of scientists. The approximated RD models, therefore, are not
simply the result of drawing mathematical consequences from the mathematical representation
obtained in the immersion step (i.e., the continuous Turing equations). Here, an approximation
procedure is at work. Why this approximation, rather than another? Because the scientists have

diagram is a partitioning of a plane into regions based on distance to points P in a specific
subset of the plane.

13U, V,W at the center z of a hexagon are defined as the averages corresponding to u, v, w on
the vertices of the square lattice inside a hexagon.
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the discrete cellular automaton model and want to link that discrete model to the continuous
Turing equations in order to improve their understanding of the biological phenomena.

One main reason is that manipulating formulas and directly drawing mathematical conse-
quences does not always show what the scientists aim to explain. To connect these representa-
tions, something else, a previously unrelated piece of mathematics, is required. I call this piece
a mathematical bridge. A mathematical bridge provides sufficient conditions that make obtain-
ing a different mathematical representation of the same empirical phenomenon possible.14 The
derivation step of Bueno and Colyvan (2011) and Bueno and French (2018) merely shows that
a mathematical structure is a mathematical consequence of another. The case study illustrates
that we cannot merely derive M2 from M1; rather, we need an additional fact, the mathematical
bridge, that makes obtaining the M2 possible. Therefore, the bridge is explanatory because it
answers why and how the two descriptive levels of an empirical phenomenon connect.

In contrast to the drawing of consequences step of the inferential account, sometimes the
scientific aim is not merely drawing mathematical consequences, and then to interpret these
consequences back to a micro-level description of the phenomenon L2. In some situations,
we have two mathematical representations from two distinct kinds of scientific study, and then
the main goal is to explain how one given mathematical representation links to another, and
accordingly how the two descriptions of the empirical phenomenon under study relate. The
second mathematical representation gives some hints as to what kinds of approximations we
need in order to justify the link. These hints incorporate some pragmatic and occasionally messy
and context-dependent considerations that motivate scientists’ search for mathematical bridges.

Obtaining the discrete RD model from the continuous one mathematically confirms bio-
logical intuitions of scientists about the presence of some new geometrical parameters at work
responsible for the appearance of macroscopic cellular automaton patterns. Scientists then in-
terpret the new parameters in the following way: the generation of the discrete RD mechanism
is due to the dramatic difference of thickness between scale and inter-scale skin of the ocellated
lizards.

Having the discrete RD models, Manukyan et al. (2017) then show that the cellular automa-
ton behavior can be obtained when the diffusion coefficients in the system of discrete partial
differential equations are reduced by a factor greater than 80% in the inter-scale regions. This
approximation is validated with the help of computer simulations: that the discrete RD model
and the cellular automaton have the same statistical properties.15 I have now enough pieces at
hand to revise the schema of the inferential account. This revised account is illustrated in figure
14I do not claim that this mathematical piece is unique. In principle, there might be other ways

to explain the link between the two descriptions of the empirical phenomenon. Nothing I say
here rules out such alternatives.

15Understanding how computer simulations factor into scientific explanations is beyond the
scope of this paper. Interested readers are referred to Durán (2017) and Parker (2017) for
some initial insights. The use of computer simulations in obtaining M2 from M1 additionally
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Figure 3: Voronoi tiling diagrams and Delaunay triangulation from Manukyan et al. (2017).

4.

L1 M1

M2

B

L2

immersion

approximation

interpretation

Figure 4: Bridging role of mathematics in inter-level explanation of color pattern formation.

In figure 4, the continuous RD model M1 represents the mechanisms of the biological skin
cells at the micro-level L1. The macro-level skin pattern L2 is represented by a cellular automa-
ton model M2. Scientists require some bridge principles to make sense of the relation between
M2 and M1. In particular, M2 cannot be derived from M1 alone. To obtain M2 requires a
mathematical principle whose relation to M1 and M2 was previously unknown and which is
not entailed by M1. This bridging principle is the mathematical fact that Voronoi diagrams and

challenges the claim that the derivation step (ii) of figure 1 is sufficient to explain the role of
mathematics in the present case study.
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Delaunay triangulations are dual (B). B is used in scientists’ attempt to close the explanatory
gap between the two descriptive levels of the empirical phenomenon of interest. B provides
mathematical possibility for obtaining M2 from M1. The crucial point to stress here is that what
I am calling the bridge principle, is independent from either of the two modelsM1 orM2. Bueno
and Colyvan (2011) and Bueno and French (2018), for instance, might want to say that M2 is
merely an extension of M1 and is easily understood in terms of their partial models. However,
this is not the case because the bridge principle B here, which is independent from either of the
two models M1 or M2, is essential to relate them. Finding a relevant mathematical bridge can
sometime be a significant achievement. Hence, the step (ii) of the inferential account, drawing
of consequences, should be replaced by an approximation step which allows to choose a bridge
principle and an approximation procedure.

The schema illustrated in figure 4 has the maximum amount of apparatus to capture the
roles of mathematics in some explanations. Needless to say, not all steps illustrated here might
manifest themselves in different instances of the applicability of mathematics to empirical phe-
nomena. The revised schema captures the use of mathematical bridges in obtaining new mathe-
matical representations. Moreover, it illustrates that in some cases, due to extreme levels of dif-
ficulty or the epistemic impossibility of drawing consequences from a mathematical formalism,
approximation procedures substitute the strict mathematical derivation. In some simple cases,
the approximation might be sharpened and become purely mathematical in terms of drawing of
consequences; though it need not be the case. Hence, the schema presented in figure 4 is broader
than the inferential account of Bueno and Colyvan (2011) and Bueno and French (2018).

Let me clarify a potential objection as to whether the revised schema in figure 4 is some-
thing that Bueno and Colyvan’s (2011) and Bueno and French’s (2018) framework cannot ac-
count for. Bueno and French (2018, Chapter 9) discuss how their account can accommodate
highly idealized models such as renormalization group techniques that are claimed to play a
genuine non-representational role in the explanation of phase transitions. Why do they play a
non-representational role? In one of the most promising responses, Batterman (2009) claims
that there is no correspondence between physical structures and divergent limits; hence, no
structural similarity can relate the physical world to the mathematical model. To handle this
non-representational role of mathematics, Bueno and French’s (2018) solution is to keep the step
(ii) drawing of consequences fixed. Instead, they extend the step (i) and (iii) of their account, the
immersion and the interpretation steps, to iterated immersion and iterated interpretation steps
(figure 5). This means that, as they claim, sometimes in order to make sense of the applicability
of mathematics, first, there is a mapping between the physical structure and the mathematical
structure; then, there is a second immersion step from the mathematical structure to another
mathematical structure. In a similar vein, iterated interpretations happen in order to map the
mathematical representation back to the empirical world. In this way, Bueno and French (2018)
claim that their account can accommodate the non-representational role of infinite limits when
they apply to the empirical phenomenon of phase transition. Could it be that this iterated in-
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ferential account also can capture the applicability of mathematics in the case of the skin color
pattern example? Not so for two reasons.

L1 M ′
1 M1

M2M ′
2L2

immersion 1 immersion 2

drawing of consequences

interpretation 2interpretation 1

Figure 5: The iterated inferential account.

First, by their own definition, the immersion and the interpretation steps should capture
the similarities between the physical and the mathematical phenomena. It is in virtue of this
physical-mathematical similarity that the inferential conception of applied mathematics gets off
the ground. However, establishing a relation between the two mathematical structures M ′

1 and
M1 is not really an immersion step, in the same way that the relation between L1 and M ′

1 is. The
structural similarity between M ′

1 and M1 is purely mathematical, not physical-mathematical. As
a result, the relation between M ′

1 and M1 is not really immersion. In a similar vein, the relation
between the two mathematical structures M ′

2 and M2 is not really an interpretation step. The
structural similarity between M ′

2 and M2 is purely mathematical, not physical-mathematical.
This is an objection as to whether the iterated inferential account really gets off the ground.
Second, the iterated account does not open space for considerations of bringing new parts of
mathematics to the mathematical toolbox of scientist for the explanations in question. In partic-
ular, it does not show the role of independent parts of mathematics when they make relating the
two mathematical representations M1 and M2 possible.

The bridging role of mathematics as an explanatory role is compatible with a variety of
ontological stances about mathematics. Here, I explore two major ontological views. Both
views are committed to assigning a high status to the contribution of mathematics to scientific
reasoning. First, at least partially, mathematics is embedded in and therefore constitutive of the
empirical world (e.g., Bigelow 1988; Franklin 2014). If this is the case, scientific intuitions
about the existence of a mathematical relation between the mechanistic explanations of the two
levels is confirmed by mathematical bridges that are constitutive of the empirical world. Second,
the mathematical bridges act as a piece of puzzle-filling in our incomplete schema of scientific
reasoning. This view assigns a more instrumental, functional stance to mathematics. Relatedly,
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we might also expect that we will find a natural correspondence with the mathematical bridge in
the future, as current scientific knowledge is evolving and by no means complete.

To summarize, first, in the study of the color pattern formation of vertebrates, mathematical
biologists use continuous differential equations as a mathematical model for the representation
of the interactions and activities among microscopic biological cells. In the formation of color
patterns, a Turing model provides a mechanistic explanation for “why is there a specific kind of
skin color pattern with reference to microscopic biological cells?” Second, a cellular automaton
model is used to represent the formation of the color pattern at the macroscopic level, by making
reference to the mesoscopic hexagonal cells. Third, the mathematical fact that Voronoi diagrams
and Delaunay triangulations are dual acts as a bridge to obtain discrete RD models in explaining
“why is there a cellular automaton model at the macro-level of the target phenomenon, given that
the micro-dynamics between the biological skin cells correspond to a Turing model?” Without
digging into some facts of mathematical geometry, the scientists could not unequivocally char-
acterize the system, could not justify the presence of “an additional spatial parameter”, and
could not fully explain why we obtain the cellular automaton patterns from the continuous Tur-
ing models. Therefore, the bridging role of mathematics is an important role for mathematics in
scientific explanations.

In the next section, I briefly discuss another interesting case from the history of science in
which a mathematical bridge has made explaining the empirical adequacy of two mathematical
representations possible. I will discuss the explanation of the empirically-significant, mathe-
matical equivalence of matrix and wave mechanics as established by Von Neumann (1955). I
have two reasons to discuss this case. First, Bueno and French (2018, Chapter 6) explore the
exact same scientific case. Their discussion illustrates how mathematics unifies some apparently
unrelated domains, such as quantum states, probability assignments, and logical inference. As
I will argue, however, their discussion lacks sufficient resources to accommodate the essential
role of the mathematical bridge, the Riesz-Fischer theorem in functional analysis, in establishing
the empirically-significant, mathematical equivalence of matrix mechanics and wave mechanics.
Second, this example will be known, at least in outline, to many readers. The details will nicely
illustrate the mathematical bridge to relate the two mathematical models of quantum mechanics.

4 Bridging Wave Mechanics and Matrix Mechanics
Matrix mechanics is an algebraic approach, employing the techniques of matrix manipulation,
for the representation of observable properties of quantum systems, such as position and mo-
mentum. Developed by Heisenberg (1925) and Born et al. (1926), matrix mechanics aims at
providing a mathematical representation for quantum systems, that is as closely as possible
to the mathematical formulations of classical mechanics; we must learn as much as possible
about the behavior of quantum systems from the behavior of the Hamiltonian function. Matrix
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mechanics is articulated in a discrete space, and roughly assumes the following mathematical
postulates for the representation of quantum phenomena. (1) The observable behavior of a quan-
tum system, its position and its momentum, corresponds to time-dependent, Hermitian matrices
Q and P, known as canonical matrices. (2) The canonical matrices satisfy the following quan-
tum condition: PQ − QP = h

2πi
I . (3) Equations of motions are Q̇ = ∂H

∂P
and Ṗ = −∂H

∂Q
. (4)

The Hamiltonian matrix W = H(Q1, . . . , Qk, P1, . . . , Pk,) that represents energy is diagonal;
otherwise, a canonical transformation matrix S should be found such that S−1HS is diagonal.
Finding solutions of quantum mechanical systems to the above representation has turned out to
be complicated.

From an entirely different standing point, Schrödinger (1926a) used the mathematical ma-
chinery of differential equations, and developed wave mechanics to represent quantum systems.
Wave mechanics has an underlying continuous space, and treats material particles as waves. A
wave function ψ(x) is associated with each particle, and describes the shape of the wave in three-
dimensional Euclidean space. Wave mechanics, broadly, assumes the following mathematical
postulates for the representation of quantum phenomena. (1) The position and momentum of
a quantum phenomenon are represented by a wave operator, acting on the corresponding wave
function. (2) Schrödinger’s equation H̃ψ = Eψ replaces the classical equation of motion. H̃
is obtained by substitution of q and p in the classical Hamiltonian by the following two opera-
tors: Q̃ = x and P̃ = −ih̄ ∂

∂x
. The main wave-mechanical problem is then solving the partial

differential equations.
As briefly shown above, these two representations of the quantum phenomena use very dif-

ferent mathematical apparatuses to illustrate quantum reality: matrix mechanics describes the
quantum phenomena by discrete matrices and sums, whereas wave mechanics applies continu-
ous functions and integration over those functions for this representation. Take the explanandum
to be matrix and wave mechanics give empirically-significant, mathematically-equivalent rep-
resentations of the quantum phenomena. The explanans is the mathematical proof that shows
the empirically-significant, mathematical equivalence of these two representations. Schrödinger
(1926b) aimed to show that the two mathematical representations of quantum phenomena, the
wave and the matrix mechanics, were empirically equivalent.16 He wanted to show that the
empirical equivalence can be explained in terms of a mathematical proof for the equivalence
between the two mathematical representations. Schrödinger himself was not fully successful in
achieving this goal, due to several conceptual and technical difficulties.17

On the other hand, using his Hilbert space formalism, Von Neumann (1955) characterized
matrix mechanics with the totality of functions Fm, satisfying certain conditions. Fm constructs

16Around the same time, Eckart and Pauli also attempted to give similar equivalence proofs. I
will not discuss this point in further details here, as Schrödinger’s proof is the most elaborate
one, with the highest historical influence.

17For a detailed characterization of this debate, see Muller (1997a) and Muller (1997b).
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the discrete space of matrix mechanics. In a similar vein, he identified the totality of functions
Fw, satisfying certain conditions. Fw constructs the continuous space of Schrödinger’s wave
mechanics. Then, he appealed to the Riesz-Fischer theorem in functional analysis to give the
proof for the isometric isomorphism of Fm and Fw. Fm and Fw are not arbitrary sets of func-
tions. Indeed, Von Neumann (1955, pp. 30–31) emphasizes the empirical significance of Fm
and Fw as follows: (i) these functions “... are the entities which enter most essentially into the
problems of quantum mechanics”, and (ii) they “... are the real analytical substrata of the matrix
and wave theories.” (i) and (ii) gives sufficient reasons to Von Neumann to claim that “... this
isomorphism must always yield the same numerical results.” Therefore, the mathematical proof
relates to making claims about the quantum phenomena. To put it differently, Von Neumann
gave a mathematical proof for the equivalence of wave and matrix mechanics which has em-
pirical significance; that is, the mathematical equivalence of matrix and wave representations of
quantum phenomena is understood in terms of the same numerical results that they provide. This
empirical significance can be captured as follows: Von Neumann’s mathematical formulation of
quantum mechanics describes the states of the physical system by Hilbert space vectors and the
measurable quantities by Hermitian operators.

QS WM

MM

B

QS

immersion
interpretation

equivalence

interpretation
immersion

Figure 6: Bridging role of mathematics in explaining the equivalence of matrix and wave me-
chanics.

As Bueno and French (2018, Chapter 6) point out, Von Neumann’s mathematical proof
of the theoretical equivalence of matrix and wave mechanics reveals how appropriate analogies
and structural similarities between the two mathematical representations of quantum phenomena
gave rise to the development of a more general framework, Von Neumann’s Hilbert space for-
malism. Bueno and French successfully show that their three-step representational framework
captures the significance of structural similarities between the two mathematical representations,
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and how such similarities motivated mathematicians to find a more general framework that uni-
fies seemingly separate pieces of mathematics and logic. However, this framework does not
have sufficient resources to reveal how a new piece of mathematics made the equivalence proof
possible. Recall that their representational framework is composed of three steps: immersion,
drawing of consequences, and interpretation. I maintain that the drawing of consequences cannot
completely capture the role of mathematics in this quantum endeavour. Indeed, Von Neumann
did not claim that Fm is obtained by a mathematical derivation from Fw, nor that Fw is obtained
by a consequence derivation from Fm. He used a new piece of mathematics from functional
analysis, the Riesz-Fischer theorem, to give the proof of an empirically-significant, mathemat-
ical equivalence relation. I take the Riesz-Fischer theorem to be a mathematical bridge. The
drawing of consequence step of Bueno and Colyvan’s (2011) and Bueno and French’s (2018)
representational framework does not have sufficient resources to show how this mathematical
bridge, independent from the two representations, makes the equivalence proof possible, since
it requires bringing in outside considerations such as the Riesz-Fischer theorem from functional
analysis. The importance of adding the bridge is that sometimes it changes the nature of the
activity of drawing consequences. Figure 6 illustrates how the bridging role of mathematics
(B) influences the explanation of the empirically-significant, mathematical equivalence of wave
mechanics (WM) and matrix mechanics (MM) for a quantum system (QS). I want to stress once
again a central point. The representational account does a fine job of modeling matrix mechan-
ics and wave mechanics. But this account does not have sufficient resources to link the two,
at least not directly. The mathematical bridge was provided by a further mathematical domain
that had been perhaps known to some mathematicians but not to the physicists who eventually
embraced it as a bridge. It might even have been a new mathematical approach whose develop-
ment was in itself a mathematical achievement. In either case, it was not a mere corollary of the
mathematical formalism used for the representation of the empirical phenomenon.

In summary, some mathematical bridges will be evident to the scientists working on the
problem. Others might not be known to the scientists in question. They might have to consult
their friendly neighborhood mathematician for suggestions. The mathematical contribution of
Stanislav Smirnov, a Field medalist and a co-author of Manukyan et al. (2017), to the group of
biologists is a clear example. He put insights about the dual relation between Voronoi diagrams
and Delaunay triangulations on the table and so made possible the explanation of how and why
the two representations (one in terms of differential equations and the other in terms of cellular
automata) link. There is also the possibility that there is no bridge known to anyone. The
bridge has yet to be discovered or invented. This was Von Neumann’s case. He had to come
up with a new piece of mathematics to explain why and how two very different mathematical
representations of quantum phenomena show empirically-significant, mathematical equivalence.

18



A New Role for Mathematics in Empirical Sciences Atoosa Kasirzadeh

5 Conclusion
In this paper, I have identified a distinct role for mathematics in scientific explanations, the
bridging role, which has not been fully appreciated in the literature. This role illustrates how
mathematics acts as a reliable connecting scheme in our explanatory reasoning about different
representations of an empirical phenomenon. Different kinds of mathematical bridges are possi-
ble. A bridge might connect different levels of empirical phenomena (as in the biological case)
or it might establish the equivalence of phenomena (as in the quantum mechanics case). Still
others might be possible.

Moreover, I have discussed that this bridging role differs from both the genuinely constraining-
explanatory role and the representational role. By providing two relevant case studies from
mathematical biology and physics, I have argued how this role is not a trivial extension of Bueno
and Colyvan’s (2011) and Bueno and French’s (2018) framework for the applicability of math-
ematics to empirical phenomena. I have shown that adding a bridge principle as an explanans
provides sufficient conditions for making some approximations possible. Accordingly, I have
proposed revised schema that captures some instances of scientific practice more accurately, and
helps us to better understand the full spectrum of activities that constitute applied mathematics.

Once alerted to examples of mathematical bridges and to examples where they might fail,
we will likely find lots more. For instance, the equivalence of Lagrangian and Hamiltonian me-
chanics comes to mind. Interesting questions will arise such as: How are they related? Are they
really equivalent? If so, what kind of roles mathematics play in establishing this equivalence? If
not, as North (2009) and Curiel (2013) argue, what weaker relation is at work between the two
mathematical representations? Perhaps, equivalence is a strong kind of relation and other kinds
of relations worth analyzing. And some of these questions might only be answered following
considerable historical investigation. It could be that the idea of mathematical bridges will open
up a large and important new field for philosophical investigation.
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